Acessibilidade / Reportar erro

Mapping and allelic sequencing of a long sterile lemma trait in rice

ABSTRACT

Some outer floral organs are unique in gramineous plants, like the sterile lemma and rudimentary glume in rice. However, their development mechanisms are still poorly understood. In this study, we used 4 mutants with long sterile lemma (LSL), named JF11, JF12, JF13 and JNY-7, to be crossed with Aijiaonante (AJNT) and Nipponbare (NIP), respectively. Genetic analysis indicated that LSL trait exhibited recessive heredity and was controlled by a common allele named sl-1(t). Using the method of bulk segregant analysis and linkage analysis between SSR markers and LSL trait based on F2 populations, the sl-1(t) gene was located at the interval between RM20903 and RM20948 on chromosome 7. The interval harbors a known G1 gene, which regulates the sterile lemma trait. The findings of allelic sequencing showed an 11-base deletion in gene G1 happened in the mutants of JF11, JF12 and JF13, which led to a frame-shifting mutation, whereas the mutant of JNY-7 had a base substitution that caused the change of the amino acid residue. Eight substitutions in the ORF and 10 in the upstream region from −1 to −824 were found between Indica and Japonica rice by DNA sequence analysis, but those polymorphisms have no effect on the gene function. In conclusion, we fine mapped the LSL gene, sl-1(t), and found 2 kinds of mutant alleles conferring the gene function and the DNA polymorphisms of G1 between Indica and Japonica rice.

Key words
Oryza sativa L.; gene mapping; ALOG domain

INTRODUCTION

A flower is the vital reproductive organ determining quality of fruits and seed yiled in plants. Since the 1980s, the mechanism of floral organ development has become one of hot spots in developmental biology by means of the floral organ mutants of model plants. The ABC model of plant flower development was put forward to elaborate the molecular mechanism of floral organ identity in eudicots based on their previous findings (Carpenter and Coen 1990Carpenter, R. and Coen, E. S. (1990). Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes and Development, 4, 1483-1493. http://dx.doi.org/10.1101/gad.4.9.1483.
http://dx.doi.org/10.1101/gad.4.9.1483...
; Bowman et al. 1991Bowman, J. L., Smyth, D. R. and Meyerowitz, E. M. (1991). Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112, 1-20.; Coen and Meyerowitz 1991Coen, E. S. and Meyerowitz, E. M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature, 353, 31-37. http://dx.doi.org/10.1038/353031a0.
http://dx.doi.org/10.1038/353031a0...
; Coen and Carpenter 1993Coen, E. S. and Carpenter, R. (1993). The metamorphosis of flowers. The Plant Cell, 5, 1175-1181. http://dx.doi.org/10.1105/tpc.5.10.1175.
http://dx.doi.org/10.1105/tpc.5.10.1175...
). Then, FBP7 and FBP11 genes, which regulated the identity and development of an ovule in petunia, were cloned in 1995 (Angenent et al. 1995Angenent, G. C., Franken, J., Busscher, M., van Dijken, A., van Went, J. L., Dons, H. J. and van Tunen, A. J. (1995). A novel class of MADS box genes is involved in ovule development in petunia. The Plant Cell, 7, 1569-1582. http://dx.doi.org/10.1105/tpc.7.10.1569.
http://dx.doi.org/10.1105/tpc.7.10.1569...
; Colombo et al. 1995Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H. J., Angenent, G. C. and van Tunen, A. J. (1995). The petunia MADS box gene FBP11 determines ovule identity. The Plant Cell, 7, 1859-1868. http://dx.doi.org/10.1105/tpc.7.11.1859.
http://dx.doi.org/10.1105/tpc.7.11.1859...
) and designated to an additional class D MADS box gene. Furthermore, the SEP1/2/3 genes were found as necessary for the development of petals, stamens, and carpels in Arabidopsis and were identified as a new class gene (E-class gene) of the floral quartet model (Pelaz et al. 2000Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E. and Yanofsky, M. F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405, 200-203. http://dx.doi.org/10.1038/35012103.
http://dx.doi.org/10.1038/35012103...
; Honma and Goto 2001Honma, T. and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409, 525-529. http://dx.doi.org/10.1038/35054083.
http://dx.doi.org/10.1038/35054083...
; Galimba et al. 2012Galimba, K. D., Tolkin, T. R., Sullivan, A. M., Melzer, R., Theißen, G. and Di Stilio, V. S. (2012). Loss of deeply conserved C-class floral homeotic gene function and C- and E-class protein interaction in a double-flowered ranunculid mutant. Proceedings of the National Academy of Sciences of the United States of America, 109, E2267-E2275. http://dx.doi.org/10.1073/pnas.1203686109.
http://dx.doi.org/10.1073/pnas.120368610...
). The findings of D-class and E-class enriched the ABC model and made the classical one extending to the ABCDE model.

