Acessibilidade / Reportar erro

Determinação da velocidade de infiltração da água no solo, por meio de diagramas de pluviografos e limnígrafos

Determination op infiltration rates from rainfall and runoff records

Resumos

Neste trabalho são apresentados os valores da velocidade de infiltração, obtidos com os dados de perdas por erosão dos talhões de comprimento de rampa, da Estação Experimental de Conservação do Solo, em Clarinda, Iowa, nos Estados Unidos. Usando os dados de intensidades de chuva e enxurrada, a velocidade de infiltração foi determinada pelo método gráfico de Sharp e Holtan para as 10 maiores chuvas, com apreciável enxurrada, que ocorreram durante um período de cinco anos. As 10 chuvas foram selecionadas com base na sua duração, intensidade e época do ano. Os problemas do cálculo da velocidade de infiltração com os dados de talhões de perdas por erosão e algumas das limitações dos valores determinados são apresentados.


The Soil Conservation Experiment Station located near Clarinda, Iowa, was established in 1931 to study erosion problems on Marshall silt loam. One of the original experiment started in 1932 contained plots comparing slope lengths of 36.3, 72.6 and 145.2 feet. These plots were 6 feet wide with an average land slope of 9 percent. The plots were planted to continuous corn. Originally provision was made only for measurement of total runoff and erosion. However, during the years 1938 to 1942, devices were installed for measurement of rates of runoff. Using rainfall intensity rates and runoff rate measurements, infiltration rates were determined by the graphical method of Sharp and Holtan for 10 of the largest storms selected from a total of 82 storms, with appreciable runoff, that occurred during the 5-year period. The ten storms were selected on the basis of long duration, high intensity and different times of the year. On the basis of this study the following conclusions were drawn. a) In general, mass infiltration increased with increased slope length; b) The average initial infiltration rate for all storms and all slope lengths was 0.79 inch per hour and the final infiltration rate was 0.21 inch per hour. The final infiltration rate varied with storms and slope lengths from 0.60 to 0.10 inch per hour. c) The average infiltration rate curve calculated from the mean of all curves for all storms and all slope lengths was expressed by the equation f = 0.211 + 1.019 e-0.065t This equation is in the same form as that of Horton. d) The infiltration rate was influenced slightly by increasing the slope length. The mean final infiltration rate was slightly greater from the 145-2 feet length slope than from 36.3 feet, slope length. e) Although the data are not conclusive, an interesting relationship appears to exist between the final infiltration rate and the season of the year. Final infiltration rate appears to increase up to June and July and then decrease rather sharply during August and September. The results are in agreement with those found by Borst et al. f) An attempt was made to relate Antecedent Precipitation Index to infiltration rates. Antecedent Precipitation Indices are used as expression of the wetness of the soil. The relation between API and mass infiltration as percent of the total rainfall appeared to be the best of several tested. Curves have been .prepared presenting the relationship between API and infiltration rate at various times after rainfall started. Infiltration rate is greater with decreasing API's at the Btart of a storm. After 60 minutes of excess rainfall, however, the infiltration rate curves for all API's converge.


Determinação da velocidade de infiltração da água no solo, por meio de diagramas de pluviografos e limnígrafos* * Tradução da tese submetida à Graduate Faculty, Iowa State College, U.S.A., como parte dos requisitas para a obtenção do título de Master of Science. O autor é sinceramente grato ao Dr. W. D. Shrader, do Iowa State College, e ao Dr. W. E. Larson, do Agricultural Research Service, United States Department of Agriculture, pela orientação e interesse no decorrer das investigações e por suas valiosas sugestões na preparação do manuscrito original. Agradecimentos são devidos à Fundação Rockefeller, pela bolsa de estudos recebida, e também ao Conselho Nacional de Pesquisas e Campanha Nacional de Aperfeiçoamento do Pessoal de Nível Superior, pelos auxílios recebidos, que deram ao autor a oportunidade de realizar êste trabalho. O autor justifica a tradução deste trabalho pela necessidade de dar divulgação a um assunto inédito no país. Foi sua preocupação, ao realizar o estudo, que ele pudesse ser utilizado posteriormente no Brasil. Procurou também ser o mais fiel possível na tradução, tendo apenas transformado para o sistema métrico os dados do sistema em uso nos Estados Unidos.

