Acessibilidade / Reportar erro

Weedy ferns (Polypodiopsida) in Argentina: diversity, distribution and impact on human activities and ecosystems

Abstract

Currently, in Argentina 368 species of true ferns (i.e. Polypodiopsida class) are distributed throughout the country, however, only four of them have been mentioned until now as weeds and ruderal species. The goal of this work was to generate an update of weedy ferns from Argentina, including morphology, distribution, and type of weed according to their impact on natural habitats and/or human activities. All Argentinian fern species were analyzed based on references, herbarium specimens, and field trips. As a result of our study 25 species were recorded from Argentina and classified as segetal, ecological, or aquatic weeds, and ruderal and/or toxic species. Current taxonomic identity, diagnostic characters, origins, habitats, geographical distribution, common names, and impact and potential risks were indicated by species. In addition, we provide a dichotomous key to species, presence of these species in southern South American countries, as well as and photographs in natural habitat. This work represents the first review on native and exotic ferns from Argentina that cause an impact on human activities or disturbe native habitats. The results provide information for the development of weed management tools and priority areas to implement them.

Key words
anthropized areas; aquatic weed; ecological weed; ruderal weed; segetal weed; toxic plant

INTRODUCTION

This work represents the first contribution on the weedy “fern” or “true ferns” species (Polypodiopsida sensuPPGPPG I. 2016. A community-derived classification for extant lycophytes and ferns. J Syst Evol 54: 563-603. I) that grow in Argentina and their relationships with natural habitats and human activities. Previously, until more than a deDE EGEA J, MERELES F, DEL CARMEN PENA-CHOCARRO M & CÉSPEDES G. 2016. Checklist for the crop weeds of Paraguay. PhytoKeys 73: 13-92.cade ago, the ferns and lycophytes (Lycopodiopsida class sensu PPG I 2016) were grouped in the paraphyletic clade “Pteridophytes” but they later separated based on morphological and molecular data (Smith et al. 2006).

Phylogenetically, Polypodiopsida is the sister group of the seed plants and consists of about 10578 species in the world (PPG I 2016), of which 368 are present in Argentina (PoncePONCE MM. 2016. Pteridaceae (Adiantopsis-Cheilanthes) and Thelypteridaceae. In: Ponce MM & Arana MD (Eds), Flora Vascular de la República Argentina, Vol. 2, Licofitas. Helechos. Gymnospermae. Zuloaga FO & Belgrano MJ (Eds), San Isidro: Estudio SIGMA SRL, Instituto de Botánica Darwinion - CONICET, p. 281-355. & AranaARANA MD. 2016. Equisetaceae, Pteridaceae (Pellaea) and Salviniaceae. In: Ponce MM & Arana MD (Eds), Flora Vascular de la República Argentina, Vol. 2, Licofitas. Helechos. Gymnospermae. Zuloaga FO & Belgrano MJ (Eds), San Isidro: Estudio SIGMA SRL, Instituto de Botánica Darwinion - CONICET, p. 167-350. 2016). Although ferns are usually recognized by humans due to their ornamental and/or medicinal uses, more than 157 species in the world have been registered as alien weeds, of which 39% behave as invasive species (JonesJONES EJ, KRAAIJ T, FRITZ H. & MOODLEY D. 2018. A global assessment of terrestrial alien ferns (Polypodiophyta): species’ traits as drivers of naturalization and invasion. Biol Invasions: 1-13. et al. 2018) or toxic for animals and humans (Siman et al. 2000). The controversial term “weed” can be deDE LA SOTA ER. 1995. Nuevos sinónimos en Salvinia Ség. (Salviniaceae-Pteridophyta). Darwiniana 33: 309-313.fined, in a broad sense, as those plant species that interfere with human activity because they grow at a time and place where they are unwanted (HolznerHOLZNER W. 1978. Weed species and weed communities. Vegetatio 38: 13-20. 1978, FryerFRYER JD. 1979. Key factors affecting important weed problems and their control. In: European Weed Research Society Symposium: The influence of different factors on the development and control of weeds, Mainz, p. 13-24. 1979). From a biogeographical perspective, “weeds” are considered exotic species that are distributed outside their native distribution area due to an unnatural cause (RejmánekREJMÁNEK M. 1995. What makes a species invasive? In: Pysek P ET AL. (Eds), Plant Invasions: General aspects and special problems, Amsterdam: Academic Publishing, p. 3-13. 1995). However, if ecological changes occur under man-made management systems, species of the native flora can expand their range of distribution and invade new habitats (MortimerMORTIMER AM. 1990. The biology of weeds. In: HANCE RJ & HOLLY K (Eds), Weed control handbook: Principles, Oxford: Blackwell Scientific Publications, p. 1-42. 1990). From an ecological perspective, “colonizing weeds” are considered those pioneer species that rapidly invade those areas where the original vegetation was altered (BakerBAKER HG. 1974. The evolution of weeds. Ann Rev Ecol Syst. 5: 1-24. 1974, PysekPYSEK P. 1995. On the terminology used in plant invasion studies. In: Pysek P et al. (Eds), Plant Invasions: General aspects and special problems, Amsterdam: Academic Publishing, p. 71-81. 1995, Wijesundara 2017).

Colonizing species can be considered as weeds because they invade cultivable areas and decrease the productivity of the crop (segetal weeds), and because they invade disturbed natural habitats and, if these are exotic, they could displace native species (environmental or ecological weeds) (HolznerHOLZNER W. 1982. Concepts, categories and characteristics of weeds. In: Holzner W & Numata M (Eds), Biology and ecology of weeds, The Hague: Springer-Science and Business Media, B.V., p. 3-20. 1978, 1982, LorenziLORENZI H. 2008. Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas, 4ta ed., Nova Odessa: Instituto Plantarum de Estudos da Flora LTDA, 425 p. 2008). Furthermore, some aquatic species can also be considered colonizing weeds, when their populations grow excessively under favorable environmental conditions. These populations reach to cover completely bodies of water hindering navigation, fishing, and electrical generation, and contributing to the ecosystem eutrophication due to the symbiosis of aquatic species with Cyanobacteria (RandallRANDALL JM. 1996. Weed control for the preservation of biological diversity. Weed Technol 10: 370-383. 1996).

On the other hand, other species are considered weeds but because of their toxicity. In addition to the risk to human health, the poisoning caused by the ingestion of toxic plants is one of the main causes of mortality of livestock animals and causes great economic losses (GalloGALLO GG. 1979. Plantas tóxicas para el ganado en el Cono Sur de América. Buenos Aires: Editorial Universitaria de Buenos Aires, 255 p. 1979, AcamovicACAMOVIC T, STEWART CS & PENNYCOTT TW. 2004. Poisonous Plants and Related Toxins. Wallingford: CAB International, 608 p. et al. 2004, CamposCAMPOS SC, SILVA CG, CAMPANA PRV & ALMEIDA VL. 2016. Toxicidade de espécies vegetais. Rev Bras Pl Med 18: 373-382. et al. 2016).

Finally, sometimes the concept “weed” includes those species called “ruderals”. These species grow spontaneously in urban microhabitats such as stone or brick walls, roofs, roadsides, and margins of railway lines, and ditches (Holzner 1978, CaluffCALUFF MG & FIALLO VRF. 2008. Malezas pteridofíticas de Cuba. Revista Jard Bot Nac Univ Habana 29: 51-56. & Fiallo 2008, EdgingtonEDGINGTON J. 2008. Urban Ferns. Pteridologist 5-8. 2008, MorajkarMORAJKAR S, SAJEEV S & HEGDE S. 2015. Ferns: a thriving group of urban. Bionature 35: 13-21. et al. 2015). Although in many cases the ruderal species do not cause a direct impact on the anthropic activities, and even provide an ecosystem service, their excessive growth for a long time can turn them into “annoying” or unwanted species (DelDEL TREDICI P. 2010. Spontaneous urban vegetation: reflections of change in a globalized world. Nat and Cult 5: 299-315. Tredici 2010).

It is important to note that the recognition of a species as a weed varies according to the region and over time, since it depends on the subjectivity of the human with respect to the problems that the species causes (MarzoccaMARZOCCA A. 1986. Manual de malezas, 3ra ed., Buenos Aires: Editorial Hemisferio Sur SA, 564 p. 1986, BinggeliBINGGELI P. 1994. The misuse of terminology and anthropometric concepts in the description of introduced species. Bull Brit Ecol Soc 25: 1013. 1994).

Ferns have reproductive strategies that in many cases coincide with those of a colonizing weed. Among these can be highliLI X, FANG YH, YANG J, BAI SN & RAO GY. 2013. Overview of the morphology, anatomy, and ontogeny of Adiantum capillus-veneris: An experimental system to study the development of ferns. J Syst Evol 51: 499-510.ghted: production of thousands of anemophilous spores that are dispersed hundreds of kilometers and remain dormant for years forming a spores bank in the soil (Tryon 1986); rapid and massive germination and young fast-growing sporophytes; long creeping rhizomes sometimes fire-resistant (RoosROOS K, ROLLENBECK R, PETERS T, JÖRG B & BECK E. 2010. Growth of tropical Bracken (Pteridium arachnoideum): response to weather variations and burning. Inv Plant Sci Mana 3: 402-411. et al. 2010); vegetative multiplication through fragmentation and/or through gemmiferous rhizomes, rachis, and leaves (Vasco et al. 2013), and production of allelopathic substances that inhibit the growth of other species. In this way, exotic species of ferns have displaced native representatives in different parts of the world, producing numerous adverse effects on the ecosystems that invade (Sharpe et al. 2010, AkomolafeAKOMOLAFE GF & RAHMAD ZB. 2018. A review on global ferns invasions: mechanisms, management and control. J Res Forestry, Wildlife and Environment 10(3): 42-54. & Rahmad 2018).

Despite the important diversity of ferns in the Argentine flora, only four species were considered weeds in general or local works as weeds (Marzocca 1986, LallanaLALLANA VH. 1989. Malezas del arroz en Sudamérica. Revista Fac Agron 10: 87-94. 1989, CalifanoCALIFANO LM & ECHAZÚ F. 2013. Etnobotánica en comunidades pastoriles. Conocimiento tradicional sobre especies tóxicas para el ganado en la cuenca del río Iruya (Salta, Argentina). Bol Soc Arg Bot 48: 365-375. & Echazú 2013, RosatoROSATO V, CORREA MV, GARCÍA R & LOFEUDO R. 2015. Plantas Vasculares en edificios y casas patrimoniales de la Ciudad de La Plata, Argentina. In: IV Congreso Iberoamericano y XII Jornada de Técnicas de Reparación y Conservación del Patrimonio, La Plata, p. 220-227. et al. 2015, FernándezFERNÁNDEZ OA, LEGUIZAMÓN ES & ACCIARESI HA. 2016. Malezas e Invasoras de la Argentina, Tomo II: Descripción y reconocimiento. Universidad Nacional del Sur, Bahía Blanca: Edinus, 950 p. et al. 2016).

The goals of this work are (1) to suggest which among the fern species present in the Argentine flora behave as weeds (including ruderal) and to review their taxonomic and morphological diversity, (2) to update information about their habitat and geographical distribution, and (3) to classify them according to their impacts on natural habitats and/or human activities. In addition, a dichotomous key and additional diagnostic character to species are provided, and a comparative analysis with the southern South American countries is discussed.

MATERIALS AND METHODS

We elaborated a list of weedy fern species, collecting information from herbarium specimens, field trips, and by revising the literature.

The species in the final list belong to one or more of the following weed categories: Segetal weed (SEW): colonizing species that invades crops or cultivable areas; Ecological weed (ECW): colonizing species that invade disturbed natural habitats; Aquatic weed (AQW): colonizing species from aquatic habitats which, because of their excessive growth, cause problems for human activities; Toxic (TOX): species poisonous for animals and humans; Ruderal (RUD): species growing spontaneously in urban microhabitats.

For the analysis of herbarium specimens, the following institutions were consulted: BA, BAB, LP, MCNS and SI (abbreviations follow Thiers 2018). In addition, field trips were made mainly to the Northwest, Northeast, and central Argentina, from 2010-2017. The species were photographed and georeferenced and vouchers were deposited at BA and SI. Photographs of species were taken by the authors or provided by the database Documenta Florae Australis (http://www.floraargentina.edu.ar). A dichotomous key was elaborated to distinguish the species listed in this studied. In addition, in the treatment of each species, additional diagnostic morphological characters not mentioned in the key were described.

An exhaustive bibliographic analysis about ferns species of the Argentina flora was carried out to establish the distribution, growth habits and environments of species that correspond to any of the aforementioned categories (i.e. CapurroCAPURRO RH. 1968. División Pteridophyta. In: CABRERA AL (Ed), Flora de la Provincia de Buenos Aires I: Pteridófitas, Gimnospermas y Angiospermas Monocotiledóneas (a excepción de Gramíneas), 101. Colección Científica. Buenos Aires: INTA, 625 p. 1968, deDE LA SOTA ER. 1977. Flora de la Provincia de Jujuy, República Argentina. Pteridophyta. Colección Científica. Buenos Aires: INTA, 275 p. la Sota 1977, MooreMOORE DM. 1983. Flora of Tierra del Fuego. Missouri: Anthony Nelson and Missouri Botanical Garden, 396 pp. 1983, PoncePONCE MM. 1994. Pteridofitos. In: Kiesling R (Ed), Flora de San Juan, vol I, Pteridofitas, Gimnospermas y Dicotiledóneas (Salicáceas a Leguminosas), Buenos Aires: Estudio SIGMA SRL, 348 p. 1994, de la Sota & Ponce 1998, de la Sota et al. 2001, Ponce et al. 2002, PensieroPENSIERO JF, GUTIERREZ HF, LUCHETTI AM, EXNER E, KERN V, BRNICH E, OAKLEY L, PRADO D & LEWIS JP. 2005. Flora Vascular de la provincia de Santa Fe, 1a ed., Santa Fe: Universidad Nacional del Litoral, 403 p. et al. 2005, AranaARANA MD & BIANCO CA. 2009. Pteridofitas del Centro de la Argentina, 1a ed., Río Cuarto: Universidad Nacional de Río Cuarto, 144 p. & Bianco 2009, MoreroMORERO R, GIORGIS MA, ARANA MD & BARBOZA GEC. 2014. Helechos y Licofitas del centro de Argentina: cultivo y especies ornamentales, 1a ed., Córdoba: editorial, 85 p. et al. 2014, Ponce & Arana 2016). Additionally, surveys of weedy and ruderal species from worldwide (RandallRANDALL RP. 2017. A Global compendium of weeds, 3rd ed., Perth: Randall RP, p. 2161-2163. 2017, Akomolafe & Rahmad 2018), southern South America (Gallo 1979), and Argentina (BurkartBURKART A. 1933. Observaciones sobre Pteridófitas Platenses. Physis 11: 253-265. 1933, Marzocca, 1986, Fernández et al. 2016), Brazil (Cardenas & Coulston 1967, Lorenzi 2008), Chile (MattheiMATTHEI J, MARTICORENA C, QUEZADA M & RODRÍGUEZ R. 1995. Manual de las malezas que crecen en Chile. Santiago de Chile: Alfabeta impresores, 545 p. et al. 1995), Cuba (CaluffCALUFF MG, FUENTES FIALLO V & REGALADO GABANCHO L. 2017. Licófitos y helechos invasores en Cuba. La Habana: Centro Nacional de Áreas Protegidas, 37 p. & Fiallo 2008, Caluff et al. 2017), North America (DickinsonDICKINSON R & ROYER F. 2014. Weeds of North America. Chicago: University of Chicago Press, 656 p. & Royer 2014), Oceania (WilcoxWILCOX MD & ROGAN DB. 1999. The Mural Flora of Auckland. J. Auckland Bot Soc 54: 35-46. & Rogan 1999), Paraguay (De Egea et al. 2016), Peru (Sagástegui & Leiva 1993), and Venezuela (ZambranoZAMBRANO J. 1974. Las Malezas Acuáticas. Rev Fac Agr 2: 87-94. 1974), were examined with the aim of carrying out an exhaustive analysis of the ecological role that the studied species have in Argentina and in other areas of their distribution throughout the World. Finally, we revised the literature on ferns in Bolivia (JørgensenJØRGENSEN PM, NEE MH, BECK SG, ARRÁZOLA S & SALDIAS M. 2014. Catálogo de las plantas vasculares de Bolivia. Missouri: Missouri Botanical Garden Press. Access: 20 July 2018. http://www.tropicos.org/Project/BC.
http://www.tropicos.org/Project/BC....
et al. 2014, KesslerKESSLER M & SMITH AR. 2017. Prodromus of a fern flora for Bolivia. VII. Equisetaceae. Phytotaxa 327: 97-99. & SmithSMITH AR. 1971. Systematics of the neotropical species of Thelypteris section Cyclosorus. Univ Calif Publ Bot 59: 1-143. 2017, Smith & Kessler 2017, 2018, SchwartsburdSCHWARTSBURD PB, NAVARRETE H, SMITH AR & KESSLER M. 2017. Prodromus of a fern flora for Bolivia. XXVI. Dennstaedtiaceae. Phytotaxa 332: 251-268. et al. 2017), Brazil (BFGBFG. 2018. Brazilian Flora 2020: Innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69: 1513-1527. 2018), Chile (RodriguezRODRIGUEZ RR. 1995. Pteridophyta. In: Marticorena C & Rodríguez R (Eds), Flora de Chile, Vol. 1, Pteridophyta - Gymnospermae. Concepción: Ediciones Universidad de Concepción, p. 119-309. 1995), Paraguay (http://www.tropicos.org/Project/Paraguay), Uruguay (BrussaBRUSSA CA & GRELA I. 2005. Los helechos como integrantes del bosque indígena: revisión taxonómica de Pteridophyta de la flora uruguaya. Seminario Compartiendo conocimientos sobre el monte indígena. Movimiento Mundial por los Bosques Tropicales. Montevideo 7. & Grella 2005) and southern South America (Zuloaga & Belgrano 2008) to make a preliminary survey about the weedy role of the studied species in southern countries of South America, and to make comparisons with the populations studied in Argentina.

Published studies that add relevant information on the distribution, morphological characteristics, reproduction strategies and ecological roles were addeDE LA PEÑA MR. 1997. Catálogo de nombres vulgares de la flora argentina (lista preliminar), Ciudad: Universidad Nacional del Litoral, 195 p.d to the description of each species. We follow Schulz (1976) and De la Peña (1997) for the common species names used in Argentina. When a common name does not exist in Argentina, names from other countries were included.

