Acessibilidade / Reportar erro

Late Quaternary hydroclimate and vegetation changes in an upland lake in southeastern Amazonia

Abstract

An integrated approach considering facies, isotopic, and palynological analyses of lake sediments from the Serra Norte de Carajás, southeastern Amazonia, is presented in this work to refine paleoclimate and paleohydrological changes based on upland lake sediments during the late Quaternary. The sediments have a fining-upward deposition cycle typical of upland swamps/lakes. The origin of organic matter is autochthonous mainly related to C3 terrestrial plants, macrophytes and algae. The pollen records of Hedyosmum during the Early Pleistocene suggest lower temperatures than those observed along Holocene. In the transitional period between the Pleistocene and the Holocene, rainfall decreased, causing the retraction of the flooded area, favoring the development of marshy conditions. The Late and Middle Holocene were marked by higher temperatures and lower humidity. Afterward, the increased pollen concentration from canga and forest vegetation, macrophytes, palms, and algae suggested increased humidity in the Early Holocene. The relative contribution of forest pollen along the records indicated that drier conditions were not strong enough for an extensive expansion of canga over forested areas.

Key words
Amazonia; Holocene; paleopalynology; paleovegetation; paleoclimate

INTRODUCTION

The Amazon tropical forests play an important role as a C sink, although not completely understood, Nobre & Nobre (2002)NOBRE CA & NOBRE AD. 2002. O balanço de carbono da Amazônia brasileira. Estudos Avançados 16: 81-90. https://doi.org/10.1590/S0103-40142002000200006.
https://doi.org/10.1590/S0103-4014200200...
suggest that the forest may be absorbing about of 0.5 gigatons of carbon per year, affecting actions to mitigate and control global emissions that seek to stabilize the concentration of greenhouse gases in the atmosphere. However, the mechanisms responsible for the functioning of the forest as a sink to offset emissions due to changes in land use are still unknown (Nobre & Nobre 2002NOBRE CA & NOBRE AD. 2002. O balanço de carbono da Amazônia brasileira. Estudos Avançados 16: 81-90. https://doi.org/10.1590/S0103-40142002000200006.
https://doi.org/10.1590/S0103-4014200200...
).

The Amazon basin is an essential part of maintaining the hydrological system of South America, through the evapotranspiration process contributing to the formation of clouds and rain (Bush et al. 2011BUSH MB, GOSLING WD & COLINVAUX PA. 2011. Climate and vegetation change in the lowlands of the Amazon Basin, p. 61-84. In: Tropical Rainforest Responses to Climatic Change. New York: Springer-Praxis Books. https://doi.org/10.1007/978-3-642-05383-2_3.
https://doi.org/10.1007/978-3-642-05383-...
). Studies of past and present climatic dynamics in this region are essential, since climatic events play an important role in structuring the forest, and can affect human health and the region’s economy.

The establishment of this climate pattern is related to the Andean orogeny during the Upper Cenozoic, when the paleoaltitudes of this mountain range became an orographic barrier, trapping moist air masses from the ocean (Vonhof & Kaandorp 2010VONHOF HB & KAANDORP RJG. 2010. Climate variation in Amazonia during the Neogene and the Quaternary. In: Amazonia, landscape and species evolution: a look into the past. Oxford: Wiley-Blackwell Publishing, p. 201-210.). This climatic scenario favored an intense modeling of the landscape that culminated in the evolution of the Amazon lateritic profiles (Costa 1991COSTA ML. 1991. Aspectos geológicos dos lateritos da Amazônia. Rev Bras Geoci 21(2): 146-160. https://www.ppegeo.igc.usp.br/index.php/rbg/article/view/11750/11287.), and the development of extensive doliniform features, including upland lakes. These lakes were the target of several studies, which demonstrated the paleoclimatic dynamics of the Amazon during the Late Quaternary (e.g., Absy et al. 1991ABSY ML, CLEEF AM, FORNIER M, MARTIN L, SERVANT M, SIFEDDINE A, FERREIRA SM, SOUBIÈS F, SUGUIO K & TURCQ B. 1991. Mise en évidence de quatre phases d’ouverture de la forêt dense dans le sud-est de L’Amazonie au cours des 60,000 dernières années. Première comparaison avec d’autres régions tropicales. Comptes Rendues Academie des Sciences 312: 673-678., Birks et al. 2016BIRKS HJB, FELDE VA, BJUNE AE, GRYTNES JA, SEPPÃ H & GIESECKE T. 2016 Does pollen-assemblage richness) reflect floristic richness? A review of recent developments and future challenges. Rev Palaeobot Palynol 228: 1-25. https://doi.org/10.1016/j.revpalbo.2015.12.011.
https://doi.org/10.1016/j.revpalbo.2015....
, Bush et al. 2004BUSH MB, OLIVEIRA PE & COLINVAUX PA. 2004. Amazonian paleoecological histories: one hill, 3 watersheds. Palaeogeogr Palaeoclimatol Palaeoecol 214: 359-393. https://doi.org/10.1016/j.palaeo.2004.07.031.
https://doi.org/10.1016/j.palaeo.2004.07...
, Colinvaux & De Oliveira 2000COLINVAUX PA & DE OLIVEIRA PE. 2000. Palaeoecology and climate of the Amazon basin during the last glacial cycle. J Quatern Sci 15: 347-356. https://doi.org/10.1002/1099-1417(200005)15:4%3C347::AID-JQS537%3E3.0.CO;2-A.
https://doi.org/10.1002/1099-1417(200005...
, Cheng et al. 2013CHENG H, SINHA A, CRUZ FW, WANG X, EDWARDS RL, D’ HORTA FM, RIBAS CC, VUILLE M, STOTT LD & AULER AS. 2013. Climate change patterns in Amazonia and biodiversity. Nature 4: 1411. https://doi.org/10.1038/ncomms2415.
https://doi.org/10.1038/ncomms2415...
, Cohen et al. 2014COHEN MCL, ROSSETTI DF, PESSENDA LCR, FRIAES YS & OLIVEIRA PE. 2014. Late Pleistocene glacial forest of Humaitá-Western Amazonia. Palaeogeogr Palaeoclimatol Palaeoecol 415: 37-47. https://doi.org/10.1016/j.palaeo.2013.12.025.
https://doi.org/10.1016/j.palaeo.2013.12...
, Colinvaux et al. 1996COLINVAUX PA, LIU KB, OLIVEIRA P, BUSH MB, MILLER MC & KANNAN MS. 1996. Temperature depression in the lowland tropics in glacial times. Climatic Change 32: 19-33. https://doi.org/10.1007/BF00141276.
https://doi.org/10.1007/BF00141276...
, 2001COLINVAUX PA, IRION G, RÄSÄNEN M, BUSH MB & MELLO JASN. 2001. A paradigm to be discarded: geological and paleoecological data falsify the Haffer and Prance refuge hypothesis of Amazonian speciation. Amazoniana 16: 609-646., D’Apolito et al. 2013D’APOLITO C, ABSY ML & LATRUBESSE EM. 2013. The Hill of Six Lakes revisited: new data and re-evaluation of a key Pleistocene Amazon site. Quatern Sci Rev 76: 140-155. https://doi.org/10.1016/j.quascirev.2013.07.013.
https://doi.org/10.1016/j.quascirev.2013...
, Guimarães et al. 2016GUIMARÃES JFT, SAHOO PK, SOUZA-FILHO PWM, MAURITY CW, SILVA JÚNIOR RO, COSTA FR & DALL’AGNOL R. 2016 Late Quaternary environmental and climate changes registered in lacustrine sediments of the Serra Sul de Carajás, south-east Amazonia. J Quatern Sci 31: 61-64. https://doi.org/10.1002/jqs.2839.
https://doi.org/10.1002/jqs.2839...
, 2017GUIMARÃES JTF, SAHOO PK & REIS LS. 2018. Modern pollen rain raises doubts about the intensity and extension of the Last Glacial Cycle in Carajás: A reply to D’Apolito et al. Holocene 28: 332-335. https://doi.org/10.1177/0959683617721334.
https://doi.org/10.1177/0959683617721334...
, Reis et al. 2017REIS LS, GUIMARÃES JTF, SOUZA-FILHO PWM, SAHOO PK, FIGUEIREDO MMJC, SOUZA EB & GIANNINI TC. 2017. Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quatern Int 449: 1-23. https://doi.org/10.1016/j.quaint.2017.04.031.
https://doi.org/10.1016/j.quaint.2017.04...
, Sifeddine et al. SIFEDDINE A, FRÖHLICH F, FOURNIER M, MARTIN L, SERVANT M, SOUBIÉS F, TURCO B, SUGUIO K & VOLKMER-RIBEIRO C.1994. La sédimentation lacustre indicateur de changements des paléoenvironnements au cous des 30000 dernières annèes (Carajás, Amazonie, Brésil). Compte Rendus de I’Academie des Sciences 318: 1645-1652.2001, Van De Hammen & Absy 1994VAN DE HAMMEN T & ABSY ML. 1994. Amazonia during the last glacial. Palaeogeogr Palaeoclimatol Palaeoecol 109: 247-261. https://doi.org/10.1016/0031-0182(94)90178-3.
https://doi.org/10.1016/0031-0182(94)901...
). However, these studies assumed that glacial-interglacial climate variations caused different responses in the forest composition. Some of them stated that in drier conditions, areas of open vegetation, such as savannas, advanced over forested areas (Absy et al. 1991ABSY ML, CLEEF AM, FORNIER M, MARTIN L, SERVANT M, SIFEDDINE A, FERREIRA SM, SOUBIÈS F, SUGUIO K & TURCQ B. 1991. Mise en évidence de quatre phases d’ouverture de la forêt dense dans le sud-est de L’Amazonie au cours des 60,000 dernières années. Première comparaison avec d’autres régions tropicales. Comptes Rendues Academie des Sciences 312: 673-678., Sifeddine et al. SIFEDDINE A, MARTIN L, TURCQ B, VOLKMER-RIBEIRO C, SOUBIÈS F, CORDEIRO RC & SUGUIO K. 2001. Variations in the Amazonian rainforest environment: A sedimentological record covering 30,000 years. Paleogeogr Paleoclimatol Paleoecol 168: 221-235. https://doi.org/10.1016/S0031-0182(00)00256-X.
https://doi.org/10.1016/S0031-0182(00)00...
2001, Turcq et al. 2002TURCQ B, ALBUQUERQUE ALS, CORDEIRO RC, SIFEDDINE A, SIMOES FILHO FFL, SOUZA AG, ABÃO JJ, OLIVEIRA FBL & SILVA AO. 2002. Capitâneo, J Accumulation of organic carbon in five Brazilian lakes during the Holocene. Sedimentary Geology 148: 319-342. https://doi.org/10.1016/S0037-0738(01)00224-X.
https://doi.org/10.1016/S0037-0738(01)00...
, Cordeiro et al. 2008CORDEIRO RC, TURCQ B, SUGUIO K, DA SILVA AO, SIFEDDINE A & RIBEIRO CV. 2008. Holocene fires in East Amazonia (Carajás), new evidences, chronology and relation with palaeoclimate. Global Planet Change 61: 49-62. https://doi.org/10.1016/j.gloplacha.2007.08.005.
https://doi.org/10.1016/j.gloplacha.2007...
, Hermanowski et al. 2012HERMANOWSKI B, COSTA ML, CARVALHO AT & BEHLING H. 2012. Palaeoenvironmental dynamics and underlying climatic changes insoutheast Amazonia (Serra Sul de Carajás, Brazil) during thelate Pleistocene and Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 365-366: 227–246. https://doi.org/10.1016/j.palaeo.2012.09.030.
https://doi.org/10.1016/j.palaeo.2012.09...
, 2014, D’Apolito et al. 2017D’APOLITO C, LATRUBESSE EM & ABSY ML. 2017. Results confirm a relatively dry setting during the last glacial (MIS 3 and LGM) in Carajás, Amazonia: A comment on Guimarães et al. The Holocene 28: 1-2. http://dx.doi.org/10.1177/0959683617721333.
https://doi.org/10.1177/0959683617721333...
), in opposition to the hypothesis of forest stability (Colinvaux et al. 1996COLINVAUX PA, LIU KB, OLIVEIRA P, BUSH MB, MILLER MC & KANNAN MS. 1996. Temperature depression in the lowland tropics in glacial times. Climatic Change 32: 19-33. https://doi.org/10.1007/BF00141276.
https://doi.org/10.1007/BF00141276...
, Bush 2002BUSH MB. 2002. On the interpretation of fossil Poaceae pollen inthe lowland humid neotropics. Palaeogeography, Palaeoclimatology, Palaeoecology 177: 5-17. https://doi.org/10.1016/S0031-0182(01)00348-0, Guimarães et al. 2016GUIMARÃES JFT, SAHOO PK, SOUZA-FILHO PWM, MAURITY CW, SILVA JÚNIOR RO, COSTA FR & DALL’AGNOL R. 2016 Late Quaternary environmental and climate changes registered in lacustrine sediments of the Serra Sul de Carajás, south-east Amazonia. J Quatern Sci 31: 61-64. https://doi.org/10.1002/jqs.2839.
https://doi.org/10.1002/jqs.2839...
, 2017, 2023aGUIMARÃES JTF ET AL. 2023a. Landscape and Climate Changes in Southeastern Amazonia from Quaternary Records of Upland Lakes. Atmosphere 14: 621. https://doi.org/10.3390/atmos14040621.
https://doi.org/10.3390/atmos14040621...
, Reis et al. 2017REIS LS, GUIMARÃES JTF, SOUZA-FILHO PWM, SAHOO PK, FIGUEIREDO MMJC, SOUZA EB & GIANNINI TC. 2017. Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quatern Int 449: 1-23. https://doi.org/10.1016/j.quaint.2017.04.031.
https://doi.org/10.1016/j.quaint.2017.04...
, 2022). However, Amazonian tree cover can be quite resilient to reduced precipitation (Kukla et al. 2021KUKLA T, AHLSTRÖM A, MAEZUMI SY, CHEVALIER M, ZHENGYAO L, WINNINCK WJ & CLAMBERLAIN CP. 2021. The resilience of Amazon tree cover to past and present drying. Global Planet. Change 202: 103520. https://doi.org/10.1016/j.gloplacha.2021.103520.
https://doi.org/10.1016/j.gloplacha.2021...
), questioning the widespread opening of forests during glacial times (Reis et al. 2022REIS LS, BOULOUBASSI I, MENDEZ-MILLAN M, GUIMARÃES JTF, ROMEIRO LA, SAHOO PK & PESSENDA LCR. 2022. Hydroclimate and vegetation changes in southeastern Amazonia over the past ~25,000 years. Quatern Sci Rev 284: 107466. https://doi.org/10.1016/j.quascirev.2022.107466.
https://doi.org/10.1016/j.quascirev.2022...
), or strengthening the occurrence of isolated dry corridors of precipitation (Bush 2017BUSH M. 2017. The resilience of Amazonian forests. Nature 541: 167-168. https://doi.org/10.1038/541167a.
https://doi.org/10.1038/541167a...
), or wider networks of gallery or riparian forests connecting different biomes (De Oliveira et al. 1999DE OLIVEIRA PE, BARRETO AMF & SUGUIO K. 1999. Late Pleistocene/Holocene climatic and vegetational history of the Brazilian caatinga: the fossil dunes of the middle São Francisco River. Palaeogeogr Palaeoclimatol Palaeoecol 152: 319-337. https://doi.org/10.1016/S0031-0182(99)00061-9.
https://doi.org/10.1016/S0031-0182(99)00...
, Werneck et al. 2012WERNECK FP, NOGUEIRA C, COLLI GR, SITES JW & COST GC. 2012. Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J Biogeogr 39: 1695-1706. https://doi.org/10.1111/j.1365-2699.2012.02715.x.
https://doi.org/10.1111/j.1365-2699.2012...
). In addition, upland areas of this region may be more stable to climate change due to the orographic rainfall effect (e.g. Galán 1992GALÁN C. 1992. El Clima. In: Huber O (Ed), Chimantá. Escudo de Guayana, Venezuela. Un Ensayo Ecológico Tepuyano. Oscar Todtmann Editores, Caracas, p. 37-52.).

The upland lakes of the Carajás Forest, in the southeast of the Amazonia, are important natural traps that hold valuable records for paleoclimatic and paleoenvironmental studies of the late Quaternary (Cordeiro et al. 2008CORDEIRO RC, TURCQ B, SUGUIO K, DA SILVA AO, SIFEDDINE A & RIBEIRO CV. 2008. Holocene fires in East Amazonia (Carajás), new evidences, chronology and relation with palaeoclimate. Global Planet Change 61: 49-62. https://doi.org/10.1016/j.gloplacha.2007.08.005.
https://doi.org/10.1016/j.gloplacha.2007...
, Costa et al. 2005COSTA ML, CARMO MS & BEHLING H. 2005. Mineralogia e geoquímica de sedimentos lacustres com substrato laterítico na Amazônia Brasileira. Rev Bras Geoci 35: 165-176. http://dx.doi.org/10.25249/0375-7536.2005352165176.
https://doi.org/10.25249/0375-7536.20053...
, Guimarães et al. 2014GUIMARÃES JTF ET AL. 2014. Source and distribution of pollen and spores in surface sediments of a plateau lake in southeastern Amazonia. Quatern Int 352: 181-196. https://doi.org/10.1016/j.quaint.2014.06.004.
https://doi.org/10.1016/j.quaint.2014.06...
, 2016, Reis et al. 2017REIS LS, GUIMARÃES JTF, SOUZA-FILHO PWM, SAHOO PK, FIGUEIREDO MMJC, SOUZA EB & GIANNINI TC. 2017. Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quatern Int 449: 1-23. https://doi.org/10.1016/j.quaint.2017.04.031.
https://doi.org/10.1016/j.quaint.2017.04...
, Sifeddine et al. SIFEDDINE A, FRÖHLICH F, FOURNIER M, MARTIN L, SERVANT M, SOUBIÉS F, TURCO B, SUGUIO K & VOLKMER-RIBEIRO C.1994. La sédimentation lacustre indicateur de changements des paléoenvironnements au cous des 30000 dernières annèes (Carajás, Amazonie, Brésil). Compte Rendus de I’Academie des Sciences 318: 1645-1652.2001, Soubies et al. 1991SOUBIES F, SUGUIO K, MARTIN L, LEPRUN JC, SERVANT M, TURCQ B, FOUMIER M, DELAUNE M & SIFEDDINE A. 1991. The Quaternary lacustrine deposits of the Serra dos Carajás (state of Pará, Brazil): ages and other preliminary results. Boletim IG-USP 8: 223-243. https://doi.org/10.11606/issn.2317-8078.v0i8p223-243.
https://doi.org/10.11606/issn.2317-8078....
). These lakes formed on lateritic crust (Sahoo et al. 2015SAHOO PK, SOUZA-FILHO PWM, GUIMARÃES JTF, SILVA MS, COSTA FR, MANES CO, OTI D, SILVA JÚNIOR R & DALL’AGNOL R. 2015. Use of multi-proxy approaches to determine the origin and depositional processes in modern lacustrine sediments: Carajás Plateau, Southeastern Amazon, Brazil. Appl Geochem 52: 130-146. https://doi.org/10.1016/j.apgeochem.2014.11.010.
https://doi.org/10.1016/j.apgeochem.2014...
), and can be hydrologically active or inactive/filled, with restricted drainage basins (Guimarães et al. 2017GUIMARÃES JTF ET AL. 2017. Modern pollen rain as a background for palaeoenvironmental studies in the Serra dos Carajás, southeastern Amazonia. The Holocene 27: 1055-1066. http://dx.doi.org/10.1177/0959683616683260.
https://doi.org/10.1177/0959683616683260...
). Water levels are governed by natural processes, such as evaporation and precipitation (Sahoo et al. 2015SAHOO PK, SOUZA-FILHO PWM, GUIMARÃES JTF, SILVA MS, COSTA FR, MANES CO, OTI D, SILVA JÚNIOR R & DALL’AGNOL R. 2015. Use of multi-proxy approaches to determine the origin and depositional processes in modern lacustrine sediments: Carajás Plateau, Southeastern Amazon, Brazil. Appl Geochem 52: 130-146. https://doi.org/10.1016/j.apgeochem.2014.11.010.
https://doi.org/10.1016/j.apgeochem.2014...
). The analysis of these data is essential to understanding the dynamics of the climate and the forest throughout the late Quaternary.

