Acessibilidade / Reportar erro

Spinitectus asperus and Klossinemella iheringi , intestinal nematodes of Prochilodus lineatus (Pisces, Prochilodontidae) from the alluvial plain of the Middle Paraná River, Argentina

Abstract

Prochilodus lineatus has been considered an ecosystem engineer in the Neotropics given its influence on important ecosystem processes, and it is therefore relevant to understand their inter-specific relationships. The association of P. lineatus with parasitic helminths was studied in two isolated shallow lakes of the alluvial plain of the Middle Paraná River. Only two species of gastrointestinal nematodes were found: Spinitectus asperus (Cystidicolidae) and Klossinemella iheringi (Atractidae), with S. asperus having higher prevalence and mean intensity values. This is the first record of K. iheringi in the Middle Paraná River, Argentina, as well as the southernmost citation of S. asperus.

Key words
Endoparasite; fish parasite; Nematoda; middle Paraná River; sábalo

INTRODUCTION

Essentially, the endoparasite community in a host indicates the status of the host organism in the trophic pathways of the ecosystem (Marcogliese 2003MARCOGLIESE D. 2003. Food webs and biodiversity: Are parasites the missing link? J Parasitol 89: 106-113.). Parasites are affected by biotic and abiotic changes to the environment and are effective indicators of many aspects of host biology; thus, they are extremely useful as management and conservation tools (Marcogliese 2004MARCOGLIESE D. 2004. Parasites: Small players with crucial roles in the ecological theater. EcoHealth 1: 151-164.).

Among the fish species of the Paraná River basin, Prochilodus lineatus (Valenciennes 1836) is the most noticeable, due to its abundance and biomass and also because of its role in the trophic webs of the system (Rossi et al. 2007ROSSI LM, CORDIVIOLA DE YUAN E & PARMA MJ. 2007. Fishes. In: IRIONDO M, PAGGI JC & PARMA MJ (Eds), The Middle Paraná River. Limnology of a Subtropical Wetland. Springer-Verlag: Berlin Heidelberg, p. 305-321., Scarabotti et al. 2017SCARABOTTI P, DEMONTE LD & POUILLY M. 2017. Climatic seasonality, hydrological variability, and geomorphology shape fish assemblage structure in a subtropical floodplain. Freshw Sci 36(3): 653-668.). This species moves significantly between different habitats in the basin, which show its adaptive response to seasonal variability, synchronizing its reproduction to the flood pulse and associating the main features of its life history with changes in the hydrological cycle (Arthington et al. 2008ARTHINGTON AH, LORENZEN K, PUSEY BJ, ABELL R, HALLS AS, WINEMILLER KO, ARRINGTON DA & BARAN E. 2008. Session 3: Review River Fisheries: Ecological Basis for Management and Conservation. In: WELCOMME RL & PETR T (Eds), Proceedings of the second international symposium on the management of large rivers for fisheries, volume 1. Bangkok: FAO, p. 21-60.). Its trophic habits are detritivores, having been recognized that it feeds mainly on epiphyton and the organic matter of the benthos (Emiliani & Brandi 1972EMILIANI F & BRANDI R. 1972. Microflora del sábalo (Prochilodus platensis Holmberg) II: Microflora del fango y su relación con la nutrición del sábalo. Rev Latinoam Microbiol 13: 245-248., Bowen et al. 1984BOWEN SH, BONETTO AA & AHLEGREN MO. 1984. Microorganisms and detritus in the diet of a typical Neotropical riverine detritivore, Prochilodus platensis (Pisces, Prochilodontidae). Limnol Oceanog 29: 1120-1122., Bayo & Cordiviola de Yuan 1996BAYO V & CORDIVIOLA DE YUAN E. 1996. Food assimilation of a neotropical riverine detritivorous fish, Prochilodus lineatus, studied by fatty acid composition (Pisces, Curimatidae). Hydrobiologia 330: 81.). In studies carried out in the floodplain of the Middle Paraná River, the remarkable significance of the detritus energy pathway has been evidenced (Marchese et al. 2014MARCHESE MR, SAIGO M, ZILLI FL, CAPELLO S, DEVERCELLI M, MONTALTO L, PAPORELLO G & WANTZEN KM. 2014. Food webs of the Paraná River floodplain: assessing basal sources using stable carbon and nitrogen isotopes. Limnologica 46: 22-30., Saigo et al. 2016SAIGO M, MARCHESE M & WANTZEN KM. 2016. A closer look at the main actors of Neotropical floodplain food webs: functional classification and niche overlap of dominant benthic invertebrates in a floodplain lake of Paraná River. Iheringia Ser Zool 106: e2016004.).

In this basin, as with other large South American rivers, important fractions of the production of periphyton and macrophytes enter the aquatic trophic webs in the form of detritus, and the most important trophic pathways link organic matter and detritus with detritivore fish and their piscivorous predators. Consequently, most of the matter and energy of the aquatic food web flow through short food chains, which favors the efficiency of energy transfer from the resource base to the fish (Lewis Jr. et al. 2001LEWIS JR W, HAMILTON SH, RODRIGUEZ MA, SAUNDERS JF & LASI M. 2001. Foodweb analysis of the Orinoco floodplain based on production estimates and stable isotope data. J N Am Benthol Soc 20(2): 241-254.). With its important migratory movements throughout the basin, P. lineatus favors the exchanges of matter and energy between different compartments of the system, which is why it has been considered an “ecosystem engineer” in the Neotropics, given its influence on important ecosystem processes such as the nutrient cycle and primary and secondary production (Vitule et al. 2017VITULE JRS ET AL. 2017. We need a better understanding about functional diversity and vulnerability of tropical freshwater fishes. Biodivers Conserv 26: 757-762.).

