Acessibilidade / Reportar erro

Paleoparasitological analysis of a coprolite assigned to a carnivoran mammal from the Upper Pleistocene Touro Passo Formation, Rio Grande do Sul, Brazil

Abstract

A paleoparasitological analysis was carried out on a large coprolite assigned to a carnivoran mammal, recovered from the Municipality of Uruguaiana, in the western region of the State of Rio Grande do Sul, Brazil, where the Upper Pleistocene Touro Passo Formation crops out. For this, an individual sample was extracted from the specimen using an electric drill, dissociated with 10% hydrochloric acid solution, washed with distilled water, and sifted through a 500 mesh Tyler sieve. After laboratory processing, the sediment retained on the sieve was mixed with glycerin and examined by optical microscopy, which revealed the presence of 14 protozoan oocysts and three nematode eggs. The morphological characteristics of the oocysts (i.e., spherical shape, thick-walled, internal zygote apparently at the beginning of sporulation, as well as their size) and of the eggs (i.e., ovoidal shape, rounded ends, smooth surface, thin-shelled, embryo in their interior, along with their morphometry) suggest that these specimens belong respectively to the orders Eucoccidiorida and Strongylida (Family Ancylostomatidae) represented by several parasitic species of the alimentary tract of modern carnivore. This is the first record of paleoparasites discovered in a vertebrate host from the Touro Passo Formation.

Key words
Ancylostomatidae; Eucoccidiorida; Ichnology; Lujanian; Paleoparasitology

INTRODUCTION

The Upper Pleistocene Touro Passo Formation occurs in the western region of the State of Rio Grande do Sul, Southern Brazil and has an expressive fossil record, originated probably from fluvial deposits and alluvial sedimentation occurred in the last 42,000 years (Lujanian) (Kerber & Oliveira 2008aKERBER L & OLIVEIRA EV. 2008a. Fósseis de vertebrados da Formação Touro Passo (Pleistoceno superior), Rio Grande do Sul, Brasil: atualização dos dados e novas contribuições. Gaea 4: 49-64.). The main fossils, discovered since the early 1970s, include several vertebrates (Bombin 1976BOMBIN M. 1976. Modelo paleoecológico evolutivo para o Neo-Quaternário da região da Campanha-Oeste do Rio Grande do Sul (Brasil). A Formação Touro Passo, seu conteúdo fossilífero e a pedogênese pós-deposicional. Comun Mus Cienc Tecnol Pucrs 15: 1-90., Oliveira 1996OLIVEIRA EV. 1996. Mamíferos Xenarthra (Edentata) do Quaternário do Estado do Rio Grande do Sul, Brasil. Ameghiniana 31: 65-75., Martins & Oliveira 2003MARTINS CM & OLIVEIRA EV. 2003. Novo material craniano de Tayassu Fischer, 1814, da Formação Touro Passo (Pleistoceno superior), Rio Grande do Sul. Biodivers Pampeana 1: 24-34., Oliveira et al. 2003OLIVEIRA EV, FACCIN JRM & PEREIRA JC. 2003. O pampatério Holmesina (Mammalia Pampatheriidae) no Quaternário do Rio Grande do Sul. Ameghiniana 40: 64., Hsiou 2007HSIOU AS. 2007. A new Teiidae species (Squamata, Scincomorpha) from late Pleistocene of Rio Grande do Sul State, Brasil. Rev Bras Paleontolog 10: 181-193., Scherer et al. 2007SCHERER CS, FERIGOLO J, RIBEIRO AM & CARTELE CC. 2007. Contribution to the knowledge of Hemiauchenia paradoxa (Artiodactyla, Camelidae) from de Pleistocene of Southern Brazil. Rev Bras Paleontolog 10: 35-52., Kerber & Oliveira 2008aKERBER L & OLIVEIRA EV. 2008a. Fósseis de vertebrados da Formação Touro Passo (Pleistoceno superior), Rio Grande do Sul, Brasil: atualização dos dados e novas contribuições. Gaea 4: 49-64., bKERBER L & OLIVEIRA EV. 2008b. Sobre a presença de Tapirus (Tapiridae, Perissodactyla) na Formação Touro Passo (Pleistoceno superior), Oeste do Rio Grande do Sul. Biodivers Pampeana 6: 9-14., Gasparini et al. 2009GASPARINI GM, KERBER L & OLIVEIRA EV. 2009. Catagonus stenocephalus (Lund in Reinhart, 1880) (Mammalia, Tayassuidae) in the Touro Passo Formation (late Pleistocene), Rio Grande do Sul, Brazil. Taxonomic and palaeoenvironmental comments. N Jb Geol Paläont Abh. 254: 261-273., Kerber et al. 2010KERBER L, RIBEIRO AM & OLIVEIRA EV. 2010. The first record of Galea Meyen, 1832 (Rodentia, Hystricognathi, Caviidae) in the late Pleistocene of Southern Brazil and its palaeobiogeographic implications. Alcheringa 29: 1-13., 2014KERBER L, PITANA VG, RIBEIRO AM, HSIOU AS & OLIVEIRA EV. 2014. Late Pleistocene vertebrates from Touro Passo Creek (Touro Passo Formation), Southern Brazil: a review. Rev Mex Cienc Geol 31: 248-259.), mollusks (Bombin 1976BOMBIN M. 1976. Modelo paleoecológico evolutivo para o Neo-Quaternário da região da Campanha-Oeste do Rio Grande do Sul (Brasil). A Formação Touro Passo, seu conteúdo fossilífero e a pedogênese pós-deposicional. Comun Mus Cienc Tecnol Pucrs 15: 1-90., Oliveira & Milder 1990OLIVEIRA EV & MILDER SES. 1990. Considerações preliminares sobre uma nova fauna de moluscos fósseis da Formação Touro Passo (Pleistoceno superior - Holoceno inferior). Observações estratigráficas e paleoecológicas. Veritas 35: 121-129., Kotzian & Simões 2006KOTZIAN CB & SIMÕES MG. 2006. Taphonomy of recent fresh water molluscan death assemblages, Touro Passo Stream, Southern Brazil. Rev Bras Paleontolog 9: 243-260.) and phytoliths (Bombin 1976BOMBIN M. 1976. Modelo paleoecológico evolutivo para o Neo-Quaternário da região da Campanha-Oeste do Rio Grande do Sul (Brasil). A Formação Touro Passo, seu conteúdo fossilífero e a pedogênese pós-deposicional. Comun Mus Cienc Tecnol Pucrs 15: 1-90.).

The term coprolite, denotes petrified feces, droppings or excrement and is used in paleontological and archaeological studies (Ferreira et al. 2008FERREIRA LF, REINHARD K & ARAÚJO A. 2008. Paleoparasitologia, 1a ed., Rio de Janeiro: Editora Fiocruz, 128 p., Hunt et al. 2012HUNT AP, LUCAS SG, MILÀN J & SPIELMANN JA. 2012. Vertebrate coprolite studies: status and prospectus. N M Mus Nat Hist Sci Bull 57: 5-24.). Coprolites provide interesting paleoecological evidences, such as the diet and physiology of the producer, the presence of organic inclusions, intestinal microbiota and endoparasitic fauna, which can not be accessed through body remains (De Baets & Littlewood 2015DE BAETS K & LITTLEWOOD DTJ. 2015. The importance of fossils in understanding the evolution of parasites and their vectors. In: De Baets K & Littlewood DTJ (Eds), Fossil Parasites, Amsterdam: Elsevier, Amsterdam, Netherlands, p. 1-51., Bajdek et al. 2016BAJDEK P, QVARNSTRÖM M, OWOCKI K, SULEJ T, SENNIKOV AG, GOLUBEV VK & NIEDźWIEDZKI G. 2016. Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia. Lethaia 49: 455-477., Vajda et al. 2016VAJDA V, FERNÁNDEZ MDP, VILLANUEVA-AMADOZ U, LEHSTEN V & ALCALá L. 2016. Dietary and environmental implications of Early Cretaceous predatory dinosaur coprolites from Teruel, Spain. Palaeogeogr Palaeoclimatol Palaeoecol 464: 134-142., Dentzien-Dias et al. 2018DENTZIEN-DIAS P, CARRILLO-BRICEÑO JD, FRANCISCHINI H & SÁNCHEZ R. 2018. Paleoecological and taphonomical aspects of the late Miocene vertebrate coprolites (Urumaco Formation) of Venezuela. Palaeogeogr Palaeoclimatol Palaeoecol 490: 590-603., De Baets et al. 2020DE BAETS K, DENTZIEN-DIAS P, HARRISON GWM, LITTLEWOOD DTJ & PARRY LA. 2020. Fossil constraints on the timescale of parasitic helminth evolution. EcoEvoRxiv Preprints: 1-46. https://doi.org/10.32942/osf.io/6jakv.
https://doi.org/10.32942/osf.io/6jakv...
). Additionally depending on the type of paleoparasite found in a coprolite, it is also possible to infer about their probable hosts and pathogenic effects on them, as well as food chains, paleoenvironmental and paleoclimatic conditions of the ecosystems in the geological moment which these organisms were fossilized, using the necessary requirements for survival and maintenance of the biological cycles of the species of similar modern parasites as proxies.