Together with palynological analyses, C and N isotopes were very important to elucidate factors related to floristic composition, history of plant communities and sources of organic matter in Carajás lakes (Guimarães et al. 2023a). A detailed characterization of the organic matter components is a challenge, since it presents multiple sources, representing dynamic components of the sediments (Pereira et al. 2022PEREIRA VB, LOPES AA, SASSO MAD, AMORA-NOGUEIRA L, FONSECA T, MAROTTA H, CORDEIRO RC & AZEVEDO AD. 2022. Geochemistry of organic matter by multi-proxy analyses and temperature sensitivity of methanogenesis in clearwater Amazonian lake sediments. Appl Geochem 146: 105467. https://doi.org/10.1016/j.apgeochem.2022.105467.
https://doi.org/10.1016/j.apgeochem.2022...
). Facies analysis identifies the nature and scale of the physical processes that act in each sedimentary environment, with greater robustness in the interpretation of paleoenvironmental changes and in the distribution of vegetation in tropical forests during the Pleistocene-Holocene (Reis et al. 2017REIS LS, GUIMARÃES JTF, SOUZA-FILHO PWM, SAHOO PK, FIGUEIREDO MMJC, SOUZA EB & GIANNINI TC. 2017. Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quatern Int 449: 1-23. https://doi.org/10.1016/j.quaint.2017.04.031.
https://doi.org/10.1016/j.quaint.2017.04...
, Guimarães et al. 2021GUIMARÃES JTF ET AL. 2021. Lake sedimentary processes and vegetation changes over the last 45k cal a BP in the uplands of south-eastern Amazonia. J Quatern Sci 36: 255-272. https://doi.org/10.1002/jqs.3268.
https://doi.org/10.1002/jqs.3268...
).

Therefore, climate changes recorded in lake sediments can provide information about how the climate and environment have changed in the past and describe the history of vegetation and biodiversity in the region. This information can be used to predict how the region may be affected by future climate changes and to develop strategies to adapt and mitigate losses in biodiversity, which is important for the conservation of local fauna and flora (Guimarães et al. 2016GUIMARÃES JFT, SAHOO PK, SOUZA-FILHO PWM, MAURITY CW, SILVA JÚNIOR RO, COSTA FR & DALL’AGNOL R. 2016 Late Quaternary environmental and climate changes registered in lacustrine sediments of the Serra Sul de Carajás, south-east Amazonia. J Quatern Sci 31: 61-64. https://doi.org/10.1002/jqs.2839.
https://doi.org/10.1002/jqs.2839...
). This study aims to (I) describe the paleoclimatic changes that occurred in the late Pleistocene and in the Holocene. In addition, (II) analyze the impact of long periods of low rainfall on the structure of the forest landscape. Therefore, it presents an integrated approach based on depositional, carbon and nitrogen isotopes, and palynological analyses.

STUDY AREA

Geology and physiography

The study area is located in the Igarapé Geladinho sub-basin that is part of the Itacaiúnas River Watershed in the southeastern portion of the Amazon region (Figure 1). This sub-basin is inserted in the Carajás Basin, and locally are represented by the following geological units: 1) metavolcano-sedimentary sequences of the Igarapé Gigarra and Parauapebas formations (Macambira 2003MACAMBIRA JB. 2003. O ambiente deposicional da Formação Carajás e uma proposta de modelo evolutivo para a Bacia Grão Pará. Universidade de Campinas. São Paulo. Ph.D. Thesis. Available at: http://repositorio.ufpa.br/jspui/handle/2011/9921., Martins et al. 2017MARTINS PLG, TOLEDO CLB, SILVA AM, CHEMALE JR F, SANTOS JOS, ASSIS LM. 2017. Neoarchean Magmatism in the Southeastern Amazonia Craton, Brazil: Petrography, Geochemistry and Tectonic Significance of Basalts from the Carajás Basin. Precambrian Research 302: 340-357. https://doi.org/10.1016/j.precamres.2017.10.013.
https://doi.org/10.1016/j.precamres.2017...
), 2) banded-iron formations (BIFs) of the Carajás Formation (Beisiegel et al. 1973BEISIEGEL VR, BERNARDELLI AL, DRUMMOND NF, RUFF AW & TREMAINE JW. 1973. Geologia e recursos minerais da Serra dos Carajás. Rev Bras Geoci 3(4): 215-242.), 3) altered granodiorites and monzogranites of the Igarapé Gelado Metagranite (Barbosa 2004BARBOSA JPO. 2004. Geologia estrutural, geoquímica, petrografia e geocronologia dos granitos da região do Igarapé Gelado, Província Mineral de Carajás. Dissertação de Mestrado em Geologia e Geoquímica. Universidade Federal do Pará, 92 p. (Unpublished).), and mature Fe-Al lateritic crusts located around 600-800 m altitude (Figure 1a, b).

Figure 1
a) geological map of the drainage basin in which the Trilha da Mata Lake (TML) is inserted, with its b) hypsometric data; c) location of the Trilha da Mata Lake (TML) and related canga vegetation (Cv); d) Aerial photography showing different vegetation types of the TML area: rainforest, canga vegetation (Cv), and hydromorphic vegetation (Hv). Detail of the inactive lake showing the core collection points with colored circles.

Considering the lateritic crusts, the Cenozoic tropical paleoclimate favored extensive weathering events in the region, contributing to the development of mature laterites, which were mainly derived from metavolcano-sedimentary rocks and BIFs (Vasconcelos et al. 1994VASCONCELOS PM, BECKER TA, RENNE PR, BRIMHALL GH. 1994. Direct dating of weathering phenomena by K-Ar and 40Ar/39Ar analysis of supergene-Mn oxides. Geochim. Cosmochim. Acta 58:1635–1665., Maurity & Kotschoubey 1995MAURITY CW & KOTSCHOUBEY B. 1995. Evolução recente da cobertura de alteração no Plato N1- Serra dos Carajás-PA. Degradação, pseudocarstificação, espeleotemas. Boletim do Museu Para. Emílio Goeldi Série Ciências da Terra 7: 331-362.). Upland lakes were formed according to neotectonic and weathering events that affected the lateritic crusts (Maurity & Kotschoubey 1995MAURITY CW & KOTSCHOUBEY B. 1995. Evolução recente da cobertura de alteração no Plato N1- Serra dos Carajás-PA. Degradação, pseudocarstificação, espeleotemas. Boletim do Museu Para. Emílio Goeldi Série Ciências da Terra 7: 331-362.).

Vegetation and climate

Canga formations occur on the top of plateaus at an average altitude of 670 m over lateritic crusts (Secco & Mesquita 1983SECCO RS & MESQUITA AL. 1983. Nota sobre a vegetação de canga da Serra Norte. Boletim do Museu Paraense Emílio Goeldi 59: 1-13., Souza-Filho et al. 2019SOUZA-FILHO PW, GIANNINI TC, JAFFÉ R, GIULIETTI AM, SANTOS DC, NASCIMENTO JÚNIOR WR, GUIMARÃES JTF, COSTA MF, IMPERATRIZ-FONSECA VL & SIQUEIRA JO. 2019. Mapping and quantification of ferruginous outcrop savannas in the Brazilian Amazon: A challenge for biodiversity conservation. PLOS One. 14: 1-20. https://doi.org/10.1371/journal.pone.0211095.
https://doi.org/10.1371/journal.pone.021...
). Soil properties are the main factors affecting vegetation composition. Canga forest patches and rainforests share few species, a consequence of the different nutrient and water requirements between these vegetation structures (Mitre et al. 2018MITRE SK, MARDEGAN SF, CALDEIRA CF, RAMOS SJ, FURTINI NETO AE, SIQUEIRA JO & GASTAUER M. 2018. Nutrient and water dynamics of Amazonian canga vegetation differ among physiognomies and from those of other neotropical ecosystems. Plant Ecology 219: 1341-1353. https://doi.org/10.1007/s11258-018-0883-6.
https://doi.org/10.1007/s11258-018-0883-...
). Tropical forests are predominant in the slopes of the plateaus. The canga presents a rich mosaic of open and shrubby vegetation types that occurs on ferruginous crust, directly related to this substrate (Secco & Mesquita 1983SECCO RS & MESQUITA AL. 1983. Nota sobre a vegetação de canga da Serra Norte. Boletim do Museu Paraense Emílio Goeldi 59: 1-13., Viana et al. 2016VIANA PL ET AL. 2016. Flora of the cangas of the Serra dos Carajás, Pará, Brazil: history study area and methodology. Rodriguésia 67: 1107-1124. https://doi.org/10.1590/2175-7860201667501).

Despite the similarity of the type of substrate the cangas that occur in the southeastern region (Quadrilátero Ferrífero, in Minas Gerais) and the center-west (Corumbá, in Mato Grosso do Sul) of Brazil, the phytogeographic played a determining role in the floristic identity of the Carajás cangas. These are areas with high species richness that have more than 1000 terrestrial species documented in about 120 km2 and unique floristic composition, including several endemic species that frame the Carajás region as a key area of biodiversity and important for the conservation of the flora Amazonian (Giulietti et al. 2019GIULIETTI AM, GIANNINI TC, MOTA NFO & WATANABE MTC. 2019. Edaphic Endemism in the Amazon: Vascular Plants of the canga of Carajás, Brazil. The Botanical Review 85: 357-383. https://doi.org/10.1007/s12229-019-09214-x.
https://doi.org/10.1007/s12229-019-09214...
, Mota et al. 2018MOTA NFO, WATANABE MTC, ZAPPI DC, HIURA AL, OALLOS J, VIVEROS RS, GIULIETTI AM & VIANA PL. 2018. Amazon canga: the unique vegetation of Carajás revealed by the list of seed plants. Rodriguésia 69: 1435-1488. https://doi.org/10.1590/2175-7860201869336.
https://doi.org/10.1590/2175-78602018693...
, Zappi et al. 2019ZAPPI DC, MORO MF, WALKER B, MEAGHER T, VIANA PL, MOTA NFO, WATANABE MTC & LUGHADHA EM. 2019. Plotting a future for Amazonian canga vegetation in a campo rupestre context. PLoS One 14(8): e0219753. https://doi.org/10.1371/journal.pone.0219753.
https://doi.org/10.1371/journal.pone.021...
). The speciation of canga species is a result of their isolation imposed by the surrounding vegetation that reduces gene flow between mountain tops (Lanes et al. 2018LANES ÉC ET AL. 2018. Landscape Genomic Conservation Assessment of a Narrow-Endemic and a Widespread Morning Glory From Amazonian Savannas. Frontiers in Plant Science 9: 532. https://doi.org/10.3389/fpls.2018.00532.
https://doi.org/10.3389/fpls.2018.00532...
, Moraes et al. 2012MORAES EM, PEREZ MF, TÉO MF, ZAPPI DC, TAYLOR NP & MACHADO MC. 2012. Cross-species amplification of microsatellites reveals incongruence in the molecular variation and taxonomic limits of the Pilosocereus aurisetus group (Cactaceae). Genetica 140: 277-285. https://doi.org/10.1007/s10709-012-9678-1.
https://doi.org/10.1007/s10709-012-9678-...
, Pereira et al. 2007PEREIRA ACS, BORBA E & GIULIETTI AM. 2007. Genetic and morphological variability of the endangered Syngonanthus mucugensis Giul. (Eriocaulaceae) from the Chapada Diamantina, Brazil: implications for conservation and taxonomy. Botanical J Linn Soc 153: 401-416. https://doi.org/10.1111/j.1095-8339.2007.00624.x.
https://doi.org/10.1111/j.1095-8339.2007...
). In the rupestrian fields of canga de Carajás 58 taxa were recognized as acknowledged endemics, including 53 angiosperms and five ferns and lycophytes. In the Carajás National Forest, nine taxa were considered highly restricted endemic: Araceae: Philodendron carajasense EG Gonç. & A.J. Arruda; Asteraceae: Cavalcantia glomerata (GMBarroso & RMKing) RMKing & H.Rob., Lepidaploa paraenses (H.Rob.) H.Rob.; Erythroxylaceae: Erythroxylum carajasense (Plowman) Costa-Lima, E. nelson-rosae Plowman; Gesneriaceae: Sinningia minima A.O.Araujo & Chautems; Picramniaceae: Picramnia ferrea Pirani & W.W.Thomas and Poaceae: Bulbostylis cangae CS Nunes & A. Gil, Paspalum cangarum CO Moura, PLViana & RC Oliveira (Giulietti et al. 2019GIULIETTI AM, GIANNINI TC, MOTA NFO & WATANABE MTC. 2019. Edaphic Endemism in the Amazon: Vascular Plants of the canga of Carajás, Brazil. The Botanical Review 85: 357-383. https://doi.org/10.1007/s12229-019-09214-x.
https://doi.org/10.1007/s12229-019-09214...
).

The regional climate is tropical monsoon (Am), according to the Koppen classification system (Lopes et al. 2013LOPES MNG, DE SOUZA EB & FERREIRA DBS. 2013. Climatologia regional da precipitação no Estado do Pará. Rev Bras Climatol 12: 84-102. https://doi.org/10.5380/abclima.v12i1.31402.
https://doi.org/10.5380/abclima.v12i1.31...
). The rainfall regime is characterized by two seasons: a rainy season from November to May (1863-1545 mm-1 yr) and a dry season from November to April (321-159 mm-1 yr) (Lopes et al. 2013LOPES MNG, DE SOUZA EB & FERREIRA DBS. 2013. Climatologia regional da precipitação no Estado do Pará. Rev Bras Climatol 12: 84-102. https://doi.org/10.5380/abclima.v12i1.31402.
https://doi.org/10.5380/abclima.v12i1.31...
, Silva Júnior et al. 2017SILVA JÚNIOR RO, QUEIROZ JCB, FERREIRA DBS, TAVARES AL, SOUZA-FILHO PWM, GUIMARÃES JTF & ROCHA EJP. 2017. Estimativa de precipitação e vazões médias para a bacia hidrográfica do rio Itacaiúnas (BHRI), Amazônia Oriental, Brasil (Estimation of Precipitation and average Flows for the Itacaiúnas River Watershed (IRW) - Eastern Amazonia, Brazil). Rev Bras Geogr Fís 10: 1638-1654. https://doi.org/10.26848/rbgf.v.10.5.p1638-1654.
https://doi.org/10.26848/rbgf.v.10.5.p16...
). The band of convective clouds in the Intertropical Convergence Zone is the main meteorological system that affects the rainfall regime during the rainy season. In the dry season, this regime is influenced by frontal systems, which are responsible for convective activity in eastern Amazonia (Souza et al. 2017SOUZA EB, FERREIRA DBS, GUIMARÃES JTF, FRANCO VS, AZEVEDO FTM, MORAES BC & SOUZA PJOP. 2017. Padrões climatológicos e tendências da precipitação nos regimes chuvoso e seco da Amazônia oriental. Revista Brasileira de Climatologia 21: 81-93. http://dx.doi.org/10.5380/abclima.v21i0.41232.
https://doi.org/10.5380/abclima.v21i0.41...
). The mean temperature is 27.2 °C, with a minimum of 26.6 °C in January and a maximum of 28.1 °C in September (Tavares et al. 2018TAVARES AL, DO CARMO AMC, SILVA JÚNIOR RO, SOUZA-FILHO P, SILVA M, FERREIRA DS, NASCIMENTO JÚNIOR WR & DALL’AGNOL R. 2018. Climate indicators for a watershed in the eastern Amazon. Rev Bras Climatol 23: 389-410.).

Sampling area

The study was conducted in the Serra Norte de Carajás, southeastern Pará state, at a site known as Trilha da Mata Lake (TML), which is located over a lateritic plateau colonized by canga vegetation at an area of 21,856 m2 (Figure 1). Three cores were collected as follow: two on opposite lake margins, TML1 (100 cm depth; 6°0’52.12”S/50°17’50.24”W) and TML3 (75 cm depth; 6°2’3.82”S/50°16’48.66”W); and one core at the lake depocenter, TML2 (135 cm depth; 6°1’50.99”S/50°17’25.42”W) (Figure 1).

The lake has a high accumulation of organic sediments, which favors the colonization of macrophytes in its central portion, and Mauritiella armata (Mart.) Burret in its margins. To the north, there is grass vegetation with a strong herbaceous and shrubby component, and some restricted areas of open forests (Da Silva et al. 2020DA SILVA EF, LOPES K, ALVES R, CARREIRA MLM, SILVA DF, ROMEIRO LA, BATISTA JUNIOR WF, RODRIGUES TM, SECCO R & GUIMARÃES JTF. 2020. Hydroclimate influences on modern pollen rain of the upland southeastern Amazonia. The Holocene. 30: 721-732. https://doi.org/10.1177/0959683619895586.
https://doi.org/10.1177/0959683619895586...
).

MATERIALS AND METHODS

Collection of cores

A peat sampler (Russian peat borer) was used for core collection. The cores were subjected to facies description, including the color, lithology, texture, and sedimentary structure (Walker 1992WALKER RG. 1992. Facies, facies models and modern stratigraphic concepts. In: Facies Models - Response To Sea Level Change. Ontario: Geological Association of Canada, p. 1-14.). The lacustrine sediment classification system of the Global Lake Drilling Program was used (Schnurrenberger et al. 2001SCHNURRENBERGER DW, KELTS KR, JOHNSON TC, SHANE LCK & ITO E. 2001. National lacustrine core repository (LacCore). J Paleolimnol 25: 123-127. https://doi.org/10.1023/A:1008171027125.
https://doi.org/10.1023/A:1008171027125...
, 2003SCHNURRENBERGER D, RUSSEL J & KELTS K. 2003. Classification of lacustrine sediments based on sedimentary components. J Paleolimnol 29: 141-154. https://doi.org/10.1023/A:1023270324800.
https://doi.org/10.1023/A:1023270324800...
).

14C dating

Samples weighing approximately 2 g were collected every 10 cm for 14C dating by accelerator mass spectrometry at the facilities of Beta Analytic (Miami, Florida, USA). The age-depth model was made based on Bayesian accumulation histories for lake and peat deposits-Bacon (Blaauw & Christen 2011BLAAUW M & CHRISTEN JA. 2011. Flexible palaeoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6: 457-474. https://doi.org/10.1214/11-BA618.
https://doi.org/10.1214/11-BA618...
) using R (R Development Core Team 2018) as an interface and Intcal20 calibration dataset (Reimer et al. 2020REIMER PJ ET AL. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 kcal BP). Radiocarbon 62: 725-757. https://doi.org/10.1017/RDC.2020.41.
https://doi.org/10.1017/RDC.2020.41...
). A complete description of the age modelling process can be found in Guimarães et al. (2016)GUIMARÃES JFT, SAHOO PK, SOUZA-FILHO PWM, MAURITY CW, SILVA JÚNIOR RO, COSTA FR & DALL’AGNOL R. 2016 Late Quaternary environmental and climate changes registered in lacustrine sediments of the Serra Sul de Carajás, south-east Amazonia. J Quatern Sci 31: 61-64. https://doi.org/10.1002/jqs.2839.
https://doi.org/10.1002/jqs.2839...
.