Previous studies on the parasitic nematodes of P. lineatus have, for the most part, been carried out in Brazil, where Anisakidae gen. sp., Contracaecum sp. type II larva, Klossinemella sp., Procamallanus (Spirocamallanus) inopinatus, P. (S.) sp., Procamallanus sp., Raphidascaris sp. and Spinitectus asperus were recorded (Moravec et al. 1993MORAVEC F, KOHN A & FERNANDES BMM. 1993. Nematode parasites of fishes of the Paraná River, Brazil. Part 2. Seuratoidea, Ascaridoidea, Habronematoidea and Acuarioidea. Folia Parasitol 40: 115-134., Santos et al. 2003SANTOS SM, CECCARELLI PS & REGO RF. 2003. Helmintos em peixes do Pantanal sul-matogrossense: primeira expedição do Programa Pantanal. Bol Téc CEPTA 16: 15-26., Lizama et al. 2006LIZAMA MAP, TAKEMOTO RM & PAVANELLI GC. 2006. Parasitism influence on the hepato, splenosomatic and weight/length relation and relative condition factor of Prochilodus lineatus (Valenciennes, 1836) (Prochilodontidae) of the Upper Paraná River floodplain, Brazil. Rev Bras Parasitol Vet 15(3): 116-122., Kohn et al. 2011KOHN A, MORAVEC F, COHEN SC, CANZI C, TAKEMOTO RM & FERNANDES BMM. 2011. Helminths of freshwater fishes in the reservoir of the Hydroelectric Power Station of Itaipu, Paraná, Brazil. CheckList 7(5): 681-690., Luque et al. 2011LUQUE JL, AGUIAR JC, VIEIRA FM, GIBSON DI & PORTES SANTOS C. 2011. Checklist of Nematoda associated with the fishes of Brazil. Zootaxa 3082: 1-88., Reis et al. 2017REIS CM, SILVA CAMPOS N, TIDUKO UETA M, DA SILVA JC, CECCARELLI PS & MARQUES ALLEGRETTE S. 2017. Avaliação de parâmetros ecológicos da parasitofauna de duas espécies de peixes do Rio Mogi Guaçu, Região Sudeste do Brasil. Rev Bras Zoociênc 18(2): 91-106.). In Argentina, there is limited knowledge of the parasite fauna associated with native fish species of the Paraná-La Plata River basin (Chemes & Takemoto 2011CHEMES SB & TAKEMOTO RM. 2011. Diversity of parasites from Middle Paraná System freshwater fishes, Argentina. Int J Biodivers Conserv 3(7): 249-266., Ostrowski de Núñez et al. 2017OSTROWSKI DE NÚÑEZ M, ARREDONDO NJ & GIL DE PERTIERRA AA. 2017. Adult Trematodes (Platyhelminthes) of freshwater fishes from Argentina: a checklist. Rev Suisse Zool 124(1): 91-113.). However, some studies have been carried out, particularly, on parasite-host interaction in P. lineatus (Hamann & Lombardero 1981-1982HAMANN MI & LOMBARDERO OJ. 1981-1982. Las helmintiasis de los peces del río Paraná Superior. Veterinaria-Corrientes 2(4-5): 161-172., Hamann 1982aHAMANN MI. 1982a. Parásitos del sábalo (Prochilodus platensis Holmberg, 1889) del río Paraná Medio, República Argentina (Pisces, Tetragonopteridae). Historia Natural 2(26): 233-237., Ramallo 1999RAMALLO G. 1999. Nematodos parásitos de peces del embalse de Termas de Río Hondo, Santiago del Estero, Argentina. Bol Chil Parasitol 54: 3-6., Ramallo et al. 2000RAMALLO G, TERÁN H & TEISAIRE E. 2000. Effects produced by Spinitectus jamundensis (Nematoda, Cystidicolidae) in the stomach of the shad, Prochilodus lineatus (Pisces, Prochilodontidae). Biocell 24(1): 154., 2020, Chemes & Gervasoni 2013CHEMES SB & GERVASONI SH. 2013. Gill parasites of Prochilodus lineatus (Valenciennes, 1836) (Pisces; Prochilodontidae) in the Middle Paraná System (Argentina). Rev Bras Parasitol Vet 22(4): 619-622.).

The present study has enabled us to report on the two species of nematodes found in P. lineatus, and has broadened our knowledge of the relationship between the parasite, the host and the different environments of the Middle Paraná River.

MATERIALS AND METHODS

The fish were collected between November 2013 and April 2014, in two isolated lentic environments, Del Medio Lake (n = 11), connected to the Colastiné River (31°45´9”S; 60°45´49”W) and La Chicana Lake (n = 8), associated with the Coronda River (31°38´20”S; 60°28´48”W). It should be noted that both lakes are close to secondary channels of the Middle Paraná system and that the collections were made in periods of low water (Fig. 1). The main environmental parameters are detailed in Table I.

Figure 1
Lentic environments of the Middle Paraná System. a. Del Medio Lake, b. La Chicana Lake (adapted from Devercelli et al. 2016).
Table I
Environmental characteristics of the aquatic systems considered (taken from Devercelli et al. 2016DEVERCELLI M, SCARABOTTI P, MAYORA G, SCHNEIDER B & GIRI F. 2016. Unravelling the role of determinism and stochasticity in structuring the phytoplanktonic metacommunity of the Paraná River floodplain. Hidrobiología 764: 139-156.), obtained in two lakes of the Middle Paraná System, Argentina.