Despite advances in paleoparasitological analysis of human coprolites, including the current possibility of DNA extraction from parasites, especially by some South American parasitologists since the 20th century (Ferreira et al. 2011FERREIRA LF, REINHARD K & ARAÚJO A. 2011. Fundamentos da Paleoparasitologia, 1a ed., Rio de Janeiro: Editora Fiocruz, 482 p.), there are few contributions on this topic regarding animal coprolites worldwide. Nevertheless these studies have increased in recent years and have already been able to reveal the presence of parasitic protozoans and helminths in coprolites of sharks (Dentzien-Dias et al. 2013DENTZIEN-DIAS PC, POINAR G, FIGUEIREDO AEQ, PACHECO ACL, HORN BLD & SCHULTZ CL. 2013. Tapeworm eggs in a 270 million-year-old shark coprolite. PLoS One 8: 8-11.), dinosaurs (Poinar & Boucot 2006POINAR G & BOUCOT AJ. 2006. Evidence of intestinal parasite of dinosaurs. Parasitology 133: 245-249.), crocodyliforms (Cardia et al. 2018CARDIA DFF, BERTINI RJ, CAMOSSI LG & LETIZIO LA. 2018. The first record of Ascaridoidea eggs discovered in Crocodyliformes hosts from the Upper Cretaceous of Brazil. Rev Bras Paleontolog 21(3): 238-244., 2019aCARDIA DFF, BERTINI RJ, CAMOSSI LG & LETIZIO LA. 2019a. First record of Acanthocephala parasites eggs in coprolites preliminary assigned to Crocodyliformes from the Adamantina Formation (Bauru Group, Upper Cretaceous), São Paulo, Brazil. An Acad Bras Cienc 91: e20170848., bCARDIA DFF, BERTINI RJ, CAMOSSI LG & LETIZIO LA. 2019b. Two new species of ascaridoid nematodes in Brazilian Crocodylomorpha from the Upper Cretaceous. Parasitol Int 72: 101947., Dentzien-Dias et al. 2018DENTZIEN-DIAS P, CARRILLO-BRICEÑO JD, FRANCISCHINI H & SÁNCHEZ R. 2018. Paleoecological and taphonomical aspects of the late Miocene vertebrate coprolites (Urumaco Formation) of Venezuela. Palaeogeogr Palaeoclimatol Palaeoecol 490: 590-603.), dinornithiform birds (Wood et al. 2013WOOD JR, WILMSHURST JM, RAWLENCE NJ, BONNER KI, WORTHY TH, KINSELLA JM & COOPER A. 2013. A megafauna’s microfauna: gastrointestinal parasites of New Zealand’s extinct Moa (Aves : Dinornithiformes). PLoS One 8: 23-24.), non-mammalian therapsids (Hugot et al. 2014HUGOT JP, GARDNER SL, BORBA NUNES VH, ARAÚJO P, LELES D, STOCK DA-ROSA AA, DUTRA JMF, FERREIRA LF & ARAÚJO A. 2014. Discovery of a 240 million year old nematode parasite egg in a cynodont coprolite sheds light on the early origin of pin worms in vertebrates. Parasit Vectors 7: 1-8., Silva et al. 2014SILVA PA, BORBA NUNES VH, DUTRA JMF, LELES D, STOCK DA-ROSA AA, FERREIRA LF & ARAÚJO A. 2014. New ascarid species in cynodont coprolite dated of 240 million years. An Acad Bras Cienc 86: 265-269., Bajdek et al. 2016BAJDEK P, QVARNSTRÖM M, OWOCKI K, SULEJ T, SENNIKOV AG, GOLUBEV VK & NIEDźWIEDZKI G. 2016. Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia. Lethaia 49: 455-477., Francischini et al. 2018FRANCISCHINI H, DENTZIEN-DIAS P & SCHULTZ CL. 2018. A fresh look at ancient dungs: the Brazilian Triassic coprolites revisited. Lethaia 51: 389-405.), and different mammals, such as rodents (Sardella & Fugassa 2009aSARDELLA NH & FUGASSA MH. 2009a. Parasites in rodent coprolites from the historical archaeological site Alero Mazquiarán, Chubut Province, Argentina. Mem Inst Oswaldo Cruz 104: 37-42., bSARDELLA NH & FUGASSA MH. 2009b. Paleoparasitological analysis of rodent coprolites in holocenic samples from Patagonia, Argentina. J Parasitol 95: 646-651., 2011SARDELLA NH & FUGASSA MH. 2011. Paleoparasitological finding of eggs of nematodes in rodent coprolites dated at the early Holocene from the archaeological site Cerro Casa de Piedra 7, Santa Cruz, Argentina. J Parasitol 97: 1184-1187., Sardella et al. 2010SARDELLA NH, FUGASSA MH, RINDEL DD & GOÑI RA. 2010. Paleoparasitological results for rodent coprolites from Santa Cruz Province, Argentina. Mem Inst Oswaldo Cruz 105: 33-40., Beltrame et al. 2012BELTRAME MO, SARDELLA NH, FUGASSA MH & BARBERENA R. 2012. Palaeoparasitological analysis of rodent coprolites from the Cueva Huenul 1 archaeological site in Patagonia (Argentina). Mem Inst Oswaldo Cruz 107: 604-608., 2013BELTRAME MO, FUGASSA MH, BARBERENA R, SAUTHIER DEU & SARDELLA NH. 2013. New record of anoplocephalid eggs (Cestoda: Anoplocephalidae) collected from rodent coprolites from archaeological and paleontological sites of Patagonia, Argentina. Parasitol Int 62: 431-434., 2014BELTRAME MO, FUGASSA MH, SAUTHIER DEU & SARDELLA NH. 2014. Paleoparasitological study of rodent coprolites from “Los Altares” paleontological site, Patagonia, Argentina. Quat Int 352: 59-63., 2018BELTRAME MO, BELLUSCIA & ANDRADE A. 2018. First paleoparasitological study of micromammal coprolites from the Holocene of the Somuncurá Plateau Protected Natural Area (Patagonia Argentina). Parasitol Int 67: 362-365., 2019BELTRAME MO, CAÑAL V, TIETZE E & TOMMASO D. 2019. Parasitological study of mountain vizcacha fecal pellets from Patagonia over the last 1200 years (‘Cueva Peligro’, Chubut Province, Argentina). Parasitology 146: 253-260., Souza et al. 2012SOUZA MV, SIANTO L, CHAME M, FERREIRA LF & ARAÚJO A. 2012. Syphacia sp. (Nematoda : Oxyuridae) in coprolites of Kerodon rupestris Wied, 1820 (Rodentia : Caviidae) from 5,300 years BP in Northeastern Brazil. Mem Inst Oswaldo Cruz 107: 539-542., Mowlavi et al. 2014MOWLAVI G, MAKKI M, MOBEDI I, ARAÚJO A, AALI A, STOLLNER T, REZAEIAN M, NICOLEBOENKE N, HASSANPOUR G & MASOUMIAN M. 2014. Paleoparasitological findings from rodent coprolites dated at 500 CE Sassanid Era in archeological site of Chehrabad (Douzlakh), salt mine Northwestern Iran. Iran J Parasitol 9: 188-193.), ruminants (Fugassa et al. 2008FUGASSA MH, SARDELLA NH, TAGLIORETTI V, REINHARD K & ARAÚJO A. 2008. Eimeriid oocysts from archaeological samples in Patagonia, Argentina. J Parasitol 94: 1418-1420., Sianto et al. 2012SIANTO L, DUARTE AN, CHAME M, MAGALHÃES J, SOUZA MV FERREIRA LF & ARAÚJO A. 2012. Trichuris sp. from 1,040 +/- 50-year-old Cervidae coprolites from the archaeological site Furna do Estrago, Pernambuco, Brazil. Mem Inst Oswaldo Cruz 107: 273-274., Taglioretti et al. 2015TAGLIORETTI V, FUGASSA MH & SARDELLA NH. 2015. Parasitic diversity found in coprolites of camelids during the Holocene. Parasitol Res 114: 2459-2464., 2017TAGLIORETTI V, FUGASSA MH, RINDEL D & SARDELLA NH. 2017. New parasitological findings for pre-hispanic camelids. Parasitology 144: 1763-1768., Beltrame et al. 2017aBELTRAME MO, TIETZE E, PÉREZ AE, BELLUSCI A & SARDELLA NH. 2017a. Ancient parasites from endemic deer from “CUEVA PARQUE DIANA” archeological site, Patagonia, Argentina. Parasitol Res 116: 1523-1531., bBELTRAME MO, TIETZE E, PÉREZ AE & SARDELLA NH. 2017b. First paleoparasitological record of digenean eggs from a native deer from Patagonia Argentina (Cueva Parque Diana archaeological site). Vet Parasitol 253: 83-85., Nunes et al. 2017NUNES VHB, ALCOVER JA, SILVA VL, CRUZ PB, MACHADO-SILVA JR & ARAÚJO A. 2017. Paleoparasitological analysis of the extinct Myotragus balearicus Bate 1909 (Artiodactyla, Caprinae) from Mallorca (Balearic Islands, Western Mediterranean). Parasitol Int 66: 7-11.) and carnivorans (Fugassa et al. 2006FUGASSA MH, DENEGRI GM, SARDELLA NH, ARAÚJO A, GUICHÓN RA, MARTINEZ PA, CIVALERO MT & ASCHERO C. 2006. Paleoparasitological records in a canid coprolite from Patagonia, Argentina. J Parasitol 92: 1110-1113., 2009FUGASSA MH, BELTRAME MO, BAYER MS & SARDELLA NH. 2009. Zoonotic parasites associated with felines from the Patagonian Holocene. Mem Inst Oswaldo Cruz 104: 1177-1180., 2013FUGASSA MH, GONZALEZ-OLIVERA EA & PETRIGH RS. 2013. First palaeoparasitological record of a dioctophymatid egg in an archaeological sample from Patagonia. Acta Trop 28: 175-177., 2018FUGASSA MH, PETRIGH RS, FERNÁNDEZ PM, CARBALLIDO-CATALAYUD M & BELLELI C. 2018. Fox parasites in pre-columbian times. Evidence from the past to understand the current helminth assemblages. Acta Trop 185: 380-384., Beltrame et al. 2010BELTRAME MO, FUGASSA MH & SARDELLA NH. 2010. First paleoparasitological results from late Holocene in Patagonian Coprolites. J Parasitol 96: 648-651., 2016BELTRAME MO, BELLUSCI A, FERNÁNDEZ FJ & SARDELLA NH. 2016. Carnivores as zoonotic parasite reservoirs in ancient times: the case of the Epullán Chica archaeological cave (late Holocene, Northwestern Patagonia, Argentina). Archaeol Anthropol Sci 10: 795-804., Sianto et al. 2014SIANTO L, SOUZA MV, CHAME M, LUZ MF, GUIDON N, PESSIS AM & ARAÚJO A. 2014. Helminths in feline coprolites up to 9000 years in the Brazilian Northeast. Parasitol Int 63: 851-857., Mowlavi et al. 2015MOWLAVI G, MAKKI M, HEIDARI Z, REZAEIAN M, MOHEBALI M, ARAÚJO A, BOENKE N, AALI A, STOLLNERT & MOBEBI I. 2015. Macracanthorhynchus hirudinaceus eggs in canine coprolite from the sasanian era in Iran (4th / 5thCentury CE). Iran J Parasitol 10: 245-249., Fugassa & Petrigh 2017FUGASSA MH & PETRIGH RS. 2017. Apex predators, rockshelters, and zoonoses in the Patagonian Holocene. J Parasitol 103: 791-794., Perri et al. 2017PERRI AR, HEINRICH S, GUR-ARIEH S & SAUNDERS JJ. 2017. Earliest Evidence of Toxocara sp. in a 1.2-Million-Yr-Old Extinct Hyena (Pachycrocuta brevirostris) Coprolite from Northwest Pakistan. J Parasitol, 103(1), 138-141., Petrigh et al. 2019PETRIGH RS, MARTÍNEZ JG, MONDINI M & FUGASSA MH. 2019. Ancient parasitic DNA reveals Toxascaris leonina presence in Final Pleistocene of South America. Parasitology 146(10): 1284-1288., Tietze et al. 2019TIETZE E, BARBERENA R & BELTRAME MO. 2019. Parasite Assemblages from Feline Coprolites through the Pleistocene-Holocene Transition in Patagonia: Cueva Huenul 1 Archaeological Site (Argentina). Environ Archaeol: 1-11.). The oldest confidently identified paleoparasitological record in a coprolite derives from the Permian and is dated in up to 259.8 million years (Dentzien-Dias et al. 2013DENTZIEN-DIAS PC, POINAR G, FIGUEIREDO AEQ, PACHECO ACL, HORN BLD & SCHULTZ CL. 2013. Tapeworm eggs in a 270 million-year-old shark coprolite. PLoS One 8: 8-11.), although possible even older Carboniferous remains have been reported (Zangerl & Case 1976ZANGERL R & CASE GR. 1976. Cobelodus aculeatus (Cope), an anacanthous shark from Pennsy lvanian black shales of North America. Palaeontographica Abt A 154(4-6): 107-157.), demonstrating an universe of possibilities still to be explored in the Veterinary Paleoparasitology and Paleoichnology areas, mainly in geological units with rich and abundant paleofaunas, such as the Touro Passo Formation.