Isotopic analysis

Sediment samples (6-50 mg) were taken at 5 cm intervals along the sedimentary facies cores. The natural abundance of C and N stable isotopes (δ13C and δ15N) were analyzed in an EA 1108 CHN elemental analyzer coupled to a Delta S mass spectrometer (Finnigan MAT, Thermo Scientific™, Waltham, Massachusetts, USA) at the Stable Isotope Center of the Biosciences Institute of UNESP, Botucatu, São Paulo. BRA. The 13C/12C and 15N/14N ratios are expressed as δ13 C and δ15 N relative to Pee Dee Belemnite and atmospheric N2, respectively, using the conventional notation δ (‰). The analytical precision was ± 0.1% and ± 0.2‰, respectively. Total Sulphur (TS) and Total Organic Carbon (TOC) at the ALS Global, Vancouver, Canada, values were obtained for approximately 0.2 g air-dried ground samples using a LECO CS-300 combustion analyzer. The binary diagrams were based on (Deines 1980DEINES P. 1980. The isotopic composition of reduced organic carbon. In: Handbook Of Environmental Isotope Geochemistry & The Terrestrial Environment. Amsterdam: Elsevier, p. 329-406. https://doi.org/10.1016/B978-0-444-41780-0.50015-8.
https://doi.org/10.1016/B978-0-444-41780...
, Hamilton & Lewis 1992HAMILTON SK & LEWIS JR WM. 1992. Stable carbon and nitrogen isotopes in algae and detritus from the Orinoco River floodplain, Venezuela. Geochim Cosmochim Acta 56: 4237-4246. https://doi.org/10.1016/0016-7037(92)90264-J.
https://doi.org/10.1016/0016-7037(92)902...
, Meyers 1997MEYERS PA. 1997. Organic geochemical proxies of palaeoceanographic, palaeolimnologic, and palaeoclimatic processes. Organic Geochemistry 27: 213-250. https://ui.adsabs.harvard.edu/link_gateway/1997OrGeo..27..213M/doi:10.1016/S0146-6380(97)00049-1., Troxler & Richards 2009TROXLER TG & RICHARDS JH. 2009. δ13C, δ15N, carbon, nitrogen and phosphorus as indicators of plant ecophysiology and organic matter pathways in Everglads deep slough, Florida, USA. Aquatic Botany 91: 157-165. https://doi.org/10.1016/j.aquabot.2009.04.003.
https://doi.org/10.1016/j.aquabot.2009.0...
, Sahoo et al. 2015SAHOO PK, SOUZA-FILHO PWM, GUIMARÃES JTF, SILVA MS, COSTA FR, MANES CO, OTI D, SILVA JÚNIOR R & DALL’AGNOL R. 2015. Use of multi-proxy approaches to determine the origin and depositional processes in modern lacustrine sediments: Carajás Plateau, Southeastern Amazon, Brazil. Appl Geochem 52: 130-146. https://doi.org/10.1016/j.apgeochem.2014.11.010.
https://doi.org/10.1016/j.apgeochem.2014...
, 2016SAHOO PK ET AL. 2016. Geochemistry of upland lacustrine sediments from Serra dos Carajás, Southeastern Amazon, Brazil: Implication for catchment weathering, provenance, and sedimentary processes. J South Am Earth Sci 72: 178-190. https://doi.org/10.1016/j.jsames.2016.09.003.
https://doi.org/10.1016/j.jsames.2016.09...
, 2017, Smith et al. 2012SMITH CB, COHEN MCL, PESSENDA LCR & FRANÇA M. GUIMARÃES JTF. 2012. Holocenic proxies of sedimentary organic matter and the evolution of Lake Arari Amazon Region. Catena 90: 26-38. https://doi.org/10.1016/j.catena.2011.10.002.
https://doi.org/10.1016/j.catena.2011.10...
, Thornton & McManus 1994THORNTON SF & MCMANUS J. 1994. Applications of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science 38: 219-233. https://doi.org/10.1006/ecss.1994.1015.
https://doi.org/10.1006/ecss.1994.1015...
).

Table I
Radiocarbon dates (AMS) of the samples from the Trilha da Mata Lake (TML).

Palynological analysis

From the TML2 core, 1-cm3 samples were taken every 5 cm to prepare palynological slides using cold hydrofluoric acid and acetolysis (Faegri & Iversen 1989FAEGRI K & IVERSEN J. 1989. Textbook of Pollen Analyses. Chichester: John Wiley and Sons LTD, p. 328. https://doi.org/10.1002/jqs.3390050310.
https://doi.org/10.1002/jqs.3390050310...
). A spore tablet of Lycopodium clavatum (20,848 ± 3,457 grains/tablet) was added to each sample to calculate the pollen concentration (Colinvaux et al. 1999COLINVAUX P, DE OLIVEIRA PE & PATIÑO JEM. 1999. Amazon Pollen Manual and Atlas Manual e Atlas Palinológico da Amazônia. Amsterdam: Hardwood Academic, 332 p. https://10.1201/9781482283600.). The palynomorphs were counted at 400x and 1000x magnification under a transmitted-light microscope (Scope.A1 with the program Zen 2.3 lite). A total of 300 pollen grains of terrestrial and aquatic taxa were counted in 27 slides (26 slides plus one to record the 133 cm of the LTM2 core). Tilia and Tilia Graph software programs were used to calculate and plot diagrams (Grimm 1990GRIMM EC. 1990. Tilia and Tilia-Graph: PC spread-sheet and graphics software for pollen data. INQUA-Commission for the Study of the Holocene,working Group on Data-Handling Methods. Newsletter, p. 5-7.).

Palynological identification was made by comparison with the morphological characteristics found in specialized publications (Carreira et al. 1996CARREIRA LMM, DA SILVA MF & LOPES JRC. 1996. Catálogo de Pólen das Leguminosas da Amazônia Brasileira. Belém: Museu Paraense Emílio Goeldi, 137 p., Colinvaux et al. 1999COLINVAUX P, DE OLIVEIRA PE & PATIÑO JEM. 1999. Amazon Pollen Manual and Atlas Manual e Atlas Palinológico da Amazônia. Amsterdam: Hardwood Academic, 332 p. https://10.1201/9781482283600., Roubik & Moreno 1991ROUBIK DW & MORENO JEP. 1991. Pollen and Spores of Barro Colorado Island. St. Louis: Monographs in Systematic Botany, 268 p.) and based on the ITV/Gaban-Vale (PaliITV Collection) and Museu Paraense Emílio Goeldi (MPEG) pollen databases. Information on the habitat of the pollen types was obtained in related literature (Hall & Gil 2016HALL CF & GIL ASB. 2016. Flora of the cangas of the Serra dos Carajás, Pará, Brazil: Alismataceae. Rodriguésia 67: 1195-1199. https://doi.org/10.1590/2175-7860201667517.
https://doi.org/10.1590/2175-78602016675...
, Harley 2016HARLEY RM. 2016. Flora of the Cangas of the Serra dos Carajás, Pará, Brasil: Lamiaceae. Rodriguésia 67: 1381-1398. https://doi.org/10.1590/2175-7860201667536.
https://doi.org/10.1590/2175-78602016675...
, Guimarães et al. 2014GUIMARÃES JTF ET AL. 2014. Source and distribution of pollen and spores in surface sediments of a plateau lake in southeastern Amazonia. Quatern Int 352: 181-196. https://doi.org/10.1016/j.quaint.2014.06.004.
https://doi.org/10.1016/j.quaint.2014.06...
, 2017, Mota et al. 2018MOTA NFO, WATANABE MTC, ZAPPI DC, HIURA AL, OALLOS J, VIVEROS RS, GIULIETTI AM & VIANA PL. 2018. Amazon canga: the unique vegetation of Carajás revealed by the list of seed plants. Rodriguésia 69: 1435-1488. https://doi.org/10.1590/2175-7860201869336.
https://doi.org/10.1590/2175-78602018693...
, Nunes 2009NUNES JÁ. 2009. Florística, Estrutura e Relações Solo-Vegetaçãoem Gradiente Fitofisionômico Sobre Canga, na Serra Sul,Flona de Carajás-Pará. Master’s Thesis, Universidade Federal de Viçosa. http://locus.ufv.br/handle/123456789/2510. (Unpublished)., Pirani & Devecchi 2018PIRANI JR & DEVECCHI MF. 2018. Flora of the canga of Serra dos Carajás, Pará, Brazil: Rutaceae. Rodriguésia 69: 209-217. https://doi.org/10.1590/2175-7860201869119 https://doi.org/10.1590/2175-7860201869119.
https://doi.org/10.1590/2175-78602018691...
, Reis et al. 2017REIS LS, GUIMARÃES JTF, SOUZA-FILHO PWM, SAHOO PK, FIGUEIREDO MMJC, SOUZA EB & GIANNINI TC. 2017. Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quatern Int 449: 1-23. https://doi.org/10.1016/j.quaint.2017.04.031.
https://doi.org/10.1016/j.quaint.2017.04...
, Da Silva et al. 2020DA SILVA EF, LOPES K, ALVES R, CARREIRA MLM, SILVA DF, ROMEIRO LA, BATISTA JUNIOR WF, RODRIGUES TM, SECCO R & GUIMARÃES JTF. 2020. Hydroclimate influences on modern pollen rain of the upland southeastern Amazonia. The Holocene. 30: 721-732. https://doi.org/10.1177/0959683619895586.
https://doi.org/10.1177/0959683619895586...
).

The data from the pollen diagrams were grouped into canga vegetation, forest (forest patch and rainforest), macrophytes, palms, cold-adapted taxa, algae, and spores, except Poaceae and Fabaceae, given its wide dispersion across biomes. These data were statistically subdivided into pollen zones (palynozones) based on the square-root transformation of the percentage data and stratigraphically constrained cluster analysis using CONISS (constrained incremental sum of squares) (Grimm 1987GRIMM EC. 1987. CONISS: A Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13: 13-35. https://doi.org/10.1016/0098-3004(87)90022-7.
https://doi.org/10.1016/0098-3004(87)900...
).

Statistical methods

Modern pollen rain (MPR) (Da Silva et al. 2020DA SILVA EF, LOPES K, ALVES R, CARREIRA MLM, SILVA DF, ROMEIRO LA, BATISTA JUNIOR WF, RODRIGUES TM, SECCO R & GUIMARÃES JTF. 2020. Hydroclimate influences on modern pollen rain of the upland southeastern Amazonia. The Holocene. 30: 721-732. https://doi.org/10.1177/0959683619895586.
https://doi.org/10.1177/0959683619895586...
) was used as a modern vegetation reference and as aid in the analysis of palynozones. Stats and vegan (Oksanen et al. 2019OKSANEN J ET AL. 2019. Vegan: Community Ecology Package: R package version 2.5–6. Available at: http://CRAN.R-project.org/package=vegan.
http://CRAN.R-project.org/package=vegan...
) R packages were used for statistical analyses. The concentration data of common pollen types between palynozones and MPR were considered.

The data, which included 55 common pollen types found between the modern pollen rain (Da Silva et al. 2020DA SILVA EF, LOPES K, ALVES R, CARREIRA MLM, SILVA DF, ROMEIRO LA, BATISTA JUNIOR WF, RODRIGUES TM, SECCO R & GUIMARÃES JTF. 2020. Hydroclimate influences on modern pollen rain of the upland southeastern Amazonia. The Holocene. 30: 721-732. https://doi.org/10.1177/0959683619895586.
https://doi.org/10.1177/0959683619895586...
) and fossil pollen, were normalized for the Wilcoxon hypothesis test. To better understand the relationship between the composition of the pollen types of each palynozone and MPR, we ordered the samples using nonmetric multidimensional scaling (nMDS), which projects complex multivariate data onto a minimum number of axes. It is a nonparametric approach that uses ordered distances between samples (Bush et al. 1990BUSH MB, COLINVAUX PA, WIEMANN MC, PIPERNO DR & LIU K. 1990. Late Pleistocene temperature depression and vegetation change in Ecuadorian Amazonia. Quatern Res 34: 330-345. https://doi.org/10.1016/0033-5894(90)90045-M.
https://doi.org/10.1016/0033-5894(90)900...
, Hammer & Harper 2006HAMMER O & HARPER DAT. 2006. Paleontological Data Analysis. Blackwell, 368 p. https://doi.org/10.1002/9780470750711.
https://doi.org/10.1002/9780470750711...
, Legendre & Legendre 1998LEGENDRE P & LEGENDRE L. 1998. Numerical Ecology. Amsterdam The Netherlands: Elsevier, 853 p., Ter Braak 1995TER BRAAK CJF. 1995. Ordination. In: Data Analysis In Community And Landscape Ecology. Cambridge: Cambridge University Press, p. 91-173.). It has been used in several palynoecological studies to efficiently portray the distances between samples (Absy et al. 2014ABSY ML, CLEEF AM, D’APOLITO C & DA SILVA MFF. 2014. Palynological differentiation of savanna types in Carajás, Brazil (southeastern Amazonia). Palynology 38: 78-89. https://doi.org/10.1080/01916122.2013.842189.
https://doi.org/10.1080/01916122.2013.84...
, Burn et al. 2010BURN MJ, MAYLE FE & KILLEEN TJ. 2010. Pollen-based differentiation of Amazonian rainforest communities and implications for lowland palaeoecology in tropical South America. Palaeogeogr Palaeoclimatol Palaeoecol 295: 1-18. https://doi.org/10.1016/j.palaeo.2010.05.009.
https://doi.org/10.1016/j.palaeo.2010.05...
, Bush & Brame 2010BUSH AM & BRAME RI. 2010. Multiple paleoecological controls on the composition of marine fossil assemblages from the Frasnian (Late Devonian) of Virginia, with a comparison of ordination methods. Paleobiol 36: 573-591. https://www.jstor.org/stable/40926783., Bush et al. 1990BUSH MB, COLINVAUX PA, WIEMANN MC, PIPERNO DR & LIU K. 1990. Late Pleistocene temperature depression and vegetation change in Ecuadorian Amazonia. Quatern Res 34: 330-345. https://doi.org/10.1016/0033-5894(90)90045-M.
https://doi.org/10.1016/0033-5894(90)900...
, Jardine et al. 2012JARDINE PE, HARRINGTON GJ & STIDHAM TA. 2012. Regional-scale spatial heterogeneity in the late Paleocene paratropical forests of the U.S. Gulf Coast. Paleobiology 38: 15-39. https://10.1666/10019.1, Schüler et al. 2014SCHÜLER L, HEMP A & BEHLING H. 2014. Relationship between vegetation and modern pollen-rain along an elevational gradient on Kilimanjaro, Tanzania. The Holocene 24: 702-713. https://doi.org/10.1177/0959683614526939.
https://doi.org/10.1177/0959683614526939...
, Shi 1993SHI GR. 1993. Multivariate data analysis in palaeoecology and palaeobiology—a review. Palaeogeogr Palaeoclimatol Palaeoecol 105: 199-234. https://doi.org/10.1016/0031-0182%2893%2990084-V.
https://doi.org/10.1016/0031-0182%2893%2...
). Data were double-standardization transformed and used in the meta-MDS function using the Bray-Curtis distance metric.

RESULTS

Geochronology and facies description

The sedimentation rates calculated for the TML1 and TML3 cores taken from the lake margins were 2.25-0.02 mm-1 yr, and for the TML2 core from the center of the lake, they were 0.30-0.02 mm-1 yr. The Bacon age modeling resulted in maximum deposition ages for the TML1 and TML3 cores and the TML2 core of ~11,560-7,110 cal yr BP and 17,680 cal yr BP, respectively. The 95% confidence intervals were lower in the upper part, at 2,431-2,182 years in TML1, 2,414-2,157 years in TML2, 727-586 years in TML3, and higher closer to the base, at 12,070-8,203 years in TML1, 10,130-5,131 years in TML2, 7,549-4,667 years in TML3, with a maximum and minimum in TML1, TML2, and TML3 of 72 and 48 cm, 85 cm and 56 cm, and 70 cm and 31 cm, respectively (Figure 2 and Table I).

Figure 2
Graphic sedimentary record with facies characteristics and succession in TML1 (100 cm), TML2 (135 cm), and TML3 (75 cm) collected in Serra Norte de Carajás. The profiles include calibrated 14C dating, the age–depth model (the darkest shades of gray indicate probable ages), and sedimentation rates (mm/year) along the depth profile, considering the weighted mean for each depth. Each profile is accompanied by the age–depth model: the green curve is the accumulation rate (anterior), and the gray shading is the modeled accumulation rate (posterior).

Three sedimentary facies were described, representing a filling cycle with a fining-upwards pattern, standard of filled lakes (Figure 2; Table II). In the TML1 and TML2 cores, laminated mud (LM) occurred only at the base and in the TML3 core from the base to the middle portion. This facies was deposited from suspension with low energy flow alternating with increased energy, causing deposition of ferruginous clasts.

Table II
Description of the facies and sedimentary processes of the Trilha da Mata Lake cores.

The LM facies were gradually superimposed by predominantly organic deposits. The organic deposits were related to granular (Pg) and herbaceous (Ph) peat. The Pg and Ph facies were present in all three cores, with plant tissue as the main source of the deposit. The contact between detritic and organic facies is gradational.

Isotopic data

The TML cores had δ13C and δ15N values ranging from -27.8 to -31‰ and 3.8 to 2.1‰, respectively, which suggests an organic matter derived mainly from C3 vascular plants and/or macrophytes, and algae with C3 grasses. The C/N values of 50.7 to 10.8 were indicative of the contribution of dissolved organic carbon (DOC), terrestrial C3 plants, and canga plants (Figure 3, Supplementary Material - Figure S1, available online).

Figure 3
Binary diagrams of Trilha da Mata Lake. The cores are represented by geometric shapes; a) δ13C and C/N; b) δ15N and δ13C (Fields based on Deines 1980DEINES P. 1980. The isotopic composition of reduced organic carbon. In: Handbook Of Environmental Isotope Geochemistry & The Terrestrial Environment. Amsterdam: Elsevier, p. 329-406. https://doi.org/10.1016/B978-0-444-41780-0.50015-8.
https://doi.org/10.1016/B978-0-444-41780...
, Hamilton & Lewis 1992HAMILTON SK & LEWIS JR WM. 1992. Stable carbon and nitrogen isotopes in algae and detritus from the Orinoco River floodplain, Venezuela. Geochim Cosmochim Acta 56: 4237-4246. https://doi.org/10.1016/0016-7037(92)90264-J.
https://doi.org/10.1016/0016-7037(92)902...
, Thornton & McManus 1994THORNTON SF & MCMANUS J. 1994. Applications of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science 38: 219-233. https://doi.org/10.1006/ecss.1994.1015.
https://doi.org/10.1006/ecss.1994.1015...
, Meyers 1997MEYERS PA. 1997. Organic geochemical proxies of palaeoceanographic, palaeolimnologic, and palaeoclimatic processes. Organic Geochemistry 27: 213-250. https://ui.adsabs.harvard.edu/link_gateway/1997OrGeo..27..213M/doi:10.1016/S0146-6380(97)00049-1., Troxler & Richards 2009TROXLER TG & RICHARDS JH. 2009. δ13C, δ15N, carbon, nitrogen and phosphorus as indicators of plant ecophysiology and organic matter pathways in Everglads deep slough, Florida, USA. Aquatic Botany 91: 157-165. https://doi.org/10.1016/j.aquabot.2009.04.003.
https://doi.org/10.1016/j.aquabot.2009.0...
, Smith et al. 2012SMITH CB, COHEN MCL, PESSENDA LCR & FRANÇA M. GUIMARÃES JTF. 2012. Holocenic proxies of sedimentary organic matter and the evolution of Lake Arari Amazon Region. Catena 90: 26-38. https://doi.org/10.1016/j.catena.2011.10.002.
https://doi.org/10.1016/j.catena.2011.10...
, Sahoo et al. 2015SAHOO PK, SOUZA-FILHO PWM, GUIMARÃES JTF, SILVA MS, COSTA FR, MANES CO, OTI D, SILVA JÚNIOR R & DALL’AGNOL R. 2015. Use of multi-proxy approaches to determine the origin and depositional processes in modern lacustrine sediments: Carajás Plateau, Southeastern Amazon, Brazil. Appl Geochem 52: 130-146. https://doi.org/10.1016/j.apgeochem.2014.11.010.
https://doi.org/10.1016/j.apgeochem.2014...
, 2016, 2017, Guimarães et al. 2023aGUIMARÃES JTF, FREITAS EF, AGUIAR KC, LOPES KS, FIGUEIREDO MMJC, REIS LS, RODRIGUES TM, GIANNINI TC & CALDEIRA CF. 2023b. Late Quaternary Isoëtes megaspores as a proxy for paleolimnological studies of the southeastern Amazonia. J South Am Earth Sci 125: 104312, https://doi.org/10.1016/j.jsames.2023.104312.
https://doi.org/10.1016/j.jsames.2023.10...
).

The isotopic data corresponding to the Lm facies in the δ13C and C/N diagram are more dispersed than those in the δ15N and δ13C diagrams due to higher C/N ratios (Figure 3). These higher ratios were due to C3 and canga plants, which reinforces the contribution of terrestrial organic matter (~18,000-15,500 cal yr BP), with a gradual change toward greater contributions from DOC, algae, and macrophytes (~3,500 cal yr BP to the present). The C/N ratio decreased in the Pg facies (Figure 3a), indicating an increase in DOC. The relationship between δ15N and δ13C indicates a diversified origin of the organic matter, including macrophytes, algae with grasses, Carajás marshes, and C3 plants (Figure 3b). The lowest DOC-related C/N ratios were found in the Ph facies, and the relationship between δ15N and δ13C reveals a contribution similar to that observed in the Pg facies, with an increased contribution of macrophytes.