Fish collection was authorized by the Ministry of Environment of the Santa Fe province (resolution 036/18) and the care and use of animals complied with guidelines and policies of the National Research Council of Argentina (CONICET 2005CONICET (CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS). 2005. Marco Ético de Referencia para las Investigaciones Biomédicas en Animales de laboratorio, de granja y obtenidos de la naturaleza (Res.1047/05). Argentina: Buenos Aires.). Fishes were identified, measured and weighed in the field, and then were euthanized (by percussive stunning and subsequent medullar denervation). The specimens obtained in Del Medio Lake had a mean standard length (SL) = 33.8 cm (30.2 - 60.6) and weight = 832.7 g (734 - 924). Those from La Chicana Lake measured SL = 26.9 cm (14.3 - 32.3) and weighed = 622.5 g (103 - 1034). The digestive tracts were separated and preserved in 10% formalin. In the Laboratory of Natural Sciences of the Research Group in Ichtyoparasitology and Ichthyology of the Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Santa Fe, Argentina, the dissections, the exhaustive review under a stereoscopic microscope and the separation of endoparasites were performed and prepared according to Eiras et al. (2006)EIRAS JC, TAKEMOTO RM & PAVANELLI GC. 2006. Métodos de estudo e técnicas laboratoriais em parasitologia de peixes. Brasil: EDUEM, 199 p.. Parasite morphometric characteristics were carried out using a Nikon E200 binocular microscope with a graduated scale. Taxonomic keys and original articles were consulted for identification. Nematodes were stored in the Zoological Collection of the Provincial Museum Florentino Ameghino (MFA-ZI-Nd), in Santa Fe, Argentina. Measurements are expressed in microns, indicating the average value followed by the range, and the number of measurements made is shown in parentheses.

RESULTS

In both lentic environments, the presence of S. asperus was found in the intestinal tract of P. lineatus, while K. iheringi was only observed in P. lineatus from La Chicana Lake. The parasitic prevalence and mean abundance of infestation obtained for S. asperus were higher than those obtained for K. iheringi. The diagnosis of both species is presented below.

Order: Habronematoidea

Family: Cystidicolidae Skrjabin 1946

Spinitectus asperus Travassos, Artigas et Pereira 1928 (Fig. 2)

Synonymous:S. jamudensis Thatcher & Padilha 1977

Figure 2
Spinitectus asperus (Cystidicolidae). a. Anterior end. Scale bars: 20 μm. b. Vulva in the middle third of the female; c. Caudal portion of male. Scale bars: 30 μm.

Sites of infestation: stomach and intestine

Locality: Del Medio Lake

Prevalence and Mean intensity: 72.7 % (8 infected fish / 11 examined fish) and 4.63 (range 1-21) nematodes per infected fish

Locality: La Chicana Lake

Prevalence and Mean intensity: 62.5 % (5 infected fish / 8 examined fish) and 6.4 (range 2-12) nematodes per infected fish

Specimens deposited: MFA-ZI-Nd 113 (female), MFA-ZI-Nd 114 (male)

Description: Small nematodes. Cuticle with transverse rings with retrospines. Initially, the rings are relatively distant from each other, reducing the distance near the forelimb and then after spreading towards the hind limb, they disappear. Spines are fine and pointed, the longest of which were at the level of the muscular esophagus. The mouth has indistinct lips; funnel-shaped or cylindrical oral cavity; two-part esophagus. Parasites of the digestive tracts of fish.

Females: (11 specimens). Total body length: 8981.4 (5830-12699, n = 9) and maximum width 233.9 (158-291, n = 11). Distance from the anterior end to the first ring of spines: 10 (n = 1). Distance between the first ring of spines and the second: 9.2 (6-10, n = 8); between the second and third rings: 10 (8-15, n = 8) and between the third and fourth: 13.4 (7-18, n = 8). Distance from the last ring of spines to posterior end: 31 (29-33, n = 2). Ring spines length: 12.6 (9-17, n = 14). Length of prostomium: 147 (121-173, n = 2). Long muscular esophagus: 62 and long glandular esophagus: 192. Vulva in the middle third. Oviparous. Small, ellipsoidal eggs, 29.6 long (22-42, n = 12) and 16.5 wide (10-24, n = 12), sometimes with polar filaments. Tail length: 204.4 (130-281, n = 5).

Males: (8 specimens). Total body length: 4818 (3805-5743, n = 8) and maximum width: 163 (110-228, n = 8). Distance between the first ring of spines and the second: 9.5 (8-11, n = 2); between the second and third ring: 8.5 (8-9, n = 2) and between the third and fourth: 11.5 (9-14, n = 2). Length of the spines of the rings: 11.8 (8-18, n = 8). Length of prostomium: 144. Muscular esophagus length: 68 and glandular esophagus length: 452. Unequal spicules, the largest (left): 219 (116-293, n = 3) and the smallest (right): 76.8 (54-90, n = 5). Hind limb rolled up; tail wing narrow; pre-anal and post-anal papillae present (numerous 10 to 15 pairs). Tail length: 120.5 (105-136, n = 2).

Biology: The genus Spinitectus includes a group of parasitic nematodes whose life cycle includes an arthropod intermediate host and a vertebrate definitive host (F.A. Christian, unpublished data). In general, nematodes with cuticular spines invade the intestinal mucosa of the host, thus Spinitectus species are among those which cause the most severe inflammation of the intestinal wall (Thatcher 2006THATCHER VE. 2006. Vol.1: Amazon Fish Parasites (2º edition). In: ADIS J, ARIAS JR, RUEDA-DELGADO G & WANTZEN KM (Eds), Serie Aquatic Biodiversity in Latin America. Pensoft Publishers: Moscow, 509 p.).

Comments: Cited for the first time in Argentina by Hamann (1982a)HAMANN MI. 1982a. Parásitos del sábalo (Prochilodus platensis Holmberg, 1889) del río Paraná Medio, República Argentina (Pisces, Tetragonopteridae). Historia Natural 2(26): 233-237., found in the stomach of P. lineatus obtained from the confluence zone between the Paraguay and Paraná rivers, in the province of Corrientes (Fig. 4).