Therefore the present study describes the first record of paleoparasites in a unique coprolite found in the Touro Passo Formation, assigned to a carnivoran mammal.

MATERIALS AND METHODS

Coprolite

The coprolite analyzed in this study was preliminarily described by Kerber & Oliveira (2008a)KERBER L & OLIVEIRA EV. 2008a. Fósseis de vertebrados da Formação Touro Passo (Pleistoceno superior), Rio Grande do Sul, Brasil: atualização dos dados e novas contribuições. Gaea 4: 49-64. and it comes from the Milton Almeida outcrop (29°40’20.57” S; 56°51’59.20” W), in the margins of the Touro Passo stream, located in the Municipality of Uruguaiana, in the western region of the State of Rio Grande do Sul, in Southern Brazil (Fig. 1). This fossil locality belongs to the Touro Passo Formation, which is Lujanian (Late Pleistocene) in age and lithologically composed by silty-sandy rocks of fluvial origin with abundant carbonate concretions layers (Kerber & Oliveira 2008aKERBER L & OLIVEIRA EV. 2008a. Fósseis de vertebrados da Formação Touro Passo (Pleistoceno superior), Rio Grande do Sul, Brasil: atualização dos dados e novas contribuições. Gaea 4: 49-64.). The coprolite was originally housed in the Setor de Paleovertebrados of the Museu de Ciências Naturais of the Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS at Uruguaiana), under the collection number MCPU-PV-141. After the deactivation of this museum, the specimen was transferred for the collection of the Setor de Paleovertebrados of the Museu de Ciências e Tecnologia of the PUCRS located at the Porto Alegre campus, with a new collection number: MCP-5176-PV.

Figure 1
Coprolite (MCP-5176-PV) assigned to Carnivora mammal recovered from the Milton Almeida Outcrop, Touro Passo Formation (Upper Pleistocene), Municipality of Uruguaiana, Western region of State of Rio Grande do Sul, Southern Brazil.

This coprolite was preserved through phosphatization and is apparently complete, with a size of 18.0 cm in length and of 4.0 cm in diameter. Additionally the coprolite had grayish white coloration and cylindrical with rounded ends, consolidated and homogeneous shape, divided into four blocks by constrictions, besides the presence of large amount of organic material, such as parts of undigested bones. This morphology resembles that proposed for big felids by Chame (2003)CHAME M. 2003. Terrestrial mammal feces. A morphometric summary and description. Mem Inst Oswaldo Cruz 98: 71-98., such as the genera Panthera and Puma, however the large size of the coprolite and the finding of bones may also suggest other extinct large Carnivora mammals, such as the genera Smilodon, Protocyon, Theriodictis and Arctotherium, which were able to hunt large prey like ground sloths or feed on their carcasses. Fossil remains of carnivorans are still unknown from the Touro Passo Formation, but other Late Pleistocene (Lujanian) records from the Rio Grande do Sul, include material assigned to canids (Dusicyon cf. D. avus, Protocyon troglodytes, and Theriodictis sp.), felids (Smilodon populator) and ursids (cf. Arctotherium and indeterminate remains) (Rodrigues et al. 2004RODRIGUES PH, PREVOSTI FJ, FERIGOLO J & RIBEIRO AM. 2004. Novos materiais de Carnivora para o Pleistoceno do estado do Rio Grande do Sul, Brasil. Rev Bras Paleontolog 7(1): 77-86., Ribeiro & Scherer 2009RIBEIRO AM & SCHERER CS. 2009. Mamíferos do Pleistoceno do Rio Grande do Sul. In: Ribeiro AM, Bauermann SG & Scherer CS (Eds), Quaternário do Rio Grande do Sul: Integrando Conhecimentos, Porto Alegre: Monografias da Sociedade Brasileira de Paleontologia, Porto Alegre, Brasil, p. 171-191., Pereira et al. 2012PEREIRA JC, LOPES RP & KERBER L. 2012. New remains of Late Pleistocene mammals from the Chuí Creek, southern Brazil. Rev Bras Paleontolog 15(2): 228-239., Lopes 2013LOPES RP. 2013. Biostratigraphy of the Pleistocene fossiliferous deposits of the Southern Brazilian coastal area. J Mammal Evol 20: 69-82. and references therein).