The code assigned in the Global Database of the European and Mediterranean Plant Protection Organization is provided for each species (https://gd.eppo.int/). This database contains basic information for species of interest to agriculture, forestry, and plant protection. Likewise, those species that are cited in the Global Invasive Species Database of the IUCN are indicated (GISD) (http://www.iucngisd.org/gisd/).

To analyze the species distributions in Argentina and detect if there is a variation in the diversity of weedy species and in the relationship between native / exotic species, the following geopolitical regions were considered: Northwest region (Catamarca, Jujuy, La Rioja, Salta, Santiago del Estero, and Tucumán provinces), Northeast region (Chaco, Corrientes, Formosa, and Misiones provinces), Cuyo region (Mendoza, San Juan, and San Luis provinces), Central region (Buenos Aires City and Buenos Aires, Córdoba, Entre Ríos, La Pampa, and Santa Fe provinces) and Patagonian region (Chubut, Neuquén, Río Negro, Santa Cruz, and Tierra del Fuego provinces). These regions have, in most cases, an uniformity in terms of socio-productive activities (e.g. land use, regional economies, population density), which is interesting to compare with the distribution of the different types of weeds studied.

RESULTS

We found a total of 25 species that could be classified according to the types of weeds considered in this study (Fig. 1). Three of them were recognized as toxic for animals and humans, eight were ruderal associated with urban environments, and 12 spp. were associated with crops (segetal weed), natural habitats (ecological weed) and/or aquatic habitats (aquatic weeds). Also, Christella dentata (Forssk) Brownsey and Jermy and Macrothelypteris torresiana (Gaudich) Ching were recorded as both ruderal and ecological weed, and five species recognized as ruderal or ecological weeds have toxic chemical principles:Dryopteris filix-mas (L.) Schott (Schönfelder and Schönfelder 2001), Equisetum giganteum L. (Riet-CorreaRIET-CORREA F, MEDEIROS RMT, PFISTER JA & MENDONÇA FS. 2017. Toxic plants affecting the nervous system of ruminants and horses in Brazil. Pesqui Vet Bras 37: 1357-1368. et al. 2017), Marsilea ancylopoda A. Braun (Skalski et al. 2016), Pellaea ternifolia (Cav.) Link (Califano and Echazú 2013), and Pteridium esculentum subsp. arachnoideum (Kaulf.) ThomsonTHOMSON JA. 2000. Morphological and genomic diversity in the genus Pteridium (Dennstaedtiaceae). An Bot 85: 77-99. (FurlanFURLAN FH, LISBOA DA COSTA F, TORRES JR SCS, KERBER LF, DAMASCENO E DOS S, SALINO A & RIET-CORREA F. 2014. Perfil de propriedades rurais com pastos invadidos por Pteridium arachnoideum na região norte de Mato Grosso e prevalência de hematúria enzoótica bovina. Pesq Vet Bras 34: 753-759. et al. 2014, Tourchi-Roudsari 2014).

Figure 1
Type of weedy and ruderal ferns from Argentina and their distribution in the southern South American countries. Acronyms of species type: SEW = Segetal weed; ECW = Ecological weed; AQW = Aquatic weed; TOX = Toxic; RUD = Ruderal. Acronyms of southern South American countries: BO = Bolivia; BR = Brasil; CH = Chile;PA= Paraguay; PE = Peru; UR = Uruguay.Symbols: * = Species recorded as colonizing weeds (segetal, ecological or aquatic); ▲= Species recorded as ruderal or in anthropic areas; ● = Species recorded as toxic.

From a taxonomical point of view, the 25 species belong to 16 genera and ten families of Polypodiopsida. The families most represented were Pteridaceae, with 11 mostly ruderal and toxic species, followed by Salviniaceae, with six aquatic weeds.

Regarding the original distributions, 14 of the weedy species are native and widely distributed in the country. Of these, twelve occur in three out of five regions of Argentina (Fig. 3). The remaining 11 species are exotic and, in most cases, their introduction into the country may be due to their ornamental use followed by the establishment beyond human control. However, the causes of the introduction of Macrothelypteris torresiana (Gaudich.) Ching, Pteris cretica L., and Salvinia adnata Desv remain unknown.

Geographically, the highest number of species (21) is recorded in the Central region, and the lowest number (five) in the Patagonian region. The province of Salta in Northwest Argentina and the Buenos Aires province in the Central region, recorded the highest weed species richness (18). Furthermore, Salta has the largest number of native weedy species in the country, while Buenos Aires has the largest number of alien weedy species in the country (Fig 2). In contrast, Tierra del Fuego (Patagonian region) is the province where the lowest number of weedy species was observed, just two: Azolla filiculoides Lam. and Equisetum giganteum L.

Figure 2
Map of Argentina. Acronyms of main political divisions of Argentina (provinces and a federal city): JUJ = Jujuy; SAL = Salta; TUC = Tucumán; LRI = La Rioja; CAT = Catamarca; SDE = Santiago Del Estero; FOR = Formosa; CHA = Chaco; MIS = Misiones; COS = Corrientes; ERI = Entre Ríos; SJU = San Juan; SLU = San Luis; MEN = Mendoza; CBA = Buenos Aires city; COR = Córdoba; SFE = Santa Fe; BAI = Buenos Aires; LPA = La Pampa; NEU = Neuquén; RNE = Río Negro; CHU = Chubut; SCR = Santa Cruz; TDF = Tierra del Fuego. First numer: weedy species / Second number: native species / Third number: exotic species.
Figure 3
Distribution of weedy and ruderal ferns by both regions and main political divisions of Argentina. Acronyms of Argentinian regions: NOW = Northwest region; NOE = Northeast region; CUY = Cuyo region; CEN = Central region; PAT = Patagonian region. Acronyms of main political divisions of Argentina (provinces and a federal city): JUJ = Jujuy; SAL= Salta; TUC = Tucumán; LRI = La Rioja; CAT = Catamarca; SDE = Santiago Del Estero; FOR = Formosa; CHA = Chaco; MIS = Misiones; COS = Corrientes; ERI = Entre Ríos; SJU = San Juan; SLU = San Luis; MEN = Mendoza; CBA = Buenos Aires city; COR = Córdoba; SFE = Santa Fe; BAI = Buenos Aires; LPA = La Pampa; NEU = Neuquén; RNE = Río Negro; CHU = Chubut; SCR = Santa Cruz; TDF = Tierra del Fuego e Islas del Atlántico Sur. Acronyms of ferns species: chl = Adiantopsis chlorophylla; cri = Azolla cristata; fil = Azolla filiculoides; pru = Cheilanthes pruinata; gig = Equisetum giganteum; anc = Marsilea ancylopoda; ter = Pellaea ternifolia; tri = Pityrogramma trifoliata; esc = Pteridium esculentum subsp. arachnoideum; def = Pteris deflexa; plu = Pteris plumula; aur = Salvinia auriculata; bil = Salvinia biloba; min = Salvinia minima; cap = Adiantum capillus-veneris; den = Christella dentata; fal = Cyrtomium falcatum; max = Dryopteris filix-mas; tor = Macrothelypteris torresiana; cor = Nephrolepis cordifolia; cre = Pteris cretica; mul = Pteris multifida; tre = Pteris tremula; vit = Pteris vittata; adn = Salvinia adnata.

Despite the fact that most species identified in the present study are also cited in floras of South American countries, only in some cases these were recognized as weeds (SagásteguiSAGÁSTEGUI A & LEIVA S. 1993. Flora invasora de los cultivos del Perú, Trujillo: Libertad. EIRL, 539 p. & Leiva 1993, Mattheii et al. 1995, KissmannKISSMANN KG. 1997. Plantas infestantes e nocivas. Tomo I, plantas inferiores, Monocotiledóneas, 2nd ed., São Paulo: BASF, 825 p. 1997, Lorenzi 2008, De Egea et al. 2016) (Fig. 1).

In relation to this, seven Argentinian colonizing weeds (segetals, environmentals or aquatics) are also distributed in Uruguay, six in Brazil, three in Peru, two in Bolivia and only one in Chile and Paraguay. In the case of Argentinian ruderal species, Macrothelypteris torresiana is also distributed in Brazil, Adiantum capillus-veneris and Cyrtomium falcatum in Peru, and Nephrolepis cordifolia, Pteris cretica, P. tremula and P. vittata in Uruguay. Pteridium esculentum subsp. arachnoideum and Equisetum giganteum were explicitly recognized as toxic weeds in Brazil and Chile, respectively (Fig. 1).

Finally, three species were explicitly mentioned as weed in the most countries: Azolla filiculoides, Equisetum giganteum and Pteridium esculentum subsp. arachnoideum.

Key to weedy and ruderal ferns species from Argentina

1. Fronds reduced, squamiform, fused in a sheath around nodes; sporangia borne on peltate sporangiophores aggregated in strobiles at the end of the branches ………Equisetum giganteum

1’. Fronds evident, simple or compound, free; sporangia grouped in sori or coenosori on the abaxial surface or marginal lamina, or microsori and megasori surrounded by membranous indusia or sporocarps ….…….…..…………………...…...... 2

2. Plants aquatic ……………………………………..……….3

2’. Plants terrestrial …………………………………..…… 9

3. Plants rooted in swampy or shallow waters; hard sporocarps present, drought-resistant, with several sori, each sorus with both megasporangia and microsporangia …………………………………...…….. Marsilea ancylopoda

3’. Plants not rooted, floating; thin sporocarps, not drought-resistant, each one with only one type of sorus (megasorus or microsorus) .……………………………….................. 4

4. Roots present; stem branched many times; frond simple with margin lobulate; venation free; microspores adhered in massulae with glochids ………….................................................................................…. 5

4’. Roots absent; stem few branched; frond compound, pinnate; venation anastomosed; microspores free, massulae and glochids absent …………………….………....………….. 6

5. Adaxial margin of floating lobes with 1-celled papillae; massulae of microspores with glochids 1-septate or without septs …………....…………………….…... .................Azolla filiculoides

5’. Adaxial margin of floating lobes with 2-celled papillae; massulae of microspores with glochids 3-4-septate………………………. Azolla cristata

6. Apices of the hairs of epidermal papillae free or sometimes fused with the apices of the neighboring hair; submerged part with fertile axes not branched; sori sessile .………………………………………………….………………………..…...... Salvinia minima

6’. Apices of the hairs of epidermal papillae fused with each other, never with the apices of the neighboring hairs; submerged part with fertile axes branched; sori long pedunculate or subsessile ……………...………………………….…………………... 7

7. Submerged segments of the fronds with the main axis (pedicel) very brief or nonexistent, first pair of lateral axes curved; fertile axes with few sori long pedunculate and not apiculate………………………….......…... Salvina auriculata

7’. Submerged segments of the fronds with main axis (pedicel) developed, first pair of lateral axes not curved; fertile axes with many sori sessile or subsessile, apiculate ……………...…………. 8

8. Primary areoles, usually 10 or more; microsori pedunculate ...…………......Salvinia biloba

8’. Primary areoles, usually less than 10; microsori sessile or subsessile … Salvinia adnata

9. Rhizome hairy; linear sori marginal with a double indusium (an internal indusium and an external pseudoindusium) …...... Pteridium esculentum subsp. arachnoideum

9’. Rhizome scaly or naked; sori marginal or superficial, or linear sori without a double indusium ……………………………………………….....……………. 10

10. Sori marginal or submarginal, with different shapes, never circular or elliptical, spore trilete, tetrahedral to globose ....….…………………... 11

10’. Sori abaxial , never in the margin, sori circular or elliptical, spore monolete, ellipsoidal ……...………………...................................................................... 21

11. Pinnule flabellate; sporangia on the internal surface of lobes formed by the reflexed margin …………....…………………...……………… Adiantum capillus-veneris

11’. Pinnules with different shapes, never flabellate; sporangia on abaxial surface or margins, never on the internal surface of lobes formed by the reflexed margin …………....................12

12. Axes stramineous or yellowish (brown in Pteris tremula); sporangia forming a continuous, long, linear sori along the margin, usually with paraphyses ………………..................................................... 13

12’. Axes brownish, atropurpureous or black, sometimes lustrous; sori isolated or confluent, never in continuos linear sori, without paraphyses …………...…...……...................................…..... 18

13. Lamina 3-4-pinnate ……………………………………………………........ Pteris tremula

13’. Lamina pinnatisect to 2-pinnate ............ 14

14. Lamina ternate at base …….................. Pteris deflexa

14’. Lamina not ternate at base…………………………………………..……….………. ................15

15. Petiole and rachis with scales; pinnas auriculate at base …..……....................... Pteris vittata

15’. Petiole and rachis glabrous, rarely with hairs; pinnas not auriculate at base…….…............16

16. Pinnas pinnatisect …………....………………………….………………. Pteris plumula

16’. Pinnas entire or sometimes the first pair divided ………………………………..….......................................17

17. Pinnas decurrent at base, with wings on rachis.………….........................…………….. Pteris multifida

17´. Pinnas attenuate to subdecurrent at base, without wings on rachis …...…. Pteris cretica

18. Sporangia along subterminal veinlets, covering partial or totally the lamina; lamina with white or yellow wax abaxially…………....……………………..…. Pityrogramma trifoliata

18’. Sporangia at the veinlets apex; lamina glabrous or glandular, without wax .........……..…. 19

19. Petiole subterete, with 2 ribs, brownish; sori isolated, pseudoindusium reflexed, discrete, lobulate ………………....………………………… Adiantopsis chlorophylla

19’. Petiole terete, without ribs; sori subconfluent, pseudoindusium recurved, subcontinuous or continuous .…............................ 20

20. Lamina glabrous, pinnae 3-foliolate, entire………………..….….......................…Pellaea ternifolia

20’. Lamina glutinous with glandular hairs, pinnae alternate, pinnatifid…………………..... Cheilanthes pruinata

21. Plants epiphytic; lamina pinnate; pinna articulate with the rachis; sori elliptic, and indusium lunulate ……………………………. Nephrolepis cordifolia

21’ Plants terrestrial; lamina divided in several levels; pinnae not articulate with the rachis; sori circular, and indusium circular, orbicular or reniform ...…………...........…...…………..…. 22

22. Rachis with scales; indusium glabrous ..……………………………..………...….…. .......................................23

22’. Rachis and indusium with hairs …………….………………………………….……......24

23. Lamina pinnate, venation anastomosed ……...………………..…......................... Cyrtomium falcatum

23’. Lamina 2-pinnate-pinnatifid, venation free ……….…………..…...................... Dryopteris filix-mas

24. Lamina 2-3-pinnate-pinnatifid; costa plain adaxially; veins not reaching the margin

…………………………………….……… Macrothelypteris torresiana

24’. Lamina pinnate-pinnatifid; costa grooved adaxially; veins finishing at the margin ………..…………………………………........….. Christella dentata

List of species

Adiantopsis chlorophylla (Sw.) Fée, Mém. Foug. 5: 145. 1852. = Cheilanthes chlorophylla Sw., Kongl. Vetensk. Acad. Handl. 1817: 76. 1817. EPPO: Not reported. Fig. 4a.

Figure 4
Weedy and ruderal ferns in natural and urban habitats from Argentina. a, Adiantopsis cholorophylla (photo by A. Yañez); b, Adiantum capillus-veneris (photo by A. Yañez); c, Azolla filiculoides (photo by D. H. Bazzano); d, Cheilanthes pruinata (photo by F. O. Zuloaga); e, Christella dentata (photo by A. Yañez); f, Cyrtomium falcatum (photo by A. Yañez); g, Equisetum giganteum (photo by C. Aguirre); h, Macrothelypteris torresiana (photo by A. Yañez); i, Marsilea ancylopoda (photo by L. Aagesen).

Weed type: Segetal weed and ecological weed.

Common name in Argentina: “Doradilla” (BarrettBARRETT WH & TRESSENS SG. 1996. Estudio de la vegetación nativa en plantaciones de Eucalyptus grandis (Myrtaceae) en el norte de la provincia de Corrientes, República Argentina. Bonplandia 9: 1-18. and Tressens 1996).

Additional diagnostic characters: Laminae 2-pinnate-pinnatifid to 3-pinnate, triangular.

Origin area and distribution in Argentina: Native species from Mexico up to central Argentina and southern Brazil (Ponce 2016). In Argentina, it is distributed on the northwest and northeast, reaching Central region (Fig. 3).

Growth habits / Impact / Relationship to human activities: It is frequent as a large-coverage weed, usually in road margins, understory of degraded native forests, and grazed areas. It has been recorded as a weed in overgrazed field in Entre Ríos province (CottaniCOTTANI F & SABATTINI RA. 2006. Manejo y control de arbustivas en un pastizal con alta carga animal en pastoreo rotativo. Rev Ci Agr 10: 109-120. & Sabattini 2006), associated with forest crops of Eucalyptus grandis W. Hill in Corrientes province (Barrett & Tressens 1996), and growing in implanted forests of Pinus elliotti Engelm. and Pinus taeda L. in Córdoba province (MoreroMORERO R. 2006. Pteridophyta. In: Barboza GE et al. (Eds), Flora medicinal de la provincia de Córdoba (Argentina), Córdoba: Museo Botánico, p. 39-99. 2006). Likewise, the presence of A. chlorophylla in pastures abandoned after agricultural exploitation and its predominance with respect toother pioneer species has been recorded in an experimental field located from Santa Fe province (EtchepareETCHEPARE MA & BOCCANELLI SI. 2007. Análisis del banco de semillas y su relación con la vegetación emergente en una clausura de la llanura pampeana. Ecol Austral 17: 159-166. & BoccanelliBOCCANELLI SI & PIRE EF. 2011. Adiantopsis chlorophylla ¿Una nueva especie en la llanura pampeana? Ciencias Agronómicas 17: 35-37. 2007, Boccanelli & Pire 2011).

Observations: A. chlorophylla has xeromorphic characteristics such as lamina with glandular trichomes, and petioles, rachis and lamina with abundant sclerenchyma tissue. These characters give it ecological plasticity and advantage over competing species to grow in a great diversity of environments (HernándezHERNÁNDEZ MA & RODRÍGUEZ FP. 2010. Morfología y anatomía del esporofito de Adiantopsis chlorophylla (Pteridaceae). Lilloa 47: 85-94. & Rodríguez 2010). Also, it has robust rhizomes that are fire resistant (MezaMEZA TORRES EI, DE LA SOTA ER & FERRUCCI MS. 2013a. Biogeographic analysis and key to the genera of ferns and lycophytes of Mburucuyá National Park, Corrientes, Argentina. Revista Chilena Hist Nat 86: 49-61. Torres et al. 2013a).