Order: Cosmocercoidea Railliet 1916

Family: Atractidae Railliet 1917

Klossinemella iheringi Travassos, Artigas et Pereira 1928 (Fig. 3)

Synonyms:Monhysterides iheringi Travassos, Artigas & Pereira, 1928 (Gállego-Berenguer 1947). Klossiella iheringi Costa 1960.

Figure 3
Klossinemella iheringi (Atractidae). a. Anterior end. Scale bars: 20 μm. b. Esophageal bulb. Scale bars: 30 μm. c. Gravid female eggs. Scale bars: 40 μm.

Site of infestation: Intestine

Locality: La Chicana Lake

Prevalence and Intensity of infestation: 12.5 % (1 infected fish / 8 fish examined) and 4 nematodes per infected fish.

Specimens deposited: MFA-ZI-Nd 115 (female and male)

Description: Fusiform body, thin cuticle and slightly striated transversely. Bilabiate mouth, bilobed with the appearance of a tetralabiate mouth, presenting interlabies, totaling six small lips; both chitinized formations. Forelimbs are armed with sclerotized pieces; these are Y-shaped. Depending on the contraction of the mouth, the sclerotic parts can be oriented in different ways. Esophagus made up of two portions, the anterior is muscular and cylindrical and the posterior is glandular and has a rudimentary bulb equipped with valves. The nerve ring is located in the anterior part of the second portion of the esophagus. Right and small intestine. Straight like a simple hyaline tube. The tail in both sexes is long and pointed. Parasites of fish intestine.

Females: (3 specimens). Total body length: 6837 (5542-7747, n = 3). Maximum body width: 120.3 (108-138, n = 3). Oral cavity, length: 24 (22-25, n = 2) and maximum width: 18 (15-21, n = 2). Buccal ornamentation or sclerotized pieces, length: 23.5 (22-25, n = 2). Length of the esophagus: 498 (n = 1), length of the anterior part: 509 (280-738, n = 2) and length of the posterior part (including the esophageal bulb): 308 (218-398, n = 2). Maximum width of the esophageal bulb: 44.5 (34-55, n = 2). Female monodelphs, prodelphs, viviparous, with vulva located above the anus, with anterior direction. Sacciform uterus, in gravid females, containing developing eggs and/or up to 1 to 6 well-developed larvae, simple ovary, short ovary, slightly coiled. Subulate tail. Eggs length: 72.1 (54-89, n = 9) and width: 41.3 (36-51, n = 9). Tail length: 428 (n = 1).

Male: (1 specimen). Total length of the body: 6648, maximum width of the body: 89. Oral cavity, length: 16 and maximum width: 20. Length of the lips of the mouth: 2. Sclerotized part: 20. Esophagus, entire length: 1138. Excretory pore located: 238 from the anterior end of the body. Two unequal striated spicules, the larger (left) length: 84, and the smaller (right) length: 50. Gubernacle present. Males with the hind limb rolled in a spiral, presenting 4 pairs of pre-anal papillae and 5 post-anal papillae. Thin tail, with a pointed end.

Biology: Direct evolutionary cycle, adult females can release larvae into the host’s intestine, and these develop until they reach sexual maturity. The transmission of parasites to new hosts occurs by the elimination of larvae in feces (Costa et al. 1968COSTA SCG, MOTTA SC & GOMES DC. 1968. Revisão do gênero Klossinemella Costa, 1961 (Nematoda, Cobboldinidae), com descrição de uma nova subfamília e de uma nova espécie. Mem Inst Oswaldo Cruz 66(2): 169-179.).

Comments: Recorded in the digestive tract of freshwater fish from Brazil, such as Piaractus brachypomis (type host), Mileus sp., Mylesinus paraschomburgkii, Myloplus asterias, Leporinus copelandi, L. fasciatus, Hoplias malabaricus, P. lineatus, Schizodon naspterutum, Tetrana nasopterina gen sp.; only once found in Argentina, in the intestine of Pterodoras granulosus (Costa et al. 1968COSTA SCG, MOTTA SC & GOMES DC. 1968. Revisão do gênero Klossinemella Costa, 1961 (Nematoda, Cobboldinidae), com descrição de uma nova subfamília e de uma nova espécie. Mem Inst Oswaldo Cruz 66(2): 169-179., Hamann 1982bHAMANN MI. 1982b. Parásitos en peces de la familia Doradidae del río Paraná Medio, República Argentina (Pisces, Siluriformes). Historia Natural 2(22): 193-199., Moravec & Thatcher 1997MORAVEC F & THATCHER VE. 1997. New data on the morphology and systematic status of Klossinemella iheringi (Nematoda: Atractidae) from an Amazonian serrasalmid fish. Folia Parasitol 44: 48-54., Reis et al. 2017REIS CM, SILVA CAMPOS N, TIDUKO UETA M, DA SILVA JC, CECCARELLI PS & MARQUES ALLEGRETTE S. 2017. Avaliação de parâmetros ecológicos da parasitofauna de duas espécies de peixes do Rio Mogi Guaçu, Região Sudeste do Brasil. Rev Bras Zoociênc 18(2): 91-106.) (Fig. 4).

Figure 4
Records of Spinitectus asperus and Klossinemella iheringi in South America.