Laboratory processing

Two individual samples (≅ 1.0 g) were extracted from the coprolite surface and its internal portion using an electric drill, resulting in some macerated material (following the procedure made by Silva et al. 2014SILVA PA, BORBA NUNES VH, DUTRA JMF, LELES D, STOCK DA-ROSA AA, FERREIRA LF & ARAÚJO A. 2014. New ascarid species in cynodont coprolite dated of 240 million years. An Acad Bras Cienc 86: 265-269.). The resulting product of each sample was stored individually in properly labeled two Falcon 15 mL polypropylene tubes. A 10% hydrochloric acid solution was added to the first tube, as proposed by Ferreira et al. (2011)FERREIRA LF, REINHARD K & ARAÚJO A. 2011. Fundamentos da Paleoparasitologia, 1a ed., Rio de Janeiro: Editora Fiocruz, 482 p.. Upon dissociation of the minerals, the reaction was stopped by adding a double volume of distilled water.

The resulting solution was washed several times with distilled water, and then sifted through a 500 mesh Tyler sieve, following Bouchet et al. (1999)BOUCHET F, LEFÈVRE C, WEST D & CORBETT D. 1999. First paleoparasitological analysis of a midden in the Aleutian Islands (Alaska): results and limits. J Parasitol 85: 369-372.. The residual material from sample retained on the sieve was washed again in distilled water. A drop of this material was then placed on a microscope slide, three drops of glycerin were added, and the slide was covered with a coverslip. The material was analyzed by bright field microscopy at 100x and 400x magnifications using a Quimis® optical microscope and images of the paleoparasites observed were recorded with a Sony® digital camera coupled to it. Each paleoparasite was measured individually using a Bel Photonics® ocular micrometer. Measurements of the length and width of the paleoparasitic specimens were expressed in micrometers (μm), as mean ± standard deviation and range in parentheses.

The macerated material of the second tube was rehydrated by immersion in a 0.5% solution of trisodium phosphate and submitted to spontaneous sedimentation following to Iñiguez et al. 2006IÑIGUEZ AM, REINHARD K, GONÇALVES MLC, FERREIRA LF, ARAÚJO A & VICENTE ACP. 2006. SL1 RNA gene recovery from Enterobius vermicularis ancient DNA in pre-columbian human coprolites. Int J Parasitol 36: 1419-1425.. Upon 72 h, aliquots of the resulting sediment were used for the extraction and detection of the Toxoplasma gondii DNA. For this, these aliquots were grinded by Bio-vortex homogenizer (Biospec Products Inc, USA). DNA extraction was carried out by using the IllustraTM Tissue & Cells Genomic Prep Mini Spin kit (GE Healthcare, USA) and quantification in a spectrophotometer (Epoch-Biotek, USA). PCR reactions were performed by employing the primers described by Homan et al. (2000)HOMAN WL, VERCAMMEN M, BRAEKELEER J & VERSCHUEREN H. 2000. Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. Int J Parasitol 30: 69-75. to amplify a 529bp fragment. Primers TOX4 (5’-CGCTGCAGGGAGGAAGACGAAAGTTG-3’) and TOX5 (5’-CGCTGCAGACACAGTGCATCTGGATT-3’) were used. The reactions (25 µL final volume) were run with the following reagents: 10 mM Tris HCl (pH 8.0), 50 mM KCl, 1.5 mM MgCl2, 0.2 mM dNTP, 10 ρmol of each primer, 0.2 units of Taq DNA polymerase, and 10 ng of DNA template. Amplification was performed in a Veriti (Life Technologies®, Carlsbad, USA). Initial denaturation for 7 minutes at 94°C was followed by 35 cycles of 1 minute at 94°C, 1 minute at 60°C and 1 minute at 72°C, and final extension for 10 minutes at 72°C. The sequence was analyzed by electrophoresis in 1.5% agarose added with 0.1 μL/mL of SYBR® safe DNA gel stained (Invitrogen, USA), recorded using the transilluminator (Syngene, USA), and the image was captured by the digital documentation system.

RESULTS

The parasitological analysis revealed 14 oocysts of spherical shape, with a thick wall and internal zygote apparently at the beginning of sporulation, measuring 11.9 ± 1.1 μm (10.0 μm – 12.5 μm) long and 11.5 ± 1.2 μm (10.0 μm – 12.5 μm) wide, compatible with Eucoccidiorida (Apicomplexa: Coccidia) protozoans (Fig. 2a, b, c). In addition, three eggs of ovoidal shape, with bluntly rounded ends and a thin and smooth hyaline shell, apparently embryonated, measuring 60.8 ± 1.4 μm long (60.0 μm – 62.5 μm) and 30.8 ± 1.4 μm (30 μm – 32.5 μm) wide, similar to Strongylida (Nematoda: Rhabditia) nematodes, probably from the Family Ancylostomatidae, were recovered (Fig. 3a, b, c). Other organic inclusions were observed under optical microscopy in this ichnofossil, such as fungal microconidias. The sample was negative by PCR with specific primers for T. gondii.

Figure 2
Eucoccidiorida subspherical oocysts recovered in coprolite assigned to Carnivora mammal from the Milton Almeida Outcrop, Touro Passo Formation (Upper Pleistocene), Municipality of Uruguaiana, Western region of State of Rio Grande do Sul, Southern Brazil (400 X magnification). a-b. Photomicrographs; c. Representative drawing. Abbreviations: Tw = thick wall; Iz = internal zygote apparently at the beginning of sporulation.
Figure 3
Strongylida ovoidal eggs (probably Ancylostomatidae) recovered in coprolite assigned to Carnivora mammal from the Milton Almeida Outcrop, Touro Passo Formation (Upper Pleistocene), Municipality of Uruguaiana, Western region of State of Rio Grande do Sul, Southern Brazil (400 X magnification). a-b. Photomicrographs; c. Representative drawing. Abbreviations: Ths = thin hyaline shell; E = embryo.

DISCUSSION

Thick-walled subspherical sporulated oocysts and thin-shelled ovoidal embryonated eggs are respectively the typical evolutive stages of most modern species of Eucoccidiorida protozoans and Strongylida nematodes (including Ancylostomatidae) that parasitize vertebrates which can be found in the feces of their final hosts during their sexual reproduction phases (University of Illinois 1933UNIVERSITY OF ILLINOIS, COLLEGE OF AGRICULTURE AND AGRICULTURAL AND EXPERIMENT STATION. 1933. Microscopic diagnosis of parasitism in domestic animals, Circular 401, Urbana: University of Illinois, 67 p., Anderson 2000ANDERSON RC. 2000. Nematode parasites of vertebrates. Their development and transmission, 2nd ed., Wallingford, New York: CABI Publishing, 650 p., Berto et al. 2014BERTO BP, MCINTOSH D & LOPES CWG. 2014. Studies on coccidian oocysts (Apicomplexa: Eucoccidiorida). Braz J Vet Parasitol 23: 1-15.).

Eucoccidiorids are intracellular obligatory parasites that usually injure intestinal tissues (Monteiro 2017MONTEIRO SG. 2017. Parasitologia na Medicina Veterinária, 2a ed., São Paulo: ROCA, 370 p.). Oocysts of this group of protozoans contain the zygotes and, generally, are unsporulated when liberated in the feces by their hosts. Extant genera with parasitological significance for carnivoran mammals include Besnoitia, Cryptosporidium, Cystisospora, Eimeria, Hammondia, Hepatozoon, Neospora, Sarcocystis, and Toxoplasma, being some of these acquired by the predation of other vertebrates (Taylor et al. 2015TAYLOR MA, COOP RL & WALL RL. 2015. Veterinary Parasitology, 4th ed., Hoboken: Wiley-Blackwell, 1032 p.). This latter, represented by the species Toxoplasma gondii, is from special interest because of its medical and veterinary importance (Rey 2010REY L. 2010. Bases da Parasitologia Médica, 3rd ed., Rio de Janeiro: Guanabara Koogan, 404 p.). The oocysts described here have the size and shape expected for the genera Toxoplasma, Hammondia and Neospora, but the lack of well-defined sporocysts, sporozoites and other secondary structures within the oocysts precludes a more assertive classification of the materials. The final hosts Toxoplasma and Neospora are respectively felids and canids, while Hammondia can inhabit the small intestine of both groups. However, these three genera can parasitize other mammals as intermediate hosts, besides some species of birds as in the case of Toxoplasma and Neospora (Dubey 2010DUBEY JP. 2010. Toxoplasmosis of animals and humans, 2nd ed., Boca Raton: CRC Press Taylor & Francis Group, 313 p., Taylor et al. 2015TAYLOR MA, COOP RL & WALL RL. 2015. Veterinary Parasitology, 4th ed., Hoboken: Wiley-Blackwell, 1032 p., Dubey et al. 2017DUBEY JP, HEMPHILL A, CALERO-BERNAL R & SCHARES G. 2017. Neosporosis in Animals, 1st ed., Boca Raton: CRC Press Taylor & Francis Group, 529 p.).