2. Adiantum capillus-veneris L., Sp. Pl. 2: 1096. 1753. EPPO: ADICV. Fig. 4b.

Weed type: Ruderal.

Common names in Argentina: “Arañuela”, “Adiantum cabello de Venus”, “capilera”, “culantrillo de pozo”, “helecho cabello de doncella”, “sanguinaria”.

Additional diagnostic characters: Rhizome thin creeping; laminae light green; fronds 3-pinnate, membranous, flabellate or rhombic; fertile pinnulae with rectangular to orbicular pseudoindusium.

Origin area and distribution in Argentina: It is a cosmopolitan species. In the Americas it is distributed from southern United States and Mexico, throughout Central America, the Caribbean and northern South America up to Chile and Argentina (DavidseDAVIDSE G, SOUSA SÁNCHEZ M & KNAPP S. 1995. Psilotaceae a Salviniaceae. 1: i–xxi, 1-470. In: Davidse G et al. (Eds), Fl. Mesoamer, México: Universidad Nacional Autónoma de México. et al. 1995). It was cited in floras of Venezuela (Vareschi 1969), Peru (TryonTRYON R. 1962. Taxonomic fern notes. II. Pityrogramma (including Trismeria) and Anogramma. Contr Gray Herb Harvard Univ 189: 52-76. & Stolze 1989) and Chile (Rodriguez 1995). There are no older references of this species in Argentine flora, but there are records of cultivated specimens at the end of the 19th Century (Hicken s.n., SI). In Argentina, recently it was cited growing on walls at the Natural Reserve of Punta Lara, on the southern coast of Rio de la Plata, Buenos Aires province (GiudiceGIUDICE GE, RAMOS GIACOSA JP, LUNA ML, YAÑEZ A & DE LA SOTA ER. 2011. Diversity of ferns and lycophytes from Reserva Natural Punta Lara, Buenos Aires, Argentina / Diversidad de helechos y licófitas de la Reserva Natural Punta Lara, Buenos Aires, Argentina. Revista Biol Trop 59: 1037-1046. et al. 2011) (Fig. 3).

Growth habits / Impact / Relationship to human activities: It is a ruderal species in urban habitats where it colonizes gardens and pots and grows on brick walls, favored by calcareous substrate.

Observations: Frequently used as ornamental.

Additional references: Li et al. (2013).

3. Azolla cristata Kaulf., Enum. Filic.: 274. 1824. EPPO: AZOME.

Weed type: Aquatic weed.

Common name in Argentina: Helechito de agua”.

Additional diagnostic characters: Fronds 1-5 cm long or more, loosely imbricate; segments suborbicular, reddish.

Origin area and distribution in Argentina: It is widely distributed in the Americas, on the Southeast and Southwest of Canada and the United States, throughout Central America and South America up to Uruguay and Argentina (Arana 2016). In Argentina, it is distributed mainly from northern and Central regions (Fig. 3).

Growth habits / Impact / Relationship to human activities: This species inhabits lentic water bodies (e.g. ditches, ponds and temporary puddles) and its populations present an annual cycle with periods of growth in the warm season. Its rapid vegetative reproduction by mean of rhizome fragmentation obstructs the passage of light and oxygen in a short time. This alters the balance of the ecosystem and inhibit the growth of submerged vegetation.

Additional references: EvrardEVRARD C & VAN HOVE C. 2004. Taxonomy of the American Azolla Species (Azollaceae): a critical review. Sys Geogr Pl 74: 301-318. & Van Hove (2004).

4. Azolla filiculoides Lam., Encycl. 1(1): 343. 1783. EPPO: AZOFI. Fig. 4c.

Taxonomic notes: Currently, Azolla caroliniana Willd. is a synonym of A. filiculoides (Ponce & Arana 2016) but in previous provincial floras of Argentina were treated as distinct species (Capurro 1968, de la Sota 1977, Ponce 1994).

Weed type: Aquatic weed.

Common name in Argentina: Helechito del agua”.

Additional diagnostic characters: Fronds up to 5 cm length, densely imbricated, green to reddish; segments elliptic to ovate. Morphologically it is very similar to A. cristata and it only differs from this one by microscopic characters (see key to species).

Origin area and distribution in Argentina: It is widely distributed in the Americas, from Alaska on the North to Tierra del Fuego and Malvinas Islands on the South (Arana 2016). It is present in all the provinces of Argentina (Fig. 3).

Growth habits / Impact / Relationship to human activities: It grows between sea level to 3800 m, on banks of stagnant waters, lakes, ditches, gutters of roads and, less frequently in channels and slow streams. It can cover the entire surface of water body by blocking the light entrance and disturbing the ecological balance of aquatic ecosystem. The massive propagation is facilitated through rhizomes fragmentation and the differentiation in new individuals. This vegetative mechanism constitutes a more common type of reproduction than sexual reproduction. On the other hand, A. filiculoides establishes a symbiosis with the Cyanobacteria Anabena azollae that fixes atmospheric nitrogen. Thus, the excessive growth of the species can generate eutrophication of the environment. In addition, this species can absorb heavy metals from the environment and become potentially toxic to animals (Kissmann 1997).

Mechanical control and control through herbicides have been tested in Azolla filiculoides with few and expensive results. Also, two insect species were identified as possible candidates for the biological control of this weed: Pseudolampsis guttata (Leconte) (Chrysomelidae) and Stenopelmus rufinasus Gyllenhal (Curculionidae) (HillHILL MP & CILLIERS CJ. 1999. Azolla filiculoides Lamarck (Pteridophyta: Azollaceae), its status in South Africa and control. Hydrobiologia 415: 203-206. & Cilliers 1999, McConnachieMCCONNACHIE AJ, DE WIT MP, HILL MP & BYRNE MJ. 2003. ‘Economic evaluation of the successful biological control of Azolla filiculoides in South Africa’. Biol Control 28: 25-32. et al. 2003).

Observations: It is one of the most cited weeds for irrigated rice crops (LallanaLALLANA VH. 2005. Lista de malezas del cultivo de arroz en Entre Ríos, Argentina. Ecosistemas 14: 162-167. 2005), paradoxically it can be used as an economic biofertilizer in these crops.

Additional references: Lallana (1989), Sabattini et al. (2001), CastroCASTRO R, NOVO R & CASTRO RI. 2002. Uso del género Azolla como Biofertilizante en el cultivo de arroz (Oryza sativa L.). Cult Trop 23: 5-10. et al. (2002).

5. Cheilanthes pruinata Kaulf., Enum. Filic.: 210. 1824. EPPO: No consigned. Fig. 4d.

Weed type: Toxic.

Common names in Argentina: “Helecho petiso”, “raki raki”.

Additional diagnostic characters: Fronds 10-40 cm long; laminae linear, narrow; pinnae with triangular or pentagonal contour, pinnatisect.

Origin area and distribution in Argentina: It is distributed from Peru, Bolivia and northern Chile, in Andean and sub-Andean environments to central Argentina (Ponce 2016). In Argentina, it grows from the Northwest to the Pampean mountains range between sea level to 2000 and 4800 m (Fig. 3). Among fern species, it inhabits the highest number of different ecosystems in the country.

Growth habits / Impact / Relationship to human activities: It is a xeromorphic epipetric species that grows in ravines and rocky slopes, crevices and edges of water springs. C. pruinata affects livestock activity due to its toxicity (CalifanoCALIFANO LM & ECHAZÚ F. 2011. Especies vegetales tóxicas para el ganado en Humahuaca (Jujuy) e Iruya y Nazareno (Salta). Guía para su reconocimiento, la identificación y posibles tratamientos. INTA Centro Regional Salta-Jujuy. and Echazú 2011, 2013). When ingested, it affects the nervous system of animals causing depression, anorexia, muscle fibrillation and locomotor ataxia, decubitus position and, finally, death. It affects especially the offspring of sheep and goats, between 48 to 72 hours after consumption. Cases of poisoning have been detected in Jujuy province localities and towns of the Iruya River Basin, northwestern Argentina, in Salta province where livestock consume it during the spring due to a shortage of other forage species.

Observations: It is used by traditional Andean cultures for the medical treatment of urinary disorders, Chagas disease and postpartum, stomach, menstrual and head pains (NavarreteNAVARRETE HBL, GONZÁLEZ J, AVILÉS D, SALAZAR J, MELLADO F, ALBAN J, & ØLLGAARD B. 2006. Helechos. In: Moraes RM et al. (Eds), Botánica Económica de los Andes Centrales, La Paz: Universidad Mayor de San Andrés, p. 885-411. et al. 2006).

Additional references: MorbelliMORBELLI MA & MICHELENA IG. 1989. Palynological analysis of Cheilanthes species (Adiantaceae-Pteridophyta) of Northwestern Argentina. Grana Palynol 28: 295-304. and Michelena (1989) and FloresFLORES EN, CALIFANO LM, GURNI AA & VIGNALE ND. 2016. Caracterización exomorfológica de Cheilanthes pruinata, especie tóxica para el ganado y medicinal en humanos en la región andina. Bol Soc Arg Bot 51: 29-35. et al. (2016).

6. Christella dentata (Forssk.) Brownsey and Jeremy, Brit. Fern Gaz. 10: 338. 1973. - Polypodium dentatum Forssk., Fl. Aegypt.-Arab.: 185. 1775. EPPO: CXLDE. Fig. 4e.

Taxonomic notes: This species was cited under Thelypteris dentata (Forssk.) E. P. St. John in the Flora Argentina (Ponce & Arana 2016). However, a phylogenetic study based on molecular data placed this species within Christella (AlmeidaALMEIDA TE, HENNEQUIN S, SCHNEIDER HS, SMITH AR, BATISTA JAN, RAMALHO AJ, PROITE K & SALINO A. 2016. Towards a phylogenetic generic classification of Thelypteridaceae: Additional sampling suggests alterations of neotropical taxa and further study of paleotropical genera. Mol Phyl Evol 94: 688-700. et al. 2016).

Weed type: Segetal weed, ecological weed and ruderal.

Common names in Argentina: unknown; “Soft fern”, “downy wood fern” in United States (CABI).

Additional diagnostic characters: Segments with basal pair of adjacent veins joined forming a single vein; circular sori protected by indusia with acicular short and dense hairs; sporangium with one glandular hair on the stalk.

Origin area and distribution in Argentina: It is a paleotropical species, originally distributed in Africa, Asia, Australia and South Pacific islands. In the Americas, it is introduced and naturalized at present from the southeastern United States to Argentina (e.g. SmithSMITH AR & KESSLER M. 2018. Prodromus of a fern flora for Bolivia. XXXVII. Nephrolepidaceae. Phytotaxa 334: 135-140. 1971, HolttumHOLTTUM RE. 1976. The genus Christella Léveillé, sect. Christella. Studies in the family Thelypteridaceae, XI. Kew Bull 31: 293-339. 1976). Although the origin of its introduction is not determined, specimens in North America and the Antilles are frequently recorded from 1930 where it could have been dispersed (Strother & Smith 1970). Because in Argentina cultivated specimens are kept at herbaria since 1908 (Hicken 50, SI), probably naturalization of this species could involve independent events in the continent. Christella dentata grows on the northwest and northeast of this country, reaching the Central region (Fig. 3). According to Smith (1971), this species has the most quantity of recorded specimens within Thelypteridaceae.

Growth habits / Impact / Relationship to human activities: It forms dense populations in exposed habitats and colonizes margins of roads, edges of fields, perennial crops and understory of tree plantations such as Pinus sp. and Araucaria sp. It is also found as ruderal, growing in wasteland or on walls in urban and suburban areas. Occasionally, it is cultivated for ornamental purposes. It is a potential invasive species and displacement of native species due to this type of growth has been indicated for Mexico (Tejero–Díez & Torres–Díaz 2012). According to MurakamiMURAKAMI K, MATSUI R & MORIMOTO Y. 2007. Northward invasion and range expansion of the invasive fern Thelypteris dentata (Forssk.) St. John into the urban matrix of three Prefectures in Kinki District, Japan. Am Fern J 97: 186-198. Available at: http://www.jstor.org/stable/27564213. et al. (2007), urban matrix growth facilitates the expansion of this species since, in an urban environment, it prefers artificial structures such as side walls or bottoms of drainage channels, crevices in stone walls and roadsides instead of forest-floor environments. Furthemore, the roots of C. dentata possess an allelopathic substance, Thelypterin A and B that inhibits gametophytes growth of other ferns (DavidonisDAVIDONIS GH. 1976. The occurrence of thelypterin in ferns. Am Fern J 66: 107-108. 1976).

7. Cyrtomium falcatum (L. f.) C. Presl, Tent. Pterid.: 86. 1836. - Polypodium falcatum L. f., Suppl. Pl.: 446. 1782. EPPO: CWUFA. Fig. 4f.

Weed type: Ruderal.

Common names in Argentina: Helecho acebo”, “helecho cirtomio”.

Additional diagnostic characters: Fronds of 25-90 cm long; pinnae petiolulate, rhombiform to falcate, with subulate apex and acroscopical auriculate base, irregular crenate margin, subcoriaceous, dark green, shiny, adaxially glabrous and sparsely scaly and hairy on the abaxial side; sori with circular and peltate indusium.

Origin area and distribution in Argentina: it is native of eastern Asia, mainly in China, Japan, South Korea, and Taiwan. It was introduced worldwide for ornamental use and currently is naturalized in Europe, North America, Oceania, and South Africa with few records in the Caribbean and South America (Ponce & Arana 2016). In Argentina, it was introduced as ornamental due to its successful growth in temperate climates and easy propagation through rhizomes multiplication. It is currently recorded on the east of Argentina (Fig. 3).

Growth habits / Impact / Relationship to human activities: It is a ruderDER JP, THOMSON JA, STRATFORD JK & WOLF PG. 2009. Global chloroplast phylogeny and biogeography of bracken (Pteridium; Dennstaedtiaceae). Am J Bot 96: 1041-1049.al species frequently associated with urban areas, growing on rocky surfaces of walls, stairs or water wells. This species requires humid or shaded conditions for its establishment and it is sensitive to low temperatureURE GA. 2014. An investigation into the habitat requirements, invasiveness and potential extent of male fern, Dryopteris filix-mas (L.) Schott, in Canterbury, New Zealand. Thesis. Masters in Forestry Science, School of Forestry, University of Canterbury. 133 p.s. However, it has a rapid growth once it was established. Colonization of new habitats is facilitated by its apogamic reproduction (RobinsonROBINSON RC. 2009. Invasive and problem ferns: a European perspective. Urb Ecol 4: 8390. 2009). In Argentina, it is associated mainly with anthropized landscapes; however, in the Caribbean it was recorded in natural areas displacing native species (Santos-guerra et al. 2013, CopelandCOPELAND A & MALCOLM P. 2014. Thelypteris bermudiana. The IUCN Red List of Threatened Species. Version 2015.2. Available at: http://www.iucnredlist.org/details/56604509/0.
http://www.iucnredlist.org/details/56604...
& Malcolm 2014, BarriosBARRIOS S, COPELAND A & MALCOLM P. 2015. Peperomia septentrionalis. The IUCN Red List of Threatened Species. Version 2015.2. Available at: http://www.iucnredlist.org/details/68982125/0.
http://www.iucnredlist.org/details/68982...
et al. 2015). Particularly in the United States, it is recognized by the National Park Service as an aggressive invader in most of its range.

Observations: Three cytotypes of C. falcatum have been identified: sexual diploid, sexual tetraploid and apomictic triploid forms (LuLU J, CHENG X, WU D & LI D. 2006. Chromosome study of the fern genus Cyrtomium (Dryopteridaceae). Bot J Lin Soc 150: 221-228. et al. 2006). MatsumotoMATSUMOTO S. 2003. Cytotaxonomic study of Cyrtomium falcatum complex (Dryopteridaceae) in Japanese Archipelago (Symposium open to the public - Chromosome studies in connection with phylogeny and taxonomy). Chromosome Sci 7: 108. (2003) distinguished three subspecies: subsp. falcatum, subsp. littorale and subsp. australe based on cytological evidence and geographic distribution.

8. Dryopteris filix-mas (L.) Schott, Gen. Filic.: tab. 67. 1834. - Polypodium filix-mas L., Sp. Pl. 2: 1090. 1753. EPPO: DYOFM.

Taxonomic notes: It was cited as Dryopteris patagonicaDiemDIEM J. 1960. Pteridofitas nuevas del Parque Nacional Nahuel-Huapi. Darwiniana 12: 67-74. in a floristic work (Diem 1960).

Weed type: Ecological weed, toxic.

Common names in Argentina: “Dentabrón”, “filix mas”, “helecho macho”.

Additional diagnostic characters: Fronds of 30-60 cm long; laminae elliptical-lanceolate, herbaceous, glabrous; segments oblique, serrate; sori rounded with indusia orbicular-reniform, persistent.

Origin area and distribution in Argentina: It is distributed in North America, Europe, northern and central Asia and Madagascar; introduced species in New Zealand and South America (Ponce & Arana 2016). In Argentina, it inhabits northern Patagonia (Fig. 3).

Growth habits / Impact / Relationship to human activities: Populations in Argentina were originated from ornamental culture of northwestern Patagonia that escaped in the region of Nahuel Huapi Lake, Neuquén and Río Negro provinces. Also, it has been registered as an invader of degraded and anthropically altered sites in New Zealand like urban and suburban areas (e.g. Christchurch and Dunedin), rural vegetation from unimproved hill country pasture, exotic forest and indigenous forest remnants (Ure 2014). Its role as a colonizing species is due to the tolerance to a wide range of environmental conditions, including soils compacted by livestock, and the long-distance dispersal of its spores. D. filix-mas is used as antiparasitic, and anthelmintic in traditional medicine (BlakemoreBLAKEMORE RC, BOWDEN K, BROADBENT JL & DRYSDALE C. 1964. Anthelmintic constituents of ferns. J Pharm Pharmacol 16: 464-471. et al. 1964), and in Argentina, it is an official drug cited by the Argentine Pharmacopoeia (BandoniBANDONI A, MANJON J, ROSSIGNOLI F, VILLA JJ & MARCOS E. 1978. Farmacopea Nacional Argentina: codex medicamentarius argentino, 6th ed., Buenos Aires: Ministerio de Bienestar Social, Secretaría de Estado de Salud Pública. et al. 1978) or in phytotherapy (Disposition 2673/99, National Administration of Drugs, Food and Medical Technology). However, its intake must be controlled because it can be very toxic to humans if it is ingested in large quantities. There are records of vomiting, dizziness with visual disturbances to blindness or even death due to the ingestion of this species (Schönfelder & Schönfelder 2001).