DISCUSSION

There are few records of intestinal nematodes associated with P. lineatus. In the Upper Paraná River plain (Brazil), Lizama et al. (2005)LIZAMA MAP, TAKEMOTO RM & PAVANELLI GC. 2005. Influence of host sex and age on infracommunities of metazoan parasites of Prochilodus lineatus (Valenciennes, 1836) (Prochilodontidae) of the upper Paraná River floodplain, Brazil. Parasite 12: 299-304. recorded nematode Raphidascaris sp, in a very low prevalence (approximately 2%). In the case of S. asperus, in various studies carried out in Neotropical environments, it was found in different parts of the digestive tract of Prochilodontidae, including P. lineatus, P. scrofa, P. argenteus and P. reticulatus (Travassos et al. 1928TRAVASSOS L, ARTIGAS P & PEREIRA C. 1928. Fauna helminthologica dos peixes de água doce do Brasil. Arq Inst Biol (São Paulo) 1: 5-82., Fernandes et al. 1982FERNANDES MT, ARTIGAS PT & CAMPOS MS. 1982. Spinitectus asperus Travassos, Artigas et Pereira, 1928 (Nematoda, Spiruridae). Redescrição de fêmea e descrição de macho. Rev Cienc Biomed 3: 79-85., Petter & Morand 1988PETTER AJ & MORAND S. 1988. Nématodes de poisons du Paraguay. Iv. Redescription of Spinitectus jamundensis Thatcher et Padilha, 1977 (Cystidicolidae, Nematoda). Rev Suisse Zool 95: 377-384., Ramallo 1999RAMALLO G. 1999. Nematodos parásitos de peces del embalse de Termas de Río Hondo, Santiago del Estero, Argentina. Bol Chil Parasitol 54: 3-6., Santos et al. 2003SANTOS SM, CECCARELLI PS & REGO RF. 2003. Helmintos em peixes do Pantanal sul-matogrossense: primeira expedição do Programa Pantanal. Bol Téc CEPTA 16: 15-26., Monteiro et al. 2009MONTEIRO MC, SANTOS MD, ZUCHI NA & BRASIL-SATO MC. 2009. Ecological parameters of the endohelminths in relation to size and sex of Prochilodus argenteus (Actinopterygii: Prochilodontidae) from the Upper São Francisco River, Minas Gerais, Brazil. Zoologia 26: 753-757., Reis et al. 2017REIS CM, SILVA CAMPOS N, TIDUKO UETA M, DA SILVA JC, CECCARELLI PS & MARQUES ALLEGRETTE S. 2017. Avaliação de parâmetros ecológicos da parasitofauna de duas espécies de peixes do Rio Mogi Guaçu, Região Sudeste do Brasil. Rev Bras Zoociênc 18(2): 91-106., Leite et al. 2018LEITE LAR, PELEGRINI LS, AGOSTINHO BN, AZEVEDO RK & ABDALLAH VD. 2018. Biodiversity of the metazoan parasites of Prochilodus lineatus (Valenciennes, 1837) (Characiformes: Prochilodontidae) in anthropized environments from the Batalha River, São Paulo State, Brazil. Biota Neotropica 18(3): e20170422., Lehun et al. 2020LEHUN AL, HASUIKE WT, SILVA JOS, CICCHETO JRM, MICHELAN G, RODRIGUES AFC, NICOLA DN, LIMA LD, CORREIA AN & TAKEMOTO RM. 2020. Checklist of parasites in fish from the upper Paraná River floodplain: An update. Rev Braz Parasitol Vet 29(3): e008720., Ramallo et al. 2020RAMALLO G, CANCINO F, RUIZ A & AILÁN-CHOKE LG. 2020. Gastrointestinal nematodes of fish from Pilcomayo River, Argentina, including description of a new species of Procamallanus (Spirocamallanus). Zootaxa 4810(3): 468-480.). In Argentina, the records of S. asperus parasitizing P. lineatus correspond to the Paraná River in the area of its confluence with the Paraguay River, Corrientes (Hamann 1982aHAMANN MI. 1982a. Parásitos del sábalo (Prochilodus platensis Holmberg, 1889) del río Paraná Medio, República Argentina (Pisces, Tetragonopteridae). Historia Natural 2(26): 233-237.), the Río Hondo reservoir, Santiago del Estero (Ramallo 1999RAMALLO G. 1999. Nematodos parásitos de peces del embalse de Termas de Río Hondo, Santiago del Estero, Argentina. Bol Chil Parasitol 54: 3-6.) and the Pilcomayo River, Salta (Ramallo et al. 2020RAMALLO G, CANCINO F, RUIZ A & AILÁN-CHOKE LG. 2020. Gastrointestinal nematodes of fish from Pilcomayo River, Argentina, including description of a new species of Procamallanus (Spirocamallanus). Zootaxa 4810(3): 468-480.). The present record in environments of the Middle Paraná, in the province of Santa Fe, constitutes the southernmost detection of this species.

The finding of S. asperus in fish species that inhabit different hydrographic basins may indicate that the transmission of these parasites to their definitive hosts can occur through nearby intermediate hosts or those that are more abundant in their habitats. To explain the presence of this heteroxene nematode parasitizing a detritivore species, it is interesting to consider that F.A. Christian (unpublished data) confirmed under experimental conditions that the larvae of Isopoda, Ephemeroptera or Amphipoda are involved in the life cycle of S. asperus as intermediate hosts. When reviewing the contents of the digestive tract of the fish in the present study, arthropod remains were found, but they were too small and incomplete for us to carry out their taxonomic recognition. For their part, Saigo et al. (2015)SAIGO M, ZILLI FL, MARCHESE MR & DEMONTE LD. 2015. Trophic level, food chain length and omnivory in the Paraná River: a food web model approach in a floodplain river system. Ecol Res 30(5): 845-852. DOI 10.1007/s11284-015-1283-1. identified the presence of nymphs of Campsurus violaceus Needham & Murphy 1924, America baetis Klunge 1992 and Caenis Stephens 1835 (Ephemeroptera) in these environments and recorded amphipods which are also common. Probably by consuming large quantities of benthic organisms, Prochilodus lineatus can incorporate arthropods with larvae of this nematode.