Palynological data

The TML2 core, collected from the central portion of the lake, tended to best represent the local pollen signal, thus favoring the interpretation of its assemblage in relation to the MPR composition according to the previous modern pollen rain study in the same lake (Da Silva et al. 2020DA SILVA EF, LOPES K, ALVES R, CARREIRA MLM, SILVA DF, ROMEIRO LA, BATISTA JUNIOR WF, RODRIGUES TM, SECCO R & GUIMARÃES JTF. 2020. Hydroclimate influences on modern pollen rain of the upland southeastern Amazonia. The Holocene. 30: 721-732. https://doi.org/10.1177/0959683619895586.
https://doi.org/10.1177/0959683619895586...
). In addition, the cores collected on the margins of the lake represented disturbed areas subject to overrepresentation of certain pollen types from lake shore plants (Colinvaux et al. 1999COLINVAUX P, DE OLIVEIRA PE & PATIÑO JEM. 1999. Amazon Pollen Manual and Atlas Manual e Atlas Palinológico da Amazônia. Amsterdam: Hardwood Academic, 332 p. https://10.1201/9781482283600.).

In general, 82 morphotypes were determined, distributed among canga vegetation (34 types, 2-53%; 10-16,854 grains/cm3), forest (23 types, 5-68%; 37-13,449 grains/cm3), macrophytes (8 types, 0-23%; 0-5,788 grains/cm3), palms (five types, 0-11%; 0-6.299 grains/cm3), cold-adapted taxa (one type, 0-8%; 0-2.213 grains/cm3), algae (three types, 18-58%; 17-37.453 colonies /cm3) and spores (six types, 0-4%; 0-1873 spores/cm3), Poaceae undif. (0-41%; 0-21,791 grains/cm3) and Fabaceae (0-9%; 0-170 grains/cm3) The most representative canga vegetation types were Asteraceae (0-27%; 0-13,960 grains/cm3) and Borreria (0-4%; 0-3,064 grains/cm3). From the forest, the most representative were Aparisthmium/Alchornea (0-56%; 0-9,363 grains/cm3), Glycydendron (0-5%; 0-1,192 grains/cm3) and Anacardiaceae (0-7%; 0-170 grains/cm3). Macrophytes were represented by Cyperaceae undif. (0-14%; 0-3,575 grains/cm3) and Echinodorus (0-6%; 0-2,213 grains/cm3); palms were represented by Mauritiella armata (0-7%; 0-5,958 grains/cm3) and Attalea maripa (0-1.5%; 0-340 grains/cm3); cold-adapted taxa were represented by Hedyosmum (0-6%; 0-2,213 grains/cm3); algae were represented by Zygnema (0-34%; 17-24,344 colonies /cm3); and spores were represented by Microgramma (0-3%; 0-1,872 spores/cm3) (Figure 4 and Figure S2, available online).

Figure 4
Percentage pollen diagram with the main pollen types obtained from sedimentary records of the TML2 core (lake depocenter) of Lagoa da Trilha da Mata, Serra Norte de Carajás, southeastern Pará state, Brazil. Pollen records of ~18000 cal BP are presented in five pollen zones, values lower than 5% are represented by a dot.

The palynological assemblage was subdivided into five pollen zones. Zone 1 (14.000-18.000 cal yr BP) had the highest percentages and concentrations of Hedyosmum (1-6%; 170-2,213 grains/cm3) and canga vegetation (2.5-53%; 10-16,854 grains/cm3) and algae (13-45%; 6,809-37.453 grains/cm3). It had a predominance of Poaceae undif. (20-41%; 4,639-21.791 grains/cm3), Asteraceae (10-27%; 2,085-13.959 grains/cm3), Borreria (3-4%; 808-3,064 grains/cm3), Cuphea undif. (2-3%; 340-1,872 grains/cm3), and Zygnema (6-32%; 1,702-24,344 grains/cm3). Minor values were found for palms (0-0,3%; 0-340 grains/cm3), macrophytes (2-1%; 85-851 grains/cm3), and spores (0-2.5%; 0-1,872 grains/cm3) (Figure 4 and Figure S2, available online).

Zone 2 (8.500-13.500 cal yr BP) showed decreased values of Hedyosmum (0-1%; 0-19 grains/cm3) and canga vegetation (2.5-13%; 10-16,854 grains/cm3) and increased values for forest vegetation (5-25%; 365-13,449 grains/cm3) and macrophytes (2-17%; 112-526 grains/cm3). Records of Hedyosmum extended up to ~12,500 cal yr BP. The main pollen types were Aparisthmium/Alchornea (forest, 13-20%; 304-1,668 grains/cm3), Glycydendron (forest, 1-3,5%; 14-136 grains/cm3), and Schefflera (forest, 0-2,5%; 0-238 grains/cm3). Macrophytes were represented by Cyperaceae undif. (1,5-13%; 76-417 grains/cm3) and Echinodorus (1-2%; 10-204 grains/cm3). Poaceae undif. remained over represented (17-37%; 365-3,472 grains/cm3) (Figure 4 and Figure S2, available online).

In zone 3 (3,000-8,000 cal yr BP), there was an increase in algae and a decrease in the concentrations of other groups. However, this zone was over represented by Poaceae undif. (23-26%; 315-567 grains/cm3), Asteraceae (0-3.5%; 0-170 grains/cm3), Pouteria ramiflora (0-1%; 0-106 grains/cm3), Aparisthmium/Alchornea (forest, 16-22%; 195-1,893 grains/cm3), Glycydendron (0.5-2%; 11-170 grains/cm3), Maprounea (0-1.5%; 0-127 grains/cm3), Cyperaceae undif. (6-10%; 70-617 grains/cm3), Polygonum acuminatum (0-1.5%; 0-33 grains/cm3), Mauritiella armata (1,54%; 26-149 grains/cm3), and Zygnema (14-20%; 205-1915 colonies /cm3) (Figure 4 and Figure S2, available online).

In zone 4 (750-3,000 cal yr BP), the pollen concentrations of the groups increased. The main types were Poaceae undif. (21-33%; 260-21,791 grains/cm3), Asteraceae (0.5-3%; 13-1,872 grains/cm3), Chamaecrista flexuosa var. flexuosa (0-2%; 0-1,021 grains/cm3), Aparisthmium/Alchornea (12-30%; 284-9,363 grains/cm3), Bignoniaceae (0-2%; 0-1,364 grains/cm3), Cyperaceae (1-7%; 9-3,575 grains/cm3), Mauritiella armata (2-8%; 24-6,299 grains/cm3), Zygnema (14-21%; 173-17,024 grains/cm3), and Microgramma (0.5-1%; 7-1,021 spores/cm3) (Figure 4 and Figure S2, available online).

In zone 5 (<750 cal yr BP), forest pollen was predominant (30-68%; 37-738 grains/cm3). Lower pollen concentration rates were recorded here. The main taxa were Aparisthmium/Alchornea (11-55%; 52-522 grains/cm3), Anacardiaceae (forest, 0-7.5%; 0-56 grains/cm3), Glycydendron (0-5%; 0-34 grains/cm3), Poaceae undif. (0-34%; 0-1,293 grains/cm3), Borreria tenella (0-4%; 0-90 grains/cm3), Byrsonima undif. (0-8%; 0-34 grains/cm3), Cyperaceae undif. (0-14%; 0-533 grains/cm3), Polygonum acuminatum (0-6%; 0-16 grains/cm3), Mauritiella armata (0-2%; 0-68 grains/cm3), Zygnema (17-20%; 17-669 colonies /cm3), and Microgramma (0-2%; 0-6 spores/cm3) (Figure 4 and Figure S2, available online).

Statistical analysis

When performing the Wilcoxon hypothesis, MPR pollen composition differed from palynozones 1 (W - 25, p = 2754e-09), 2 (W = 374, p = 5748e-05), 3 (W = 442, p = 0.001145), and 4 (W = 334, p = 1389e-05). Only palynozone 5 had simillar MPR composition (W = 759, p = 0.1192). Therefore, the null hypothesis was rejected, indicating a difference between the modern MPR and the pollen composition of zones 1, 2, 3, and 4. The p-value of MPR vs. zone 5 group does not allow the null hypothesis to be rejected; therefore, there was not a substantial difference between groups (Figure 5a). The NMDS plot (Figure 5a) shows that the distributions of zones 2, 3, and 4 are clustered. The proximity between the samples from zone 5 and MPR was also evident. Zone 1 samples showed little relationship with samples from the other zones (Figure 5b). This result was consistent with the results obtained in the Wilcoxon analysis, in which Zone 1 was isolated, Zone 5 and MPR showed similar groups, and there was proximity between the samples from zones 2, 3, and 4 (Figure 5a).

Figure 5
a) Boxplot of the palynozones of the TML2 core compared to modern pollen rain of Trilha da Mata lake obtained from Da Silva et al. (2020)DA SILVA EF, LOPES K, ALVES R, CARREIRA MLM, SILVA DF, ROMEIRO LA, BATISTA JUNIOR WF, RODRIGUES TM, SECCO R & GUIMARÃES JTF. 2020. Hydroclimate influences on modern pollen rain of the upland southeastern Amazonia. The Holocene. 30: 721-732. https://doi.org/10.1177/0959683619895586.
https://doi.org/10.1177/0959683619895586...
, Serra Norte de Carajás; b) NMDS analysis of the distribution of the pollen types of sedimentary samples and modern pollen rain in the Trilha da Mata Lake.

nMDS plot show zones 1 to 4 had negative values, whereas zone 5 and MPR had positive values nMDS1 axis (Figure 5a). The positions of the samples from zone 1 were influenced by Asteraceae, Ilex, Cuphea undiff., Astronium, and Euphorbia. Zones 2, 3, and 4 were mainly influenced by Mauritiella armata, Cyperaceae undif., Bignoniaceae, Schefflera, Banisteriopsis malifolia, Trichilia micrantha and Fridericia, and zone 5 with MPR was mainly influenced by Sauvagesia, Serpocaulon, Smilax, Psychotria and Mimosa acutistipula, Protium pilosissimum, Byrsonima undif., and Hyptisparkeri (Figure 5b).

DISCUSSION

History of lake filling and organic sources

Differences in confidence intervals of the age modelling of studied cores is probably due to the combined effects of greater calibration uncertainties, increased dispersion, and decreased sample density (e.g, Shanahan et al. 2012SHANAHAN TM, BECK JW, OVERPECK JT & MCKAY N. 2012. Late Quaternary sedimentological and climate changes at Lake Bosumtwi Ghana: new constraints from laminae analysis and radiocarbon age modeling. Palaeogeogr Palaeoclimatol Palaeoecol 361: 49-60. http://dx.doi.org/10.1016%2Fj.palaeo.2012.08.001.
https://doi.org/10.1016%2Fj.palaeo.2012....
). The inversion of the ages at depths between 23 and 55 cm in TML2 core and 20 to 30 cm in TML3 core may be due to root penetration (Guimarães et al. 2016GUIMARÃES JFT, SAHOO PK, SOUZA-FILHO PWM, MAURITY CW, SILVA JÚNIOR RO, COSTA FR & DALL’AGNOL R. 2016 Late Quaternary environmental and climate changes registered in lacustrine sediments of the Serra Sul de Carajás, south-east Amazonia. J Quatern Sci 31: 61-64. https://doi.org/10.1002/jqs.2839.
https://doi.org/10.1002/jqs.2839...
).

The sedimentation rates of the TML cores are in agreement with the value of 0.69-0.02 mm-1 yr found in previous paleoenvironmental studies (Guimarães et al. 2016GUIMARÃES JFT, SAHOO PK, SOUZA-FILHO PWM, MAURITY CW, SILVA JÚNIOR RO, COSTA FR & DALL’AGNOL R. 2016 Late Quaternary environmental and climate changes registered in lacustrine sediments of the Serra Sul de Carajás, south-east Amazonia. J Quatern Sci 31: 61-64. https://doi.org/10.1002/jqs.2839.
https://doi.org/10.1002/jqs.2839...
, Hermanowski et al. 2012HERMANOWSKI B, COSTA ML, CARVALHO AT & BEHLING H. 2012. Palaeoenvironmental dynamics and underlying climatic changes insoutheast Amazonia (Serra Sul de Carajás, Brazil) during thelate Pleistocene and Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 365-366: 227–246. https://doi.org/10.1016/j.palaeo.2012.09.030.
https://doi.org/10.1016/j.palaeo.2012.09...
, Reis et al. 2017REIS LS, GUIMARÃES JTF, SOUZA-FILHO PWM, SAHOO PK, FIGUEIREDO MMJC, SOUZA EB & GIANNINI TC. 2017. Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quatern Int 449: 1-23. https://doi.org/10.1016/j.quaint.2017.04.031.
https://doi.org/10.1016/j.quaint.2017.04...
, Sifeddine et al. SIFEDDINE A, FRÖHLICH F, FOURNIER M, MARTIN L, SERVANT M, SOUBIÉS F, TURCO B, SUGUIO K & VOLKMER-RIBEIRO C.1994. La sédimentation lacustre indicateur de changements des paléoenvironnements au cous des 30000 dernières annèes (Carajás, Amazonie, Brésil). Compte Rendus de I’Academie des Sciences 318: 1645-1652.2001) in Serra Sul de Carajás, and the value of 0.67-0.05 mm-1 yr found by (Cordeiro et al. 2008CORDEIRO RC, TURCQ B, SUGUIO K, DA SILVA AO, SIFEDDINE A & RIBEIRO CV. 2008. Holocene fires in East Amazonia (Carajás), new evidences, chronology and relation with palaeoclimate. Global Planet Change 61: 49-62. https://doi.org/10.1016/j.gloplacha.2007.08.005.
https://doi.org/10.1016/j.gloplacha.2007...
) in Serra Norte de Carajás.

Filling of the lake was started by the deposition of detrital sediments ~ 18,000 cal yr BP, which changed to organic sediments around 15,000 cal BP in the lake depocenter and around 8,000 cal yr BP and 1,000 cal yr BP in the western and eastern margins, respectively. The eastern margin represents an active drainage inflow of the lake with high sediment mobility and transport. The organic matter was derived from aquatic environments, with contributions by algae with C3 and C4 grasses, macrophytes, and marsh plants. However, the low δ13C values represented vascular C3 forest plants, and the canga vegetation presented more enriched δ13C values for having adapted to periods of water scarcity (Mitre et al. 2018MITRE SK, MARDEGAN SF, CALDEIRA CF, RAMOS SJ, FURTINI NETO AE, SIQUEIRA JO & GASTAUER M. 2018. Nutrient and water dynamics of Amazonian canga vegetation differ among physiognomies and from those of other neotropical ecosystems. Plant Ecology 219: 1341-1353. https://doi.org/10.1007/s11258-018-0883-6.
https://doi.org/10.1007/s11258-018-0883-...
). The lowest values of δ13C, which are close to -31‰, most likely represent the forest signal. Organic matter in the Carajás lakes can originate from the vegetation cover of the drainage or from primary or secondary productivity (Sahoo et al. 2017SAHOO PK ET AL. 2017. Geochemical characterization of the largest upland lake of the Brazilian Amazonia: Impact of provenance and processes. J South Am Earth Sci 80: 541-558. https://doi.org/10.1016/j.jsames.2017.10.016.
https://doi.org/10.1016/j.jsames.2017.10...
), which may vary over time. In situ organic production of DOC, algae, and macrophytes indicated a strong contribution of the aquatic environment, but the isotopic data indicates that the canga vegetation and forest are important sources for lake sediments. The continuous record of algae without other physical and geochemical indicators indicates that even the dry periods were not intense enough to cause subaerial exposure of the lake.

Paleovegetation dynamics and the relationship with the paleoclimate

~14,000-18,000 cal yr BP – Early Pleistocene

The catchment area of the lake was weathered, with mud flows from the drainage basin deposited by suspension in the depocenter. Small stages of reduced energy preserved the organic matter and high pollen concentration and recorded the allochthonous signal of the canga vegetation and the forest C3 plants up to ~15,000 cal yr BP. Between 14,000 and 15,500 cal yr BP, the high humidity favored the production of DOC, followed by a constant contribution of the aquatic environment with DOC and algae on C3 grass (Figure S3).

Hedyosmum indicated low temperature, but it was not sufficient for the expansion of other cold-adapted populations limited by higher-altitude temperatures (Colinvaux et al. 2000COLINVAUX PA, DE OLIVEIRA PE & BUSH MB. 2000. Amazon and Neotropical plant communities on glacial time scales: the failure of the aridity and refuge hypotheses. Quatern Sci Rev 19: 141-169. https://doi.org/10.1016/S0277-3791(99)00059-1.
https://doi.org/10.1016/S0277-3791(99)00...
). In the Early Pleistocene in Carajás, several cold-climate taxa have been described such as Hedyosmum, Myrsine, Podocarpus, Styrax and Alnus (Absy et al. 1991ABSY ML, CLEEF AM, FORNIER M, MARTIN L, SERVANT M, SIFEDDINE A, FERREIRA SM, SOUBIÈS F, SUGUIO K & TURCQ B. 1991. Mise en évidence de quatre phases d’ouverture de la forêt dense dans le sud-est de L’Amazonie au cours des 60,000 dernières années. Première comparaison avec d’autres régions tropicales. Comptes Rendues Academie des Sciences 312: 673-678., Hermanowski et al. 2012HERMANOWSKI B, COSTA ML, CARVALHO AT & BEHLING H. 2012. Palaeoenvironmental dynamics and underlying climatic changes insoutheast Amazonia (Serra Sul de Carajás, Brazil) during thelate Pleistocene and Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 365-366: 227–246. https://doi.org/10.1016/j.palaeo.2012.09.030.
https://doi.org/10.1016/j.palaeo.2012.09...
, 2014, Reis et al. 2017REIS LS, GUIMARÃES JTF, SOUZA-FILHO PWM, SAHOO PK, FIGUEIREDO MMJC, SOUZA EB & GIANNINI TC. 2017. Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quatern Int 449: 1-23. https://doi.org/10.1016/j.quaint.2017.04.031.
https://doi.org/10.1016/j.quaint.2017.04...
).

The canga, algae, and forest pollen types are dominant, range from 21-53% and 3,532-16,854 grains/cm3, 21-58% and 6,128-37,453 colonies/cm3 and 5-15% e 1,191-7,490 grains/cm3, respectively. The dominance of canga pollen in relation to the forest demonstrates its expansion. However, the good representation of the forest pollen types demonstrates that the expansion of the canga presented a certain limitation.

The canga and forest vegetation showed a well-developed mosaic with Asteraceae, Aparisthmium/Alchornea, Ilex, Byrsonima, Borreria, and Cuphea, used as indicators of dry climate and expansion of areas of canga vegetation, in addition Poaceae (Absy et al. 1991ABSY ML, CLEEF AM, FORNIER M, MARTIN L, SERVANT M, SIFEDDINE A, FERREIRA SM, SOUBIÈS F, SUGUIO K & TURCQ B. 1991. Mise en évidence de quatre phases d’ouverture de la forêt dense dans le sud-est de L’Amazonie au cours des 60,000 dernières années. Première comparaison avec d’autres régions tropicales. Comptes Rendues Academie des Sciences 312: 673-678., D’Apolito et al. 2017D’APOLITO C, LATRUBESSE EM & ABSY ML. 2017. Results confirm a relatively dry setting during the last glacial (MIS 3 and LGM) in Carajás, Amazonia: A comment on Guimarães et al. The Holocene 28: 1-2. http://dx.doi.org/10.1177/0959683617721333.
https://doi.org/10.1177/0959683617721333...
, Van De Hammen & Absy 1994VAN DE HAMMEN T & ABSY ML. 1994. Amazonia during the last glacial. Palaeogeogr Palaeoclimatol Palaeoecol 109: 247-261. https://doi.org/10.1016/0031-0182(94)90178-3.
https://doi.org/10.1016/0031-0182(94)901...
).

