## Print version ISSN 0006-8705On-line version ISSN 1678-4499

### Bragantia vol.36 no.1 Campinas  1977

#### http://dx.doi.org/10.1590/S0006-87051977000100003

Delineamentos (1/5)(53)1

Desings (1/5)(53)

Armando Conagin; Joassy de Paula Neves JorgeII

Divisão de Plantas Alimentícias Básicas, Instituto Agronômico

SINOPSE

SUMMARY

The statistical solutions for quadratic and square root polynomials for a group of special 1/5 (53) fractional factorial, aiming, primarily, its application to fertilizer experiments are reported. These factorial designs were originated by the superposition of three of the four existing orthogonal 5x5 latin squares. Three basic designs are obtained: I-II-III, I-II-IV, and I-III-IV; the last one is presented below. 111 245 324 453 532 222 351 435 514 143 333 412 541 125 254 444 523 152 231 315 555 134 213 342 421 The quadratic model of second order with ten parameters is:

Yijk = b0x0 +blixli + bljxlj + blkxlk + b2ix2i + b2jx2j + b2kx2k + + bliljxlilj + blilkxlilk + bljlkxljlk + xijk where xlm = a1 + Xm, x2m = a2 + g2Xm + X2m , m= i,j,k; each factor varying from 1 to 5, with the orthogonality conditions:

Sxlm=0, Sx2m=0, Sxlmx2m=0, giving Sxlm=-3+Xm e Sx2m= 7-6Xm+X2m, so: xl1=-2; xl2=-1; xl3=0; xl4=1; xl5=2; x21=2; x22=-1; x23=-2; x24=-1; x25=2

The linear regression coefficient for each factor can be estimated independently; the quadratic and the linear x linear interaction coefficients are estimated from a 6x6 full matrix. Consequently in the analysis of variance the linear sums of squares for each factor are independent but the quadratic and interactions sums of squares for all factors are entangled and should be jointly tested. If the contribution of a factor and its respective interaction with the others are negligible, independent estimators of the linear and quadratic regression of the other two factors and the correspondent interaction can be calculated, with correspondent parallelism in the analysis of variance. On the other hand, if the factors are important but its interactions are negligible, the linear and quadratic coefficients for each factor are estimated independently. The square root polynomial model may be represented as in (1) with the values: xlm= a1+ (Xm)1/2 and x2m= a2+ g2(Xm)1/2 +Xm, where m= i,j,k; Sxlm=0, Sx2m=0, Sxlmx2m=0, giving: xlm= -1,67646 + (Xm)1/2, x2m= 2,41157-3,22798 (Xm)1/2 +Xm; xl1=-0,67646; xl2=-0,26226; xl3=0,05554; xl4=0,32354; xl5=0,55964; x21=0,18359; x22=-0,15342; x23=-0,17928; x24=-0,04438 and x25=0,19349, for each factor i,j,k.

Regarding this model, with the exclusion of b0, the coefficients for each factor and the square-root interactions are estimated from a full 9x9 symetric matrix. In consequence; with the exception of b0; the sums of squares correspondent to the other coefficients are tested together. Equivalent properties to the quadratic model hold true for the square root model, when the interactions or when one main factor and its interactions are negligible. Assuming no interaction, the Mitscherlich model Y=A [l _ 10 _ c(x+b) ], can be used for evaluation of each factor response from the corresponding marginal totals. An extra evaluation from the main diagonal of the design can be obtained, representing the response to increasing amounts of the three factors at equal levels. In case of fertilizer experiments, treatments like 000 should be added as extra points to the 25 used in this design, in order to allow the determination of the increment due to the use of macronutrient combinations and their costs. Using proper range of dosages (avoiding plateau responses), as it should be in npk fertilizer experiments, this group of designs allows a more efficient analysis of the curvature of the surface functions on the area of economical decision. If the models are used without interactions, the independent estimation of the parameters for the quadratic, square-root and Mitscherlich models can be very easily achieved. These properties are of great interest in the economical studies of fertilization programs for developing countries. With the help of a net of experiments of this type, economical studies of fertility nature with macronutrients as nitrogen, phosphorus, and potassium, for example, can be obtained with five different levels of each factor, with experiments of medium size.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

1. ALVAREZ, R.; ARRUDA, H. V. & GARGANTTNI, H. Adubação da cana de açúcar. Ensaio preliminar de adubação NPK em terra-roxa. Bragantia 19:361-368, 1960.         [ Links ]

2. ANDERSON, R. L. & BANCROFT, T. A. Statistical Theory in Research. New York, Mc Graw-Hill, 1952.         [ Links ]

3. __________ & NELSON, L. A. A family of models involving intersecting straight lines and concomitant experimental designs useful in evaluating response to fertilizer nutrients. Biometrics 31:303-318, 1975.         [ Links ]

4. BOX, G. E. P. Multifactor design of first order. Biometrika 39:49-57, 1952.         [ Links ]

5. __________ & HUNTER, J. S. Multifactor experimental designs for exploring response surfaces. Ann. Math. Statist. 28:195-241, 1957.         [ Links ]

6. __________ & WILSON, K. B. On the experimental attainment of optimum conditions. J. R. Statist. Soc. B 13:1-45, 1951.         [ Links ]

7.  COCHRAN, W. G. COX, G. M. Experimental Designs. (Second Edition). John Wiley and Sons, New York, 1957.         [ Links ]