In relation to K. iheringi, it was recorded in the swim bladder of P. lineatus, in Mogi Guaçu, Cachoeira de Emas (São Paulo), while in the Upper Paraná River floodplain, the genera found were associated with the intestine of Pimelodus maculatus, a siluriform, abundant in the region (Reis et al. 2017REIS CM, SILVA CAMPOS N, TIDUKO UETA M, DA SILVA JC, CECCARELLI PS & MARQUES ALLEGRETTE S. 2017. Avaliação de parâmetros ecológicos da parasitofauna de duas espécies de peixes do Rio Mogi Guaçu, Região Sudeste do Brasil. Rev Bras Zoociênc 18(2): 91-106., Lehun et al. 2020LEHUN AL, HASUIKE WT, SILVA JOS, CICCHETO JRM, MICHELAN G, RODRIGUES AFC, NICOLA DN, LIMA LD, CORREIA AN & TAKEMOTO RM. 2020. Checklist of parasites in fish from the upper Paraná River floodplain: An update. Rev Braz Parasitol Vet 29(3): e008720.). The present study constitutes the first record of K. iheringi associated with P. lineatus in Argentina and in the Middle Paraná River. Its life cycle is direct, monoxenous (Moravec 1998MORAVEC F. 1998. Nematodes of freshwater fishes of the neotropical region. Prague: Academia, 464 p.); therefore, infestation could occur by ingestion of larvae in the feces dissolved in the benthos.

The fact of having recorded K. iheringi in La Chicana, but not in Del Medio Lake, could be related to the evidence that the fish obtained in the latter were older. Several studies show that larger hosts may have greater immunity than smaller fish, since an important aspect of the specific immune response of bony fish is immunological memory (Rubio Godoy 2010RUBIO GODOY M. 2010. Inmunología de los peces óseos. Revisión. Nv Mex Cienc Pecu 1(1): 47-57.). On the other hand, there were differences in the limnological conditions of the two water bodies, which can be linked to the health status of the fish. La Chicana Lake, isolated from the nearest lotic course, small in size and during a dry period, presented high conductivity and less oxygenation than Del Medio Lake. As it has been shown, when fish are weakened by stressors, the effects of endoparasites can be worsened by the consequent depression of defense mechanisms, so an unfavorable environmental context favors the invasion of the host by a greater number of parasites (Santos et al. 2003SANTOS SM, CECCARELLI PS & REGO RF. 2003. Helmintos em peixes do Pantanal sul-matogrossense: primeira expedição do Programa Pantanal. Bol Téc CEPTA 16: 15-26.). Thus, the limnological conditions of this shallow environment could have favored the transmission of K. iheringi through contact with the eggs released into the detritus, the food source of P. lineatus. This fish, a basal species in trophic networks, participates in different energy transfer pathways that link the aquatic system and nearby terrestrial systems. The juveniles and adults of P. lineatus are preyed upon by the large predators of the river, such as surubíes (Pseudoplatystoma spp.) and dorados (Salminus brasiliensis). But numerous species of aquatic birds also include shad in their diet, such as the white heron (Egretta alba egretta), the biguá (Phalacrocorax olivaceus) and the “kingfishers’’ (Ceryle torquata, Chloroceryle amazona and Chloroceryle americana) (Beltzer & Oliveros 1981BELTZER AH & OLIVEROS OB. 1981. Alimentación de aves en el valle aluvial del río Paraná medio. II Egretta alba egretta (Gmelin, 1789) y Egretta thula thula (Molina, 1782) (Ciconiformes, Ardeidae). Ecología 6: 119-124., 1987BELTZER AH & OLIVEROS OB. 1987. Alimentación de los “Martín pescadores’’ (Ceryle torquata, Chloroceryle amazona y Chloroceryle americana) en la llanura aluvial del río Paraná medio (Coraciiformes: Alcedinidae). Ecología 8: 1-10., Oliveros & Beltzer 1983OLIVEROS OB & BELTZER AH. 1983. Alimentación del “biguá común” (Phalacrocorax olivaceus) en el valle aluvial del rio Paraná medio (Pelecaniformes, Phalacrocorididae). Neotropica 29(82): 230-255.). Considering these relationships, it is of considerable value to continue these studies to understand in greater detail the ecological role of ichthyoparasites in these complex trophic networks of the Paraná River.

ACKNOWLEDGMENTS

To P. Scarabotti and M. Devercelli for the contribution of material and information. To R. Takemoto for reviewing this manuscript. To E. Furlan for the assistance. Work carried out within the framework of the CAID Project (UNL, Argentina) N° PI 52-236, directed by M.R. Marchese “Trophic relationships in aquatic-terrestrial systems of the alluvial plain of the Middle Paraná River”.