Observations: It is a tetraploid originated by alopoliploidy with D. oreades Fomin and D. caucasica (A. Braun) Fraser-Jenk. and M.F.V. Corley as parental species (Sessa et al. 2012).

Additional references:BrittonBRITTON D & JERMY A. 1974. The spores of Dryopteris filix-mas and related taxa in North America. Canad J Bot 52: 19231926. & Jermy (1974), KorpelainenKORPELAINEN H. 1994. Growth, sex determination and reproduction of Dryopteris filix-mas (L.) Schott gametophytes under varying nutritional conditions. Bot J Linn Soc 114: 357-366. (1994).

9. Equisetum giganteum L., Syst. Nat. (ed. 10) 2: 1318. 1759. - Hippochaete gigantea (L.) Holub., Preslia 44: 128. 1972. EPPO: EQUGI. Fig. 4g.

Weed type: Segetal weed, toxic.

Common names in Argentina: “Chigote de fraile”, “cola de caballo”, “yerba de la plata”.

Additional diagnostic characters: Rhizomes erect or decumbent; aerial stem cylindrical, green-grayish, rough (siliceous), with longitudinal sulcus and ribs; spherical spores with elaters.

Origin area and distribution in Argentina: It is widely distributed in tropical areas of the Americas (Arana 2016). In Argentina it is widely distributed (Fig 3).

Growth habits / Impact / Relationship to human activities: It is an invasive species of grasslands and waterlogged crops, channels and ditches, drainage channels, wasteland and roadsides. Additionally, it represents a serious problem for irrigation systems of crops in flood zones in Brazil and Peru (Sagástegui & Leiva 1993, Zegarra 1996, Lorenzi 2008). Colonization is facilitated by its rhizomes fragmentation. Also, E. giganteum is toxic for horses and other domestic animals because it produces anti-thiaminic substances that causes weight loss, weakness, signs of paralysis and temporary excitement by its ingestion (Alvin-CarneiroALVIN-CARNEIRO P. 1948. Envenenamento por Equisetum sp. (Cavalinha). Ceres 8: 32-36. 1948, Kissmann 1997, Riet-Correa et al. 2017). On the other hand, the aqueous extract of vegetative organs shows allelopathic principles that inhibit seed development (FrancoFRANCO DM, ALMEIDA LFRD & POLETTO RDS. 2014. Allelopathic potential of Equisetum giganteum L. and Nephrolepis exaltata L. on germination and growth of cucumber and lettuce. J Plant Sci 2: 237-241. et al. 2014).

Observations: Equisetum hyemale L. is a close species that was recently identified as a problematic invasive in Uruguay (C. Brussa comm. pers.). Because this species is cultivated in Argentina studies are necessary for avoiding its probable invasion in this country.

Additional references:deDE LA SOTA ER. 1985. Las Pteridofitas de la Provincia de La Pampa, Argentina. Revista Fac Agron 1: 23-34. la Sota (1985), Troiani & Steibel (2008).

10. Macrothelypteris torresiana (Gaudich) Ching, Acta Phytotax. Sin. 8: 310. 1963. - Polystichum torresianum Glaudich., Voy. Uranie 8: 333. 1828. EPPO: MKTTO. Fig. 5h.

Figure 5
Weedy and ruderal ferns in natural and urban habitats from Argentina. a, Pellaea ternifolia (photo by C. A. Zanotti); b, Nephrolepis cordifolia (photo by A. Yañez); c, Pityrogramma trifoliata (photo by F. O. Zuloaga); d, Pteridium esculentum subsp. arachnoideum (photo by D. G. Gutierrez); e, Pteris deflexa (photo by A. Yañez); f, Pteris multifida (photo by A. Yañez); g, Pteris tremula (photo by A. Yañez); h, Pteris vittata (photo by A. Yañez); i, Salvinia auriculata (photo by C. Aguirre).

Weed type: Segetal weed, ecological weed, ruderal.

Common name in Argentina: “Penquita”.

Additional diagnostic characters: Rhizomes with hairy scales; laminae deltate; rachis 2-surcate; sori rounded protected by an indusia with glandular hairs.

Origin area and distribution in Argentina: It is a Paleotropical species, distributed from tropical and subtropical Africa, Asia, and the Pacific islands (Ponce 2016). In the Americas, it is a widely naturalized species from the United States to southern Brazil and central Argentina (Fig 2).

Growth habits / Impact / Relationship to human activities: It grows in modified and open habitats such as margins of ditches and roads, embankments, margins of railways, associated with sandy or rocky soils, or lands covered with litter. In Argentina, it invades forests of Araucaria angustifolia (Gaudich.) Ching on the east of the country (MezaMEZA TORRES EI, DE LA SOTA ER & FERRUCCI MS. 2013b. Sinopsis de los Helechos y Licofitos del Parque Nacional Mburucuyá (Corrientes, Argentina). Claves de especies. Bol Soc Arg Bot 48: 121-136. Torres et al. 2013b). In addition, it is registered as ruderal since 1960 (Burkart 21520, SI). Potential colonizing of M. torresiana is mainly due to the enormous production of spores several times by year.

Observations: This species is considered a source of anti-cancer drugs because recent studies detected flavonoids in the roots with antitumor action in vitro (HuangHUANG XH, XIONG PC, XIONG CM, CAI YL, WEI AH, WANG JP, LIANG XF & RUAN JL. 2010. In vitro and in vivo antitumor activity of Macrothelypteris torresiana and its acute / subacute oral toxicity. Phytomedicine 17: 930-934. et al. 2010).

Additional reference: PoncePONCE MM. 1987. Revisión de las Thelypteridaceae (Pteridophyta) Argentinas. Darwiniana 28: 317-390. (1987).

11. Marsilea ancylopoda A. Braun, Monatsber. Königl. Preuss. Akad. Wiss. Berlin 1863: 434. 1864. - Zaluzianskia ancylopoda (A. Braun) Kuntze, Revis. Gen. Pl. 2: 823. 1891. EPPO: No consigned. Fig. 4i.

Weed type: Aquatic weed, toxic.

Common names in Argentina: “Trébol de cuatro hojas”, “trébol de la suerte”, “trébol del agua”.

Additional diagnostic characters: two pairs of opposing pinnae on a very short rachis (resembling a clover with four leaflets), floating; petioles up to 20 cm long, submerged; sporocarps growing under the substrate.

Origin area and distribution in Argentina: It is distributed in the Americas from Mexico up to southern Argentina. In Argentina inhabits from the north of the country up to northern Patagonia (Fig. 3).

Growth habits / Impact / Relationship to human activities: It inhabits lentic environments such as banks of ponds, dams and temporary water puddles. It is a frequent weed of rice crops. Its main colonization strategies are the vegetative fragmentation of rhizomes and the presence of closed reproductive bodies (sporocarps) within which spores can resist dormant in soils flooded for many years.

Observations: The enzyme Tiaminase I, which promotes the breakdown of thiamine (Vitamin B1), has been found in the leaves of Marsilea species. This process represents a risk of intoxication for livestock (Skalski et al. 2016).

12. Nephrolepis cordifolia (L.) C. Presl, Tent. Pterid.: 79. 1836. - Polypodium cordifolium L., Sp. Pl. 2: 1089. 1753. EPPO: NEHCO. Fig. 5b.

Weed type: Ruderal.

Common name in Argentina: “Helecho serrucho”.

Additional diagnostic characters: Rhizomes with branched stolons with gemmiferous tubers; laminae pinnate with strongly reduced base; pinnae patent or slightly falcate, with unequal base, rounded apex and dentate margin.

Origin area and distribution in Argentina: It is distributed as native from Africa, southeastern Asia, Indochina, Australia, New Zealand and the Pacific Islands, and probably northern South America and the Caribbean (HovenkampHOVENKAMP PH & MIYAMOTO F. 2005. A conspectus of the native and naturalized species of Nephrolepis (Nephrolepidaceae) in the world. Blumea 50: 279-322. & Miyamoto 2005). In the remaining Neotropical countries, it is probably a crop escape. This species is naturalized in Argentina, Bolivia, Brazil, Paraguay, and Peru. In Argentina, it is distributed from the north to the center of the country (Fig. 3).

Growth habits / Impact / Relationship to human activities: This species forms dense populations in a very short time due to a rapid rhizomes growth and production of many stolons with tubers. In Argentina, it is a spontaneous species in urban and suburban areas, on walls and roofs of abandoned buildings, and has been frequently recorded on trunks of Melia azedarach L. and Phoenix or Butia species. It is also part of the Global Invasive Species Database. Nephrolepis cordifolia has been introduced in different countries around the world because its use as ornamental. In the United States (Florida estate), it alters and displaces native species, changing structure or ecological functions of the community and hybridizing with native taxa (LangelandLANGELAND KA. 2014. Natural Area Weeds : Distinguishing Native and Non-Native “Boston Ferns” and “Sword Ferns.” University of Florida IFAS 1-6. 2014).

Observations: In Argentina only N. cordifolia var. cordifolia occurs. It is characterized by its short rhizomes, cordiform pinnae with basiscopic rounded bases, and straight margins. Additional references :PiñeiroPIÑEIRO MR & MORBELLI MA. 2012. Morfología y ultraestructura de las esporas de Nephrolepis cordifolia (Davalliaceae) del Noroeste de Argentina. Bol Soc Arg Bot 47: 71-75. & Morbelli (2012).

13. Pellaea ternifolia (Cav.) Link, Fil. Spec.: 59. 1841. - Pteris ternifolia Cav., Descr. Pl. : 266. 1802. EPPO: No consigned. Fig. 5a.

Weed type: Toxic, ruderal.

Common names in Argentina: “Chucho”, “chujchu macho”.

Additional diagnostic characters: Laminae pinnate, linear-lanceolate; pinnae ternate, sessile or subsessile, coriaceous, glabrous, with recurvate and whitish margin and mucronate apex.

Origin area and distribution in Argentina: It is widely distributed in the Americas, from southern United States up to central Argentina (Arana 2016). In Argentina, it inhabits from the Andean Mountains on the Northwest of the country (reaching 4300 m u.s.l.) up to Sierra de la Ventana mountain range (reaching ca. 1200 m u.s.l.) in southern Buenos Aires province in the pampas region (Fig. 3).

Growth habits / Impact / Relationship to human activities: It is usually recorded on walls in urban areas because it is a xeromorphic species that grows in nature on mountains, hills and ravines. It is a toxic for livestock, goats and sheeps, especially in northwestern Argentina (Califano & Echazú 2013). This species and Cheilanthes pruinata, both named “chujchu” by Andean people, are mentioned as having similar effects on livestock (Villagrán et al. 2003).

Observations: In Argentina two subspecies occurs: subsp. weddeliana (Feé) Arana, restricted to Salta province, and subsp. ternifolia.

14. Pityrogramma trifoliata (L.) R. M. Tryon, Contr. Gray Herb. 189: 68.1962. - Acrostichum trifoliatum L., Sp. Pl. 2: 1070. 1753. EPPO: PIYTR. Fig. 5c.

Weed type: Segetal weed, ecological weed.

Common name in Argentina: “Amambay guazú”.

Additional diagnostic characters: Fronds erect; laminae narrow; pinnae with 2-3 segments, margins serrate, abaxial surface glandular with white or yellow farinose secretions.

Origin area and distribution in Argentina: It is widely distributed in the Americas from southern United States to central Argentina (GiudiceGIUDICE GE & LUNA ML. 2016. Pityrogramma. In: Ponce MM & Arana MD (Eds), Flora Vascular de la República Argentina, Vol. 2, Licofitas. Helechos. Gymnospermae. Zuloaga FO & Belgrano MJ (Eds), San Isidro: Estudio SIGMA SRL, Instituto de Botánica Darwinion - CONICET, p. 318-320. & Luna 2016). In Argentina, it inhabits from the northwest of the country up to the Río de la Plata region (Fig. 3).

Growth habits / Impact / Relationship to human activities: It usually grows in anthropized environments such as margins of crops, roadsides, channels and ditches. In the outskirts of San Miguel de Tucumán, it was observed forming dense populations in the margins of maize plantations (Yañez et al. 315 BA).

Additional references: Burkart (1933) and Tryon (1962).

15. Pteridium esculentum (G.Forst.) Cockayne subsp. arachnoideum (Kaulf.) J. A. Thomson, Telopea 14(1): 45. 2012. = Pteris arachnoidea Kaulf., Enum. Filic.: 190. 1824, nom. cons. EPPO: PTEAA as P. aquilinum (L.) Kuhn var. arachnoideum (Kaulf) Brade. Fig. 5d.

Taxonomic notes: circumscriptions of Pteridium species (and their infraspecific taxa) are very controversial due to the high morphological variability and population’s phenotypic plasticity throughout their geographic range. Previous studies have cited this southern South American taxon as Pteridium arachnoideum (Kaulf.) Maxon (Der et al. 2009), Pteridium aquilinum var. arachnoideum (Kaulf.) Brade (Thomson 2000), Pteridium caudatum subsp. arachnoideum (Kaulf.) LellingerLELLINGER DB. 2003. Nomenclatural and taxonomic notes on the pteridophytes of Costa Rica, Panama, and Colombia, III. Am Fern J 93: 146-151. (Lellinger 2003) y Pteridium psittacinum Maxon (RamosRAMOS GIACOSA JP, DE LA SOTA ER & GIUDICE GE. 2004. Actualización florística y análisis numérico de la biodiversidad de las Pteridofitas de la Provincia de Buenos Aires. Bol Soc Arg Bot: 125-130. Giacosa et al. 2004). In the present work, we follow Thomson (2012) and Schwartsburd et al. (2018).

Weed type: Segetal weed, toxic.

Common names in Argentina: “Amambay”, “helecho macho”, “samambaia”.

Additional diagnostic characters: Fronds erect or scandent, up to 4 m long; laminae 3-4-pinnate-pinnatifid, triangular; pinnae and pinnules distally with free lobes between the segments; compound distal segments with caudate apex.

Origin area and distribution in Argentina: It is distributed in the tropical and subtropical regions of the Americas (Schwartsburd et al. 2018). In Argentina, it inhabits rocky soils from the northwestern Andean Mountains and northeastern subtropical forests up to Balcarce mountains in Buenos Aires province in the pampas region (Fig. 3). It was recorded in sandy islands of the Paraná Delta by Burkart (1933) and Capurro (1968).

Growth habits / Impact / Relationship to human activities: This species is one of the best known weeds in the world for its aggressiveness to colonize and modify habitats disturbed by anthropic activity, such as pastures, abandoned fields and deforested lands. This species presents a double system of branched, underground rhizomes, very difficult to remove (Watt 1940) and that is fire-resistant. This last characteristic allows the species to grow even in those regions where the burning of vegetation is the most frequent method to clean fields destined for planting (Roos et al. 2010). In addition, the reproductive success of this species is due to the enormous production of spores that are easily dispersed by the wind and germinate in short periods. Once the populations are established, the growth of other plant species is hindered because fronds up to 4 m length are scandent and form a thick covering that limits the germination of remaining seeds in the soil. Likewise, decomposing fronds release phenolic compounds that interfere in an allelopathic way, inhibiting the germination of seeds and the establishment and growth of possible competitors (SilvaSILVA MATOS DM & BELINATO TA. 2010. Interference of Pteridium arachnoideum (Kaulf.) Maxon. ( Dennstaedtiaceae) on the establishment of rainforest trees. Bra J Biol 70: 311-316. Matos & Belinato 2010, Xavier et al. 2016). As a defense mechanism against consumers, the species produces cyanogenic glycosides that, through their hydrolysis, release hydrogen cyanide (Oliveros-BastidasOLIVEROS-BASTIDAS AJ & ALONSO-AMELOT ME. 2010. Cyanogenic polimorphysm in brackens, Pteridium arachnoideum and P. caudatum, from the northern Andes. Quim Nova 33: 1520-1524. & Alonso-Amelot 2010). Finally, in addition to invading altered habitats, intoxication events of livestock animals have been recorded by ingestion of this species for a long time (MarreroMARRERO FAZ E & CALDERÓN TOBAR Á. 2012. Plantas tóxicas e inocuidad alimentaria: Hematuria Enzoótica Bovina por Pteridium sp. un problema relevante de salud. Rev Salud Anim 34: 137-143. Faz & Calderón Tobar 2012, Furlan et al. 2014) due to the concentration of toxic Ptaquiloside in the aerial parts of the plant. This problem has been registered in Argentina, mainly in the northwest region (MarinMARIN R, LLOBERAS M, VIGNALE D & ODRIOZOLA E. 2004. Toxicidad natural del Pteridium aquilinum (helecho) en bovinos y su importancia en humanos. Veterinaria Argentina 206: 413-420. et al. 2004, MarínMARÍN RE. 2011. Aportes al conocimiento de las plantas tóxicas para el ganado en la Provincia de Jujuy. San Salvador de Jujuy: Gobierno de la Provincia de Jujuy, 60 p. 2011). In humans, carcinogenesis caused by ingestion or continuous contact with the species was also recorded (Simán et al. 2000, RecousoRECOUSO R, STOCCO DOS SANTOS R, FREITAS R, SANTOS R, FREITAS A, BRUNNER O, BEÇAK W & LINDSEY C. 2003. Clastogenic effect of bracken fern (Pteridium aquilinum v. arachnoideum) diet in peripheral lymphocytes of human consumers: preliminary data. Vet Comp Oncol 1: 22-29. et al. 2003, Tourchi-Roudsari 2014).