Most species of strongylids in their adult form inhabit the alimentary tract of the major lineages of modern vertebrates, where they generally consume the blood, tissues and food ingested by their final hosts (Monteiro 2017MONTEIRO SG. 2017. Parasitologia na Medicina Veterinária, 2a ed., São Paulo: ROCA, 370 p.). The Family Ancylostomatidae contains the main genera of strongylids, such as Ancyclostoma, Uncinaria and Necator, which can parasitize domestic and wild carnivoran mammals (Anderson et al. 2009ANDERSON RC, CHABAUD AG & WILLMOTT S. 2009. Keys to the Nematode Parasites of Vertebrates. Archival Volume, 2nd ed., Wallingford: CAB International, 463 p., Taylor et al. 2015TAYLOR MA, COOP RL & WALL RL. 2015. Veterinary Parasitology, 4th ed., Hoboken: Wiley-Blackwell, 1032 p.). These hematophagous intestinal strongylids, also known as hookworms, normally have monoxenous cycles, though some species also require, during their development, other vetebrates as paratenic hosts. The life cycle of these nematodes is usually completed from ingestion or skin penetration of infective larvae that previously developed in the environment from embryonated eggs eliminated in the feces of other final hosts. Additionally, some species can also be transmitted by via lactogenic or ingestion of paratenic hosts, especially rodents (Anderson 2000ANDERSON RC. 2000. Nematode parasites of vertebrates. Their development and transmission, 2nd ed., Wallingford, New York: CABI Publishing, 650 p.). The eggs described in this paper have a similar shape and size to the genera Ancyclostoma, Uncinaria and Necator, which also does not rule out the possibility of these specimens belonging to an extinct genus of hookworm from Pleistocene, whose life cycle would be unknown. The hypothesis that the oocysts described here belong to an extinct lineage of Eucoccidiorida can also not be dismissed. Because the eggs of these ancilostomids are practically indistinguishable, normally their differentiation is made through the morphological and morphometric analysis of their infective larvae cultivated in fresh fecal cultures or adult forms recovered from the small intestine during necropsy of the final host, however this laboratory procedures were not possible, precluding also a more assertive classification of these specimens.

Although normally the type of paleoparasite found facilitate the identification of the probable producer of a coprolite (Ferreira et al. 2008FERREIRA LF, REINHARD K & ARAÚJO A. 2008. Paleoparasitologia, 1a ed., Rio de Janeiro: Editora Fiocruz, 128 p., 2011), it was not possible by means of this device to distinguish if the examined fossil material belonged to particular group of carnivorans, since both groups of parasites observed can currently be found in these mammals (Borka-Vitális et al. 2017BORKA-VITÁLIS L, DOMOKOS C, FÖLDVÁRI G & MAJOROS G. 2017. Endoparasites of brown bears in Eastern Transylvania, Romania. Ursus 28: 20-30., Oudni-M’rad et al. 2017OUDNI-M’RAD M, CHAÂBANE-BANAOUES R, M’RAD S, TRIFA F, MEZHOUD H & BABBA H. 2017. Gastrointestinal parasites of canids, a latente risk to human health in Tunisia. Parasit Vectors 10(1): 280., Solórzano-García et al. 2017SOLÓRZANO-GARCÍA B, WHITE-DAY JM, GÓMEZ-CONTRERAS M, CRISTÓBAL-AZKÁRATE J, OSORIO-SARABIA D & RODRÍGUEZ-LUNA E. 2017. Coprological survey of parasites of free-ranging jaguar (Panthera onca) and puma (Puma concolor) inhabiting 2 types of tropical forests in Mexico. Rev Mex Biodivers 88: 146-153.), with species of very similar morphology and dimensions, distinct from each other only by their larval and adult forms in the case of Ancylostomatidae or when their oocysts are totally sporulated in the case of Eucoccidiorida, besides the fact that some species can be shared between different Carnivora families. Still with the intention of filling this gap, biomolecular analyzes by polymerase chain reaction (PCR) were performed (following Homan et al. 2000HOMAN WL, VERCAMMEN M, BRAEKELEER J & VERSCHUEREN H. 2000. Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. Int J Parasitol 30: 69-75., Iñiguez et al. 2006IÑIGUEZ AM, REINHARD K, GONÇALVES MLC, FERREIRA LF, ARAÚJO A & VICENTE ACP. 2006. SL1 RNA gene recovery from Enterobius vermicularis ancient DNA in pre-columbian human coprolites. Int J Parasitol 36: 1419-1425.), aiming to detect the specific DNA of T. gondii in the studied coprolite, since the oocysts of this Eucoccidiorida can be found only in the feces of their definitive hosts, represented by practically all modern felid species (Dubey 2010DUBEY JP. 2010. Toxoplasmosis of animals and humans, 2nd ed., Boca Raton: CRC Press Taylor & Francis Group, 313 p.). However, it was not possible to detect the DNA of this parasite in MCP-5176-PV, probably due the lack of T. gondii oocysts on the analyzed sample or due the destruction of the nucleic acids during the fossilization process.

A considerable number of paleoparasitological investigations with animal coprolites, including extinct species, that lived during the Pleistocene, were carried out in different regions worldwide (Table I). The first of these studies, conducted by Ringuelet (1957)RINGUELET RA. 1957. Restos de probables huevos de nematodes en el estiercol del edentado extinguido Mylodon listai (Ameghino). Ameghiniana 1: 15-16., revealed eggs of an unidentified nematode in the coprolite of a giant sloth of the species Mylodon darwini (formerly M. listai) from the Última Esperanza, in Chile. Ferreira et al. (1991)FERREIRA LF, ARAÚJO A, CONFALONIERI U, CHAME M & GOMES DC. 1991. Trichuris eggs in animal coprolites dated from 30,000 years ago. J Parasitol 77: 491-493. found Enoplida nematode eggs, identified as belonging to the genus Trichuris, in rodent coprolites of the species Kerodon rupestres from State of Piauí, in Brazil. Schmidt et al. (1992)SCHMIDT GD, DUSZYNSKI DW & MARTIN PS. 1992. Parasites of the extinct Shasta Ground Sloth, Nothrotheriops shastensis, in Rampart Cave, Arizona. J Parasitol 78: 811-816. recovered Schistosomatidae trematode and Ascaridida nematode eggs in coprolites of a Shasta ground sloth (Nothrotheriops shastensis), from State of Arizona, in USA. In addition, these authors also described two new species of nematodes based on their first stage larvae, Agamofilaria oxyura (Order Oxyurida) and Strongyloides shastensis (Order Rhabditida), and two new species of Eucoccidiorida protozoans based on their oocysts, Archeococcidea antiquus and Archeococcidea nothrotheriopsae. Ferreira et al. (1993)FERREIRA LF, ARAÚJO A & DUARTE AN. 1993. Nematode larvae in fossilized animal coprolites from lower and middle Pleistocene sites, Central Italy. J Parasitol 79: 440-442. recorded larvae of an unidentified nematode in Hyaenidae mammal coprolites collected from central Italy. Jouy-Avantin et al. (1999)JOUY-AVANTIN F, COMBES C, LUMLEY H, MISKOVSKY JC & MONé H. 1999. Helminth eggs in animal coprolites from a middle Pleistocene site in Europe. J Parasitol 85: 376-379. registered Dicrocoeliidae trematode eggs in a coprolite of an unidentified carnivorous mammal from Region of Occitanie, in France. Duarte et al. (1999)DUARTE AN, VERDE M, UBILLA M, ARAÚJO A, MARTINS PC, REINHARD KJ & FERREIRA LF. 1999. Note on parasite eggs in mineralized Carnivora coprolites from the upper Pleistocene Sopas Formation, Uruguay. Paleopathol News 107: 6-8. discovered eggs of a flatworm, probably trematode or Pseudophyllidea cestode, in coprolites of an unidentified Carnivora mammal from Department of Artigas, in Uruguay (Sopas Formation). Beltrame et al. (2012)BELTRAME MO, SARDELLA NH, FUGASSA MH & BARBERENA R. 2012. Palaeoparasitological analysis of rodent coprolites from the Cueva Huenul 1 archaeological site in Patagonia (Argentina). Mem Inst Oswaldo Cruz 107: 604-608. observed Anoplocephalidae cestode eggs assigned to species Viscachataenia quadrata in coprolites of rodents Lagidium viscacia from Northern Patagonia, Province of Neuquén, in Argentina. Perri et al. (2017)PERRI AR, HEINRICH S, GUR-ARIEH S & SAUNDERS JJ. 2017. Earliest Evidence of Toxocara sp. in a 1.2-Million-Yr-Old Extinct Hyena (Pachycrocuta brevirostris) Coprolite from Northwest Pakistan. J Parasitol, 103(1), 138-141. found Ascaridida nematode eggs, characterized as belonging to the genus Toxocara, in the extinct hyena (Pachycrocuta brevirostris) coprolite from Attock District, Punjab Province, in Northwestern Pakistan. Additionally, the thin sections analysis of this same coprolite showed an egg of an unidentified nematode. According to these authours, it may represent another parasite known to infect hyenas, such as Ancylostoma sp. Petrigh et al. (2019)PETRIGH RS, MARTÍNEZ JG, MONDINI M & FUGASSA MH. 2019. Ancient parasitic DNA reveals Toxascaris leonina presence in Final Pleistocene of South America. Parasitology 146(10): 1284-1288. using morphological and molecular analysis, identified eggs of the Ascaridida nematode species, Toxascaris leonina, in coprolite of puma (Puma concolor) from Southern Puna, Province Catamarca, in Argentina. Tietze et al. (2019)TIETZE E, BARBERENA R & BELTRAME MO. 2019. Parasite Assemblages from Feline Coprolites through the Pleistocene-Holocene Transition in Patagonia: Cueva Huenul 1 Archaeological Site (Argentina). Environ Archaeol: 1-11. registered different nematode eggs, such as Toxocara cati, Dioctophymatidae (Enoplida), Oxyurida and Trichostrongylidae (Strongylida), besides trematode eggs and Eucoccidiorida protozoans oocysts assigned to species Cystoisospora felis in feline coprolites also from Northern Patagonia, Province of Neuquén, in Argentina.