Pollen types in the Asteraceae, Borreria, Cuphea, and Poaceae have numerous species that colonize marshes and lakesides (Cavalcanti et al. 2016CAVALCANTI TB, FACCO MG & BRAUNER LM. 2016. Flora of the cangas of the Serra dos Carajás, Pará, Brazil: Lythraceae. Rodriguésia 67: 1411-1415. https://doi.org/10.1590/2175-7860201667539.
https://doi.org/10.1590/2175-78602016675...
, Colinvaux et al. 2000COLINVAUX PA, DE OLIVEIRA PE & BUSH MB. 2000. Amazon and Neotropical plant communities on glacial time scales: the failure of the aridity and refuge hypotheses. Quatern Sci Rev 19: 141-169. https://doi.org/10.1016/S0277-3791(99)00059-1.
https://doi.org/10.1016/S0277-3791(99)00...
, Cruz et al. 2016CRUZ APO, VIANA PL & SANTOS JU. 2016. Flora of the cangas of the Serra dos Carajás, Pará, Brazil: Asteraceae. Rodriguésia 67: 1211-1242. https://doi.org/10.1590/2175-7860201667520.
https://doi.org/10.1590/2175-78602016675...
, Viana et al. 2019VIANA PL, DA ROCHA AES, SILVA C, AFONSO EAL, OLIVEIRA RP & OLICEIRA RC. 2019. Flora das cangas da Serra dos Carajás, Pará, Brasil: Poaceae. Rodriguésia 69: 1311-1368. https://doi.org/10.1590/2175-7860201869330, Zappi et al. 2017ZAPPI DC, MIGUEL LM, SOBRADO RM & SALAS RM. 2017. Flora of the cangas of Serra dos Carajás, Pará, Brazil: Rubiaceae. Rodriguésia 68: 1091-1137. https://doi.org/10.1590/2175-7860201768347.
https://doi.org/10.1590/2175-78602017683...
). Thus, it is not possible that they represent dry-climate vegetation. Furthermore, the high sedimentation rate and algal concentration indicate that the conditions were humid. In addition, Ilex would not withstand dry conditions (Reis et al. 2017REIS LS, GUIMARÃES JTF, SOUZA-FILHO PWM, SAHOO PK, FIGUEIREDO MMJC, SOUZA EB & GIANNINI TC. 2017. Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quatern Int 449: 1-23. https://doi.org/10.1016/j.quaint.2017.04.031.
https://doi.org/10.1016/j.quaint.2017.04...
). A humid climate has also been described for the Bolivian Altiplano (Baker et al. 2001BAKER PA, SELTZER GO, FRITZ SC, DUNBAR RB, GROVE MJ, TAPIA PM, CROSS SL, ROWE HD & BRODA JP. 2001. The history of South American tropical precipitation for the past 25,000 years. Science 291: 640-643. https://doi.org/10.1126/science.291.5504.640.
https://doi.org/10.1126/science.291.5504...
) and for Serra Sul de Carajás (Reis et al. 2017REIS LS, GUIMARÃES JTF, SOUZA-FILHO PWM, SAHOO PK, FIGUEIREDO MMJC, SOUZA EB & GIANNINI TC. 2017. Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quatern Int 449: 1-23. https://doi.org/10.1016/j.quaint.2017.04.031.
https://doi.org/10.1016/j.quaint.2017.04...
).

~8,500-13,500 cal yr BP – Transition between Early Pleistocene and Holocene

This period was marked by increased temperatures, as indicated by the records of Hedyosmum occurring up to ~12,500 cal yr BP. The sedimentation process occurred with reduced and stagnant water and low sedimentation rates. However, the diversity and concentration of macrophytes and palm trees increased. Decreased rainfall exposed flooded areas and established a swampy environment (Figure S3). Increased frequency and richness of macrophytes and palm trees was also observed in Serra Sul de Carajás (Reis et al. 2017REIS LS, GUIMARÃES JTF, SOUZA-FILHO PWM, SAHOO PK, FIGUEIREDO MMJC, SOUZA EB & GIANNINI TC. 2017. Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quatern Int 449: 1-23. https://doi.org/10.1016/j.quaint.2017.04.031.
https://doi.org/10.1016/j.quaint.2017.04...
). The dominance of pollen types of canga vegetation observed in the previous period was changed to dominance of pollen types of forest, especially Aparisthimium/Alchornea, thus maintaining sufficient moisture content to sustain forest species. Geochemical evidence in Serra Sul de Carajás reinforces this interpretation (Guimarães et al. 2021GUIMARÃES JTF ET AL. 2021. Lake sedimentary processes and vegetation changes over the last 45k cal a BP in the uplands of south-eastern Amazonia. J Quatern Sci 36: 255-272. https://doi.org/10.1002/jqs.3268.
https://doi.org/10.1002/jqs.3268...
).

~4,500 to 8,000 cal yr BP – Middle Holocene

From ~4,000-8,500 cal yr BP, marsh vegetation and Mauritiella armata were established in the southwestern margin, and around 4,000 cal yr BP (Figure S3), the margins showed isotope signals corresponding to macrophytes (-30 to -25 δ13C, 3.0 to 5.8 δ15N; Guimarães et al. 2021GUIMARÃES JTF ET AL. 2021. Lake sedimentary processes and vegetation changes over the last 45k cal a BP in the uplands of south-eastern Amazonia. J Quatern Sci 36: 255-272. https://doi.org/10.1002/jqs.3268.
https://doi.org/10.1002/jqs.3268...
). Taxa associated with environments with water stress were recorded, including Chamaecrista flexuosa, Matayba, and Mouriri vernicosa (Barbosa et al. 2018BARBOSA CVO, COELHO RLG & VIANA PL. 2018. Flora das cangas da Serra dos Carajás, Pará, Brasil: Sapindaceae. Rodriguésia 69: 229-239. https://doi.org/10.1590/2175-7860201869121.
https://doi.org/10.1590/2175-78602018691...
, Mattos et al. 2018MATTOS CMJ, SILVA WLS, CARVALHO CS, LIMA NA, FARIA SM & LIMA HC. 2018. Flora das cangas da serra dos Carajás, Pará, Brasil: Leguminosae. Rodriguésia 69: 1147-1220. https://doi.org/10.1590/2175-7860201869323.
https://doi.org/10.1590/2175-78602018693...
, Rocha et al. 2017ROCHA KCJ, GOLDENBERG R, MEIRELLES J & VIANA PL. 2017. Flora das cangas da Serra dos Carajás, Pará, Brasil: Melastomataceae. Rodriguésia 68: 997-1034. https://doi.org/10.1590/2175-7860201768336.
https://doi.org/10.1590/2175-78602017683...
). The period of 4,500-9,000 cal yr BP recorded the highest concentration of Botryococcus, a genus represented by species adapted to shallow waters or ephemeral lakes (Cordeiro et al. 2008CORDEIRO RC, TURCQ B, SUGUIO K, DA SILVA AO, SIFEDDINE A & RIBEIRO CV. 2008. Holocene fires in East Amazonia (Carajás), new evidences, chronology and relation with palaeoclimate. Global Planet Change 61: 49-62. https://doi.org/10.1016/j.gloplacha.2007.08.005.
https://doi.org/10.1016/j.gloplacha.2007...
). Despite the increase in precipitation rates, the dry periods were significant, causing greater fluctuations in the lake’s water level. The positive relationship between canga and forest does not indicate an intense retraction of the forest or expansion of the canga, but revealing local changes in floristic composition.

Charcoal fragments are local evidence of the occurrence of fires between 7,500 and 8,000 cal yr BP. In Serra Norte de Carajás, (Cordeiro et al. 2008CORDEIRO RC, TURCQ B, SUGUIO K, DA SILVA AO, SIFEDDINE A & RIBEIRO CV. 2008. Holocene fires in East Amazonia (Carajás), new evidences, chronology and relation with palaeoclimate. Global Planet Change 61: 49-62. https://doi.org/10.1016/j.gloplacha.2007.08.005.
https://doi.org/10.1016/j.gloplacha.2007...
) highlighted these events at 4,750-7,450 cal yr BP associated with the dry climate (Absy et al. 1991ABSY ML, CLEEF AM, FORNIER M, MARTIN L, SERVANT M, SIFEDDINE A, FERREIRA SM, SOUBIÈS F, SUGUIO K & TURCQ B. 1991. Mise en évidence de quatre phases d’ouverture de la forêt dense dans le sud-est de L’Amazonie au cours des 60,000 dernières années. Première comparaison avec d’autres régions tropicales. Comptes Rendues Academie des Sciences 312: 673-678., Bush et al. 2007BUSH MB, GOSLING WD & COLINVAUX PA. 2007. Climate change in the lowlands of the Amazon Basin. In: Bush MB & Flenley JR. (Eds). Tropical Rainforest Responses to Climatic Change. Chichester: Springer/Praxis, 55-79 p. https://doi.org/10.1007/978-3-540-48842-2_3., Cordeiro et al. 1997CORDEIRO RC, TURCQ B, SUGUIO K, RIBEIRO CV, SILVA AO, MARTIN L & SIFEDDINE A. 1997. Holocene environmental changes in Carajás Region (Pará, Brazil) Record by lacustrine deposits. Palaeolimnol 26: 814-817. https://doi.org/10.1080/03680770.1995.11900830.
https://doi.org/10.1080/03680770.1995.11...
, Moreira et al. 2013aMOREIRA LS, MOREIRA-TURCQ P, CORDEIRO RCC, CAQUINEAU S, VIANA JCC & BRANDINI N. 2013a. Holocene paleoenvi-ronmental reconstruction in the eastern Amazonian basin: Comprido lake. J South Am Earth Sci 44: 55-62. https://doi.org/10.1016/j.jsames.2012.12.012, Moreira et al. 2013bMOREIRA LS, MOREIRA-TURCQ P, TURCQ B & CORDEIRO RCC. 2013b. Palaeohydrological controls on sedimentary organic matter in an Amazon floodplain lake, Lake Maracá (Brazil) during the late Holocene. The Holocene 23: 1903 https://doi.org/10.1177/0959683613508155.
https://doi.org/10.1177/0959683613508155...
, Sifeddine et al. SIFEDDINE A, FRÖHLICH F, FOURNIER M, MARTIN L, SERVANT M, SOUBIÉS F, TURCO B, SUGUIO K & VOLKMER-RIBEIRO C.1994. La sédimentation lacustre indicateur de changements des paléoenvironnements au cous des 30000 dernières annèes (Carajás, Amazonie, Brésil). Compte Rendus de I’Academie des Sciences 318: 1645-1652.1994, Vidotto et al. 2007VIDOTTO E, PESSENDA LC, RIBEIRO AS, FREITAS HA & BENDASSOLI JÁ. 2007. Dinâmica do ecótono floresta-campo no Sul do Estado do Amazonas no Holoceno, através de estudos isotópicos e fitossociológicos. Acta Amazônica 37: 389-404. https://doi.org/10.1590/S0044-59672007000300010.
https://doi.org/10.1590/S0044-5967200700...
) suggest a dry phase in the Amazon region during the Mid-Holocene. In addition, the decrease in the flow of the Amazon River has been associated with drier periods (Guimarães et al. 2012GUIMARÃES JTF, COHEN MCL, PESSENDA LCR, FRANÇA MC, SMITH CB & NOGUEIRA ACR. 2012. Mid- and late-Holocene sedimentary process and paleovegetation changes near the mouth of the Amazon River. The Holocene 22: 359-370. http://dx.doi.org/10.1177/0959683611423693.
https://doi.org/10.1177/0959683611423693...
). In the Carajás region, the rainfall levels dropped from the Late to the Middle Holocene (Absy et al. 1991ABSY ML, CLEEF AM, FORNIER M, MARTIN L, SERVANT M, SIFEDDINE A, FERREIRA SM, SOUBIÈS F, SUGUIO K & TURCQ B. 1991. Mise en évidence de quatre phases d’ouverture de la forêt dense dans le sud-est de L’Amazonie au cours des 60,000 dernières années. Première comparaison avec d’autres régions tropicales. Comptes Rendues Academie des Sciences 312: 673-678., Cordeiro et al. 2008CORDEIRO RC, TURCQ B, SUGUIO K, DA SILVA AO, SIFEDDINE A & RIBEIRO CV. 2008. Holocene fires in East Amazonia (Carajás), new evidences, chronology and relation with palaeoclimate. Global Planet Change 61: 49-62. https://doi.org/10.1016/j.gloplacha.2007.08.005.
https://doi.org/10.1016/j.gloplacha.2007...
, Hermanowski et al. 2012HERMANOWSKI B, COSTA ML, CARVALHO AT & BEHLING H. 2012. Palaeoenvironmental dynamics and underlying climatic changes insoutheast Amazonia (Serra Sul de Carajás, Brazil) during thelate Pleistocene and Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 365-366: 227–246. https://doi.org/10.1016/j.palaeo.2012.09.030.
https://doi.org/10.1016/j.palaeo.2012.09...
, Turcq et al. 1998TURCQ B, SIFEDDINE A, MARTIN L & ABSY ML. 1998. Amazonian rainforest fires: a lacustrine record of 7000 years. Ambio 27: 139-142., Reis et al. 2017REIS LS, GUIMARÃES JTF, SOUZA-FILHO PWM, SAHOO PK, FIGUEIREDO MMJC, SOUZA EB & GIANNINI TC. 2017. Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quatern Int 449: 1-23. https://doi.org/10.1016/j.quaint.2017.04.031.
https://doi.org/10.1016/j.quaint.2017.04...
, Guimarães et al. 2021GUIMARÃES JTF ET AL. 2021. Lake sedimentary processes and vegetation changes over the last 45k cal a BP in the uplands of south-eastern Amazonia. J Quatern Sci 36: 255-272. https://doi.org/10.1002/jqs.3268.
https://doi.org/10.1002/jqs.3268...
, 2023a, b).

~3,000 to 4,000 cal yr BP – Early Holocene

From 3,000-4,000 cal BP, conditions became humid, as indicated by the increased sedimentation rate (0.07-0.24 mm-1 yr). Increased moisture favored algal diversity, intensifying competition among these organisms and decreasing the concentration of Botryococcus. The occurrence of Dryopteridaceae reinforces the humid climate. The species that occur in Carajás are associated with the presence of water bodies (Moura & Salino 2016MOURA IO & SALINO A. 2016. Flora das cangas da Serra dos Carajás, Pará, Brasil: Dryopteridaceae. Rodriguésia 67: 1151-1157. https://doi.org/10.1590/2175-7860201667509.
https://doi.org/10.1590/2175-78602016675...
).

~750-3,000 cal yr BP – Early Holocene

Hot and humid environmental conditions were maintained. This interpretation is supported by the high sedimentation rates (0.17-0.24 mm-1 yr) and the increased pollen concentration. High abundance of forest elements such as Aparisthmium/Alchornea, Mauritiella armata palm, Zygnema colonies, Microgramma ferns support wet conditions during this period. Pollen data from eastern Bolivia indicate a 2,790-year cal yr BP increase in moisture, in agreement with our interpretation. The authors attribute the observed precipitation increases during this period to a southward shift of the Intertropical Convergence Zone (Mayle et al. 2000MAYLE FE, BURBRIDGE R & KILLEEN TJ. 2000. Millennial-scale dynamics of southern Amazonian rain forests. Science 290: 2291-2294. https://doi.org/10.1126/science.290.5500.2291.
https://doi.org/10.1126/science.290.5500...
). The increase in canga vegetation, mainly those more adapted elements, was influenced by the flooded area due to increased rainfall, as shown by Mayle et al. (2000)MAYLE FE, BURBRIDGE R & KILLEEN TJ. 2000. Millennial-scale dynamics of southern Amazonian rain forests. Science 290: 2291-2294. https://doi.org/10.1126/science.290.5500.2291.
https://doi.org/10.1126/science.290.5500...
, and specially by Da Silva et al. (2020)DA SILVA EF, LOPES K, ALVES R, CARREIRA MLM, SILVA DF, ROMEIRO LA, BATISTA JUNIOR WF, RODRIGUES TM, SECCO R & GUIMARÃES JTF. 2020. Hydroclimate influences on modern pollen rain of the upland southeastern Amazonia. The Holocene. 30: 721-732. https://doi.org/10.1177/0959683619895586.
https://doi.org/10.1177/0959683619895586...
for the studied area. The expansion of macrophytes and palms also exerted a strong influence on the high sedimentation rates of autochthonous organic sedimentation. This finding corroborates Cordeiro et al. (2008)CORDEIRO RC, TURCQ B, SUGUIO K, DA SILVA AO, SIFEDDINE A & RIBEIRO CV. 2008. Holocene fires in East Amazonia (Carajás), new evidences, chronology and relation with palaeoclimate. Global Planet Change 61: 49-62. https://doi.org/10.1016/j.gloplacha.2007.08.005.
https://doi.org/10.1016/j.gloplacha.2007...
and the results from other lakes in Amazonia (Bush et al. 2004BUSH MB, OLIVEIRA PE & COLINVAUX PA. 2004. Amazonian paleoecological histories: one hill, 3 watersheds. Palaeogeogr Palaeoclimatol Palaeoecol 214: 359-393. https://doi.org/10.1016/j.palaeo.2004.07.031.
https://doi.org/10.1016/j.palaeo.2004.07...
, Cohen et al. 2014COHEN MCL, ROSSETTI DF, PESSENDA LCR, FRIAES YS & OLIVEIRA PE. 2014. Late Pleistocene glacial forest of Humaitá-Western Amazonia. Palaeogeogr Palaeoclimatol Palaeoecol 415: 37-47. https://doi.org/10.1016/j.palaeo.2013.12.025.
https://doi.org/10.1016/j.palaeo.2013.12...
, Reis et al. 2017REIS LS, GUIMARÃES JTF, SOUZA-FILHO PWM, SAHOO PK, FIGUEIREDO MMJC, SOUZA EB & GIANNINI TC. 2017. Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quatern Int 449: 1-23. https://doi.org/10.1016/j.quaint.2017.04.031.
https://doi.org/10.1016/j.quaint.2017.04...
, Guimarães et al. 2012GUIMARÃES JTF, COHEN MCL, PESSENDA LCR, FRANÇA MC, SMITH CB & NOGUEIRA ACR. 2012. Mid- and late-Holocene sedimentary process and paleovegetation changes near the mouth of the Amazon River. The Holocene 22: 359-370. http://dx.doi.org/10.1177/0959683611423693.
https://doi.org/10.1177/0959683611423693...
, Souza et al. 2021SOUZA KM, SILVA ML, CAMPELLO CR, ABDELFETTAH S, BRUNO T, MISAILIDIS SN & SIMÕES SM. 2021. Late-Holocene palaeoenvironmental reconstruction from a lake in the Amazon Rainforest-Tropical Savanna (Cerrado) boundary in Brazil using a multi-proxy approach. The Holocene 31: 1-13. https://doi.org/10.1177/09596836211019091.
https://doi.org/10.1177/0959683621101909...
, Burbridge et al. 2004BURBRIDGE RE, MAYLE FE & KILLEEN TJ. 2004. Fifty-thousand year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quatern Res 61: 215-230. https://doi.org/10.1016/j.yqres.2003.12.004.
https://doi.org/10.1016/j.yqres.2003.12....
).

<750 cal yr BP – Early Holocene to the present

Intensification of the expansion of macrophyte and palm populations accelerated the filling process (Figure S3), with colonization by Cyperaceae, Polygonum acuminatum and Mauritiela armata pollen, as observed by Da Silva et al. (2020)DA SILVA EF, LOPES K, ALVES R, CARREIRA MLM, SILVA DF, ROMEIRO LA, BATISTA JUNIOR WF, RODRIGUES TM, SECCO R & GUIMARÃES JTF. 2020. Hydroclimate influences on modern pollen rain of the upland southeastern Amazonia. The Holocene. 30: 721-732. https://doi.org/10.1177/0959683619895586.
https://doi.org/10.1177/0959683619895586...
based on modern pollen traps in the studied area.

Seasonal floods became frequent following lake filling, as suggested by the presence of Hyptis parkeri, which stays submerged part of the year and blooms only when the soil is dry (Harley 2016HARLEY RM. 2016. Flora of the Cangas of the Serra dos Carajás, Pará, Brasil: Lamiaceae. Rodriguésia 67: 1381-1398. https://doi.org/10.1590/2175-7860201667536.
https://doi.org/10.1590/2175-78602016675...
). Hydrological dynamics, in which the lake surroundings flood for a short time followed by months of dry soil, is described by Da Silva et al. (2020)DA SILVA EF, LOPES K, ALVES R, CARREIRA MLM, SILVA DF, ROMEIRO LA, BATISTA JUNIOR WF, RODRIGUES TM, SECCO R & GUIMARÃES JTF. 2020. Hydroclimate influences on modern pollen rain of the upland southeastern Amazonia. The Holocene. 30: 721-732. https://doi.org/10.1177/0959683619895586.
https://doi.org/10.1177/0959683619895586...
, who stated that this process influences the composition of the pollen assemblage, as confirmed by the nMDS analysis, which showed similarity between the samples from zone 5 (<750 cal yr BP) and the MPR Da Silva et al. (2020)DA SILVA EF, LOPES K, ALVES R, CARREIRA MLM, SILVA DF, ROMEIRO LA, BATISTA JUNIOR WF, RODRIGUES TM, SECCO R & GUIMARÃES JTF. 2020. Hydroclimate influences on modern pollen rain of the upland southeastern Amazonia. The Holocene. 30: 721-732. https://doi.org/10.1177/0959683619895586.
https://doi.org/10.1177/0959683619895586...
.