Various mechanisms such as herbicides, mechanical extraction and the use of competing native species were used to control this species (RoosROOS K, RÖDEL HG & BECK E. 2011. Short‐and long‐term effects of weed control on pastures infested with Pteridium arachnoideum and an attempt to regenerate abandoned pastures in South Ecuador. Weed research 51(2): 165-176. et al. 2011, Aguilar-DorantesAGUILAR-DORANTES K, MEHLTRETER K, VIBRANS H, MATA-ROSAS M & ESQUEDA-ESQUIVEL VA. 2014. Repeated selective cutting controls Neotropical bracken (Pteridium arachnoideum) and restores abandoned pastures. Invasive Plant Sci Manag 7(4): 580-589. et al. 2014).

Observations: Colonization of new habitats by Pteridium species has been matched with human activity throughout history. In spite of genus origin was dated to the Miocene, its role as an invasive species has been recorded during the Mesolithic associated with modifications of natural environments by the human being (RymerRYMER L. 1976. The history and ethnobotany of bracken. Bot J Lin Soc 73: 151-176. 1976).

Additional references: Silva Matos et al. (2014), MarrsMARRS RH, LE DUC MG, MITCHELLTT RJ, GODDARDT D, PATERSON S & PAKERMAN RJ. 2000. The ecology of Bracken: its role in succession and implications for control. Ann Bot 85: 3-15. et al. (2000).

16. Pteris cretica W. C. Shieh, Bot. Mag. (Tokyo) 79: 285. 1966. EPPO: PTJCR.

Taxonomic notes: Variegate specimens from Argentina belonging to this species were traditionally deDE LA SOTA ER & PONCE MM. 2008a. Azollaceae. In: Zuloaga FO & Belgrano MJ (Eds), Catálogo de Plantas Vasculares del Cono Sur: Pteridophyta, Gymnospermae y Monocotyledoneae, Vol. 1, Missouri: Missouri Botanical Garden, p. 9.termined as Pteris cretica var. albo-lineata (Capurro 1968, PoncePONCE MM, PRADO J & GIUDICE G. 2008a. Pteridaceae. In: Zuloaga FO & Belgrano M (Eds), Catálogo de Plantas Vasculares del Cono Sur: Pteridophyta, Gymnospermae y Monocotyledoneae, Vol. 1, Missouri: Missouri Botanical Garden, p. 115-136. et al. 2008a, Martinez & Prado 2016). Recently, following the works of Shieh (1966) and JaruwattanaphanJARUWATTANAPHAN T, MATSUMOTO S & WATANO Y. 2013. Reconstructing hybrid speciation events in the Pteris cretica group (Pteridaceae) in Japan and adjacent regions. Syst Bot 38: 15-27. et al. (2013), GuerreroGUERRERO EL. 2017. Pteris nipponica (Pteridaceae), un nuevo registro para la flora exótica de Buenos Aires, Argentina. Bonplandia 26: 137-142. et al. (2017) redefined them as P. nipponica. In the present work, MartínezMARTÍNEZ OG & PRADO J. 2016. Pteris. In: Ponce MM & Arana MD (Eds), Flora Vascular de la República Argentina, vol 2, Licofitas. Helechos. Gymnospermae. Zuloaga FO & Belgrano MJ (Eds), San Isidro: Estudio SIGMA SRL, Instituto de Botánica Darwinion - CONICET, p. 321-329. & Prado (2016) were followed because it is considered that more studies are needed about the infraspecific variability of this complex species to take taxonomic decisions.

Weed type: Ruderal.

Common names in Argentina: “Helecho de cinta”, “Pteris de Creta”.

Additional diagnostic characters: Laminae ovate-lanceolate to pyramidal; the proximal pinna 1-furcate, 1-pinnatisect; the distal pinna entire with base attenuated to subdecurrent.

Origin area and distribution in Argentina: It is distributed in the Paleotropical region and naturalized in the Americas from southeastern United States to southern Argentina, in the Malvinas archipelago (Martinez & Prado 2016).

Growth habits / Impact / Relationship to human activities: It is a very common species in disturbed and rudeDE LA SOTA ER. 1962. Contribución al conocimiento de Las Salviniaceae neotropicales, I Salvinia oblongifolia Martius. Darwiniana 12: 465-498.ral environments, such as roadsides or humid walls. It is registered as an apogamic species (Walker 1962, MartínezMARTÍNEZ OG. 2010. Gametófitos y esporófitos jóvenes de cuatro especies de helechos del género Pteris (Pteridaceae) naturalizadas en América. Rev Biol Trop 58: 89-102. 2010) and, probably, this characteristic is related to the cosmopolitan distribution of the species and the facility to colonize new environments. According to Global Invasive Species Database, this species has caused the displacement of other native species in the USA.

Additional references:MortonMORTON CV. 1957. Observations on cultivated ferns. I. Am Fern J 47: 7-14. (1957), MartínezMARTÍNEZ OG. 2011. Morfología y distribución del complejo Pteris cretica L. (Pteridaceae) para el continente americano. Candollea 66: 159-180. & Morbelli (2009), Martínez (2011).

17. Pteris deflexa Link, Hort. Berol. 2: 30. 1833. EPPO: No consigned. Fig. 5e.

Weed type: Toxic.

Common name in Argentina: “Helecho garrapata”.

Additional diagnostic characters: Rhizomes short, creeping to erect, robust, 2-8 cm wide; costae and costulae sulcate abaxially, aristate with spines.

Origin area and distribution in Argentina: It is widely distributed in tropical and subtropical regions of the Americas, from the Caribbean to Uruguay (Martinez & Prado 2016). In Argentina, it inhabits the Yungas of the northwest region and the Paranaense forest in the northeast, at 500-2700 m u.s.l.

Growth habits / Impact / Relationship to human activities: Recent studies in northwestern Argentina have identified in this species the presence of Ptaquiloside (Pterosina B). This toxic compound causes Enzootic Bovine Hematuria in livestock (GilGIL DA COSTA RM, BASTOS MMSM, OLIVEIRA PA and LOPES C. 2012. Bracken-associated human and animal health hazards: chemical, biological and pathological evidence. J Hazard Mater 203e204: 1e12. da Costa et al. 2012). Recently, the direct association between P. deflexa (and P. plumula Desv., see below) with this disease was verified (MicheloudMICHELOUD JF, COLQUE-CARO LA, MARTINEZ OG, GIMENO EJ, DA SILVA FREITAS RIVERO D & SOTO BLANCO B. 2017. Bovine enzootic haematuria from consumption of Pteris deflexa and Pteris plumula in northwestern Argentina. Toxicon 134: 26-29. et al. 2017).

Additional references: LellingerLELLINGER DB. 1997. Pteris deflexa and its allies. Am Fern J 87: 66-70. (1997), MartínezMARTÍNEZ OG, PRADA C, TANCO ME & BONOMO MC. 2013. Sexual phase of three species of Pteris (Pteridaceae). Trop Pl Biol 6: 46-52. et al. (2013).

18. Pteris multifida Poir., Encycl. 5: 714. 1804. EPPO: PTJMU. Fig 4f.

Weed type: Ruderal.

Common name in Argentina: “Helecho araña”.

Additional diagnostic characters: Morphologically, it is similar to juvenile forms of P. cretica. However, they can be easily distinguished by the winged or wingless rachis (see key).

Origin area and distribution in Argentina: It is distributed in tropical Asia and is widely naturalized in the Americas, from southeastern United States to the center of Argentina (Martinez and Prado 2016). In Argentina, it has been recorded in two disjunct areas: both Buenos Aires city and province in the pampas, and in the north of the country up to 1200 m u.s.l (i.e. Chaco and Salta provinces).

Growth habits / Impact / Relationship to human activities: It grows in ruderal habitats, on humid walls. In addition, this species has been defined as an ecological weed in other areas of its distribution (MurakamiMURAKAMI N, NISHIYAMA T, SATOH H. & SUZUKI, T. 1997. Marked spatial genetic structure in three populations of a weedy fern, Pteris multifida Poir., and reestimation of its selfing rate. Pl Spec Biol 12: 97-106. et al. 1997). Apogamous reproduction has been detected in this species (KawakamiKAWAKAMI SM, ITO M & KAWAKAMI S. 1995. Apogamous sporophyte formation in a fern Pteris multifida and its characteristics. J Plant Res 108: 181-184. et al. 1995) and self-fertilization events of gametophytes has been studied, which could be related to an adaptive advantage for the colonization of open and distant habitats (Watano 1988).

Observations: As in the case of P. cretica, there are ornamental cultivars for this species. According to Burkart (1933), this could be the origin of the spontaneous populations that are observed in Buenos Aires city.

Additional references: Burkart (1933), Morton (1957), Martínez (2011).

19. Pteris plumula Desv., Mém. Soc. Linn. Paris 6: 297. 1827. EPPO: No consigned.

Taxonomic notes: According to MoranMORAN RC & RIBA R. 1995. Flora Mesoamericana, Vol. 1, Psilotaceae a Salviniaceae, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, 470 p. and Riba (1995) and ArantesARANTES AA, PRADO J & RANAL MA. 2010. Polypodiaceae e Pteridaceae da Estação Ecológica do Panga, Uberlândia, Estado de Minas Gerais, Brasil. Rev Bras Bot 33: 167-183. et al. (2010), this species is a synonym of P. quadriaurita Retz., a widely distributed species of southeastern Asia. On the contrary, other botanists consider P. plumula as a current species based on origin and ploidy (LellingerLELLINGER DB. 1989. The ferns and fern-allies of Costa Rica, Panama, and the Chocó (Part 1: Psilotaceae through Dicksoniaceae). Pteridologia 2: 1-364. 1989, ProctorPROCTOR GR. 1989. Ferns of Puerto Rico and the Virgin Islands. Mem New York Bot Gard 53: 155-165. 1989, PradoPRADO J & WINDISCH PG. 2000. The genus Pteris L.(Pteridaceae) in Brazil. Bol Inst Bot 13: 103-199. & Windisch 2000, Martinez & Prado 2016).

Weed type: Toxic.

Common name in Argentina: unknown.

Additional diagnostic characters: laminae deltate-lanceolate, pinnae of 3-15 pairs, with base truncate; costule sulcate adaxially with whitish trichomes and spines.

Origin area and distribution in Argentina: It is distributed in the tropical region of the Americas, from Mexico to northern Argentina (Martinez & Prado 2016). In Argentina, it inhabits both the Northwest and the Northeast regions up to 1500 m u.s.l.

Growth habits / Impact / Relationship to human activities: It causes Enzootic Bovine Hematuria of livestock in northwestern Argentina (Micheloud et al. 2017).

Observations: This species has been registered as triploid with an apogamic origin (LoveLOVE A, LOVE D & PICHI SERMOLLI REG. 1977. Cytotaxonomical atlas of the Pteridophyta, Vaduz: J. Cramer, 398p. et al. 1977).

20. Pteris tremula R. Br., Prodr. 154. 1810. EPPO: PTJTE. Fig 4g.

Weed type: Ruderal.

Common name in Argentina: unknown; “Shaking brake” in United States (Wilcox & Rogan 1999).

Additional diagnostic characters: Fronds up to 2 m long, dimorphic, pale green; petiole pale brown to chestnut-brown; rachis red-brown; last sterile segments up to 3 mm wide, narrow-oblong to linear, slightly toothed margins; last fertile segments up to 1.5 mm wide.

Origin area and distribution in Argentina: It is originally distributed in Australia (OrchardORCHARD AE. 1998. Flora of Australia Volume 48, Ferns, Gymnosperms and Allied Groups. Melbourne: ABRS/CSIRO, 787 p. 1998). In Argentina, it is a common cultivated species that is a spontaneous in urban areas of both Buenos Aires city and province. However, according to Martínez & Prado (2016) it is not a naturalized species in the country.

Growth habits / Impact / Relationship to human activities: In Argentina, it is usually found as a ruderal species on walls, growing sub-spontaneous in gardens or on the banks of the Paraná river. Also, it is observed growing in protected areas of the province as Parque Natural Municipal Ribera Norte (San Isidro), Reserva Natural Avellaneda (Avellaneda) y Reserva Natural Punta Lara (Punta Lara) (Berrueta com pers.). Burkart (1933) noted that spontaneous specimens were smaller than those cultivated and often it were sterile. However, the specimens observed in the aforementioned protected areas are fertile. It is important to follow the naturalization process of this species with the objective of evaluating a possible displacement of native flora species.

21. Pteris vittata L., Sp. Pl. 2: 1074. 1753. - Pycnodoria vittata (L.) Small, Ferns Florida: 89. 1932. EPPO: PTJVI. Fig. 5h.

Taxonomic notes: According to early works, Argentine specimens were identified as P. longifolia L. (Burkart 1933, CapurroCAPURRO RH. 1938. Catálogo de las Pteridofitas Argentinas. An Prim Reun Sul-Amer Bot 2: 69-120. 1938, Capurro 1968, CabreraCABRERA AL & ZARDINI EM. 1978. Manual de la Flora de los alrededores de Buenos Aires, tomo 8, 2da ed. Acme: Buenos Aires, 755 pp. & Zardini 1978). However, later on, de la Sota & Morbelli (1985) based on an exhaustive morphological analysis, determined that these specimens actually correspond to P. vittata and excluded P. longifolia of this country.

Weed type: Ruderal.

Common names in Argentina: “Helecho de habichuela”, “helecho oxidado”, “polipodio cordobés”.

Additional diagnostic characters: Fronds pinnate with pinnae entire, sessile and linear. This species varies enormously in other frond traits and in size, density and color of rachis scales.

Origin area and distribution in Argentina: It is distributed in the east of Asia, and naturalized in the Americas (Martinez & Prado 2016). In Argentina, it inhabits from the north to the center of the country, and in Buenos Aires city have been recorded spontaneous near its harbor from the early 20th Century (Burkart 1933)

Growth habits / Impact / Relationship to human activities: It has been introduced in the Americas with ornamental proposes. It is a ruderal species that grows sub-spontaneously in wall crevices with calcareous substrate. It is usually found on old houses roofs or abandoned buildings. It is a drought-resistant species, and can grow without soil, in shaded or sunny environments. It causes gradual substrate deterioration.

Observations: This species has the ability to accumulate arsenic in fronds, petioles and roots, and it has been proposed for the phytoremediation of soils and water (ChenCHEN T, WEI C, HUANG Z, HUANG Q, LU Q & FAN Z. 2002. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chi Sci Bull 47: 902-905. et al. 2002, OliveiraOLIVEIRA LM, SUCHISMITA D, GRESS J, RATHINASABAPATHI B, CHEN Y & MA LQ. 2017. Arsenic uptake by lettuce from As-contaminated soil remediated with Pteris vittata and organic amendment. Chemosphere 176: 249-254. et al. 2017).

Additional references: Morton (1957)

22. Salvinia adnata Desv., Mém. Soc. Linn. Paris 6: 177. 1827. EPPO: SAVMO.

Taxonomic notes: We follow taxonomical point of view proposed by de la Sota (1995, 2001) and (Ponce & Arana 2016). However, according to MoranMORAN RC & SMITH AR. 1999. Salvinia adnata Desv. versus S. molesta DS Mitch. Amer Fern J 89: 268-269. & Smith (1999), Salas-Pascual et al. (2016) it is S. molesta D.S. Mitch.

Weed type: Aquatic weed.

Common names in Argentina: “Helechito del agua”, “salvinia gigante”.

Additional diagnostic characters: Floating laminae bilobate, imbricate; microsori up to 55 by fertile axis.

Origin area and distribution in Argentina: It is distributed originally in southeastern Brazil. However, currently it has invaded tropical and subtropical regions around the world reaching 31 countries of four continents where it has become a worrisome weed (LuqueLUQUE GM, BELLARD C, BERTELSMEIER C, BONNAUD E, GENOVESI P, SIMBERLOFF D & COURCHAMP F. 2014. The 100th of the world’s worst invasive alien species. Biol Invas 16: 981-985. et al. 2014). In many cases, introductions were due to its ornamental use in fish tanks and fountains. In Argentina, according to Arana (2016), it has been only recorded in the Iberá wetlands, Corrientes province. However, it is a doubtful species in Argentina since we could not find the unique cited specimen of the species for the country (Forno s.n., Z).

Growth habits / Impact / Relationship to human activities: According to the Global Invasive Species Database, it is one of the most aggressive weed belonging to the genus Salvinia in Africa, North America, and Oceania. It is a highly competitive species with a great capacity for vegetative proliferation by rhizome fragmentation. It disperses easily and has high tolerance to environmental stress factors such as low temperatures (Arana 2016). Under favorable conditions, this species forms dense populations over 50 cm thick that cover the entire body of water and limit the gas exchange and the photosynthesis process of other plant species, also deteriorating the physical-chemical quality of the water. It affects human activity because it interferes with fishing exploitation, the cultivation of species in flooded soil such as rice, the generation of hydroelectric energy (for obstruction of reservoirs) and maritime transport (Kissmann 1997). One of the methods of biological control frequently used is by Cyrtobagous salviniae which creates tunnels in rhizomes and feeds on buds (JaconoJACONO CC, DAVERN TR & CENTER TD. 2001. The Adventive Status of Salvinia minima and S. molesta in the Southern United States and the related distribution of the weevil Cyrtobagous salviniae. South Appalachian Bot Soc 66: 214-226. et al. 2001). Even though the species present nowadays a restricted distribution in Argentina, continuous monitoring is required to avoid a potential impacts..

Observations: S. adnata is a hybrid species originated between S. biloba and S. auriculata based on reproductive and morphological data (LoyalLOYAL DS & GREWAL RK. 1966. Cytological Study on Sterility in Salvinia auriculata Aublet with a Bearing on Its Reproductive Mechanism. Cytologia 31: 330-338. & Grewal 1966, MitchellMITCHELL DS. 1972. The Kariba weed: Salvinia molesta. Brit Fern Gaz 10: 251-252. 1972).

Additional references: FornoFORNO IW. 1983. Native distribution of the Salvinia auriculata complex and keys to species identification. Aquatic Bot 17: 71-83. & Harley (1979), Forno (1983), MoranMORAN RC. 1992. The history of the molesting Salvinia. Fiddlehead forum 19: 26-28. (1992), OliverOLIVER JD. 1993. A review of the biology of giant Salvinia (Salvinia molesta Mitchell). J Aquatic Pl Managem 31: 227-231. (1993), DiTomasoDITOMASO JM & HEALY EA. 2003. Aquatic and riparian weeds of the west. UCANR Publications, California. & Healy (2003).

23. Salvinia auriculata Aubl., Hist. Pl. Guiane 2: 969, tab. 367. 1775. EPPO: SAVAU. Fig. 5i.

Weed type: Aquatic weed.