Table I
Paleoparasitological records from Pleistocene coprolites published until now.

It is noteworthy that most of the Pleistocene parasitic record comes from coprolites collected in caves (Ringuelet 1957RINGUELET RA. 1957. Restos de probables huevos de nematodes en el estiercol del edentado extinguido Mylodon listai (Ameghino). Ameghiniana 1: 15-16., Schmidt et al. 1992SCHMIDT GD, DUSZYNSKI DW & MARTIN PS. 1992. Parasites of the extinct Shasta Ground Sloth, Nothrotheriops shastensis, in Rampart Cave, Arizona. J Parasitol 78: 811-816., Ferreira et al. 1993FERREIRA LF, ARAÚJO A & DUARTE AN. 1993. Nematode larvae in fossilized animal coprolites from lower and middle Pleistocene sites, Central Italy. J Parasitol 79: 440-442., Jouy-Avantin et al. 1999JOUY-AVANTIN F, COMBES C, LUMLEY H, MISKOVSKY JC & MONé H. 1999. Helminth eggs in animal coprolites from a middle Pleistocene site in Europe. J Parasitol 85: 376-379., Beltrame et al. 2012BELTRAME MO, SARDELLA NH, FUGASSA MH & BARBERENA R. 2012. Palaeoparasitological analysis of rodent coprolites from the Cueva Huenul 1 archaeological site in Patagonia (Argentina). Mem Inst Oswaldo Cruz 107: 604-608., Tietze et al. 2019TIETZE E, BARBERENA R & BELTRAME MO. 2019. Parasite Assemblages from Feline Coprolites through the Pleistocene-Holocene Transition in Patagonia: Cueva Huenul 1 Archaeological Site (Argentina). Environ Archaeol: 1-11.) or archeological sites (Ferreira et al. 1991FERREIRA LF, ARAÚJO A, CONFALONIERI U, CHAME M & GOMES DC. 1991. Trichuris eggs in animal coprolites dated from 30,000 years ago. J Parasitol 77: 491-493., Perri et al. 2017PERRI AR, HEINRICH S, GUR-ARIEH S & SAUNDERS JJ. 2017. Earliest Evidence of Toxocara sp. in a 1.2-Million-Yr-Old Extinct Hyena (Pachycrocuta brevirostris) Coprolite from Northwest Pakistan. J Parasitol, 103(1), 138-141., Petrigh et al. 2019PETRIGH RS, MARTÍNEZ JG, MONDINI M & FUGASSA MH. 2019. Ancient parasitic DNA reveals Toxascaris leonina presence in Final Pleistocene of South America. Parasitology 146(10): 1284-1288.). Recording paleoparasites from buried coprolites (i.e., excavated from rock outcrops) is rare and must be related to taphonomic biases that act destroying the organic remains. These biases are still understudied, but the Upper Pleistocene Sopas and Touro Passo formations are good examples of preservation of paleoparasites in this context.

Thus the present paper reveals the first vertebrate paleoparasites from the Late Pleistocene of the Rio Grande do Sul, as well as it brings clues about the composition of the endoparasitic fauna of carnivoran mammals, including possibly extinct species of these hosts, which inhabited South America during the Lujanian.

ACKNOWLEDGMENTS

We would like to thank Dr. Marco B. Andrade (PUCRS) for permission to the study of the specimen MCP-5176-PV. The authors are grateful for all the technical assistance provided by Lilia M. Dietrich Bertini. The authors wish to thank the editor and anonymous reviewers for their constructive comments and suggestions to improve the quality of this paper. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