Despite the observed trend of increased humidity for the Late Holocene, episodic drought events may have occurred (Souza et al. 2021SOUZA KM, SILVA ML, CAMPELLO CR, ABDELFETTAH S, BRUNO T, MISAILIDIS SN & SIMÕES SM. 2021. Late-Holocene palaeoenvironmental reconstruction from a lake in the Amazon Rainforest-Tropical Savanna (Cerrado) boundary in Brazil using a multi-proxy approach. The Holocene 31: 1-13. https://doi.org/10.1177/09596836211019091.
https://doi.org/10.1177/0959683621101909...
). Transition regions close to the limits of the Amazonia rainforest exhibit a more seasonal climate, characterized by periods of high precipitation with periods of drought (McMichael et al. 2012McMICHAEL CH, BUSH MB, PIPERNO DR, SILMAN MR, ZIMMERMAN AR & ANDERSON C. 2012. Spatial and temporal scales of pre-Columbian disturbance associated with western Amazonian lakes. Holocene 22: 131-141. https://doi.org/10.1177/0959683611414932.
https://doi.org/10.1177/0959683611414932...
). In Carajás, the increase in the record of sponge species, adapted to lower lake levels and the increase in charcoal accumulation rates between 1.300 and 70 cal yr BP suggest periods of short drier events (Cordeiro et al. 2008CORDEIRO RC, TURCQ B, SUGUIO K, DA SILVA AO, SIFEDDINE A & RIBEIRO CV. 2008. Holocene fires in East Amazonia (Carajás), new evidences, chronology and relation with palaeoclimate. Global Planet Change 61: 49-62. https://doi.org/10.1016/j.gloplacha.2007.08.005.
https://doi.org/10.1016/j.gloplacha.2007...
). Drier conditions favor the spread of fires, whereas wetter periods can prevent the spread of these events (Souza et al. 2021SOUZA KM, SILVA ML, CAMPELLO CR, ABDELFETTAH S, BRUNO T, MISAILIDIS SN & SIMÕES SM. 2021. Late-Holocene palaeoenvironmental reconstruction from a lake in the Amazon Rainforest-Tropical Savanna (Cerrado) boundary in Brazil using a multi-proxy approach. The Holocene 31: 1-13. https://doi.org/10.1177/09596836211019091.
https://doi.org/10.1177/0959683621101909...
).

Interpretation of the Poaceae pollen concentration

Some studies have already called attention to the ambiguous behavior of Poaceae in tropical forests (Colinvaux & De Oliveira 2000COLINVAUX PA & DE OLIVEIRA PE. 2000. Palaeoecology and climate of the Amazon basin during the last glacial cycle. J Quatern Sci 15: 347-356. https://doi.org/10.1002/1099-1417(200005)15:4%3C347::AID-JQS537%3E3.0.CO;2-A.
https://doi.org/10.1002/1099-1417(200005...
, Guimarães et al. 2014GUIMARÃES JTF ET AL. 2014. Source and distribution of pollen and spores in surface sediments of a plateau lake in southeastern Amazonia. Quatern Int 352: 181-196. https://doi.org/10.1016/j.quaint.2014.06.004.
https://doi.org/10.1016/j.quaint.2014.06...
, 2016, Absy et al. 2014ABSY ML, CLEEF AM, D’APOLITO C & DA SILVA MFF. 2014. Palynological differentiation of savanna types in Carajás, Brazil (southeastern Amazonia). Palynology 38: 78-89. https://doi.org/10.1080/01916122.2013.842189.
https://doi.org/10.1080/01916122.2013.84...
, Bush 2002BUSH MB. 2002. On the interpretation of fossil Poaceae pollen inthe lowland humid neotropics. Palaeogeography, Palaeoclimatology, Palaeoecology 177: 5-17. https://doi.org/10.1016/S0031-0182(01)00348-0, Reis et al., 2017, 2022). However, some studies have associated the increased concentrations to a dry climate and environment, as well as the expansion of areas with open vegetation (Absy et al. 1991ABSY ML, CLEEF AM, FORNIER M, MARTIN L, SERVANT M, SIFEDDINE A, FERREIRA SM, SOUBIÈS F, SUGUIO K & TURCQ B. 1991. Mise en évidence de quatre phases d’ouverture de la forêt dense dans le sud-est de L’Amazonie au cours des 60,000 dernières années. Première comparaison avec d’autres régions tropicales. Comptes Rendues Academie des Sciences 312: 673-678., Behling et al. 2001BEHLING H, BAUERMANN SG & NEVES PCP. 2001. Holocene environmental changes in the Sao Francisco de Paula region, southern Brazil. Journal of South American Earth Sciences 14: 631-639. https://doi.org/10.1016/S0895-9811(01)00040-2.
https://doi.org/10.1016/S0895-9811(01)00...
, D’Apolito et al. 2017D’APOLITO C, LATRUBESSE EM & ABSY ML. 2017. Results confirm a relatively dry setting during the last glacial (MIS 3 and LGM) in Carajás, Amazonia: A comment on Guimarães et al. The Holocene 28: 1-2. http://dx.doi.org/10.1177/0959683617721333.
https://doi.org/10.1177/0959683617721333...
, Hermanowski et al. 2014HERMANOWSKI B, COSTA ML & BEHLING H. 2014. Possible linkages of palaeofires in southeast Amazonia to a changing climate since the Last Glacial Maximum. Veg Hist Archaeobot 24: 279-292. https://doi.org/10.1007/s00334-014-0472-0.
https://doi.org/10.1007/s00334-014-0472-...
, Hooghiemstra & Van der Hammen 1998HOOGHIEMSTRA H & VAN DER HAMMEN T. 1998. Neogene and Quaternary development of the neotropical rain forest: the forest refugia hypothesis, and a literature overview. Earth Sci Rev 44: 147-183. https://doi.org/10.1016/S0012-8252(98)00027-0.
https://doi.org/10.1016/S0012-8252(98)00...
, Van De Hammen & Absy 1994VAN DE HAMMEN T & ABSY ML. 1994. Amazonia during the last glacial. Palaeogeogr Palaeoclimatol Palaeoecol 109: 247-261. https://doi.org/10.1016/0031-0182(94)90178-3.
https://doi.org/10.1016/0031-0182(94)901...
).

Poaceae undif. occur in the nMDS between the group formed by a wet period, zone 1 (14,000-18,000 cal yr BP), and those formed by zones 2, 3, and 4 (750-13,500 cal yr BP), which are considered to be relatively dry, relatively stable percentage and concentration, mean of 23% and 3,160 grains/cm3, respectively. Furthermore, as demonstrated by Da Silva et al. (2020)DA SILVA EF, LOPES K, ALVES R, CARREIRA MLM, SILVA DF, ROMEIRO LA, BATISTA JUNIOR WF, RODRIGUES TM, SECCO R & GUIMARÃES JTF. 2020. Hydroclimate influences on modern pollen rain of the upland southeastern Amazonia. The Holocene. 30: 721-732. https://doi.org/10.1177/0959683619895586.
https://doi.org/10.1177/0959683619895586...
, the influx of Poaceae pollen grains can increase even in periods of high humidity, as observed in the pollen assembly of inorganic sedimentary facies. Species from temporary and swampy lakes, canga vegetation and forest have already been reported in the studied area by Da Silva et al. (2020)DA SILVA EF, LOPES K, ALVES R, CARREIRA MLM, SILVA DF, ROMEIRO LA, BATISTA JUNIOR WF, RODRIGUES TM, SECCO R & GUIMARÃES JTF. 2020. Hydroclimate influences on modern pollen rain of the upland southeastern Amazonia. The Holocene. 30: 721-732. https://doi.org/10.1177/0959683619895586.
https://doi.org/10.1177/0959683619895586...
, making evident the ecological range of this family.

Paleoenvironmental dynamics and future perspectives

Guimaraes et al. (2023a) based on a multiproxy approach in 11 lacustrine cores covering different plateaus of the Carajás region demonstrated that active upland lakes never dried up during the last 50 ka cal yr BP. In contrast, subaerial exposure occurred in some inactive lakes (swamps) during the Last Glacial Maximum (LGM) and the Holocene, as well as extensive siderite precipitation and some local expansion of C4 plants related to dry paleoclimate conditions. However, even these drier conditions were not sufficient to produce extensive replacement of humid evergreen tropical forests by savannah on the Carajás plateau in this period. It depends on the geomorphology and lithological properties of lake basins, which are quite variable in these plateaus (Da Silva et al. 2018SILVA MS, GUIMARÃES JTF, SOUZA FILHO PWM, NASCIMENTO JÚNIOR WR, SAHOO PK, COSTA FR, SILVA JÚNIOR RO, RODRIGUES TM & COSTA MF. 2018. Morphology and morphometry of upland lakes over lateritic crust, Serra dos Carajás, southeastern Amazon region. An Acad Bras Cienc 90: 1309-1325. https://doi.org/10.1590/0001-3765201820170349.
https://doi.org/10.1590/0001-37652018201...
). Indeed, based on the analysis of paleovegetation with modern pollen rain, the isotopic and palyonological data in this study demonstrate that the climatic variations were not intense enough to define significant changes to the forest area in order to reduce its area. The pollen concentrations of canga and forest vegetation showed similar increasing and decreasing trends. The frequency of Microgramma, common in rainforest (Almeida et al. 2017ALMEIDA TE, SOUSA DCS, COSTA EC & SALINO A. 2017. Flora das cangas da Serra dos Carajás, Pará, Brasil: Polypodiaceae. Rodriguésia 68: 871-880. https://doi.org/10.1590/2175-7860201768317.
https://doi.org/10.1590/2175-78602017683...
), reinforced the continuous representation of the forest. Thus, the paleoclimatic variations did not determine the expansion of canga vegetation into areas of tropical forest, as discussed in some studies (Absy et al. 1991ABSY ML, CLEEF AM, FORNIER M, MARTIN L, SERVANT M, SIFEDDINE A, FERREIRA SM, SOUBIÈS F, SUGUIO K & TURCQ B. 1991. Mise en évidence de quatre phases d’ouverture de la forêt dense dans le sud-est de L’Amazonie au cours des 60,000 dernières années. Première comparaison avec d’autres régions tropicales. Comptes Rendues Academie des Sciences 312: 673-678., Van De Hammen & Absy 1994VAN DE HAMMEN T & ABSY ML. 1994. Amazonia during the last glacial. Palaeogeogr Palaeoclimatol Palaeoecol 109: 247-261. https://doi.org/10.1016/0031-0182(94)90178-3.
https://doi.org/10.1016/0031-0182(94)901...
, Sifeddine et al. SIFEDDINE A, FRÖHLICH F, FOURNIER M, MARTIN L, SERVANT M, SOUBIÉS F, TURCO B, SUGUIO K & VOLKMER-RIBEIRO C.1994. La sédimentation lacustre indicateur de changements des paléoenvironnements au cous des 30000 dernières annèes (Carajás, Amazonie, Brésil). Compte Rendus de I’Academie des Sciences 318: 1645-1652.2001, Hermanowski et al. 2014HERMANOWSKI B, COSTA ML & BEHLING H. 2014. Possible linkages of palaeofires in southeast Amazonia to a changing climate since the Last Glacial Maximum. Veg Hist Archaeobot 24: 279-292. https://doi.org/10.1007/s00334-014-0472-0.
https://doi.org/10.1007/s00334-014-0472-...
, D’Apolito et al. 2017D’APOLITO C, LATRUBESSE EM & ABSY ML. 2017. Results confirm a relatively dry setting during the last glacial (MIS 3 and LGM) in Carajás, Amazonia: A comment on Guimarães et al. The Holocene 28: 1-2. http://dx.doi.org/10.1177/0959683617721333.
https://doi.org/10.1177/0959683617721333...
, Turcq et al. 2002TURCQ B, ALBUQUERQUE ALS, CORDEIRO RC, SIFEDDINE A, SIMOES FILHO FFL, SOUZA AG, ABÃO JJ, OLIVEIRA FBL & SILVA AO. 2002. Capitâneo, J Accumulation of organic carbon in five Brazilian lakes during the Holocene. Sedimentary Geology 148: 319-342. https://doi.org/10.1016/S0037-0738(01)00224-X.
https://doi.org/10.1016/S0037-0738(01)00...
).

The analyses relating paleovegetation and modern pollen rain show that the climatic dynamics caused changes in the association of the pre-existing species, with the expansion of populations of the most adapted species and the retraction of the most sensitive species to new environmental conditions. In periods of greater humidity: Fabaceae, Asteraceae, Cuphea, Chamaecrista flexuosa, Borreria tenella, Hyptis parkeri, Aparisthmium/Alchornea, Raphanus, Ilex and Tournefortia. In relatively drier periods: Trichilia micrantha, Zanthoxylum, Bignoniaceae, Cyperaceae and Socratea.

The data showed that these changes intensified when the lake became inactive, causing significant changes in the dynamics of the water balance and thus determining an intense selection of species adapted to the new ecological dynamics of the area. Climatic variations influenced changes in the species composition, since differences in the pollen assembly of the Early Pleistocene were confirmed, in comparison to the Late and Middle Holocene and the Early Holocene. However, the similarity between the assembly registered in the last 750 cal yr BP with modern pollen rain and its distance from the assemblies from other periods, indicates besides the changes in the lake water balance also the anthropic action that accelerates the process of climate change. Although it is recent, the anthropic action was intense compared to natural processes and may has played a major role in the composition of species in more recent periods of the Early Holocene, as pointed out by (Esquivel-Muelbert et al. 2017ESQUIVEL-MUELBERT A ET AL. 2017. Seasonal drought limits tree species across the Neotropics. Ecography 40: 618-629. https://doi.org/10.1111/ecog.01904.
https://doi.org/10.1111/ecog.01904...
, Harrison et al. 2015HARRISON SP, BARTLEIN PJ, IZUMI K, LI G, ANNAN J, HARGREAVES J, BRACONNOT P & KAGEYAMA M. 2015. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nature Climate Change 5: 735-743. http://dx.doi.org/10.1038/nclimate2649.
https://doi.org/10.1038/nclimate2649...
, Van der Sande et al. 2016VAN DER SANDE MT, ARETS EJMM, PEÑA-CLAROS M, LUCIANA DE AVILA A, ROOPSIND A, MAZZEI L, ASCARRUNZ N, FINEGAN B & ALARCÓN A. 2016. Old-growth Neotropical forests are shifting in species and trait composition. Ecological Monographs 86: 228-243. https://doi.org/10.1890/15-1815.1.
https://doi.org/10.1890/15-1815.1...
, Van der Sande et al. 2019VAN DER SANDE MT, GOSLING W, CORREA-METRIO A, PRADO-JUNIOR J, POORTER L, OLIVEIRA RS, MAZZEI L & BUSH MB. 2019. A 7000-year history of changing plant trait composition in an Amazonian landscape; the role of humans and climate. Ecology Letters 22: 925- 935. https://doi.org/10.1111/ele.13251).

Suppression on a landscape at the expense of the expansion of savannah in tropical forests would only be possible with the convergence of factors such as decreased rainfall, increased temperatures, and the relatively constant incidence of fires, the latter being the greatest threat to the maintenance of tropical forests (Bush 2017BUSH M. 2017. The resilience of Amazonian forests. Nature 541: 167-168. https://doi.org/10.1038/541167a.
https://doi.org/10.1038/541167a...
). However, the combined occurrence of these factors, even with occasional records, resulted in a decrease in the pollen representation of all vegetation types and a rearrangement of the most representative species, demonstrating the resilience of the forest landscape even with the combination of adverse conditions.

Bush (2017)BUSH M. 2017. The resilience of Amazonian forests. Nature 541: 167-168. https://doi.org/10.1038/541167a.
https://doi.org/10.1038/541167a...
showed that in the future, it is very likely that climatic conditions will be unstable and that the frequency and intensity of extreme drought and flood events will increase, which may decide the future of the region. Our results, as well as those obtained by Wang et al. (2017)WANG S, XU X, SHRESTHA N, ZIMMERMANN NE, TANG Z & WANG Z. 2017. Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM). Plos One 12: e0175742. https://doi.org/10.1371/journal.pone.0175742.
https://doi.org/10.1371/journal.pone.017...
, suggest that the Amazonia rainforest is resilient in a lower rainfall scenario. However, changes in land use, deforestation and large-scale burning can result in trends similar to savannization in the Amazonian rainforest (Bush 2017BUSH M. 2017. The resilience of Amazonian forests. Nature 541: 167-168. https://doi.org/10.1038/541167a.
https://doi.org/10.1038/541167a...
, Nobre & Nobre 2002NOBRE CA & NOBRE AD. 2002. O balanço de carbono da Amazônia brasileira. Estudos Avançados 16: 81-90. https://doi.org/10.1590/S0103-40142002000200006.
https://doi.org/10.1590/S0103-4014200200...
). Therefore, in order to preserve the Amazonian Forest and maintain its ecosystem services, it is necessary to reduce deforestation rates and, mainly, to promote land use that excludes fire, otherwise destabilized climates will quickly lead to the degradation of this habitat (Bush 2017BUSH M. 2017. The resilience of Amazonian forests. Nature 541: 167-168. https://doi.org/10.1038/541167a.
https://doi.org/10.1038/541167a...
).

CONCLUSIONS

The organic matter of TML has a local origin. The organic components indicate changes in the paleoclimate and in the contribution of the paleovegetation, i.e., from wet conditions followed by long periods of peat deposition with a strong DOC contribution, which signal relatively dry conditions until the beginning of the Early Holocene.

The results indicate that drought was not intense enough to cause subaerial exposure of the lake. However, the signs of variations in temperature and humidity are clear. The record of cold-climate taxa during the Early Pleistocene indicates lower temperatures than in the Holocene.

In the transition from the Pleistocene to the Holocene, rainfall reduced the flooded area and established a marsh environment. However, the decreased rainfall was not enough to dry the lake. Temperatures were higher during the Holocene. In the Late and Middle Holocene, the humidity was relatively low, different from the Early Holocene.

The change from an active to an inactive lake condition directly affected the pollen concentration of the taxa most sensitive to seasonal floods. Thus, the most recent pollen rain, especially of canga vegetation, represents the selection of species adapted to flood events followed by periods with completely dry soil.

The occurrence of forest pollen types does not support the hypothesis of forest fragmentation, but changes in plant associations were observed throughout the events. Our data reinforce the hypothesis of forest stability in the face of climate change.

ACKNOWLEDGMENTS

This project was carried out in the National Forest of Carajás under permission of IBAMA (SISBIO 35594-2). The first author thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) for providing the doctoral scholarship. The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was financed in part by CAPES– Finance Code 001. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) supported the last author (JTFG) with a research scholarship (302839/2016-0). All data generated or analyzed during this study are included in this published article and its supplementary information files. The authors declare no conflicts of interest.

SUPPLEMENTARY MATERIAL

Figure S1-S2.