Common names in Argentina: “Acordeón de agua”, “helechito del agua”, “mota de negro”.

Additional diagnostic characters: Floating pinnae oblong with base cordate to bilobate; microsori 4-10 by fertile axis.

Origin area and distribution in Argentina: It is widely distributed in the tropical region of the Americas, from Mexico and the Caribbean to Bolivia, Paraguay, southern Brazil, northeastern Argentina, and Uruguay reaching the Rio de la Plata (Arana 2016). In Argentina, inhabits the Northeast region in Corrientes and Entre Ríos provinces.

Growth habits / Impact / Relationship to human activities: Although it is usually used as an ornamental species in artificial ponds, its excessive growth causes problems in irrigation systems, dikes, canals and lakes, where it makes difficult navigation and fishing. This excessive growth is mainly due to its high vegetative reproduction by fragmentation that disperses new plants by natural movement of water.

Observations: Usually the name “Salvinia auriculata” refers to a complex of species distributed in the Neotropics: S. adnata, S. auriculata, and S. biloba. These species are morphologically very similar, with fused apices of hairs on the adaxial surface of pinnae (de la Sota 1962, Mitchell & Thomas 1972, Forno 1983). Its introduction in the United States is prohibited because of its rapid colonization of aquatic habitats (Jacono et al. 2001). Salvinia auriculata is a potential species to accumulate heavy metals and it can contribute to the bioremediation of contaminated environments (KumariKUMARI S, KUMAR B & SHEEL R. 2016. Bioremediation of heavy metals by serious aquatic weed, Salvinia. Int J Curr Microbiol Appl Sci 5: 355-368. et al. 2016).

24. Salvinia biloba Raddi, Pl. Bras. Nov. Gen. 1: 4, tab. 1, Fig. 5. 1825. EPPO: SAVBI.

Taxonomic notes: According to de la Sota (1962), specimens of Santa Fe province belonged to Salvinia herzogii, however, nowadays, this species is a synonym of S. biloba.

Weed type: Aquatic weed.

Common name in Argentina: “Helechito de agua”.

Additional diagnostic characters: Floating pinnae 2-lobate, up to 30 x 45 mm; 10 microsori or more by fertile axis.

Origin area and distribution in Argentina: It is distributed along the Plata basin in northeastern Argentina, southern Brazil, Paraguay, and Uruguay (Arana 2016).

Growth habits / Impact / Relationship to human activities: It is an aquatic weed that invades reservoirs, artificial lakes and channels. It forms large populations that cover the entire surface, blocking the passage of sunlight and interfering with the growth of other species because it limits gas exchange. Its main type of reproduction is a vegetative fragmentation because the populations are usually sterile.

Observations: According to de la Sota (1962), many specimens cited in Argentina as Salvinia auriculata are probably S. biloba. These species are distinguished by submerged rachis axes (short in S. auriculata against long in S. biloba) and the amount of sori by fertile axes (few with long pedicels against numerous sessile, respectively).

Additional references: Forno (1983).

25. Salvinia minima Baker, J. Bot. 24: 98. 1886. EPPO: SAVRO.

Taxonomic notes: This species was cited in early floristic works of Argentina as S. rotundifolia Willd. (Capurro 1968).

Weed type: Aquatic weed.

Common name in Argentina: “Helechito de agua”.

Additional Diagnostic characters: First pair of floating pinnae up to 20-25 mm long. It differs from S. auriculata complex by the fusion of the apices of the papillae hairs (see dichotomous key).

Origin area and distribution in Argentina: It is widely distributed in the Americas, from the United States and central Mexico to central Argentina, where it was cited from Salta to Buenos Aires provinces (Arana 2016).

Growth habits / Impact / Relationship to human activities: As it happens with other species of the genus, the excessive growth of the populations of this species through vegetative fragmentation obstructs fluvial channels and affects the water quality. Alterations in water and soil quality and reduction of native biodiversity have been recorded because of the species growth by the Global Invasive Species Database. As with Salvinia adnata, it can be controlled by the action of the insect Cyrtobagous salviniae (ParysPARYS KA & JOHNSON SJ. 2013. Biological Control of Common Salvinia (Salvinia minima) in Louisiana using Cyrtobagous salviniae (Coleoptera: Curculionidae). Fla Entomol J 96: 10-18. & Johnson 2013). Salvinia minima is frequently cultivated as ornamental in pools and aquariums due to its small size and thermal tolerance. Although it is registered as a weed in other countries of the Americas, up to now there is no exhaustive survey of its impact in Argentina.

Observations: Salvinia minima has the ability to absorb heavy metals such as arsenic and plumb (HoffmannHOFFMANN T, KUTTER C & SANTAMARÍA JM. 2004. Capacity of Salvinia minima baker to tolerate and accumulate As and Pb. Engineering in Life Sciences 4: 61-65. et al. 2004).

Additional references: de la Sota (1962, 1976), Forno (1983), Jacono et al. (2001).

DISCUSSION

The present study represents an important progress to the knowledge of the colonizing fern species of disturbed habitats (aquatic, ecological, segetal, or ruderal) and / or toxic for livestock animals from Argentina. In this sense, 20 more weedy ferns species are recognized than those mentioned in the last study of Argentinian weeds carried out by Fernandez et al. (2016). This represents an increase from 0.6% to 3% in the percentage of ferns in the Argentina weed list. Likewise, weeds represent 7% of 368 species of ferns recognized in the Argentinian flora (Ponce & Arana 2016).

Among the species studied, Pteridaceae is the best represented family and half of its representatives are exotic. This is consistent with the observations of Jones et al. (2018) who pointed out that, globally, Pteridaceae is the family with most number of species that have become alien.

The present study, also, constitutes the starting point for more exhaustive studies about the ecological role and the distribution of the studied species, which allow to identify suitable environmental conditions for their growth and to detect potential risks for human activities. In this sense, although some species such as Pityrogramma trifoliata, Salvinia adnata and S. minima have restricted distributions ranges and/or their impact is still little known in the country, the problems detected in other countries will contribute to future studies about the inconveniences that these species could cause.

Regarding the geographical distribution of the species, according to the results obtained in this study, the priority region for future analyzes is the central Argentina because the largest number of records of weed ferns was found here. Likewise, the province of Buenos Aires, from the Central region, was one of the two provinces with the largest number of weed species and the province with more exotic weed species. Due to the latter, it would be important to carry out studies in the province concerning the impact caused by exotic species on native flora populations, mainly in protected areas. Authors studying weedy species in Asteraceae family made similar observations, as the greatest richness of adventitious Asteraceae species are distributed in the province of Buenos Aires (KatinasKATINAS L, GUTIÉRREZ DG, GROSSI MA & CRISCI JV. 2007. Panorama de la familia Asteraceae (= Compositae) en la República Argentina. Bol Soc Arg Bot 42: 113-129. et al. 2007). The other province with high number of weedy fern species was Salta. High diversity of weedy ferns in Salta may simply reflect that Salta belongs to the Northwest region, one of the main centers of fern diversity in Argentina (Ponce et al. 2002).

Additionally, this survey provides further data to the scarce and fragmented information that up to now exists about the presence of fern species that can affect urban buildings (BertolamiBERTOLAMI MA. 1990. La vegetación periurbana de la ciudad de Mendoza Transecta CRICYT - Puesto Gato de Monte. Parodiana 6: 211-225. 1990, FranceschiFRANCESCHI EA. 1996. The ruderal vegetation of Rosario city, Argentina. Landsc Urban Plan 34: 11-18. 1996, Franceschi & Boccanelli 2013, Rosato et al. 2015). Most of these species are exotic and only in some cases the origin of their invasion is clearly know. Therefore future studies are need to clarify their introduction to the country and categorize the state of the invasion (BlackburnBLACKBURN TM, PYŠEK P, BACHER S, CARLTON JT, DUNCAN RP, JAROŠÍK V, WILSON JRU & RICHARDSON DM. 2011. A proposed unified framework for biological invasions. Trends Ecol Evol 26: 333-339. et al. 2011) and the magnitude of the impact on native species, on the ecosystem structural characteristics or on human activities (Blackburn et al. 2014).

The results of this study provide information for the development of weed management tools and point to priority areas to implement them, distribution modeling and ecological niche modeling of invasive species or sanitary control to livestock where those species are found.

ACKNOWLEGMENTS

The authors thank the curators of the herbaria SI and LP; to the Instituto de Botánica Darwinion for providing photographs of the species in their natural habitat; to Marcelo Monge (Brazil), Daniel Montesinos (Peru) and Julia Tomaz Kilipper (Brazil) for providing valuable bibliography for the discussion of this work; to agronomist Carlos A. Brussa for providing valuable information about the ferns of Uruguay and to Lone Aagesen for helping us improve the language of the manuscript. We especially thank the reviewers for their comments and suggestions, which contributed to the quality of the manuscript.