REFERENCES

  • ARTHINGTON AH, LORENZEN K, PUSEY BJ, ABELL R, HALLS AS, WINEMILLER KO, ARRINGTON DA & BARAN E. 2008. Session 3: Review River Fisheries: Ecological Basis for Management and Conservation. In: WELCOMME RL & PETR T (Eds), Proceedings of the second international symposium on the management of large rivers for fisheries, volume 1. Bangkok: FAO, p. 21-60.
  • BAYO V & CORDIVIOLA DE YUAN E. 1996. Food assimilation of a neotropical riverine detritivorous fish, Prochilodus lineatus, studied by fatty acid composition (Pisces, Curimatidae). Hydrobiologia 330: 81.
  • BELTZER AH & OLIVEROS OB. 1981. Alimentación de aves en el valle aluvial del río Paraná medio. II Egretta alba egretta (Gmelin, 1789) y Egretta thula thula (Molina, 1782) (Ciconiformes, Ardeidae). Ecología 6: 119-124.
  • BELTZER AH & OLIVEROS OB. 1987. Alimentación de los “Martín pescadores’’ (Ceryle torquata, Chloroceryle amazona y Chloroceryle americana) en la llanura aluvial del río Paraná medio (Coraciiformes: Alcedinidae). Ecología 8: 1-10.
  • BOWEN SH, BONETTO AA & AHLEGREN MO. 1984. Microorganisms and detritus in the diet of a typical Neotropical riverine detritivore, Prochilodus platensis (Pisces, Prochilodontidae). Limnol Oceanog 29: 1120-1122.
  • CHEMES SB & GERVASONI SH. 2013. Gill parasites of Prochilodus lineatus (Valenciennes, 1836) (Pisces; Prochilodontidae) in the Middle Paraná System (Argentina). Rev Bras Parasitol Vet 22(4): 619-622.
  • CHEMES SB & TAKEMOTO RM. 2011. Diversity of parasites from Middle Paraná System freshwater fishes, Argentina. Int J Biodivers Conserv 3(7): 249-266.
  • CONICET (CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS). 2005. Marco Ético de Referencia para las Investigaciones Biomédicas en Animales de laboratorio, de granja y obtenidos de la naturaleza (Res.1047/05). Argentina: Buenos Aires.
  • COSTA SCG, MOTTA SC & GOMES DC. 1968. Revisão do gênero Klossinemella Costa, 1961 (Nematoda, Cobboldinidae), com descrição de uma nova subfamília e de uma nova espécie. Mem Inst Oswaldo Cruz 66(2): 169-179.
  • DEVERCELLI M, SCARABOTTI P, MAYORA G, SCHNEIDER B & GIRI F. 2016. Unravelling the role of determinism and stochasticity in structuring the phytoplanktonic metacommunity of the Paraná River floodplain. Hidrobiología 764: 139-156.
  • EIRAS JC, TAKEMOTO RM & PAVANELLI GC. 2006. Métodos de estudo e técnicas laboratoriais em parasitologia de peixes. Brasil: EDUEM, 199 p.
  • EMILIANI F & BRANDI R. 1972. Microflora del sábalo (Prochilodus platensis Holmberg) II: Microflora del fango y su relación con la nutrición del sábalo. Rev Latinoam Microbiol 13: 245-248.
  • FERNANDES MT, ARTIGAS PT & CAMPOS MS. 1982. Spinitectus asperus Travassos, Artigas et Pereira, 1928 (Nematoda, Spiruridae). Redescrição de fêmea e descrição de macho. Rev Cienc Biomed 3: 79-85.
  • HAMANN MI. 1982a. Parásitos del sábalo (Prochilodus platensis Holmberg, 1889) del río Paraná Medio, República Argentina (Pisces, Tetragonopteridae). Historia Natural 2(26): 233-237.
  • HAMANN MI. 1982b. Parásitos en peces de la familia Doradidae del río Paraná Medio, República Argentina (Pisces, Siluriformes). Historia Natural 2(22): 193-199.
  • HAMANN MI & LOMBARDERO OJ. 1981-1982. Las helmintiasis de los peces del río Paraná Superior. Veterinaria-Corrientes 2(4-5): 161-172.
  • KOHN A, MORAVEC F, COHEN SC, CANZI C, TAKEMOTO RM & FERNANDES BMM. 2011. Helminths of freshwater fishes in the reservoir of the Hydroelectric Power Station of Itaipu, Paraná, Brazil. CheckList 7(5): 681-690.
  • LEHUN AL, HASUIKE WT, SILVA JOS, CICCHETO JRM, MICHELAN G, RODRIGUES AFC, NICOLA DN, LIMA LD, CORREIA AN & TAKEMOTO RM. 2020. Checklist of parasites in fish from the upper Paraná River floodplain: An update. Rev Braz Parasitol Vet 29(3): e008720.
  • LEITE LAR, PELEGRINI LS, AGOSTINHO BN, AZEVEDO RK & ABDALLAH VD. 2018. Biodiversity of the metazoan parasites of Prochilodus lineatus (Valenciennes, 1837) (Characiformes: Prochilodontidae) in anthropized environments from the Batalha River, São Paulo State, Brazil. Biota Neotropica 18(3): e20170422.
  • LEWIS JR W, HAMILTON SH, RODRIGUEZ MA, SAUNDERS JF & LASI M. 2001. Foodweb analysis of the Orinoco floodplain based on production estimates and stable isotope data. J N Am Benthol Soc 20(2): 241-254.
  • LIZAMA MAP, TAKEMOTO RM & PAVANELLI GC. 2005. Influence of host sex and age on infracommunities of metazoan parasites of Prochilodus lineatus (Valenciennes, 1836) (Prochilodontidae) of the upper Paraná River floodplain, Brazil. Parasite 12: 299-304.
  • LIZAMA MAP, TAKEMOTO RM & PAVANELLI GC. 2006. Parasitism influence on the hepato, splenosomatic and weight/length relation and relative condition factor of Prochilodus lineatus (Valenciennes, 1836) (Prochilodontidae) of the Upper Paraná River floodplain, Brazil. Rev Bras Parasitol Vet 15(3): 116-122.