REFERENCES

  • ABSY ML, CLEEF AM, D’APOLITO C & DA SILVA MFF. 2014. Palynological differentiation of savanna types in Carajás, Brazil (southeastern Amazonia). Palynology 38: 78-89. https://doi.org/10.1080/01916122.2013.842189.
    » https://doi.org/10.1080/01916122.2013.842189
  • ABSY ML, CLEEF AM, FORNIER M, MARTIN L, SERVANT M, SIFEDDINE A, FERREIRA SM, SOUBIÈS F, SUGUIO K & TURCQ B. 1991. Mise en évidence de quatre phases d’ouverture de la forêt dense dans le sud-est de L’Amazonie au cours des 60,000 dernières années. Première comparaison avec d’autres régions tropicales. Comptes Rendues Academie des Sciences 312: 673-678.
  • ALMEIDA TE, SOUSA DCS, COSTA EC & SALINO A. 2017. Flora das cangas da Serra dos Carajás, Pará, Brasil: Polypodiaceae. Rodriguésia 68: 871-880. https://doi.org/10.1590/2175-7860201768317.
    » https://doi.org/10.1590/2175-7860201768317
  • BAKER PA, SELTZER GO, FRITZ SC, DUNBAR RB, GROVE MJ, TAPIA PM, CROSS SL, ROWE HD & BRODA JP. 2001. The history of South American tropical precipitation for the past 25,000 years. Science 291: 640-643. https://doi.org/10.1126/science.291.5504.640.
    » https://doi.org/10.1126/science.291.5504.640
  • BARBOSA JPO. 2004. Geologia estrutural, geoquímica, petrografia e geocronologia dos granitos da região do Igarapé Gelado, Província Mineral de Carajás. Dissertação de Mestrado em Geologia e Geoquímica. Universidade Federal do Pará, 92 p. (Unpublished).
  • BARBOSA CVO, COELHO RLG & VIANA PL. 2018. Flora das cangas da Serra dos Carajás, Pará, Brasil: Sapindaceae. Rodriguésia 69: 229-239. https://doi.org/10.1590/2175-7860201869121.
    » https://doi.org/10.1590/2175-7860201869121
  • BEHLING H, BAUERMANN SG & NEVES PCP. 2001. Holocene environmental changes in the Sao Francisco de Paula region, southern Brazil. Journal of South American Earth Sciences 14: 631-639. https://doi.org/10.1016/S0895-9811(01)00040-2.
    » https://doi.org/10.1016/S0895-9811(01)00040-2
  • BEISIEGEL VR, BERNARDELLI AL, DRUMMOND NF, RUFF AW & TREMAINE JW. 1973. Geologia e recursos minerais da Serra dos Carajás. Rev Bras Geoci 3(4): 215-242.
  • BIRKS HJB, FELDE VA, BJUNE AE, GRYTNES JA, SEPPÃ H & GIESECKE T. 2016 Does pollen-assemblage richness) reflect floristic richness? A review of recent developments and future challenges. Rev Palaeobot Palynol 228: 1-25. https://doi.org/10.1016/j.revpalbo.2015.12.011.
    » https://doi.org/10.1016/j.revpalbo.2015.12.011
  • BLAAUW M & CHRISTEN JA. 2011. Flexible palaeoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6: 457-474. https://doi.org/10.1214/11-BA618.
    » https://doi.org/10.1214/11-BA618
  • BURBRIDGE RE, MAYLE FE & KILLEEN TJ. 2004. Fifty-thousand year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quatern Res 61: 215-230. https://doi.org/10.1016/j.yqres.2003.12.004.
    » https://doi.org/10.1016/j.yqres.2003.12.004
  • BURN MJ, MAYLE FE & KILLEEN TJ. 2010. Pollen-based differentiation of Amazonian rainforest communities and implications for lowland palaeoecology in tropical South America. Palaeogeogr Palaeoclimatol Palaeoecol 295: 1-18. https://doi.org/10.1016/j.palaeo.2010.05.009.
    » https://doi.org/10.1016/j.palaeo.2010.05.009
  • BUSH AM & BRAME RI. 2010. Multiple paleoecological controls on the composition of marine fossil assemblages from the Frasnian (Late Devonian) of Virginia, with a comparison of ordination methods. Paleobiol 36: 573-591. https://www.jstor.org/stable/40926783.
  • BUSH M. 2017. The resilience of Amazonian forests. Nature 541: 167-168. https://doi.org/10.1038/541167a.
    » https://doi.org/10.1038/541167a
  • BUSH MB. 2002. On the interpretation of fossil Poaceae pollen inthe lowland humid neotropics. Palaeogeography, Palaeoclimatology, Palaeoecology 177: 5-17. https://doi.org/10.1016/S0031-0182(01)00348-0
  • BUSH MB, COLINVAUX PA, WIEMANN MC, PIPERNO DR & LIU K. 1990. Late Pleistocene temperature depression and vegetation change in Ecuadorian Amazonia. Quatern Res 34: 330-345. https://doi.org/10.1016/0033-5894(90)90045-M.
    » https://doi.org/10.1016/0033-5894(90)90045-M
  • BUSH MB, GOSLING WD & COLINVAUX PA. 2007. Climate change in the lowlands of the Amazon Basin. In: Bush MB & Flenley JR. (Eds). Tropical Rainforest Responses to Climatic Change. Chichester: Springer/Praxis, 55-79 p. https://doi.org/10.1007/978-3-540-48842-2_3.
  • BUSH MB, GOSLING WD & COLINVAUX PA. 2011. Climate and vegetation change in the lowlands of the Amazon Basin, p. 61-84. In: Tropical Rainforest Responses to Climatic Change. New York: Springer-Praxis Books. https://doi.org/10.1007/978-3-642-05383-2_3
    » https://doi.org/10.1007/978-3-642-05383-2_3
  • BUSH MB, OLIVEIRA PE & COLINVAUX PA. 2004. Amazonian paleoecological histories: one hill, 3 watersheds. Palaeogeogr Palaeoclimatol Palaeoecol 214: 359-393. https://doi.org/10.1016/j.palaeo.2004.07.031.
    » https://doi.org/10.1016/j.palaeo.2004.07.031
  • CARREIRA LMM, DA SILVA MF & LOPES JRC. 1996. Catálogo de Pólen das Leguminosas da Amazônia Brasileira. Belém: Museu Paraense Emílio Goeldi, 137 p.
  • CAVALCANTI TB, FACCO MG & BRAUNER LM. 2016. Flora of the cangas of the Serra dos Carajás, Pará, Brazil: Lythraceae. Rodriguésia 67: 1411-1415. https://doi.org/10.1590/2175-7860201667539.
    » https://doi.org/10.1590/2175-7860201667539
  • CHENG H, SINHA A, CRUZ FW, WANG X, EDWARDS RL, D’ HORTA FM, RIBAS CC, VUILLE M, STOTT LD & AULER AS. 2013. Climate change patterns in Amazonia and biodiversity. Nature 4: 1411. https://doi.org/10.1038/ncomms2415.
    » https://doi.org/10.1038/ncomms2415
  • COHEN MCL, ROSSETTI DF, PESSENDA LCR, FRIAES YS & OLIVEIRA PE. 2014. Late Pleistocene glacial forest of Humaitá-Western Amazonia. Palaeogeogr Palaeoclimatol Palaeoecol 415: 37-47. https://doi.org/10.1016/j.palaeo.2013.12.025.
    » https://doi.org/10.1016/j.palaeo.2013.12.025
  • COLINVAUX PA & DE OLIVEIRA PE. 2000. Palaeoecology and climate of the Amazon basin during the last glacial cycle. J Quatern Sci 15: 347-356. https://doi.org/10.1002/1099-1417(200005)15:4%3C347::AID-JQS537%3E3.0.CO;2-A.
    » https://doi.org/10.1002/1099-1417(200005)15:4%3C347::AID-JQS537%3E3.0.CO;2-A
  • COLINVAUX PA, DE OLIVEIRA PE & BUSH MB. 2000. Amazon and Neotropical plant communities on glacial time scales: the failure of the aridity and refuge hypotheses. Quatern Sci Rev 19: 141-169. https://doi.org/10.1016/S0277-3791(99)00059-1.
    » https://doi.org/10.1016/S0277-3791(99)00059-1
  • COLINVAUX PA, IRION G, RÄSÄNEN M, BUSH MB & MELLO JASN. 2001. A paradigm to be discarded: geological and paleoecological data falsify the Haffer and Prance refuge hypothesis of Amazonian speciation. Amazoniana 16: 609-646.
  • COLINVAUX PA, LIU KB, OLIVEIRA P, BUSH MB, MILLER MC & KANNAN MS. 1996. Temperature depression in the lowland tropics in glacial times. Climatic Change 32: 19-33. https://doi.org/10.1007/BF00141276.
    » https://doi.org/10.1007/BF00141276
  • COLINVAUX P, DE OLIVEIRA PE & PATIÑO JEM. 1999. Amazon Pollen Manual and Atlas Manual e Atlas Palinológico da Amazônia. Amsterdam: Hardwood Academic, 332 p. https://10.1201/9781482283600.
  • CORDEIRO RC, TURCQ B, SUGUIO K, DA SILVA AO, SIFEDDINE A & RIBEIRO CV. 2008. Holocene fires in East Amazonia (Carajás), new evidences, chronology and relation with palaeoclimate. Global Planet Change 61: 49-62. https://doi.org/10.1016/j.gloplacha.2007.08.005.
    » https://doi.org/10.1016/j.gloplacha.2007.08.005
  • CORDEIRO RC, TURCQ B, SUGUIO K, RIBEIRO CV, SILVA AO, MARTIN L & SIFEDDINE A. 1997. Holocene environmental changes in Carajás Region (Pará, Brazil) Record by lacustrine deposits. Palaeolimnol 26: 814-817. https://doi.org/10.1080/03680770.1995.11900830.
    » https://doi.org/10.1080/03680770.1995.11900830
  • COSTA ML. 1991. Aspectos geológicos dos lateritos da Amazônia. Rev Bras Geoci 21(2): 146-160. https://www.ppegeo.igc.usp.br/index.php/rbg/article/view/11750/11287.
  • COSTA ML, CARMO MS & BEHLING H. 2005. Mineralogia e geoquímica de sedimentos lacustres com substrato laterítico na Amazônia Brasileira. Rev Bras Geoci 35: 165-176. http://dx.doi.org/10.25249/0375-7536.2005352165176.
    » https://doi.org/10.25249/0375-7536.2005352165176
  • CRUZ APO, VIANA PL & SANTOS JU. 2016. Flora of the cangas of the Serra dos Carajás, Pará, Brazil: Asteraceae. Rodriguésia 67: 1211-1242. https://doi.org/10.1590/2175-7860201667520.
    » https://doi.org/10.1590/2175-7860201667520
  • DA SILVA EF, LOPES K, ALVES R, CARREIRA MLM, SILVA DF, ROMEIRO LA, BATISTA JUNIOR WF, RODRIGUES TM, SECCO R & GUIMARÃES JTF. 2020. Hydroclimate influences on modern pollen rain of the upland southeastern Amazonia. The Holocene. 30: 721-732. https://doi.org/10.1177/0959683619895586.
    » https://doi.org/10.1177/0959683619895586
  • D’APOLITO C, LATRUBESSE EM & ABSY ML. 2017. Results confirm a relatively dry setting during the last glacial (MIS 3 and LGM) in Carajás, Amazonia: A comment on Guimarães et al. The Holocene 28: 1-2. http://dx.doi.org/10.1177/0959683617721333.
    » https://doi.org/10.1177/0959683617721333
  • D’APOLITO C, ABSY ML & LATRUBESSE EM. 2013. The Hill of Six Lakes revisited: new data and re-evaluation of a key Pleistocene Amazon site. Quatern Sci Rev 76: 140-155. https://doi.org/10.1016/j.quascirev.2013.07.013.
    » https://doi.org/10.1016/j.quascirev.2013.07.013
  • DE OLIVEIRA PE, BARRETO AMF & SUGUIO K. 1999. Late Pleistocene/Holocene climatic and vegetational history of the Brazilian caatinga: the fossil dunes of the middle São Francisco River. Palaeogeogr Palaeoclimatol Palaeoecol 152: 319-337. https://doi.org/10.1016/S0031-0182(99)00061-9.
    » https://doi.org/10.1016/S0031-0182(99)00061-9
  • DEINES P. 1980. The isotopic composition of reduced organic carbon. In: Handbook Of Environmental Isotope Geochemistry & The Terrestrial Environment. Amsterdam: Elsevier, p. 329-406. https://doi.org/10.1016/B978-0-444-41780-0.50015-8
    » https://doi.org/10.1016/B978-0-444-41780-0.50015-8
  • ESQUIVEL-MUELBERT A ET AL. 2017. Seasonal drought limits tree species across the Neotropics. Ecography 40: 618-629. https://doi.org/10.1111/ecog.01904.
    » https://doi.org/10.1111/ecog.01904
  • FAEGRI K & IVERSEN J. 1989. Textbook of Pollen Analyses. Chichester: John Wiley and Sons LTD, p. 328. https://doi.org/10.1002/jqs.3390050310
    » https://doi.org/10.1002/jqs.3390050310
  • GALÁN C. 1992. El Clima. In: Huber O (Ed), Chimantá. Escudo de Guayana, Venezuela. Un Ensayo Ecológico Tepuyano. Oscar Todtmann Editores, Caracas, p. 37-52.
  • GIULIETTI AM, GIANNINI TC, MOTA NFO & WATANABE MTC. 2019. Edaphic Endemism in the Amazon: Vascular Plants of the canga of Carajás, Brazil. The Botanical Review 85: 357-383. https://doi.org/10.1007/s12229-019-09214-x.
    » https://doi.org/10.1007/s12229-019-09214-x
  • GRIMM EC. 1987. CONISS: A Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13: 13-35. https://doi.org/10.1016/0098-3004(87)90022-7.
    » https://doi.org/10.1016/0098-3004(87)90022-7
  • GRIMM EC. 1990. Tilia and Tilia-Graph: PC spread-sheet and graphics software for pollen data. INQUA-Commission for the Study of the Holocene,working Group on Data-Handling Methods. Newsletter, p. 5-7.
  • GUIMARÃES JTF ET AL. 2014. Source and distribution of pollen and spores in surface sediments of a plateau lake in southeastern Amazonia. Quatern Int 352: 181-196. https://doi.org/10.1016/j.quaint.2014.06.004.
    » https://doi.org/10.1016/j.quaint.2014.06.004
  • GUIMARÃES JTF ET AL. 2017. Modern pollen rain as a background for palaeoenvironmental studies in the Serra dos Carajás, southeastern Amazonia. The Holocene 27: 1055-1066. http://dx.doi.org/10.1177/0959683616683260.
    » https://doi.org/10.1177/0959683616683260
  • GUIMARÃES JTF ET AL. 2021. Lake sedimentary processes and vegetation changes over the last 45k cal a BP in the uplands of south-eastern Amazonia. J Quatern Sci 36: 255-272. https://doi.org/10.1002/jqs.3268.
    » https://doi.org/10.1002/jqs.3268
  • GUIMARÃES JTF ET AL. 2023a. Landscape and Climate Changes in Southeastern Amazonia from Quaternary Records of Upland Lakes. Atmosphere 14: 621. https://doi.org/10.3390/atmos14040621.
    » https://doi.org/10.3390/atmos14040621
  • GUIMARÃES JTF, COHEN MCL, PESSENDA LCR, FRANÇA MC, SMITH CB & NOGUEIRA ACR. 2012. Mid- and late-Holocene sedimentary process and paleovegetation changes near the mouth of the Amazon River. The Holocene 22: 359-370. http://dx.doi.org/10.1177/0959683611423693.
    » https://doi.org/10.1177/0959683611423693
  • GUIMARÃES JTF, FREITAS EF, AGUIAR KC, LOPES KS, FIGUEIREDO MMJC, REIS LS, RODRIGUES TM, GIANNINI TC & CALDEIRA CF. 2023b. Late Quaternary Isoëtes megaspores as a proxy for paleolimnological studies of the southeastern Amazonia. J South Am Earth Sci 125: 104312, https://doi.org/10.1016/j.jsames.2023.104312.
    » https://doi.org/10.1016/j.jsames.2023.104312
  • GUIMARÃES JTF, SAHOO PK & REIS LS. 2018. Modern pollen rain raises doubts about the intensity and extension of the Last Glacial Cycle in Carajás: A reply to D’Apolito et al. Holocene 28: 332-335. https://doi.org/10.1177/0959683617721334.
    » https://doi.org/10.1177/0959683617721334
  • GUIMARÃES JFT, SAHOO PK, SOUZA-FILHO PWM, MAURITY CW, SILVA JÚNIOR RO, COSTA FR & DALL’AGNOL R. 2016 Late Quaternary environmental and climate changes registered in lacustrine sediments of the Serra Sul de Carajás, south-east Amazonia. J Quatern Sci 31: 61-64. https://doi.org/10.1002/jqs.2839.
    » https://doi.org/10.1002/jqs.2839
  • HALL CF & GIL ASB. 2016. Flora of the cangas of the Serra dos Carajás, Pará, Brazil: Alismataceae. Rodriguésia 67: 1195-1199. https://doi.org/10.1590/2175-7860201667517.
    » https://doi.org/10.1590/2175-7860201667517
  • HAMILTON SK & LEWIS JR WM. 1992. Stable carbon and nitrogen isotopes in algae and detritus from the Orinoco River floodplain, Venezuela. Geochim Cosmochim Acta 56: 4237-4246. https://doi.org/10.1016/0016-7037(92)90264-J.
    » https://doi.org/10.1016/0016-7037(92)90264-J
  • HAMMER O & HARPER DAT. 2006. Paleontological Data Analysis. Blackwell, 368 p. https://doi.org/10.1002/9780470750711
    » https://doi.org/10.1002/9780470750711
  • HARLEY RM. 2016. Flora of the Cangas of the Serra dos Carajás, Pará, Brasil: Lamiaceae. Rodriguésia 67: 1381-1398. https://doi.org/10.1590/2175-7860201667536.
    » https://doi.org/10.1590/2175-7860201667536
  • HARRISON SP, BARTLEIN PJ, IZUMI K, LI G, ANNAN J, HARGREAVES J, BRACONNOT P & KAGEYAMA M. 2015. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nature Climate Change 5: 735-743. http://dx.doi.org/10.1038/nclimate2649.
    » https://doi.org/10.1038/nclimate2649
  • HERMANOWSKI B, COSTA ML & BEHLING H. 2014. Possible linkages of palaeofires in southeast Amazonia to a changing climate since the Last Glacial Maximum. Veg Hist Archaeobot 24: 279-292. https://doi.org/10.1007/s00334-014-0472-0.
    » https://doi.org/10.1007/s00334-014-0472-0
  • HERMANOWSKI B, COSTA ML, CARVALHO AT & BEHLING H. 2012. Palaeoenvironmental dynamics and underlying climatic changes insoutheast Amazonia (Serra Sul de Carajás, Brazil) during thelate Pleistocene and Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 365-366: 227–246. https://doi.org/10.1016/j.palaeo.2012.09.030.
    » https://doi.org/10.1016/j.palaeo.2012.09.030
  • HOOGHIEMSTRA H & VAN DER HAMMEN T. 1998. Neogene and Quaternary development of the neotropical rain forest: the forest refugia hypothesis, and a literature overview. Earth Sci Rev 44: 147-183. https://doi.org/10.1016/S0012-8252(98)00027-0.
    » https://doi.org/10.1016/S0012-8252(98)00027-0
  • JARDINE PE, HARRINGTON GJ & STIDHAM TA. 2012. Regional-scale spatial heterogeneity in the late Paleocene paratropical forests of the U.S. Gulf Coast. Paleobiology 38: 15-39. https://10.1666/10019.1
  • KUKLA T, AHLSTRÖM A, MAEZUMI SY, CHEVALIER M, ZHENGYAO L, WINNINCK WJ & CLAMBERLAIN CP. 2021. The resilience of Amazon tree cover to past and present drying. Global Planet. Change 202: 103520. https://doi.org/10.1016/j.gloplacha.2021.103520.
    » https://doi.org/10.1016/j.gloplacha.2021.103520
  • LANES ÉC ET AL. 2018. Landscape Genomic Conservation Assessment of a Narrow-Endemic and a Widespread Morning Glory From Amazonian Savannas. Frontiers in Plant Science 9: 532. https://doi.org/10.3389/fpls.2018.00532.
    » https://doi.org/10.3389/fpls.2018.00532
  • LEGENDRE P & LEGENDRE L. 1998. Numerical Ecology. Amsterdam The Netherlands: Elsevier, 853 p.
  • LOPES MNG, DE SOUZA EB & FERREIRA DBS. 2013. Climatologia regional da precipitação no Estado do Pará. Rev Bras Climatol 12: 84-102. https://doi.org/10.5380/abclima.v12i1.31402.
    » https://doi.org/10.5380/abclima.v12i1.31402
  • MACAMBIRA JB. 2003. O ambiente deposicional da Formação Carajás e uma proposta de modelo evolutivo para a Bacia Grão Pará. Universidade de Campinas. São Paulo. Ph.D. Thesis. Available at: http://repositorio.ufpa.br/jspui/handle/2011/9921.