REFERENCES

  • ABBIATTI D. 1964. Estudios sobre Pteridofitas austroamericanas de los géneros Thelypteris, Cyclosorus y Goniopteris. Darwiniana 13: 537-567.
  • ACAMOVIC T, STEWART CS & PENNYCOTT TW. 2004. Poisonous Plants and Related Toxins. Wallingford: CAB International, 608 p.
  • AGUILAR-DORANTES K, MEHLTRETER K, VIBRANS H, MATA-ROSAS M & ESQUEDA-ESQUIVEL VA. 2014. Repeated selective cutting controls Neotropical bracken (Pteridium arachnoideum) and restores abandoned pastures. Invasive Plant Sci Manag 7(4): 580-589.
  • AKOMOLAFE GF & RAHMAD ZB. 2018. A review on global ferns invasions: mechanisms, management and control. J Res Forestry, Wildlife and Environment 10(3): 42-54.
  • ALMEIDA TE, HENNEQUIN S, SCHNEIDER HS, SMITH AR, BATISTA JAN, RAMALHO AJ, PROITE K & SALINO A. 2016. Towards a phylogenetic generic classification of Thelypteridaceae: Additional sampling suggests alterations of neotropical taxa and further study of paleotropical genera. Mol Phyl Evol 94: 688-700.
  • ALVIN-CARNEIRO P. 1948. Envenenamento por Equisetum sp. (Cavalinha). Ceres 8: 32-36.
  • ARANA MD. 2016. Equisetaceae, Pteridaceae (Pellaea) and Salviniaceae. In: Ponce MM & Arana MD (Eds), Flora Vascular de la República Argentina, Vol. 2, Licofitas. Helechos. Gymnospermae. Zuloaga FO & Belgrano MJ (Eds), San Isidro: Estudio SIGMA SRL, Instituto de Botánica Darwinion - CONICET, p. 167-350.
  • ARANA MD & BIANCO CA. 2009. Pteridofitas del Centro de la Argentina, 1a ed., Río Cuarto: Universidad Nacional de Río Cuarto, 144 p.
  • ARANTES AA, PRADO J & RANAL MA. 2010. Polypodiaceae e Pteridaceae da Estação Ecológica do Panga, Uberlândia, Estado de Minas Gerais, Brasil. Rev Bras Bot 33: 167-183.
  • BAEZA M, BARRERA E, FLORES J, RAMÍREZ C. & RODRÍGUEZ R. 1998. Categorías de conservación de Pteridophyta nativas de Chile. Bol Mus Nac Hist Nat 47: 23-46.
  • BAKER HG. 1974. The evolution of weeds. Ann Rev Ecol Syst. 5: 1-24.
  • BANDONI A, MANJON J, ROSSIGNOLI F, VILLA JJ & MARCOS E. 1978. Farmacopea Nacional Argentina: codex medicamentarius argentino, 6th ed., Buenos Aires: Ministerio de Bienestar Social, Secretaría de Estado de Salud Pública.
  • BARRETT WH & TRESSENS SG. 1996. Estudio de la vegetación nativa en plantaciones de Eucalyptus grandis (Myrtaceae) en el norte de la provincia de Corrientes, República Argentina. Bonplandia 9: 1-18.
  • BARRIOS S, COPELAND A & MALCOLM P. 2015. Peperomia septentrionalis. The IUCN Red List of Threatened Species. Version 2015.2. Available at: http://www.iucnredlist.org/details/68982125/0
    » http://www.iucnredlist.org/details/68982125/0
  • BERTOLAMI MA. 1990. La vegetación periurbana de la ciudad de Mendoza Transecta CRICYT - Puesto Gato de Monte. Parodiana 6: 211-225.
  • BFG. 2018. Brazilian Flora 2020: Innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69: 1513-1527.
  • BINGGELI P. 1994. The misuse of terminology and anthropometric concepts in the description of introduced species. Bull Brit Ecol Soc 25: 1013.
  • BLACKBURN TM, PYŠEK P, BACHER S, CARLTON JT, DUNCAN RP, JAROŠÍK V, WILSON JRU & RICHARDSON DM. 2011. A proposed unified framework for biological invasions. Trends Ecol Evol 26: 333-339.
  • BLACKBURN TM et al. 2014. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS biol 12(5): e1001850.
  • BLAKEMORE RC, BOWDEN K, BROADBENT JL & DRYSDALE C. 1964. Anthelmintic constituents of ferns. J Pharm Pharmacol 16: 464-471.
  • BOCCANELLI SI & PIRE EF. 2011. Adiantopsis chlorophylla ¿Una nueva especie en la llanura pampeana? Ciencias Agronómicas 17: 35-37.
  • BRITTON D & JERMY A. 1974. The spores of Dryopteris filix-mas and related taxa in North America. Canad J Bot 52: 19231926.
  • BRUSSA CA & GRELA I. 2005. Los helechos como integrantes del bosque indígena: revisión taxonómica de Pteridophyta de la flora uruguaya. Seminario Compartiendo conocimientos sobre el monte indígena. Movimiento Mundial por los Bosques Tropicales. Montevideo 7.
  • BURKART A. 1933. Observaciones sobre Pteridófitas Platenses. Physis 11: 253-265.
  • CABRERA AL & ZARDINI EM. 1978. Manual de la Flora de los alrededores de Buenos Aires, tomo 8, 2da ed. Acme: Buenos Aires, 755 pp.
  • CALIFANO LM & ECHAZÚ F. 2011. Especies vegetales tóxicas para el ganado en Humahuaca (Jujuy) e Iruya y Nazareno (Salta). Guía para su reconocimiento, la identificación y posibles tratamientos. INTA Centro Regional Salta-Jujuy.
  • CALIFANO LM & ECHAZÚ F. 2013. Etnobotánica en comunidades pastoriles. Conocimiento tradicional sobre especies tóxicas para el ganado en la cuenca del río Iruya (Salta, Argentina). Bol Soc Arg Bot 48: 365-375.
  • CALUFF MG & FIALLO VRF. 2008. Malezas pteridofíticas de Cuba. Revista Jard Bot Nac Univ Habana 29: 51-56.
  • CALUFF MG, FUENTES FIALLO V & REGALADO GABANCHO L. 2017. Licófitos y helechos invasores en Cuba. La Habana: Centro Nacional de Áreas Protegidas, 37 p.
  • CAMPOS SC, SILVA CG, CAMPANA PRV & ALMEIDA VL. 2016. Toxicidade de espécies vegetais. Rev Bras Pl Med 18: 373-382.
  • CAPURRO RH. 1938. Catálogo de las Pteridofitas Argentinas. An Prim Reun Sul-Amer Bot 2: 69-120.
  • CAPURRO RH. 1968. División Pteridophyta. In: CABRERA AL (Ed), Flora de la Provincia de Buenos Aires I: Pteridófitas, Gimnospermas y Angiospermas Monocotiledóneas (a excepción de Gramíneas), 101. Colección Científica. Buenos Aires: INTA, 625 p.
  • CÁRDENAS J & COULSTON L. 1967. Weeds of Brazil. A List of Common and Scientific Names. Corvallis: Oregon State University.
  • CASTRO R, NOVO R & CASTRO RI. 2002. Uso del género Azolla como Biofertilizante en el cultivo de arroz (Oryza sativa L.). Cult Trop 23: 5-10.
  • CHEN T, WEI C, HUANG Z, HUANG Q, LU Q & FAN Z. 2002. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chi Sci Bull 47: 902-905.
  • COPELAND A & MALCOLM P. 2014. Thelypteris bermudiana. The IUCN Red List of Threatened Species. Version 2015.2. Available at: http://www.iucnredlist.org/details/56604509/0
    » http://www.iucnredlist.org/details/56604509/0
  • COTTANI F & SABATTINI RA. 2006. Manejo y control de arbustivas en un pastizal con alta carga animal en pastoreo rotativo. Rev Ci Agr 10: 109-120.
  • DAVIDONIS GH. 1976. The occurrence of thelypterin in ferns. Am Fern J 66: 107-108.
  • DAVIDSE G, SOUSA SÁNCHEZ M & KNAPP S. 1995. Psilotaceae a Salviniaceae. 1: i–xxi, 1-470. In: Davidse G et al. (Eds), Fl. Mesoamer, México: Universidad Nacional Autónoma de México.
  • DE EGEA J, MERELES F, DEL CARMEN PENA-CHOCARRO M & CÉSPEDES G. 2016. Checklist for the crop weeds of Paraguay. PhytoKeys 73: 13-92.
  • DE LA PEÑA MR. 1997. Catálogo de nombres vulgares de la flora argentina (lista preliminar), Ciudad: Universidad Nacional del Litoral, 195 p.
  • DE LA SOTA ER. 1962. Contribución al conocimiento de Las Salviniaceae neotropicales, I Salvinia oblongifolia Martius. Darwiniana 12: 465-498.
  • DE LA SOTA ER. 1976. Sinopsis de las especies argentinas del género Salvinia. Bol Soc Arg Bot 17: 47-50.
  • DE LA SOTA ER. 1977. Flora de la Provincia de Jujuy, República Argentina. Pteridophyta. Colección Científica. Buenos Aires: INTA, 275 p.
  • DE LA SOTA ER. 1985. Las Pteridofitas de la Provincia de La Pampa, Argentina. Revista Fac Agron 1: 23-34.
  • DE LA SOTA ER. 1995. Nuevos sinónimos en Salvinia Ség. (Salviniaceae-Pteridophyta). Darwiniana 33: 309-313.
  • DE LA SOTA ER. 2001. Sobre el tipo de Salvinia adnata (Salviniaceae, Pteridophyta). Bol Soc Argent Bot 36: 125-129.
  • DE LA SOTA ER, MARTÍNEZ OG, PONCE MM, GIUDICE GE & MICHELENA GI. 2001. Flora del Valle de Lerma. Pteridaceae. Aportes Botánicos de Salta, Serie Flora 6: 1-59.
  • DE LA SOTA ER & MORBELLI MA. 1985. Pteris longifolia L. o P. vittata L. (Adiantaceae, Pteridophyta). Lo que ocurre en Argentina. Physis Secc. A, B AND C 43: 73-83.
  • DE LA SOTA ER & PONCE MM. 1998. Pteridophyta. In: Correa MN (Ed), Flora Patagónica, Parte 1, Introducción. Clave General de Familias. Pteridophyta y Gymnospermae., Colección Científica, Buenos Aires: INTA, 391 p.
  • DE LA SOTA ER & PONCE MM. 2008a. Azollaceae. In: Zuloaga FO & Belgrano MJ (Eds), Catálogo de Plantas Vasculares del Cono Sur: Pteridophyta, Gymnospermae y Monocotyledoneae, Vol. 1, Missouri: Missouri Botanical Garden, p. 9.
  • DE LA SOTA ER & PONCE MM. 2008b. Equisetaceae. In: Zuloaga FO & Belgrano MJ (Eds), Catálogo de Plantas Vasculares del Cono Sur: Pteridophyta, Gymnospermae y Monocotyledoneae, vol 1, Missouri: Missouri Botanical Garden, p. 49-50.
  • DE LA SOTA ER & PONCE MM. 2008c. Marsileaceae. In: Zuloaga FO & Belgrano MJ (Eds), Catálogo de Plantas Vasculares del Cono Sur: Pteridophyta, Gymnospermae y Monocotyledoneae, vol 1, Missouri: Missouri Botanical Garden, p. 97-98.
  • DE LA SOTA ER & PONCE MM. 2008d. Salviniaceae. In: Zuloaga FO & Belgrano MJ (Eds), Catálogo de Plantas Vasculares del Cono Sur: Pteridophyta, Gymnospermae y Monocotyledoneae, vol 1, Missouri: Missouri Botanical Garden, p. 136-137.
  • DEL TREDICI P. 2010. Spontaneous urban vegetation: reflections of change in a globalized world. Nat and Cult 5: 299-315.
  • DER JP, THOMSON JA, STRATFORD JK & WOLF PG. 2009. Global chloroplast phylogeny and biogeography of bracken (Pteridium; Dennstaedtiaceae). Am J Bot 96: 1041-1049.
  • DICKINSON R & ROYER F. 2014. Weeds of North America. Chicago: University of Chicago Press, 656 p.
  • DIEM J. 1960. Pteridofitas nuevas del Parque Nacional Nahuel-Huapi. Darwiniana 12: 67-74.
  • DITOMASO JM & HEALY EA. 2003. Aquatic and riparian weeds of the west. UCANR Publications, California.
  • EDGINGTON J. 2008. Urban Ferns. Pteridologist 5-8.
  • EFLORAS. 2008. Published on the Internethttp://www.efloras.org[accessed 22 February 2018]. Missouri Botanical Garden, St. Louis and Harvard University Herbaria, Cambridge.
    » http://www.efloras.org
  • ETCHEPARE MA & BOCCANELLI SI. 2007. Análisis del banco de semillas y su relación con la vegetación emergente en una clausura de la llanura pampeana. Ecol Austral 17: 159-166.
  • EVRARD C & VAN HOVE C. 2004. Taxonomy of the American Azolla Species (Azollaceae): a critical review. Sys Geogr Pl 74: 301-318.
  • FERNÁNDEZ OA, LEGUIZAMÓN ES & ACCIARESI HA. 2016. Malezas e Invasoras de la Argentina, Tomo II: Descripción y reconocimiento. Universidad Nacional del Sur, Bahía Blanca: Edinus, 950 p.
  • FLORA DO BRASIL. 2020. Jardim Botânico do Rio de Janeiro. Disponível em: <http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB128483>. Access: 20 Jul. 2018
    » http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB128483>.
  • FLORES EN, CALIFANO LM, GURNI AA & VIGNALE ND. 2016. Caracterización exomorfológica de Cheilanthes pruinata, especie tóxica para el ganado y medicinal en humanos en la región andina. Bol Soc Arg Bot 51: 29-35.
  • FORNO IW. 1983. Native distribution of the Salvinia auriculata complex and keys to species identification. Aquatic Bot 17: 71-83.
  • FORNO IW & HARLEY KLS. 1979. The occurrence of Salvinia molesta in Brazil. Aquatic Bot 6: 185-187.
  • FRANCESCHI EA. 1996. The ruderal vegetation of Rosario city, Argentina. Landsc Urban Plan 34: 11-18.
  • FRANCESCHI EA & BOCCANELLI SI. 2013. Análisis florístico-estructural de los núcleos boscosos espontáneos del parque JF Villarino (Zavalla, Santa Fe, Argentina). Bol Soc Arg Bot 48: 301-314.
  • FRANCO DM, ALMEIDA LFRD & POLETTO RDS. 2014. Allelopathic potential of Equisetum giganteum L. and Nephrolepis exaltata L. on germination and growth of cucumber and lettuce. J Plant Sci 2: 237-241.
  • FRYER JD. 1979. Key factors affecting important weed problems and their control. In: European Weed Research Society Symposium: The influence of different factors on the development and control of weeds, Mainz, p. 13-24.
  • FURLAN FH, LISBOA DA COSTA F, TORRES JR SCS, KERBER LF, DAMASCENO E DOS S, SALINO A & RIET-CORREA F. 2014. Perfil de propriedades rurais com pastos invadidos por Pteridium arachnoideum na região norte de Mato Grosso e prevalência de hematúria enzoótica bovina. Pesq Vet Bras 34: 753-759.
  • GALLO GG. 1979. Plantas tóxicas para el ganado en el Cono Sur de América. Buenos Aires: Editorial Universitaria de Buenos Aires, 255 p.
  • GIL DA COSTA RM, BASTOS MMSM, OLIVEIRA PA and LOPES C. 2012. Bracken-associated human and animal health hazards: chemical, biological and pathological evidence. J Hazard Mater 203e204: 1e12.
  • GIUDICE GE & LUNA ML. 2016. Pityrogramma. In: Ponce MM & Arana MD (Eds), Flora Vascular de la República Argentina, Vol. 2, Licofitas. Helechos. Gymnospermae. Zuloaga FO & Belgrano MJ (Eds), San Isidro: Estudio SIGMA SRL, Instituto de Botánica Darwinion - CONICET, p. 318-320.
  • GIUDICE GE, RAMOS GIACOSA JP, LUNA ML, YAÑEZ A & DE LA SOTA ER. 2011. Diversity of ferns and lycophytes from Reserva Natural Punta Lara, Buenos Aires, Argentina / Diversidad de helechos y licófitas de la Reserva Natural Punta Lara, Buenos Aires, Argentina. Revista Biol Trop 59: 1037-1046.
  • GUERRERO EL. 2017. Pteris nipponica (Pteridaceae), un nuevo registro para la flora exótica de Buenos Aires, Argentina. Bonplandia 26: 137-142.
  • HERNÁNDEZ MA & RODRÍGUEZ FP. 2010. Morfología y anatomía del esporofito de Adiantopsis chlorophylla (Pteridaceae). Lilloa 47: 85-94.
  • HILL MP & CILLIERS CJ. 1999. Azolla filiculoides Lamarck (Pteridophyta: Azollaceae), its status in South Africa and control. Hydrobiologia 415: 203-206.
  • HOFFMANN T, KUTTER C & SANTAMARÍA JM. 2004. Capacity of Salvinia minima baker to tolerate and accumulate As and Pb. Engineering in Life Sciences 4: 61-65.
  • HOLTTUM RE. 1976. The genus Christella Léveillé, sect. Christella. Studies in the family Thelypteridaceae, XI. Kew Bull 31: 293-339.
  • HOLZNER W. 1978. Weed species and weed communities. Vegetatio 38: 13-20.
  • HOLZNER W. 1982. Concepts, categories and characteristics of weeds. In: Holzner W & Numata M (Eds), Biology and ecology of weeds, The Hague: Springer-Science and Business Media, B.V., p. 3-20.
  • HOVENKAMP PH & MIYAMOTO F. 2005. A conspectus of the native and naturalized species of Nephrolepis (Nephrolepidaceae) in the world. Blumea 50: 279-322.
  • HUANG XH, XIONG PC, XIONG CM, CAI YL, WEI AH, WANG JP, LIANG XF & RUAN JL. 2010. In vitro and in vivo antitumor activity of Macrothelypteris torresiana and its acute / subacute oral toxicity. Phytomedicine 17: 930-934.
  • JACONO CC, DAVERN TR & CENTER TD. 2001. The Adventive Status of Salvinia minima and S. molesta in the Southern United States and the related distribution of the weevil Cyrtobagous salviniae. South Appalachian Bot Soc 66: 214-226.
  • JARUWATTANAPHAN T, MATSUMOTO S & WATANO Y. 2013. Reconstructing hybrid speciation events in the Pteris cretica group (Pteridaceae) in Japan and adjacent regions. Syst Bot 38: 15-27.
  • JOHNSON DM. 1986. Systematics of the New World species of Marsilea. Syst Bot Monogr 11: 1-87.
  • JONES EJ, KRAAIJ T, FRITZ H. & MOODLEY D. 2018. A global assessment of terrestrial alien ferns (Polypodiophyta): species’ traits as drivers of naturalization and invasion. Biol Invasions: 1-13.
  • JØRGENSEN PM, NEE MH, BECK SG, ARRÁZOLA S & SALDIAS M. 2014. Catálogo de las plantas vasculares de Bolivia. Missouri: Missouri Botanical Garden Press. Access: 20 July 2018. http://www.tropicos.org/Project/BC.
    » http://www.tropicos.org/Project/BC.
  • KATINAS L, GUTIÉRREZ DG, GROSSI MA & CRISCI JV. 2007. Panorama de la familia Asteraceae (= Compositae) en la República Argentina. Bol Soc Arg Bot 42: 113-129.
  • KAWAKAMI SM, ITO M & KAWAKAMI S. 1995. Apogamous sporophyte formation in a fern Pteris multifida and its characteristics. J Plant Res 108: 181-184.
  • KESSLER M & SMITH AR. 2017. Prodromus of a fern flora for Bolivia. VII. Equisetaceae. Phytotaxa 327: 97-99.
  • KESSLER M, SMITH AR & PRADO J. 2017. Prodromus of a fern flora for Bolivia. XXVII. Pteridaceae. Phytotaxa 332: 201-250.
  • KISSMANN KG. 1997. Plantas infestantes e nocivas. Tomo I, plantas inferiores, Monocotiledóneas, 2nd ed., São Paulo: BASF, 825 p.
  • KORPELAINEN H. 1994. Growth, sex determination and reproduction of Dryopteris filix-mas (L.) Schott gametophytes under varying nutritional conditions. Bot J Linn Soc 114: 357-366.
  • KUMARI S, KUMAR B & SHEEL R. 2016. Bioremediation of heavy metals by serious aquatic weed, Salvinia. Int J Curr Microbiol Appl Sci 5: 355-368.
  • LALLANA VH. 1989. Malezas del arroz en Sudamérica. Revista Fac Agron 10: 87-94.
  • LALLANA VH. 2005. Lista de malezas del cultivo de arroz en Entre Ríos, Argentina. Ecosistemas 14: 162-167.
  • LANGELAND KA. 2014. Natural Area Weeds : Distinguishing Native and Non-Native “Boston Ferns” and “Sword Ferns.” University of Florida IFAS 1-6.
  • LELLINGER DB. 1989. The ferns and fern-allies of Costa Rica, Panama, and the Chocó (Part 1: Psilotaceae through Dicksoniaceae). Pteridologia 2: 1-364.
  • LELLINGER DB. 1997. Pteris deflexa and its allies. Am Fern J 87: 66-70.
  • LELLINGER DB. 2003. Nomenclatural and taxonomic notes on the pteridophytes of Costa Rica, Panama, and Colombia, III. Am Fern J 93: 146-151.
  • LI X, FANG YH, YANG J, BAI SN & RAO GY. 2013. Overview of the morphology, anatomy, and ontogeny of Adiantum capillus-veneris: An experimental system to study the development of ferns. J Syst Evol 51: 499-510.
  • LORENZI H. 2008. Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas, 4ta ed., Nova Odessa: Instituto Plantarum de Estudos da Flora LTDA, 425 p.
  • LOVE A, LOVE D & PICHI SERMOLLI REG. 1977. Cytotaxonomical atlas of the Pteridophyta, Vaduz: J. Cramer, 398p.
  • LOYAL DS & GREWAL RK. 1966. Cytological Study on Sterility in Salvinia auriculata Aublet with a Bearing on Its Reproductive Mechanism. Cytologia 31: 330-338.
  • LU J, CHENG X, WU D & LI D. 2006. Chromosome study of the fern genus Cyrtomium (Dryopteridaceae). Bot J Lin Soc 150: 221-228.
  • LUQUE GM, BELLARD C, BERTELSMEIER C, BONNAUD E, GENOVESI P, SIMBERLOFF D & COURCHAMP F. 2014. The 100th of the world’s worst invasive alien species. Biol Invas 16: 981-985.