Determination op infiltration rates from rainfall and runoff records

Dr. José Bertoni

Engenheiro-agrônomo, Seção de Conservação do Solo, Instituto Agronômico

RESUMO

Neste trabalho são apresentados os valores da velocidade de infiltração, obtidos com os dados de perdas por erosão dos talhões de comprimento de rampa, da Estação Experimental de Conservação do Solo, em Clarinda, Iowa, nos Estados Unidos.

Usando os dados de intensidades de chuva e enxurrada, a velocidade de infiltração foi determinada pelo método gráfico de Sharp e Holtan para as 10 maiores chuvas, com apreciável enxurrada, que ocorreram durante um período de cinco anos. As 10 chuvas foram selecionadas com base na sua duração, intensidade e época do ano.

Os problemas do cálculo da velocidade de infiltração com os dados de talhões de perdas por erosão e algumas das limitações dos valores determinados são apresentados.

SUMMARY

The Soil Conservation Experiment Station located near Clarinda, Iowa, was established in 1931 to study erosion problems on Marshall silt loam. One of the original experiment started in 1932 contained plots comparing slope lengths of 36.3, 72.6 and 145.2 feet. These plots were 6 feet wide with an average land slope of 9 percent. The plots were planted to continuous corn. Originally provision was made only for measurement of total runoff and erosion. However, during the years 1938 to 1942, devices were installed for measurement of rates of runoff.

Using rainfall intensity rates and runoff rate measurements, infiltration rates were determined by the graphical method of Sharp and Holtan for 10 of the largest storms selected from a total of 82 storms, with appreciable runoff, that occurred during the 5-year period. The ten storms were selected on the basis of long duration, high intensity and different times of the year. On the basis of this study the following conclusions were drawn.

a) In general, mass infiltration increased with increased slope length;

b) The average initial infiltration rate for all storms and all slope lengths was 0.79 inch per hour and the final infiltration rate was 0.21 inch per hour. The final infiltration rate varied with storms and slope lengths from 0.60 to 0.10 inch per hour.

c) The average infiltration rate curve calculated from the mean of all curves for all storms and all slope lengths was expressed by the equation f = 0.211 + 1.019 e-0.065t This equation is in the same form as that of Horton.

d) The infiltration rate was influenced slightly by increasing the slope length. The mean final infiltration rate was slightly greater from the 145-2 feet length slope than from 36.3 feet, slope length.

e) Although the data are not conclusive, an interesting relationship appears to exist between the final infiltration rate and the season of the year. Final infiltration rate appears to increase up to June and July and then decrease rather sharply during August and September. The results are in agreement with those found by Borst et al.

f) An attempt was made to relate Antecedent Precipitation Index to infiltration rates. Antecedent Precipitation Indices are used as expression of the wetness of the soil. The relation between API and mass infiltration as percent of the total rainfall appeared to be the best of several tested. Curves have been .prepared presenting the relationship between API and infiltration rate at various times after rainfall started. Infiltration rate is greater with decreasing API's at the Btart of a storm. After 60 minutes of excess rainfall, however, the infiltration rate curves for all API's converge.

Texto completo disponivél apenas em PDF.

Full text available only in PDF format.

LITERATURA CITADA

Recebido para publicação em 13 de agôsto de 1958.