  • LUQUE JL, AGUIAR JC, VIEIRA FM, GIBSON DI & PORTES SANTOS C. 2011. Checklist of Nematoda associated with the fishes of Brazil. Zootaxa 3082: 1-88.
  • MARCHESE MR, SAIGO M, ZILLI FL, CAPELLO S, DEVERCELLI M, MONTALTO L, PAPORELLO G & WANTZEN KM. 2014. Food webs of the Paraná River floodplain: assessing basal sources using stable carbon and nitrogen isotopes. Limnologica 46: 22-30.
  • MARCOGLIESE D. 2003. Food webs and biodiversity: Are parasites the missing link? J Parasitol 89: 106-113.
  • MARCOGLIESE D. 2004. Parasites: Small players with crucial roles in the ecological theater. EcoHealth 1: 151-164.
  • MONTEIRO MC, SANTOS MD, ZUCHI NA & BRASIL-SATO MC. 2009. Ecological parameters of the endohelminths in relation to size and sex of Prochilodus argenteus (Actinopterygii: Prochilodontidae) from the Upper São Francisco River, Minas Gerais, Brazil. Zoologia 26: 753-757.
  • MORAVEC F. 1998. Nematodes of freshwater fishes of the neotropical region. Prague: Academia, 464 p.
  • MORAVEC F, KOHN A & FERNANDES BMM. 1993. Nematode parasites of fishes of the Paraná River, Brazil. Part 2. Seuratoidea, Ascaridoidea, Habronematoidea and Acuarioidea. Folia Parasitol 40: 115-134.
  • MORAVEC F & THATCHER VE. 1997. New data on the morphology and systematic status of Klossinemella iheringi (Nematoda: Atractidae) from an Amazonian serrasalmid fish. Folia Parasitol 44: 48-54.
  • OLIVEROS OB & BELTZER AH. 1983. Alimentación del “biguá común” (Phalacrocorax olivaceus) en el valle aluvial del rio Paraná medio (Pelecaniformes, Phalacrocorididae). Neotropica 29(82): 230-255.
  • OSTROWSKI DE NÚÑEZ M, ARREDONDO NJ & GIL DE PERTIERRA AA. 2017. Adult Trematodes (Platyhelminthes) of freshwater fishes from Argentina: a checklist. Rev Suisse Zool 124(1): 91-113.
  • PETTER AJ & MORAND S. 1988. Nématodes de poisons du Paraguay. Iv. Redescription of Spinitectus jamundensis Thatcher et Padilha, 1977 (Cystidicolidae, Nematoda). Rev Suisse Zool 95: 377-384.
  • RAMALLO G. 1999. Nematodos parásitos de peces del embalse de Termas de Río Hondo, Santiago del Estero, Argentina. Bol Chil Parasitol 54: 3-6.
  • RAMALLO G, TERÁN H & TEISAIRE E. 2000. Effects produced by Spinitectus jamundensis (Nematoda, Cystidicolidae) in the stomach of the shad, Prochilodus lineatus (Pisces, Prochilodontidae). Biocell 24(1): 154.
  • RAMALLO G, CANCINO F, RUIZ A & AILÁN-CHOKE LG. 2020. Gastrointestinal nematodes of fish from Pilcomayo River, Argentina, including description of a new species of Procamallanus (Spirocamallanus). Zootaxa 4810(3): 468-480.
  • REIS CM, SILVA CAMPOS N, TIDUKO UETA M, DA SILVA JC, CECCARELLI PS & MARQUES ALLEGRETTE S. 2017. Avaliação de parâmetros ecológicos da parasitofauna de duas espécies de peixes do Rio Mogi Guaçu, Região Sudeste do Brasil. Rev Bras Zoociênc 18(2): 91-106.
  • ROSSI LM, CORDIVIOLA DE YUAN E & PARMA MJ. 2007. Fishes. In: IRIONDO M, PAGGI JC & PARMA MJ (Eds), The Middle Paraná River. Limnology of a Subtropical Wetland. Springer-Verlag: Berlin Heidelberg, p. 305-321.
  • RUBIO GODOY M. 2010. Inmunología de los peces óseos. Revisión. Nv Mex Cienc Pecu 1(1): 47-57.
  • SAIGO M, MARCHESE M & WANTZEN KM. 2016. A closer look at the main actors of Neotropical floodplain food webs: functional classification and niche overlap of dominant benthic invertebrates in a floodplain lake of Paraná River. Iheringia Ser Zool 106: e2016004.
  • SAIGO M, ZILLI FL, MARCHESE MR & DEMONTE LD. 2015. Trophic level, food chain length and omnivory in the Paraná River: a food web model approach in a floodplain river system. Ecol Res 30(5): 845-852. DOI 10.1007/s11284-015-1283-1.
  • SANTOS SM, CECCARELLI PS & REGO RF. 2003. Helmintos em peixes do Pantanal sul-matogrossense: primeira expedição do Programa Pantanal. Bol Téc CEPTA 16: 15-26.
  • SCARABOTTI P, DEMONTE LD & POUILLY M. 2017. Climatic seasonality, hydrological variability, and geomorphology shape fish assemblage structure in a subtropical floodplain. Freshw Sci 36(3): 653-668.
  • THATCHER VE. 2006. Vol.1: Amazon Fish Parasites (2º edition). In: ADIS J, ARIAS JR, RUEDA-DELGADO G & WANTZEN KM (Eds), Serie Aquatic Biodiversity in Latin America. Pensoft Publishers: Moscow, 509 p.
  • TRAVASSOS L, ARTIGAS P & PEREIRA C. 1928. Fauna helminthologica dos peixes de água doce do Brasil. Arq Inst Biol (São Paulo) 1: 5-82.
  • VITULE JRS ET AL. 2017. We need a better understanding about functional diversity and vulnerability of tropical freshwater fishes. Biodivers Conserv 26: 757-762.

Publication Dates

  • Publication in this collection
    05 Sept 2022
  • Date of issue
    2022

History

  • Received
    20 Oct 2020
  • Accepted
    19 Oct 2021
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br