REFERENCES

  • ANDERSON RC. 2000. Nematode parasites of vertebrates. Their development and transmission, 2nd ed., Wallingford, New York: CABI Publishing, 650 p.
  • ANDERSON RC, CHABAUD AG & WILLMOTT S. 2009. Keys to the Nematode Parasites of Vertebrates. Archival Volume, 2nd ed., Wallingford: CAB International, 463 p.
  • BAJDEK P, QVARNSTRÖM M, OWOCKI K, SULEJ T, SENNIKOV AG, GOLUBEV VK & NIEDźWIEDZKI G. 2016. Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia. Lethaia 49: 455-477.
  • BELTRAME MO, FUGASSA MH & SARDELLA NH. 2010. First paleoparasitological results from late Holocene in Patagonian Coprolites. J Parasitol 96: 648-651.
  • BELTRAME MO, SARDELLA NH, FUGASSA MH & BARBERENA R. 2012. Palaeoparasitological analysis of rodent coprolites from the Cueva Huenul 1 archaeological site in Patagonia (Argentina). Mem Inst Oswaldo Cruz 107: 604-608.
  • BELTRAME MO, FUGASSA MH, BARBERENA R, SAUTHIER DEU & SARDELLA NH. 2013. New record of anoplocephalid eggs (Cestoda: Anoplocephalidae) collected from rodent coprolites from archaeological and paleontological sites of Patagonia, Argentina. Parasitol Int 62: 431-434.
  • BELTRAME MO, FUGASSA MH, SAUTHIER DEU & SARDELLA NH. 2014. Paleoparasitological study of rodent coprolites from “Los Altares” paleontological site, Patagonia, Argentina. Quat Int 352: 59-63.
  • BELTRAME MO, BELLUSCI A, FERNÁNDEZ FJ & SARDELLA NH. 2016. Carnivores as zoonotic parasite reservoirs in ancient times: the case of the Epullán Chica archaeological cave (late Holocene, Northwestern Patagonia, Argentina). Archaeol Anthropol Sci 10: 795-804.
  • BELTRAME MO, TIETZE E, PÉREZ AE, BELLUSCI A & SARDELLA NH. 2017a. Ancient parasites from endemic deer from “CUEVA PARQUE DIANA” archeological site, Patagonia, Argentina. Parasitol Res 116: 1523-1531.
  • BELTRAME MO, TIETZE E, PÉREZ AE & SARDELLA NH. 2017b. First paleoparasitological record of digenean eggs from a native deer from Patagonia Argentina (Cueva Parque Diana archaeological site). Vet Parasitol 253: 83-85.
  • BELTRAME MO, BELLUSCIA & ANDRADE A. 2018. First paleoparasitological study of micromammal coprolites from the Holocene of the Somuncurá Plateau Protected Natural Area (Patagonia Argentina). Parasitol Int 67: 362-365.
  • BELTRAME MO, CAÑAL V, TIETZE E & TOMMASO D. 2019. Parasitological study of mountain vizcacha fecal pellets from Patagonia over the last 1200 years (‘Cueva Peligro’, Chubut Province, Argentina). Parasitology 146: 253-260.
  • BERTO BP, MCINTOSH D & LOPES CWG. 2014. Studies on coccidian oocysts (Apicomplexa: Eucoccidiorida). Braz J Vet Parasitol 23: 1-15.
  • BOMBIN M. 1976. Modelo paleoecológico evolutivo para o Neo-Quaternário da região da Campanha-Oeste do Rio Grande do Sul (Brasil). A Formação Touro Passo, seu conteúdo fossilífero e a pedogênese pós-deposicional. Comun Mus Cienc Tecnol Pucrs 15: 1-90.
  • BORKA-VITÁLIS L, DOMOKOS C, FÖLDVÁRI G & MAJOROS G. 2017. Endoparasites of brown bears in Eastern Transylvania, Romania. Ursus 28: 20-30.
  • BOUCHET F, LEFÈVRE C, WEST D & CORBETT D. 1999. First paleoparasitological analysis of a midden in the Aleutian Islands (Alaska): results and limits. J Parasitol 85: 369-372.
  • CARDIA DFF, BERTINI RJ, CAMOSSI LG & LETIZIO LA. 2018. The first record of Ascaridoidea eggs discovered in Crocodyliformes hosts from the Upper Cretaceous of Brazil. Rev Bras Paleontolog 21(3): 238-244.
  • CARDIA DFF, BERTINI RJ, CAMOSSI LG & LETIZIO LA. 2019a. First record of Acanthocephala parasites eggs in coprolites preliminary assigned to Crocodyliformes from the Adamantina Formation (Bauru Group, Upper Cretaceous), São Paulo, Brazil. An Acad Bras Cienc 91: e20170848.
  • CARDIA DFF, BERTINI RJ, CAMOSSI LG & LETIZIO LA. 2019b. Two new species of ascaridoid nematodes in Brazilian Crocodylomorpha from the Upper Cretaceous. Parasitol Int 72: 101947.
  • CHAME M. 2003. Terrestrial mammal feces. A morphometric summary and description. Mem Inst Oswaldo Cruz 98: 71-98.
  • DE BAETS K & LITTLEWOOD DTJ. 2015. The importance of fossils in understanding the evolution of parasites and their vectors. In: De Baets K & Littlewood DTJ (Eds), Fossil Parasites, Amsterdam: Elsevier, Amsterdam, Netherlands, p. 1-51.
  • DE BAETS K, DENTZIEN-DIAS P, HARRISON GWM, LITTLEWOOD DTJ & PARRY LA. 2020. Fossil constraints on the timescale of parasitic helminth evolution. EcoEvoRxiv Preprints: 1-46. https://doi.org/10.32942/osf.io/6jakv
    » https://doi.org/10.32942/osf.io/6jakv
  • DENTZIEN-DIAS PC, POINAR G, FIGUEIREDO AEQ, PACHECO ACL, HORN BLD & SCHULTZ CL. 2013. Tapeworm eggs in a 270 million-year-old shark coprolite. PLoS One 8: 8-11.
  • DENTZIEN-DIAS P, CARRILLO-BRICEÑO JD, FRANCISCHINI H & SÁNCHEZ R. 2018. Paleoecological and taphonomical aspects of the late Miocene vertebrate coprolites (Urumaco Formation) of Venezuela. Palaeogeogr Palaeoclimatol Palaeoecol 490: 590-603.
  • DUARTE AN, VERDE M, UBILLA M, ARAÚJO A, MARTINS PC, REINHARD KJ & FERREIRA LF. 1999. Note on parasite eggs in mineralized Carnivora coprolites from the upper Pleistocene Sopas Formation, Uruguay. Paleopathol News 107: 6-8.
  • DUBEY JP. 2010. Toxoplasmosis of animals and humans, 2nd ed., Boca Raton: CRC Press Taylor & Francis Group, 313 p.
  • DUBEY JP, HEMPHILL A, CALERO-BERNAL R & SCHARES G. 2017. Neosporosis in Animals, 1st ed., Boca Raton: CRC Press Taylor & Francis Group, 529 p.
  • FERREIRA LF, ARAÚJO A, CONFALONIERI U, CHAME M & GOMES DC. 1991. Trichuris eggs in animal coprolites dated from 30,000 years ago. J Parasitol 77: 491-493.
  • FERREIRA LF, ARAÚJO A & DUARTE AN. 1993. Nematode larvae in fossilized animal coprolites from lower and middle Pleistocene sites, Central Italy. J Parasitol 79: 440-442.
  • FERREIRA LF, REINHARD K & ARAÚJO A. 2008. Paleoparasitologia, 1a ed., Rio de Janeiro: Editora Fiocruz, 128 p.
  • FERREIRA LF, REINHARD K & ARAÚJO A. 2011. Fundamentos da Paleoparasitologia, 1a ed., Rio de Janeiro: Editora Fiocruz, 482 p.
  • FRANCISCHINI H, DENTZIEN-DIAS P & SCHULTZ CL. 2018. A fresh look at ancient dungs: the Brazilian Triassic coprolites revisited. Lethaia 51: 389-405.
  • FUGASSA MH, DENEGRI GM, SARDELLA NH, ARAÚJO A, GUICHÓN RA, MARTINEZ PA, CIVALERO MT & ASCHERO C. 2006. Paleoparasitological records in a canid coprolite from Patagonia, Argentina. J Parasitol 92: 1110-1113.
  • FUGASSA MH, SARDELLA NH, TAGLIORETTI V, REINHARD K & ARAÚJO A. 2008. Eimeriid oocysts from archaeological samples in Patagonia, Argentina. J Parasitol 94: 1418-1420.
  • FUGASSA MH, BELTRAME MO, BAYER MS & SARDELLA NH. 2009. Zoonotic parasites associated with felines from the Patagonian Holocene. Mem Inst Oswaldo Cruz 104: 1177-1180.
  • FUGASSA MH, GONZALEZ-OLIVERA EA & PETRIGH RS. 2013. First palaeoparasitological record of a dioctophymatid egg in an archaeological sample from Patagonia. Acta Trop 28: 175-177.
  • FUGASSA MH & PETRIGH RS. 2017. Apex predators, rockshelters, and zoonoses in the Patagonian Holocene. J Parasitol 103: 791-794.
  • FUGASSA MH, PETRIGH RS, FERNÁNDEZ PM, CARBALLIDO-CATALAYUD M & BELLELI C. 2018. Fox parasites in pre-columbian times. Evidence from the past to understand the current helminth assemblages. Acta Trop 185: 380-384.
  • GASPARINI GM, KERBER L & OLIVEIRA EV. 2009. Catagonus stenocephalus (Lund in Reinhart, 1880) (Mammalia, Tayassuidae) in the Touro Passo Formation (late Pleistocene), Rio Grande do Sul, Brazil. Taxonomic and palaeoenvironmental comments. N Jb Geol Paläont Abh. 254: 261-273.
  • HOMAN WL, VERCAMMEN M, BRAEKELEER J & VERSCHUEREN H. 2000. Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. Int J Parasitol 30: 69-75.
  • HSIOU AS. 2007. A new Teiidae species (Squamata, Scincomorpha) from late Pleistocene of Rio Grande do Sul State, Brasil. Rev Bras Paleontolog 10: 181-193.
  • HUGOT JP, GARDNER SL, BORBA NUNES VH, ARAÚJO P, LELES D, STOCK DA-ROSA AA, DUTRA JMF, FERREIRA LF & ARAÚJO A. 2014. Discovery of a 240 million year old nematode parasite egg in a cynodont coprolite sheds light on the early origin of pin worms in vertebrates. Parasit Vectors 7: 1-8.
  • HUNT AP, LUCAS SG, MILÀN J & SPIELMANN JA. 2012. Vertebrate coprolite studies: status and prospectus. N M Mus Nat Hist Sci Bull 57: 5-24.
  • IÑIGUEZ AM, REINHARD K, GONÇALVES MLC, FERREIRA LF, ARAÚJO A & VICENTE ACP. 2006. SL1 RNA gene recovery from Enterobius vermicularis ancient DNA in pre-columbian human coprolites. Int J Parasitol 36: 1419-1425.