  • MATTOS CMJ, SILVA WLS, CARVALHO CS, LIMA NA, FARIA SM & LIMA HC. 2018. Flora das cangas da serra dos Carajás, Pará, Brasil: Leguminosae. Rodriguésia 69: 1147-1220. https://doi.org/10.1590/2175-7860201869323.
    » https://doi.org/10.1590/2175-7860201869323
  • MARTINS PLG, TOLEDO CLB, SILVA AM, CHEMALE JR F, SANTOS JOS, ASSIS LM. 2017. Neoarchean Magmatism in the Southeastern Amazonia Craton, Brazil: Petrography, Geochemistry and Tectonic Significance of Basalts from the Carajás Basin. Precambrian Research 302: 340-357. https://doi.org/10.1016/j.precamres.2017.10.013.
    » https://doi.org/10.1016/j.precamres.2017.10.013
  • MAURITY CW & KOTSCHOUBEY B. 1995. Evolução recente da cobertura de alteração no Plato N1- Serra dos Carajás-PA. Degradação, pseudocarstificação, espeleotemas. Boletim do Museu Para. Emílio Goeldi Série Ciências da Terra 7: 331-362.
  • MAYLE FE, BURBRIDGE R & KILLEEN TJ. 2000. Millennial-scale dynamics of southern Amazonian rain forests. Science 290: 2291-2294. https://doi.org/10.1126/science.290.5500.2291.
    » https://doi.org/10.1126/science.290.5500.2291
  • McMICHAEL CH, BUSH MB, PIPERNO DR, SILMAN MR, ZIMMERMAN AR & ANDERSON C. 2012. Spatial and temporal scales of pre-Columbian disturbance associated with western Amazonian lakes. Holocene 22: 131-141. https://doi.org/10.1177/0959683611414932.
    » https://doi.org/10.1177/0959683611414932
  • MEYERS PA. 1997. Organic geochemical proxies of palaeoceanographic, palaeolimnologic, and palaeoclimatic processes. Organic Geochemistry 27: 213-250. https://ui.adsabs.harvard.edu/link_gateway/1997OrGeo..27..213M/doi:10.1016/S0146-6380(97)00049-1.
  • MITRE SK, MARDEGAN SF, CALDEIRA CF, RAMOS SJ, FURTINI NETO AE, SIQUEIRA JO & GASTAUER M. 2018. Nutrient and water dynamics of Amazonian canga vegetation differ among physiognomies and from those of other neotropical ecosystems. Plant Ecology 219: 1341-1353. https://doi.org/10.1007/s11258-018-0883-6.
    » https://doi.org/10.1007/s11258-018-0883-6
  • MORAES EM, PEREZ MF, TÉO MF, ZAPPI DC, TAYLOR NP & MACHADO MC. 2012. Cross-species amplification of microsatellites reveals incongruence in the molecular variation and taxonomic limits of the Pilosocereus aurisetus group (Cactaceae). Genetica 140: 277-285. https://doi.org/10.1007/s10709-012-9678-1.
    » https://doi.org/10.1007/s10709-012-9678-1
  • MOREIRA LS, MOREIRA-TURCQ P, CORDEIRO RCC, CAQUINEAU S, VIANA JCC & BRANDINI N. 2013a. Holocene paleoenvi-ronmental reconstruction in the eastern Amazonian basin: Comprido lake. J South Am Earth Sci 44: 55-62. https://doi.org/10.1016/j.jsames.2012.12.012
  • MOREIRA LS, MOREIRA-TURCQ P, TURCQ B & CORDEIRO RCC. 2013b. Palaeohydrological controls on sedimentary organic matter in an Amazon floodplain lake, Lake Maracá (Brazil) during the late Holocene. The Holocene 23: 1903 https://doi.org/10.1177/0959683613508155.
    » https://doi.org/10.1177/0959683613508155
  • MOTA NFO, WATANABE MTC, ZAPPI DC, HIURA AL, OALLOS J, VIVEROS RS, GIULIETTI AM & VIANA PL. 2018. Amazon canga: the unique vegetation of Carajás revealed by the list of seed plants. Rodriguésia 69: 1435-1488. https://doi.org/10.1590/2175-7860201869336.
    » https://doi.org/10.1590/2175-7860201869336
  • MOURA IO & SALINO A. 2016. Flora das cangas da Serra dos Carajás, Pará, Brasil: Dryopteridaceae. Rodriguésia 67: 1151-1157. https://doi.org/10.1590/2175-7860201667509.
    » https://doi.org/10.1590/2175-7860201667509
  • NOBRE CA & NOBRE AD. 2002. O balanço de carbono da Amazônia brasileira. Estudos Avançados 16: 81-90. https://doi.org/10.1590/S0103-40142002000200006.
    » https://doi.org/10.1590/S0103-40142002000200006
  • NUNES JÁ. 2009. Florística, Estrutura e Relações Solo-Vegetaçãoem Gradiente Fitofisionômico Sobre Canga, na Serra Sul,Flona de Carajás-Pará. Master’s Thesis, Universidade Federal de Viçosa. http://locus.ufv.br/handle/123456789/2510. (Unpublished).
  • OKSANEN J ET AL. 2019. Vegan: Community Ecology Package: R package version 2.5–6. Available at: http://CRAN.R-project.org/package=vegan
    » http://CRAN.R-project.org/package=vegan
  • PEREIRA VB, LOPES AA, SASSO MAD, AMORA-NOGUEIRA L, FONSECA T, MAROTTA H, CORDEIRO RC & AZEVEDO AD. 2022. Geochemistry of organic matter by multi-proxy analyses and temperature sensitivity of methanogenesis in clearwater Amazonian lake sediments. Appl Geochem 146: 105467. https://doi.org/10.1016/j.apgeochem.2022.105467.
    » https://doi.org/10.1016/j.apgeochem.2022.105467
  • PEREIRA ACS, BORBA E & GIULIETTI AM. 2007. Genetic and morphological variability of the endangered Syngonanthus mucugensis Giul. (Eriocaulaceae) from the Chapada Diamantina, Brazil: implications for conservation and taxonomy. Botanical J Linn Soc 153: 401-416. https://doi.org/10.1111/j.1095-8339.2007.00624.x.
    » https://doi.org/10.1111/j.1095-8339.2007.00624.x
  • PIRANI JR & DEVECCHI MF. 2018. Flora of the canga of Serra dos Carajás, Pará, Brazil: Rutaceae. Rodriguésia 69: 209-217. https://doi.org/10.1590/2175-7860201869119 https://doi.org/10.1590/2175-7860201869119.
    » https://doi.org/10.1590/2175-7860201869119 https://doi.org/10.1590/2175-7860201869119
  • R DEVELOPMENT CORE TEAM. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.r-project.org
    » http://www.r-project.org
  • REIMER PJ ET AL. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 kcal BP). Radiocarbon 62: 725-757. https://doi.org/10.1017/RDC.2020.41.
    » https://doi.org/10.1017/RDC.2020.41
  • REIS LS, GUIMARÃES JTF, SOUZA-FILHO PWM, SAHOO PK, FIGUEIREDO MMJC, SOUZA EB & GIANNINI TC. 2017. Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quatern Int 449: 1-23. https://doi.org/10.1016/j.quaint.2017.04.031.
    » https://doi.org/10.1016/j.quaint.2017.04.031
  • REIS LS, BOULOUBASSI I, MENDEZ-MILLAN M, GUIMARÃES JTF, ROMEIRO LA, SAHOO PK & PESSENDA LCR. 2022. Hydroclimate and vegetation changes in southeastern Amazonia over the past ~25,000 years. Quatern Sci Rev 284: 107466. https://doi.org/10.1016/j.quascirev.2022.107466.
    » https://doi.org/10.1016/j.quascirev.2022.107466
  • ROCHA KCJ, GOLDENBERG R, MEIRELLES J & VIANA PL. 2017. Flora das cangas da Serra dos Carajás, Pará, Brasil: Melastomataceae. Rodriguésia 68: 997-1034. https://doi.org/10.1590/2175-7860201768336.
    » https://doi.org/10.1590/2175-7860201768336
  • ROUBIK DW & MORENO JEP. 1991. Pollen and Spores of Barro Colorado Island. St. Louis: Monographs in Systematic Botany, 268 p.
  • SAHOO PK ET AL. 2016. Geochemistry of upland lacustrine sediments from Serra dos Carajás, Southeastern Amazon, Brazil: Implication for catchment weathering, provenance, and sedimentary processes. J South Am Earth Sci 72: 178-190. https://doi.org/10.1016/j.jsames.2016.09.003.
    » https://doi.org/10.1016/j.jsames.2016.09.003
  • SAHOO PK ET AL. 2017. Geochemical characterization of the largest upland lake of the Brazilian Amazonia: Impact of provenance and processes. J South Am Earth Sci 80: 541-558. https://doi.org/10.1016/j.jsames.2017.10.016.
    » https://doi.org/10.1016/j.jsames.2017.10.016
  • SAHOO PK, SOUZA-FILHO PWM, GUIMARÃES JTF, SILVA MS, COSTA FR, MANES CO, OTI D, SILVA JÚNIOR R & DALL’AGNOL R. 2015. Use of multi-proxy approaches to determine the origin and depositional processes in modern lacustrine sediments: Carajás Plateau, Southeastern Amazon, Brazil. Appl Geochem 52: 130-146. https://doi.org/10.1016/j.apgeochem.2014.11.010.
    » https://doi.org/10.1016/j.apgeochem.2014.11.010
  • SCHNURRENBERGER D, RUSSEL J & KELTS K. 2003. Classification of lacustrine sediments based on sedimentary components. J Paleolimnol 29: 141-154. https://doi.org/10.1023/A:1023270324800.
    » https://doi.org/10.1023/A:1023270324800
  • SCHNURRENBERGER DW, KELTS KR, JOHNSON TC, SHANE LCK & ITO E. 2001. National lacustrine core repository (LacCore). J Paleolimnol 25: 123-127. https://doi.org/10.1023/A:1008171027125.
    » https://doi.org/10.1023/A:1008171027125
  • SCHÜLER L, HEMP A & BEHLING H. 2014. Relationship between vegetation and modern pollen-rain along an elevational gradient on Kilimanjaro, Tanzania. The Holocene 24: 702-713. https://doi.org/10.1177/0959683614526939.
    » https://doi.org/10.1177/0959683614526939
  • SECCO RS & MESQUITA AL. 1983. Nota sobre a vegetação de canga da Serra Norte. Boletim do Museu Paraense Emílio Goeldi 59: 1-13.
  • SHANAHAN TM, BECK JW, OVERPECK JT & MCKAY N. 2012. Late Quaternary sedimentological and climate changes at Lake Bosumtwi Ghana: new constraints from laminae analysis and radiocarbon age modeling. Palaeogeogr Palaeoclimatol Palaeoecol 361: 49-60. http://dx.doi.org/10.1016%2Fj.palaeo.2012.08.001.
    » https://doi.org/10.1016%2Fj.palaeo.2012.08.001
  • SHI GR. 1993. Multivariate data analysis in palaeoecology and palaeobiology—a review. Palaeogeogr Palaeoclimatol Palaeoecol 105: 199-234. https://doi.org/10.1016/0031-0182%2893%2990084-V.
    » https://doi.org/10.1016/0031-0182%2893%2990084-V
  • SIFEDDINE A, FRÖHLICH F, FOURNIER M, MARTIN L, SERVANT M, SOUBIÉS F, TURCO B, SUGUIO K & VOLKMER-RIBEIRO C.1994. La sédimentation lacustre indicateur de changements des paléoenvironnements au cous des 30000 dernières annèes (Carajás, Amazonie, Brésil). Compte Rendus de I’Academie des Sciences 318: 1645-1652.
  • SIFEDDINE A, MARTIN L, TURCQ B, VOLKMER-RIBEIRO C, SOUBIÈS F, CORDEIRO RC & SUGUIO K. 2001. Variations in the Amazonian rainforest environment: A sedimentological record covering 30,000 years. Paleogeogr Paleoclimatol Paleoecol 168: 221-235. https://doi.org/10.1016/S0031-0182(00)00256-X.
    » https://doi.org/10.1016/S0031-0182(00)00256-X
  • SILVA MS, GUIMARÃES JTF, SOUZA FILHO PWM, NASCIMENTO JÚNIOR WR, SAHOO PK, COSTA FR, SILVA JÚNIOR RO, RODRIGUES TM & COSTA MF. 2018. Morphology and morphometry of upland lakes over lateritic crust, Serra dos Carajás, southeastern Amazon region. An Acad Bras Cienc 90: 1309-1325. https://doi.org/10.1590/0001-3765201820170349.
    » https://doi.org/10.1590/0001-3765201820170349
  • SILVA JÚNIOR RO, QUEIROZ JCB, FERREIRA DBS, TAVARES AL, SOUZA-FILHO PWM, GUIMARÃES JTF & ROCHA EJP. 2017. Estimativa de precipitação e vazões médias para a bacia hidrográfica do rio Itacaiúnas (BHRI), Amazônia Oriental, Brasil (Estimation of Precipitation and average Flows for the Itacaiúnas River Watershed (IRW) - Eastern Amazonia, Brazil). Rev Bras Geogr Fís 10: 1638-1654. https://doi.org/10.26848/rbgf.v.10.5.p1638-1654.
    » https://doi.org/10.26848/rbgf.v.10.5.p1638-1654
  • SMITH CB, COHEN MCL, PESSENDA LCR & FRANÇA M. GUIMARÃES JTF. 2012. Holocenic proxies of sedimentary organic matter and the evolution of Lake Arari Amazon Region. Catena 90: 26-38. https://doi.org/10.1016/j.catena.2011.10.002.
    » https://doi.org/10.1016/j.catena.2011.10.002
  • SOUBIES F, SUGUIO K, MARTIN L, LEPRUN JC, SERVANT M, TURCQ B, FOUMIER M, DELAUNE M & SIFEDDINE A. 1991. The Quaternary lacustrine deposits of the Serra dos Carajás (state of Pará, Brazil): ages and other preliminary results. Boletim IG-USP 8: 223-243. https://doi.org/10.11606/issn.2317-8078.v0i8p223-243.
    » https://doi.org/10.11606/issn.2317-8078.v0i8p223-243
  • SOUZA EB, FERREIRA DBS, GUIMARÃES JTF, FRANCO VS, AZEVEDO FTM, MORAES BC & SOUZA PJOP. 2017. Padrões climatológicos e tendências da precipitação nos regimes chuvoso e seco da Amazônia oriental. Revista Brasileira de Climatologia 21: 81-93. http://dx.doi.org/10.5380/abclima.v21i0.41232.
    » https://doi.org/10.5380/abclima.v21i0.41232
  • SOUZA KM, SILVA ML, CAMPELLO CR, ABDELFETTAH S, BRUNO T, MISAILIDIS SN & SIMÕES SM. 2021. Late-Holocene palaeoenvironmental reconstruction from a lake in the Amazon Rainforest-Tropical Savanna (Cerrado) boundary in Brazil using a multi-proxy approach. The Holocene 31: 1-13. https://doi.org/10.1177/09596836211019091.
    » https://doi.org/10.1177/09596836211019091
  • SOUZA-FILHO PW, GIANNINI TC, JAFFÉ R, GIULIETTI AM, SANTOS DC, NASCIMENTO JÚNIOR WR, GUIMARÃES JTF, COSTA MF, IMPERATRIZ-FONSECA VL & SIQUEIRA JO. 2019. Mapping and quantification of ferruginous outcrop savannas in the Brazilian Amazon: A challenge for biodiversity conservation. PLOS One. 14: 1-20. https://doi.org/10.1371/journal.pone.0211095.
    » https://doi.org/10.1371/journal.pone.0211095
  • TAVARES AL, DO CARMO AMC, SILVA JÚNIOR RO, SOUZA-FILHO P, SILVA M, FERREIRA DS, NASCIMENTO JÚNIOR WR & DALL’AGNOL R. 2018. Climate indicators for a watershed in the eastern Amazon. Rev Bras Climatol 23: 389-410.
  • TER BRAAK CJF. 1995. Ordination. In: Data Analysis In Community And Landscape Ecology. Cambridge: Cambridge University Press, p. 91-173.
  • THORNTON SF & MCMANUS J. 1994. Applications of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science 38: 219-233. https://doi.org/10.1006/ecss.1994.1015.
    » https://doi.org/10.1006/ecss.1994.1015
  • TROXLER TG & RICHARDS JH. 2009. δ13C, δ15N, carbon, nitrogen and phosphorus as indicators of plant ecophysiology and organic matter pathways in Everglads deep slough, Florida, USA. Aquatic Botany 91: 157-165. https://doi.org/10.1016/j.aquabot.2009.04.003.
    » https://doi.org/10.1016/j.aquabot.2009.04.003
  • TURCQ B, ALBUQUERQUE ALS, CORDEIRO RC, SIFEDDINE A, SIMOES FILHO FFL, SOUZA AG, ABÃO JJ, OLIVEIRA FBL & SILVA AO. 2002. Capitâneo, J Accumulation of organic carbon in five Brazilian lakes during the Holocene. Sedimentary Geology 148: 319-342. https://doi.org/10.1016/S0037-0738(01)00224-X.
    » https://doi.org/10.1016/S0037-0738(01)00224-X
  • TURCQ B, SIFEDDINE A, MARTIN L & ABSY ML. 1998. Amazonian rainforest fires: a lacustrine record of 7000 years. Ambio 27: 139-142.
  • VAN DE HAMMEN T & ABSY ML. 1994. Amazonia during the last glacial. Palaeogeogr Palaeoclimatol Palaeoecol 109: 247-261. https://doi.org/10.1016/0031-0182(94)90178-3.
    » https://doi.org/10.1016/0031-0182(94)90178-3
  • VAN DER SANDE MT, ARETS EJMM, PEÑA-CLAROS M, LUCIANA DE AVILA A, ROOPSIND A, MAZZEI L, ASCARRUNZ N, FINEGAN B & ALARCÓN A. 2016. Old-growth Neotropical forests are shifting in species and trait composition. Ecological Monographs 86: 228-243. https://doi.org/10.1890/15-1815.1.
    » https://doi.org/10.1890/15-1815.1
  • VAN DER SANDE MT, GOSLING W, CORREA-METRIO A, PRADO-JUNIOR J, POORTER L, OLIVEIRA RS, MAZZEI L & BUSH MB. 2019. A 7000-year history of changing plant trait composition in an Amazonian landscape; the role of humans and climate. Ecology Letters 22: 925- 935. https://doi.org/10.1111/ele.13251
  • VASCONCELOS PM, BECKER TA, RENNE PR, BRIMHALL GH. 1994. Direct dating of weathering phenomena by K-Ar and 40Ar/39Ar analysis of supergene-Mn oxides. Geochim. Cosmochim. Acta 58:1635–1665.
  • VIANA PL ET AL. 2016. Flora of the cangas of the Serra dos Carajás, Pará, Brazil: history study area and methodology. Rodriguésia 67: 1107-1124. https://doi.org/10.1590/2175-7860201667501
  • VIANA PL, DA ROCHA AES, SILVA C, AFONSO EAL, OLIVEIRA RP & OLICEIRA RC. 2019. Flora das cangas da Serra dos Carajás, Pará, Brasil: Poaceae. Rodriguésia 69: 1311-1368. https://doi.org/10.1590/2175-7860201869330
  • VIDOTTO E, PESSENDA LC, RIBEIRO AS, FREITAS HA & BENDASSOLI JÁ. 2007. Dinâmica do ecótono floresta-campo no Sul do Estado do Amazonas no Holoceno, através de estudos isotópicos e fitossociológicos. Acta Amazônica 37: 389-404. https://doi.org/10.1590/S0044-59672007000300010.
    » https://doi.org/10.1590/S0044-59672007000300010
  • VONHOF HB & KAANDORP RJG. 2010. Climate variation in Amazonia during the Neogene and the Quaternary. In: Amazonia, landscape and species evolution: a look into the past. Oxford: Wiley-Blackwell Publishing, p. 201-210.
  • WALKER RG. 1992. Facies, facies models and modern stratigraphic concepts. In: Facies Models - Response To Sea Level Change. Ontario: Geological Association of Canada, p. 1-14.
  • WANG S, XU X, SHRESTHA N, ZIMMERMANN NE, TANG Z & WANG Z. 2017. Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM). Plos One 12: e0175742. https://doi.org/10.1371/journal.pone.0175742.
    » https://doi.org/10.1371/journal.pone.0175742
  • WERNECK FP, NOGUEIRA C, COLLI GR, SITES JW & COST GC. 2012. Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J Biogeogr 39: 1695-1706. https://doi.org/10.1111/j.1365-2699.2012.02715.x.
    » https://doi.org/10.1111/j.1365-2699.2012.02715.x
  • ZAPPI DC, MIGUEL LM, SOBRADO RM & SALAS RM. 2017. Flora of the cangas of Serra dos Carajás, Pará, Brazil: Rubiaceae. Rodriguésia 68: 1091-1137. https://doi.org/10.1590/2175-7860201768347.
    » https://doi.org/10.1590/2175-7860201768347
  • ZAPPI DC, MORO MF, WALKER B, MEAGHER T, VIANA PL, MOTA NFO, WATANABE MTC & LUGHADHA EM. 2019. Plotting a future for Amazonian canga vegetation in a campo rupestre context. PLoS One 14(8): e0219753. https://doi.org/10.1371/journal.pone.0219753.
    » https://doi.org/10.1371/journal.pone.0219753

Publication Dates

  • Publication in this collection
    01 Dec 2023
  • Date of issue
    2023

History

  • Received
    16 Feb 2023
  • Accepted
    7 Aug 2023
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br