  • 1. ADAMS, J. E. A rainfall simulator and the erodibility of some Iowa soils. Ames, Iowa, Iowa State College Library, 1956. [Tese, não publicada]
  • 2. ANDREWS, R. G. Runoff estimates based on infiltration capacity, antecedent moisture conditions, and precipitations. Agric. Engng, Michigan 31:26-28. 1950.
  • 3. BAVER, L. D. Soil physics. 2nd. ed., N. York, John Wiley and Sons, Inc., 1948. 398 p.
  • 4. BEUTNER, E. L., GAEBE. R. R. &. NORTON, R. E. Sprinkled plot runoff and infiltration experiments on Arizona desert soils. Trans. Amer. geophys. Un. 21:530-558. 1940.
  • 5. BORST, H. L., McCALL, A. G. & BELL, F. G. Investigations in erosion control and the reclamation of eroded land. Washington, D.C., U.S.A. Department of Agriculture, 1949. (Tech. Bul. 656)
  • 6. BRAKENSIEK, D, L. Estimation of surface runoff volumes from agricultural water-sheds by infiltration theory. Ames, Iowa, Iowa State College Library, 1955. [Tese, não publicada]
  • 7. BROWNING, G. M., NORTON. R. A., McCALL, A. G. & BELL, F. G. Investigation in erosion control and the reclamation of eroded land. Washington, D.C., U.S. Department of Agriculture, 1948. (Tech. Bul. 959)
  • 8. COOK, HOWARD L. The infiltration approach to the calculation of surface runoff. Trans. Amer. geophys. Un. 27:726-743. 1946.
  • 9. DREIBELBIS, F. R. & HARROLD, L. L. The role of soil in the hydrologic cycle. Trans. int. Cong. Soil Sci. 5th. 3:371-375. 1954.
  • 10. DULEY, F. L. & KELLEY, L. L. Effect of soil type, slope, and surface conditions on intake of water. Lincoln, Univ. of Nebraska, 1939. 16 p. (Res. Bul. 112)
  • 11. FOSTER, E. E. Rainfall and runoff. N. York. Macmillan Co. 1948. 487p.
  • 12. FREVERT, R. K., SCHWAB, G. O., EDMINSTER, T. W. & BARNES, K. K. Soil and water conservation engineering. N. York. John Wiley and Sons, Inc., 1955. 479p.
  • 13. HORNER, W. W. Role of the land during flood periods. Trans. Amer. Soc. civ. Engrs 109:1269-1320. 1940.
  • 14. HORTON, R. E. The role of infiltration in the hydrologic cycle. Trans. Amer. geophys. Un. 14:446-460. 1933.
  • 15.  ____________ Analysis of runoff-plat experiments with varying infiltration capacity. Trans. Amer. geophys. Un. 20:693-711. 1939.
  • 16.  ____________ An approach toward a physical interpretation of infiltration capacity. Proc. Soil Sci. Soc. Amer., Ann Arbor 5:399-417. 1940.
  • 17. HOUK, I. E. Rainfall and runoff in the Miami Valley State of Ohio. Dayton, Ohio. Miami Conservancy District, 1931. (Tech. Rept.
  • 18. KIDDER, E. M. & HOLTAN, H. N. Application of a graphic method of analysis to hydrographs of runoff plots of various lengths. Trans. Amer. geophys. Un. 24:487-493. 1943.
  • 19. MARQUES, .J. Q. A., BERTONI, J. & GROHMANN, F. Determinação de perdas por erosão em São Paulo, de 1943 a 1953. Trabalho apresentado no II Congresso Panamericano de Agronomia. Piracicaba, São Paulo, março de 1954. 33p. [Mimeografado]
  • 20. MEAD, D. W. Hydrology. N. York, Mcgraw-Hill Book Co. 1919. 647 p.
  • 21. MEYER, A. F. The elements of hydrology. N. York, John Wiley and Sons, Inc.. 1917. 522 p.
  • 22. MUSGRAVE, G. W. The infiltration capacity of soils in relation to the control of surface runoff and erosion. J. Amer. Soc. Agron. 27:336-345. 1935.
  • 23. ____________ How much of the rain enters the soil ? In U.S. Department of Agriculture Yearbook. Water. Washington, D.C., U.S. Department of Agriculture, 1955. p. 151-159.
  • 24. ____________ & FREE, G. R. Some factors which modify the rate and total amount of infiltration of field soils. J. Amer. Soc. Agron. 28:727-739. 1936.
  • 25. ____________ & NORTON, R. A. Soil and water conservation investigations. Washington. D.C.,U. S. Department of Agriculture, 1937. 182 p. (Tech. Bui. 558)