  • JOUY-AVANTIN F, COMBES C, LUMLEY H, MISKOVSKY JC & MONé H. 1999. Helminth eggs in animal coprolites from a middle Pleistocene site in Europe. J Parasitol 85: 376-379.
  • KERBER L & OLIVEIRA EV. 2008a. Fósseis de vertebrados da Formação Touro Passo (Pleistoceno superior), Rio Grande do Sul, Brasil: atualização dos dados e novas contribuições. Gaea 4: 49-64.
  • KERBER L & OLIVEIRA EV. 2008b. Sobre a presença de Tapirus (Tapiridae, Perissodactyla) na Formação Touro Passo (Pleistoceno superior), Oeste do Rio Grande do Sul. Biodivers Pampeana 6: 9-14.
  • KERBER L, RIBEIRO AM & OLIVEIRA EV. 2010. The first record of Galea Meyen, 1832 (Rodentia, Hystricognathi, Caviidae) in the late Pleistocene of Southern Brazil and its palaeobiogeographic implications. Alcheringa 29: 1-13.
  • KERBER L, PITANA VG, RIBEIRO AM, HSIOU AS & OLIVEIRA EV. 2014. Late Pleistocene vertebrates from Touro Passo Creek (Touro Passo Formation), Southern Brazil: a review. Rev Mex Cienc Geol 31: 248-259.
  • KOTZIAN CB & SIMÕES MG. 2006. Taphonomy of recent fresh water molluscan death assemblages, Touro Passo Stream, Southern Brazil. Rev Bras Paleontolog 9: 243-260.
  • LOPES RP. 2013. Biostratigraphy of the Pleistocene fossiliferous deposits of the Southern Brazilian coastal area. J Mammal Evol 20: 69-82.
  • MARTINS CM & OLIVEIRA EV. 2003. Novo material craniano de Tayassu Fischer, 1814, da Formação Touro Passo (Pleistoceno superior), Rio Grande do Sul. Biodivers Pampeana 1: 24-34.
  • MONTEIRO SG. 2017. Parasitologia na Medicina Veterinária, 2a ed., São Paulo: ROCA, 370 p.
  • MOWLAVI G, MAKKI M, MOBEDI I, ARAÚJO A, AALI A, STOLLNER T, REZAEIAN M, NICOLEBOENKE N, HASSANPOUR G & MASOUMIAN M. 2014. Paleoparasitological findings from rodent coprolites dated at 500 CE Sassanid Era in archeological site of Chehrabad (Douzlakh), salt mine Northwestern Iran. Iran J Parasitol 9: 188-193.
  • MOWLAVI G, MAKKI M, HEIDARI Z, REZAEIAN M, MOHEBALI M, ARAÚJO A, BOENKE N, AALI A, STOLLNERT & MOBEBI I. 2015. Macracanthorhynchus hirudinaceus eggs in canine coprolite from the sasanian era in Iran (4th / 5thCentury CE). Iran J Parasitol 10: 245-249.
  • NUNES VHB, ALCOVER JA, SILVA VL, CRUZ PB, MACHADO-SILVA JR & ARAÚJO A. 2017. Paleoparasitological analysis of the extinct Myotragus balearicus Bate 1909 (Artiodactyla, Caprinae) from Mallorca (Balearic Islands, Western Mediterranean). Parasitol Int 66: 7-11.
  • OLIVEIRA EV. 1996. Mamíferos Xenarthra (Edentata) do Quaternário do Estado do Rio Grande do Sul, Brasil. Ameghiniana 31: 65-75.
  • OLIVEIRA EV & MILDER SES. 1990. Considerações preliminares sobre uma nova fauna de moluscos fósseis da Formação Touro Passo (Pleistoceno superior - Holoceno inferior). Observações estratigráficas e paleoecológicas. Veritas 35: 121-129.
  • OLIVEIRA EV, FACCIN JRM & PEREIRA JC. 2003. O pampatério Holmesina (Mammalia Pampatheriidae) no Quaternário do Rio Grande do Sul. Ameghiniana 40: 64.
  • OUDNI-M’RAD M, CHAÂBANE-BANAOUES R, M’RAD S, TRIFA F, MEZHOUD H & BABBA H. 2017. Gastrointestinal parasites of canids, a latente risk to human health in Tunisia. Parasit Vectors 10(1): 280.
  • PEREIRA JC, LOPES RP & KERBER L. 2012. New remains of Late Pleistocene mammals from the Chuí Creek, southern Brazil. Rev Bras Paleontolog 15(2): 228-239.
  • PERRI AR, HEINRICH S, GUR-ARIEH S & SAUNDERS JJ. 2017. Earliest Evidence of Toxocara sp. in a 1.2-Million-Yr-Old Extinct Hyena (Pachycrocuta brevirostris) Coprolite from Northwest Pakistan. J Parasitol, 103(1), 138-141.
  • PETRIGH RS, MARTÍNEZ JG, MONDINI M & FUGASSA MH. 2019. Ancient parasitic DNA reveals Toxascaris leonina presence in Final Pleistocene of South America. Parasitology 146(10): 1284-1288.
  • POINAR G & BOUCOT AJ. 2006. Evidence of intestinal parasite of dinosaurs. Parasitology 133: 245-249.
  • REY L. 2010. Bases da Parasitologia Médica, 3rd ed., Rio de Janeiro: Guanabara Koogan, 404 p.
  • RIBEIRO AM & SCHERER CS. 2009. Mamíferos do Pleistoceno do Rio Grande do Sul. In: Ribeiro AM, Bauermann SG & Scherer CS (Eds), Quaternário do Rio Grande do Sul: Integrando Conhecimentos, Porto Alegre: Monografias da Sociedade Brasileira de Paleontologia, Porto Alegre, Brasil, p. 171-191.
  • RINGUELET RA. 1957. Restos de probables huevos de nematodes en el estiercol del edentado extinguido Mylodon listai (Ameghino). Ameghiniana 1: 15-16.
  • RODRIGUES PH, PREVOSTI FJ, FERIGOLO J & RIBEIRO AM. 2004. Novos materiais de Carnivora para o Pleistoceno do estado do Rio Grande do Sul, Brasil. Rev Bras Paleontolog 7(1): 77-86.
  • SARDELLA NH & FUGASSA MH. 2009a. Parasites in rodent coprolites from the historical archaeological site Alero Mazquiarán, Chubut Province, Argentina. Mem Inst Oswaldo Cruz 104: 37-42.
  • SARDELLA NH & FUGASSA MH. 2009b. Paleoparasitological analysis of rodent coprolites in holocenic samples from Patagonia, Argentina. J Parasitol 95: 646-651.
  • SARDELLA NH, FUGASSA MH, RINDEL DD & GOÑI RA. 2010. Paleoparasitological results for rodent coprolites from Santa Cruz Province, Argentina. Mem Inst Oswaldo Cruz 105: 33-40.
  • SARDELLA NH & FUGASSA MH. 2011. Paleoparasitological finding of eggs of nematodes in rodent coprolites dated at the early Holocene from the archaeological site Cerro Casa de Piedra 7, Santa Cruz, Argentina. J Parasitol 97: 1184-1187.
  • SCHERER CS, FERIGOLO J, RIBEIRO AM & CARTELE CC. 2007. Contribution to the knowledge of Hemiauchenia paradoxa (Artiodactyla, Camelidae) from de Pleistocene of Southern Brazil. Rev Bras Paleontolog 10: 35-52.
  • SCHMIDT GD, DUSZYNSKI DW & MARTIN PS. 1992. Parasites of the extinct Shasta Ground Sloth, Nothrotheriops shastensis, in Rampart Cave, Arizona. J Parasitol 78: 811-816.
  • SIANTO L, DUARTE AN, CHAME M, MAGALHÃES J, SOUZA MV FERREIRA LF & ARAÚJO A. 2012. Trichuris sp. from 1,040 +/- 50-year-old Cervidae coprolites from the archaeological site Furna do Estrago, Pernambuco, Brazil. Mem Inst Oswaldo Cruz 107: 273-274.
  • SIANTO L, SOUZA MV, CHAME M, LUZ MF, GUIDON N, PESSIS AM & ARAÚJO A. 2014. Helminths in feline coprolites up to 9000 years in the Brazilian Northeast. Parasitol Int 63: 851-857.
  • SILVA PA, BORBA NUNES VH, DUTRA JMF, LELES D, STOCK DA-ROSA AA, FERREIRA LF & ARAÚJO A. 2014. New ascarid species in cynodont coprolite dated of 240 million years. An Acad Bras Cienc 86: 265-269.
  • SOLÓRZANO-GARCÍA B, WHITE-DAY JM, GÓMEZ-CONTRERAS M, CRISTÓBAL-AZKÁRATE J, OSORIO-SARABIA D & RODRÍGUEZ-LUNA E. 2017. Coprological survey of parasites of free-ranging jaguar (Panthera onca) and puma (Puma concolor) inhabiting 2 types of tropical forests in Mexico. Rev Mex Biodivers 88: 146-153.
  • SOUZA MV, SIANTO L, CHAME M, FERREIRA LF & ARAÚJO A. 2012. Syphacia sp. (Nematoda : Oxyuridae) in coprolites of Kerodon rupestris Wied, 1820 (Rodentia : Caviidae) from 5,300 years BP in Northeastern Brazil. Mem Inst Oswaldo Cruz 107: 539-542.
  • TAGLIORETTI V, FUGASSA MH & SARDELLA NH. 2015. Parasitic diversity found in coprolites of camelids during the Holocene. Parasitol Res 114: 2459-2464.
  • TAGLIORETTI V, FUGASSA MH, RINDEL D & SARDELLA NH. 2017. New parasitological findings for pre-hispanic camelids. Parasitology 144: 1763-1768.
  • TAYLOR MA, COOP RL & WALL RL. 2015. Veterinary Parasitology, 4th ed., Hoboken: Wiley-Blackwell, 1032 p.
  • TIETZE E, BARBERENA R & BELTRAME MO. 2019. Parasite Assemblages from Feline Coprolites through the Pleistocene-Holocene Transition in Patagonia: Cueva Huenul 1 Archaeological Site (Argentina). Environ Archaeol: 1-11.
  • UNIVERSITY OF ILLINOIS, COLLEGE OF AGRICULTURE AND AGRICULTURAL AND EXPERIMENT STATION. 1933. Microscopic diagnosis of parasitism in domestic animals, Circular 401, Urbana: University of Illinois, 67 p.
  • VAJDA V, FERNÁNDEZ MDP, VILLANUEVA-AMADOZ U, LEHSTEN V & ALCALá L. 2016. Dietary and environmental implications of Early Cretaceous predatory dinosaur coprolites from Teruel, Spain. Palaeogeogr Palaeoclimatol Palaeoecol 464: 134-142.
  • WOOD JR, WILMSHURST JM, RAWLENCE NJ, BONNER KI, WORTHY TH, KINSELLA JM & COOPER A. 2013. A megafauna’s microfauna: gastrointestinal parasites of New Zealand’s extinct Moa (Aves : Dinornithiformes). PLoS One 8: 23-24.
  • ZANGERL R & CASE GR. 1976. Cobelodus aculeatus (Cope), an anacanthous shark from Pennsy lvanian black shales of North America. Palaeontographica Abt A 154(4-6): 107-157.

Publication Dates

  • Publication in this collection
    02 June 2021
  • Date of issue
    2021

History

  • Received
    31 July 2019
  • Accepted
    6 Dec 2020
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br