8. CONAGIN, A.; JORGE, J. P. N. & VENTURINI, W. R. Delineamentos experimentais utiizáveis na experimentação de campo. In: Reynaert, E. E. La investigatión de fertilidad de suelos para la producción agrícola en la zona templada. Montevideo, IICA Zona Sur., 1969. p. 171-182.         [ Links ]

9. CROWTER, E. M. & YATES, F. Fertilizer policy in war-time. Empire J. Exp. Agric. 9-77-97, 1941.         [ Links ]

10. DAVIES, O. L. ed. Design and Analysis of Industrial Experiments. Edinburgh, Oliver and Boyd, 1954.         [ Links ]

11. DE BAUN, R. M. Block effects in the determination of optimum conditions. Biometrics 12:20-22, 1956.         [ Links ]

12. DRAPER, N. R. & SMITH, H. Applied Regression Analysis. New York, J. Wiley and Sons, 1966.         [ Links ]

13. FINNEY, D. J. The fractional replication of factorial arrangements. Ann. Eugen. 12:291-301, 1945.         [ Links ]

14.    FISHER, R. A. The Design of Experiments. (Fourth Edition). New York, Hafner, 1947.         [ Links ]

15. __________ & YATES, F. Statistical Tables for Biological, Agricultural and Medical Research (Fourth Edition). Edinburgh, Oliver and Boyd, 1953.         [ Links ]

16. FUZATTO, M. G.; VENTURINI, W. R. & CAVALERI, P. A. Estudo técnico-econômico da adubação do algodoeiro no Estado de São Paulo. Campinas, Instituto Agronômico, 1970. 15 p. (Projeto BNDE/ANDA/CIA-1)        [ Links ]

17. GRAYBILL, F. A. An Introduction to Linear Statistical Models. New York, McGraw-Hill, 1961. (v. 1)        [ Links ]

18. IGUE, T.; MASCARENHAS, H. A. A. & MIYASAKA, S. Estudo comparativo dos métodos de Mitscherlich e do trinômio do segundo grau, na determinação das doses mais econômicas de fertilizantes, na adubação do feijoeiro (Phaseolus vulgaris L.). Campinas, Instituto Agronômico, 1971. 15 p. (Projeto BNDE/ANDA/CIA-4)        [ Links ]

19. JOHN, P. W. M. Statistical Design and Analysis of Experiments. New York, Macmillan, 1971.         [ Links ]

20. MEADE, R. & PIKE, D. J. A review of response surface methodology from a biometric viewpoint. Biometrics 31:803-851, 1975.         [ Links ]

21. MIRANDA, L. T. Adubação do milho. I Relação entre dados de ensaios de campo e de análise química do solo. Campinas, Instituto Agronômico, 1971. 11p. (Projeto BNDE/ANDA/CIA-11)        [ Links ]

22. MITSCHERLICH, E. A. Die Bestimmung des Düngerbedurfnisses des Bodens. Berlin, Paul Parey, 1925.         [ Links ]

23. MYERS, R. H. Response Surface Methodology. Boston, Allyn and Bacon, 1971.         [ Links ]

24. PAEZ, G. & SILVA, T. Delineamento dos experimentos de adubação, Departamento de Processamento de Dados. Embrapa, 1975. 50p. (Mimeografado)        [ Links ]

25. REED, L. J. & BERKSON, J. The application of the logistic function for experimental data. J. Phys. Chem. 33:760-799, 1929. (Original não consultado; extraído de Meade, R. & Pike, D. J.         [ Links ]).

26. RICHARDSON, H. L. Field experiment programmes. Outlook on Agriculture 1(3) :87-94, 1956. (Tradução de A. Conagin. Campinas, Instituto Agronômico, 1957. 11 fls. (Mimeografado)        [ Links ]

27. TEJÉDA; H. Consideraciones sobre diseños experimentales en la investigación de campo en fertilidad de suelo. In: Reynaert, E. E. La investigación de fertilidad de suelos para la producción agrícola en la zona templada. Montevideo, IICA Zona Sur, 1969. p. 171-182.         [ Links ]

28. TRAMEL, T. E. A suggested procedure for agronomic economic fertilizer experiments. In Baum, E. L. and others. Economic and Technical analysis of fertilizer innovations and resource use. Ames, Iowa State College Press, 1957. p. 168-175.         [ Links ]

29. VIEIRA, S. Aspectos das funções de produção ajustadas aos ensaios fatoriais 33 de adubação. Piracicaba, ESALQ, 1970. 165 p. (Tese de Doutoramento)        [ Links ]

30. VOSS, R. & PESEK, J. T. Yield of corn as affected by fertilizer rates and environmental factors. Agronomy J. 59:567-572, 1967. (Original não consultado; extraído de Tejéda, H.         [ Links ]).

31. WINSOR, C. P. The Gompertz curve as a growth curve. Proc. Natl. Acad. Sci. 18:1-8, 1932. (Original não consultado; extraído de Meade R. & Pike, D. J.         [ Links ]).

32. WISHART, J. Growth rate determination in nutrition studies with the bacon pig, and their analysis. Biometrika 30:16-28, 1938.         [ Links ]

Recebido para publicação em 20 de julho de 1976.

1 Trabalho apresentado na IX Conf. int. de Biometría. Boston, Ma., USA em agosto de 1976.
2 Com bolsas de suplementação do CNPq