  • MARIN R, LLOBERAS M, VIGNALE D & ODRIOZOLA E. 2004. Toxicidad natural del Pteridium aquilinum (helecho) en bovinos y su importancia en humanos. Veterinaria Argentina 206: 413-420.
  • MARÍN RE. 2011. Aportes al conocimiento de las plantas tóxicas para el ganado en la Provincia de Jujuy. San Salvador de Jujuy: Gobierno de la Provincia de Jujuy, 60 p.
  • MARRERO FAZ E & CALDERÓN TOBAR Á. 2012. Plantas tóxicas e inocuidad alimentaria: Hematuria Enzoótica Bovina por Pteridium sp. un problema relevante de salud. Rev Salud Anim 34: 137-143.
  • MARRS RH, LE DUC MG, MITCHELLTT RJ, GODDARDT D, PATERSON S & PAKERMAN RJ. 2000. The ecology of Bracken: its role in succession and implications for control. Ann Bot 85: 3-15.
  • MARTÍNEZ OG. 2010. Gametófitos y esporófitos jóvenes de cuatro especies de helechos del género Pteris (Pteridaceae) naturalizadas en América. Rev Biol Trop 58: 89-102.
  • MARTÍNEZ OG. 2011. Morfología y distribución del complejo Pteris cretica L. (Pteridaceae) para el continente americano. Candollea 66: 159-180.
  • MARTÍNEZ OG & MORBELLI MA. 2009. The spores of Pteris cretica complex (Pteridaceae- Pteridophyta) in America. Grana 48: 193-204.
  • MARTÍNEZ OG, PRADA C, TANCO ME & BONOMO MC. 2013. Sexual phase of three species of Pteris (Pteridaceae). Trop Pl Biol 6: 46-52.
  • MARTÍNEZ OG & PRADO J. 2016. Pteris. In: Ponce MM & Arana MD (Eds), Flora Vascular de la República Argentina, vol 2, Licofitas. Helechos. Gymnospermae. Zuloaga FO & Belgrano MJ (Eds), San Isidro: Estudio SIGMA SRL, Instituto de Botánica Darwinion - CONICET, p. 321-329.
  • MARZOCCA A. 1986. Manual de malezas, 3ra ed., Buenos Aires: Editorial Hemisferio Sur SA, 564 p.
  • MATSUMOTO S. 2003. Cytotaxonomic study of Cyrtomium falcatum complex (Dryopteridaceae) in Japanese Archipelago (Symposium open to the public - Chromosome studies in connection with phylogeny and taxonomy). Chromosome Sci 7: 108.
  • MATTHEI J, MARTICORENA C, QUEZADA M & RODRÍGUEZ R. 1995. Manual de las malezas que crecen en Chile. Santiago de Chile: Alfabeta impresores, 545 p.
  • MCCONNACHIE AJ, DE WIT MP, HILL MP & BYRNE MJ. 2003. ‘Economic evaluation of the successful biological control of Azolla filiculoides in South Africa’. Biol Control 28: 25-32.
  • MEZA TORRES EI, DE LA SOTA ER & FERRUCCI MS. 2013a. Biogeographic analysis and key to the genera of ferns and lycophytes of Mburucuyá National Park, Corrientes, Argentina. Revista Chilena Hist Nat 86: 49-61.
  • MEZA TORRES EI, DE LA SOTA ER & FERRUCCI MS. 2013b. Sinopsis de los Helechos y Licofitos del Parque Nacional Mburucuyá (Corrientes, Argentina). Claves de especies. Bol Soc Arg Bot 48: 121-136.
  • MICHELOUD JF, COLQUE-CARO LA, MARTINEZ OG, GIMENO EJ, DA SILVA FREITAS RIVERO D & SOTO BLANCO B. 2017. Bovine enzootic haematuria from consumption of Pteris deflexa and Pteris plumula in northwestern Argentina. Toxicon 134: 26-29.
  • MITCHELL DS. 1972. The Kariba weed: Salvinia molesta. Brit Fern Gaz 10: 251-252.
  • MITCHELL DS & THOMAS PA. 1972. Ecology of water weeds in the neotropics, Paris: United Nations Educational, Scientific and Cultural Organization, 50 p.
  • MOORE DM. 1983. Flora of Tierra del Fuego. Missouri: Anthony Nelson and Missouri Botanical Garden, 396 pp.
  • MORAJKAR S, SAJEEV S & HEGDE S. 2015. Ferns: a thriving group of urban. Bionature 35: 13-21.
  • MORAN RC. 1992. The history of the molesting Salvinia. Fiddlehead forum 19: 26-28.
  • MORAN RC & RIBA R. 1995. Flora Mesoamericana, Vol. 1, Psilotaceae a Salviniaceae, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, 470 p.
  • MORAN RC & SMITH AR. 1999. Salvinia adnata Desv. versus S. molesta DS Mitch. Amer Fern J 89: 268-269.
  • MORBELLI MA & MICHELENA IG. 1989. Palynological analysis of Cheilanthes species (Adiantaceae-Pteridophyta) of Northwestern Argentina. Grana Palynol 28: 295-304.
  • MORERO R. 2006. Pteridophyta. In: Barboza GE et al. (Eds), Flora medicinal de la provincia de Córdoba (Argentina), Córdoba: Museo Botánico, p. 39-99.
  • MORERO R, GIORGIS MA, ARANA MD & BARBOZA GEC. 2014. Helechos y Licofitas del centro de Argentina: cultivo y especies ornamentales, 1a ed., Córdoba: editorial, 85 p.
  • MORTIMER AM. 1990. The biology of weeds. In: HANCE RJ & HOLLY K (Eds), Weed control handbook: Principles, Oxford: Blackwell Scientific Publications, p. 1-42.
  • MORTON CV. 1957. Observations on cultivated ferns. I. Am Fern J 47: 7-14.
  • MURAKAMI K, MATSUI R & MORIMOTO Y. 2007. Northward invasion and range expansion of the invasive fern Thelypteris dentata (Forssk.) St. John into the urban matrix of three Prefectures in Kinki District, Japan. Am Fern J 97: 186-198. Available at: http://www.jstor.org/stable/27564213.
  • MURAKAMI N, NISHIYAMA T, SATOH H. & SUZUKI, T. 1997. Marked spatial genetic structure in three populations of a weedy fern, Pteris multifida Poir., and reestimation of its selfing rate. Pl Spec Biol 12: 97-106.
  • NAVARRETE HBL, GONZÁLEZ J, AVILÉS D, SALAZAR J, MELLADO F, ALBAN J, & ØLLGAARD B. 2006. Helechos. In: Moraes RM et al. (Eds), Botánica Económica de los Andes Centrales, La Paz: Universidad Mayor de San Andrés, p. 885-411.
  • OLIVER JD. 1993. A review of the biology of giant Salvinia (Salvinia molesta Mitchell). J Aquatic Pl Managem 31: 227-231.
  • OLIVEIRA LM, SUCHISMITA D, GRESS J, RATHINASABAPATHI B, CHEN Y & MA LQ. 2017. Arsenic uptake by lettuce from As-contaminated soil remediated with Pteris vittata and organic amendment. Chemosphere 176: 249-254.
  • OLIVEROS-BASTIDAS AJ & ALONSO-AMELOT ME. 2010. Cyanogenic polimorphysm in brackens, Pteridium arachnoideum and P. caudatum, from the northern Andes. Quim Nova 33: 1520-1524.
  • ORCHARD AE. 1998. Flora of Australia Volume 48, Ferns, Gymnosperms and Allied Groups. Melbourne: ABRS/CSIRO, 787 p.
  • PARYS KA & JOHNSON SJ. 2013. Biological Control of Common Salvinia (Salvinia minima) in Louisiana using Cyrtobagous salviniae (Coleoptera: Curculionidae). Fla Entomol J 96: 10-18.
  • PENSIERO JF, GUTIERREZ HF, LUCHETTI AM, EXNER E, KERN V, BRNICH E, OAKLEY L, PRADO D & LEWIS JP. 2005. Flora Vascular de la provincia de Santa Fe, 1a ed., Santa Fe: Universidad Nacional del Litoral, 403 p.
  • PIÑEIRO MR & MORBELLI MA. 2012. Morfología y ultraestructura de las esporas de Nephrolepis cordifolia (Davalliaceae) del Noroeste de Argentina. Bol Soc Arg Bot 47: 71-75.
  • PONCE MM. 1987. Revisión de las Thelypteridaceae (Pteridophyta) Argentinas. Darwiniana 28: 317-390.
  • PONCE MM. 1994. Pteridofitos. In: Kiesling R (Ed), Flora de San Juan, vol I, Pteridofitas, Gimnospermas y Dicotiledóneas (Salicáceas a Leguminosas), Buenos Aires: Estudio SIGMA SRL, 348 p.
  • PONCE MM. 2016. Pteridaceae (Adiantopsis-Cheilanthes) and Thelypteridaceae. In: Ponce MM & Arana MD (Eds), Flora Vascular de la República Argentina, Vol. 2, Licofitas. Helechos. Gymnospermae. Zuloaga FO & Belgrano MJ (Eds), San Isidro: Estudio SIGMA SRL, Instituto de Botánica Darwinion - CONICET, p. 281-355.
  • PONCE MM, MEHLTRETER K & DE LA SOTA ER. 2002. Análisis biogeográfico de la diversidad pteridofítica en Argentina y Chile continental. Revista Chilena Hist Nat 75: 703-717.
  • PONCE MM, PRADO J & GIUDICE G. 2008a. Pteridaceae. In: Zuloaga FO & Belgrano M (Eds), Catálogo de Plantas Vasculares del Cono Sur: Pteridophyta, Gymnospermae y Monocotyledoneae, Vol. 1, Missouri: Missouri Botanical Garden, p. 115-136.
  • PONCE MM, PRADO J & DE LA SOTA ER. 2008b. Dennstaedtiaceae. In: Zuloaga FO & Belgrano MJ (Eds), Catálogo de Plantas Vasculares del Cono Sur: Pteridophyta, Gymnospermae y Monocotyledoneae, Vol. 1, Missouri: Missouri Botanical Garden, p. 26-31.
  • PONCE MM & DE LA SOTA ER. 2008. Davalliaceae. In: Zuloaga FO & Belgrano MJ (Eds), Catálogo de Plantas Vasculares del Cono Sur: Pteridophyta, Gymnospermae y Monocotyledoneae, vol 1, Missouri: Missouri Botanical Garden, p. 25-26.
  • PONCE MM & SALINO A. 2008. Thelypteridaceae. In: Zuloaga FO & Belgrano MJ (Eds), Catálogo de Plantas Vasculares del Cono Sur: Pteridophyta, Gymnospermae y Monocotyledoneae, Vol. 1, Missouri: Missouri Botanical Garden, p. 145-159.
  • PONCE MM & ARANA MD. 2016. Flora vascular de la República Argentina, Vol. 2, Licofitas. Helechos. Gymnospermae. Zuloaga FO & Belgrano MJ (Eds), San Isidro: Estudio SIGMA SRL, Instituto de Botánica Darwinion - CONICET.
  • PPG I. 2016. A community-derived classification for extant lycophytes and ferns. J Syst Evol 54: 563-603.
  • PRADO J & WINDISCH PG. 2000. The genus Pteris L.(Pteridaceae) in Brazil. Bol Inst Bot 13: 103-199.
  • PROCTOR GR. 1989. Ferns of Puerto Rico and the Virgin Islands. Mem New York Bot Gard 53: 155-165.
  • PYSEK P. 1995. On the terminology used in plant invasion studies. In: Pysek P et al. (Eds), Plant Invasions: General aspects and special problems, Amsterdam: Academic Publishing, p. 71-81.
  • RANDALL JM. 1996. Weed control for the preservation of biological diversity. Weed Technol 10: 370-383.
  • RAMOS GIACOSA JP, DE LA SOTA ER & GIUDICE GE. 2004. Actualización florística y análisis numérico de la biodiversidad de las Pteridofitas de la Provincia de Buenos Aires. Bol Soc Arg Bot: 125-130.
  • RANDALL RP. 2017. A Global compendium of weeds, 3rd ed., Perth: Randall RP, p. 2161-2163.
  • RECOUSO R, STOCCO DOS SANTOS R, FREITAS R, SANTOS R, FREITAS A, BRUNNER O, BEÇAK W & LINDSEY C. 2003. Clastogenic effect of bracken fern (Pteridium aquilinum v. arachnoideum) diet in peripheral lymphocytes of human consumers: preliminary data. Vet Comp Oncol 1: 22-29.
  • REJMÁNEK M. 1995. What makes a species invasive? In: Pysek P ET AL. (Eds), Plant Invasions: General aspects and special problems, Amsterdam: Academic Publishing, p. 3-13.
  • RIET-CORREA F, MEDEIROS RMT, PFISTER JA & MENDONÇA FS. 2017. Toxic plants affecting the nervous system of ruminants and horses in Brazil. Pesqui Vet Bras 37: 1357-1368.
  • ROBINSON RC. 2009. Invasive and problem ferns: a European perspective. Urb Ecol 4: 8390.
  • RODRIGUEZ RR. 1995. Pteridophyta. In: Marticorena C & Rodríguez R (Eds), Flora de Chile, Vol. 1, Pteridophyta - Gymnospermae. Concepción: Ediciones Universidad de Concepción, p. 119-309.
  • ROOS K, ROLLENBECK R, PETERS T, JÖRG B & BECK E. 2010. Growth of tropical Bracken (Pteridium arachnoideum): response to weather variations and burning. Inv Plant Sci Mana 3: 402-411.
  • ROOS K, RÖDEL HG & BECK E. 2011. Short‐and long‐term effects of weed control on pastures infested with Pteridium arachnoideum and an attempt to regenerate abandoned pastures in South Ecuador. Weed research 51(2): 165-176.
  • ROSATO V, CORREA MV, GARCÍA R & LOFEUDO R. 2015. Plantas Vasculares en edificios y casas patrimoniales de la Ciudad de La Plata, Argentina. In: IV Congreso Iberoamericano y XII Jornada de Técnicas de Reparación y Conservación del Patrimonio, La Plata, p. 220-227.
  • RYMER L. 1976. The history and ethnobotany of bracken. Bot J Lin Soc 73: 151-176.
  • Sabattini RA, Dorsch AF & Lallana VH (Eds), Estudio comparativo de las comunidades vegetales de los arrozales y de los ambientes acuáticos y palustres de Entre Ríos (Argentina). Rev Fac Agr Univ Nac La Plata 104: 129-137.
  • SAGÁSTEGUI A & LEIVA S. 1993. Flora invasora de los cultivos del Perú, Trujillo: Libertad. EIRL, 539 p.
  • SALAS-PASCUAL M & VEGA GQ. 2016. Salvinia molesta Ds Mitch (Salviniaceae), nueva cita para Canarias y España. Bot Macaronés 29: 73-81.
  • SALINO A & PONCE MM. 2008. In: Zuloaga FO & Belgrano MJ (Eds), Catálogo de Plantas Vasculares del Cono Sur: Pteridophyta, Gymnospermae y Monocotyledoneae, Vol. 1, Missouri: Missouri Botanical Garden, p. 33-49.
  • SANTOS-GUERRA A, ANTONIO M, MEDEROS P, COELLO RM & OJEDA E. 2013. Establecimiento de plantas introducidas en la flora vascular Silvestre Canaria. I. (Helechos, Gimnospermas y Monocotiledóneas). Acta Bot Malac 38: 176-182.
  • SCHÖNFELDER A & SCHÖNFELDER P. 2001. Der neue Kosmos Heilpflanzenführer, 3rd ed., Stuttgart: Franckh-Kosmos Verlag, 448 p.
  • SCHULZ AG. 1976. Nombres comunes de las plantas, 1st ed., Resistencia: Moro Hnos, 233 p.
  • SCHWARTSBURD PB, NAVARRETE H, SMITH AR & KESSLER M. 2017. Prodromus of a fern flora for Bolivia. XXVI. Dennstaedtiaceae. Phytotaxa 332: 251-268.
  • SCHWARTSBURD PB, YAÑEZ A & PRADO J. 2018. Formal recognition of six subordinate taxa within the South American bracken fern, Pteridium esculentum (P. esculentum subsp. arachnoideum sl - Dennstaedtiaceae), based on morphology and geography. Phytotaxa 333: 22-40.
  • SESSA EB, ZIMMER EA & GIVNISH TJ. 2012a. Unraveling reticulate evolution in North American Dryopteris (Dryopteridaceae). BMC Evol Biol 12: 104.
  • SHARPE JM, MEHLTRETER K & WALKER LR. 2010. Ecological importance of ferns. In: Mehltreter K et al. (Eds), Fern Ecology, New York: Cambridge University Press, p. 1-17.
  • SHIEH WC. 1966. A synopsis of the fern genus Pteris in Japan, Ryukyu, and Taiwan. Bot Mag 79: 283-292.
  • SILVA MATOS DM & BELINATO TA. 2010. Interference of Pteridium arachnoideum (Kaulf.) Maxon. ( Dennstaedtiaceae) on the establishment of rainforest trees. Bra J Biol 70: 311-316.
  • SILVA MATOS DM, XAVIER RO, TIBEIRO FCS & MARRS RH. 2014. A comparative study of resource allocation in Pteridium in different Brazilian ecosystems and its relationship with European studies. Bra J Biol 74: 156-165.
  • SIMAN SE, POVEY AC, WARD TH, MARGISON GP & SHEFFIELD E. 2000. Fern spore extracts can damage DNA. Br J Cancer 83: 69-73.
  • SKALSKI J, DITTRICH JR, KARACH GM, GOMES DE CARVALHO JR, TONIN VR & DE CARVALHO PATRICIO AM. 2016. Ingestão voluntária de Marsilea ancylopoda por equinos em área de pastagem. Revista Acadêmica: Ciência Animal 14: 13-18.
  • SMITH AR. 1971. Systematics of the neotropical species of Thelypteris section Cyclosorus. Univ Calif Publ Bot 59: 1-143.
  • SMITH AR & KESSLER M. 2017. Prodromus of a fern flora for Bolivia. XXX. Thelypteridaceae. Phytotaxa 331: 1-34.
  • SMITH AR & KESSLER M. 2018. Prodromus of a fern flora for Bolivia. XXXVII. Nephrolepidaceae. Phytotaxa 334: 135-140.
  • SMITH AR, PRYER KM, SCHUETTPELZ E, KORALL P, SCHNEIDER H & WOLF PG 2006 A classification for extant ferns. Taxon 55(3): 705-731.
  • STROTHER JL & SMITH AR. 1970. Chorology, collection dates, and taxonomic responsibility. Taxon 19: 871–874.
  • TEJERO-DÍEZ JD & TORRES-DÍAZ AN. 2012. Phymatosorus grossus (Polypodiaceae) en México y comentarios sobre otros pteridobiontes no-nativos. Acta Bot Mex 98: 111-124.
  • THIERS B. 2018. New York Botanical Garden’s Virtual Herbarium. Index Herbariorum: A global directory of public herbaria and associated staff. Available at: http://sweetgum.nybg.org/science/ih/
    » http://sweetgum.nybg.org/science/ih/
  • THOMSON JA. 2000. Morphological and genomic diversity in the genus Pteridium (Dennstaedtiaceae). An Bot 85: 77-99.
  • THOMSON JA. 2012. Taxonomic status of diploid southern hemisphere brackens (Pteridium: Dennstaedtiaceae). Telopea 14: 43-48.
  • TOURCHI-ROUDSARI M. 2014. Multiple effects of bracken fern under in vivo and in vitro conditions. Asian Pac J Cancer Prev 15: 7505-7513.
  • TROIANI H and STEIBEL P. 2008. Reconocimiento de malezas: Región subhúmeda y semiárida pampeana. Santa Rosa: Universidad Nacional de La Pampa, Colegio de Ingenieros Agrónomos de La Pampa.
  • TRYON R. 1962. Taxonomic fern notes. II. Pityrogramma (including Trismeria) and Anogramma. Contr Gray Herb Harvard Univ 189: 52-76.
  • TRYON RM. 1986. The biogeography of species with special reference to ferns. Bot Rev 52: 117-156.
  • TRYON RM & STOLZE RG. 1989. Pteridophyta of Peru, Part II, 13, Pteridaceae-15. Dennstaedtiaceae. Fieldiana Bot NS 22: 1-128.
  • TRYON RM & STOLZE RG. 1991. Pteridophyta of Peru, Part IV, 17, Dryopteridaceae. Fieldiana Bot NS 27: 1-175.
  • TRYON RM & STOLZE RG. 1992. Pteridophyta of Peru, Part III, 16, Thelypteridaceae. Field Bot 29: 1-80.
  • TRYON RM & STOLZE RG. 1993. Pteridophyta of Peru, Part V, 18, Aspleniaceae-21. Polypodiaceae. Fieldiana Bot NS 34: 1-190.
  • TRYON RM & STOLZE RG. 1994. Pteridophyta of Peru, Part VI, 22, Marsileaceae-28. Marsileaceae. Fieldiana Bot NS 34: 1-123.
  • URE GA. 2014. An investigation into the habitat requirements, invasiveness and potential extent of male fern, Dryopteris filix-mas (L.) Schott, in Canterbury, New Zealand. Thesis. Masters in Forestry Science, School of Forestry, University of Canterbury. 133 p.
  • VARESCHI V. 1969. Helechos, Flora de Venezuela, 1-2. Caracas: Instituto Botánico, 1833 p.
  • VASCO A, MORAN RC & AMBROSE BA. 2013. The evolution, morphology, and development of fern leaves. Front Plant Sci 4: 345.
  • VILLAGRÁN C, ROMO M & CASTRO V. 2003. Etnobotánica del sur de los andes de la primera región de Chile: un enlace entre las culturas altiplánicas y las de quebradas altas del LOA superior. Chungará, Rev Antrop Chil 35: 73-124.
  • WALKER, TG. 1962. Cytology and evolution in the fern genus Pteris L. Evolution 16: 27-43.
  • WATANO Y. 1988. High levels of genetic divergence among populations in a weedy fern, Pteris multifida Poir. Pl Spec Biol 3: 109-115.
  • WATT AS. 1940. Contributions to the ecology of Bracken (Pteridium aquilinum). I. The Rhizome. New Phytol 39: 401-422.
  • WIJESUNDARA DSA. 2017. Can native plants become invasive? Ceylon J Sci 46: 1.
  • WILCOX MD & ROGAN DB. 1999. The Mural Flora of Auckland. J. Auckland Bot Soc 54: 35-46.
  • XAVIER RO, ALDAY JG, MARRS RH & MATOS DMS. 2016. The role of Pteridium arachnoideum (Kaulf) on the seed bank of the endangered Brazilian Cerrado. Bra J Biol 76: 256-267.
  • ZAMBRANO J. 1974. Las Malezas Acuáticas. Rev Fac Agr 2: 87-94.
  • ZEGARRA R. 1996. Malezas no halófitas del extremo sur del Perú. Ciencia & Desarrollo 4: 61-89.
  • ZULOAGA FO & BELGRANO M. 2008. Catálogo de Plantas Vasculares del Cono Sur: Pteridophyta, Gymnospermae y Monocotyledoneae, Vol. 1, Missouri: Missouri Botanical Garden, p. 1-161.

Publication Dates

  • Publication in this collection
    22 Apr 2020
  • Date of issue
    2020

History

  • Received
    19 Sept 2018
  • Accepted
    11 Mar 2019
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br