  • 26. NEAL, J. H. The effect of the degree of slope and rainfall characteristics on runoff and soil erosion. Mo. agric. Exp. Sta., 1938. (Re. Bul. 280)
  • 27. OSTLE, BERNARD, Statistics in research. Ames, Iowa, Iowa State College Press. 1954.
  • 28. RIECKEN, F. F. & SMITH. G. D. Principal upland soils of Iowa. Iowa agric. Exp. Sta.. 1949. [Mimeografado]
  • 29. SCHIFF, L. & DREIBELBIS, F. R. Preliminary studies on soil permeability and its application. Trans. Amer. geophys. Un. 30:759-766. 1949.
  • 30. SHARP, A. L. & HOLTAN, H. N. A graphical method of analysis of sprinkled-plot hydrographs. Trans. Amer. geophys. Un. 21:558-570. 1940.
  • 31. SHARP, A. L. &. HOLTAN, H. N. Extension of graphic methods of analysis of sprinkled-plot hydrographs to the analysis of hydrographs of control-plots and small homogeneous watersheds. Trans. Amer. geophys. Un. 23:578-593. 1942.
  • 32. ____________ ____________ & MUSGRAVE, G. W. Infiltration in relation to runoff on small watersheds. Washington, D.C., U.S. Department of Agriculture, 1949. (SCS. TP-81)
  • 33. SHERMAN, L. K. Determinations of infiltrations-rates from surface runoff. Trans. Amer. geophys. Un. 19:430-434. 1938.
  • 34. ____________ Comparisons of f-curves derived by the methods of Sharp and Holtan and Sherman and Meyer. Trans. Amer. geophys. Un. 24:465-467. 1943.
  • 35. ____________ & MAYER, L. C. Application of the infiltration-theory to engineering practice. Trans. Amer. geophys. Un. 22:666-677. 1941.
  • 36. SIMONSEN, R. W., RIECKEN, F. F. & SMITH, G. D. Understanding Iowa soils. Dubuque, Iowa, Wm. C. Brown. Co. 1952.
  • 37.  SNEDECOR, G. W. Statistical methods. 5th ed. Ames, Iowa, Iowa State College Press. 1956. 534p.
  • 38. THOMPSON, L,. M. Soils and .soil fertility. N. York, McGraw-Hill Book Co. 1952. 339p
  • 39. TISDALL,. A. L. Antecedent soil moisture and its relation to infiltration. Aust. J. agric. Res. 11:342-348. 1951.
  • 40
      U. S. Department of Agriculture, Engineering Division, Soil Conservation Service Hydrologic Guide. Washington, D.C., U.S. Department of Agriculture, 1956 [Mimeografado]
  • 41. WILM, H. G. Methods for the measurement of infiltration. Trans. Amer. geophys. Un. 22:678-686. 1941.
  • 42.  ZINGG, A. W. The determination of infiltration-rates on small agricultural watersheds Trans. Amer. geophys. Un. 24:475-480. 1943.
  • *
    Tradução da tese submetida à Graduate Faculty, Iowa State College, U.S.A., como parte dos requisitas para a obtenção do título de Master of Science.
    O autor é sinceramente grato ao Dr. W. D. Shrader, do Iowa State College, e ao Dr. W. E. Larson, do Agricultural Research Service, United States Department of Agriculture, pela orientação e interesse no decorrer das investigações e por suas valiosas sugestões na preparação do manuscrito original. Agradecimentos são devidos à Fundação Rockefeller, pela bolsa de estudos recebida, e também ao Conselho Nacional de Pesquisas e Campanha Nacional de Aperfeiçoamento do Pessoal de Nível Superior, pelos auxílios recebidos, que deram ao autor a oportunidade de realizar êste trabalho.
    O autor justifica a tradução deste trabalho pela necessidade de dar divulgação a um assunto inédito no país. Foi sua preocupação, ao realizar o estudo, que ele pudesse ser utilizado posteriormente no Brasil. Procurou também ser o mais fiel possível na tradução, tendo apenas transformado para o sistema métrico os dados do sistema em uso nos Estados Unidos.
  • Datas de Publicação

    • Publicação nesta coleção
      26 Abr 2010
    • Data do Fascículo
      1959

    Histórico

    • Recebido
      13 Ago 1958
    Instituto Agronômico de Campinas Avenida Barão de Itapura, 1481, 13020-902, Tel.: +55 19 2137-0653, Fax: +55 19 2137-0666 - Campinas - SP - Brazil
    E-mail: bragantia@iac.sp.gov.br