Moreover, many researchers found that the genes among the Classes A, B, and C are, relatively, conserved between grasses and edicts based on comparison with the homology of the MADS-box genes and analysis of the transgenic plants (Schmidt et al. 1993Schmidt, R. J., Veit, B., Mandel, M. A., Mena, M., Hake, S. and Yanofsky, M. F. (1993). Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. The Plant Cell, 5, 729-737. http://dx.doi.org/10.1105/tpc.5.7.729.
http://dx.doi.org/10.1105/tpc.5.7.729...
; Chung et al. 1995Chung, Y. Y., Kim, S. R., Kang, H. G., Noh, Y. S., Min, C. P., Finkel, D. and An, G. (1995). Characterization of two rice MADS box genes homologous to GLOBOSA. Plant Science, 109, 45-56. http://dx.doi.org/10.1016/0168-9452(95)04153-L.
http://dx.doi.org/10.1016/0168-9452(95)0...
; Kang et al. 1995Kang, H. G., Noh, Y. Y., Chung, Y. Y., Costa, M. A., An, K. and An, G. (1995). Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Plant Molecular Biology, 29, 1-10. http://dx.doi.org/10.1007/BF00019114.
http://dx.doi.org/10.1007/BF00019114...
; Mena et al. 1996Mena, M., Ambrose, B. A., Meeley, R. B., Briggs, S. P., Yanofsky, M. F. and Schmidt, R. J. (1996). Diversification of C-function activity in maize flower development. Science, 274, 1537-1540. http://dx.doi.org/10.1126/science.274.5292.1537.
http://dx.doi.org/10.1126/science.274.52...
; Ambrose et al. 2000Ambrose, B. A., Lerner, D. R., Ciceri, P., Padilla, C. M. P., Yanofsky, M. F. and Schmidt, R. J. (2000). Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell, 5, 569-579. http://dx.doi.org/10.1016/S1097-2765(00)80450-5.
http://dx.doi.org/10.1016/S1097-2765(00)...
). It is known that rice is a typical model plant of the grasses and the monocots in general and has 5 kinds of genes showing similar function like the ones in Classes A, B, C, D and E. So far, many genes related to floral organ development in rice were identified and cloned, with OsMADS15, OsMADS14 and OsMADS18 belonging to Class A (Kyozuka et al. 2000Kyozuka, J., Kobayashi, T., Morita, M. and Shimamoto, K. (2000). Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant and Cell Physiology, 41, 710-718. http://dx.doi.org/10.1093/pcp/41.6.710.
http://dx.doi.org/10.1093/pcp/41.6.710...
; Lim et al. 2000Lim, J., Moon, Y. H., An, G. and Jang, S. K. (2000). Two rice MADS domain proteins interact with OsMADS1. Plant Molecular Biology, 44, 513-527. http://dx.doi.org/10.1023/A:1026517111843.
http://dx.doi.org/10.1023/A:102651711184...
; Fornara et al. 2004Fornara, F., Pařenicová, L., Falasca, G., Pelucchi, N., Masiero, S., Ciannamea, S., Lopez-Dee, Z., Altamura, M. M., Colombo, L. and Kater, M. M. (2004). Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiology, 135, 2207-2219. http://dx.doi.org/10.1104/pp.104.045039.
http://dx.doi.org/10.1104/pp.104.045039...
), OsMADS2, OsMADS4, OsMADS16, and OsMADS32, to Class B (Chung et al. 1995Chung, Y. Y., Kim, S. R., Kang, H. G., Noh, Y. S., Min, C. P., Finkel, D. and An, G. (1995). Characterization of two rice MADS box genes homologous to GLOBOSA. Plant Science, 109, 45-56. http://dx.doi.org/10.1016/0168-9452(95)04153-L.
http://dx.doi.org/10.1016/0168-9452(95)0...
; Kang et al. 1998Kang, H. G., Jeon, J. S., Lee, S., Lee, S. H. and An, G. (1998). Identification of class B and class C floral organ identity genes from rice plants. Plant Molecular Biology, 38, 1021-1029. http://dx.doi.org/10.1023/A:1006051911291.
http://dx.doi.org/10.1023/A:100605191129...
; Moon et al. 1999Moon, Y. H., Jung, J. Y., Kang, H. G. and An, G. (1999). Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Molecular Biology, 40, 167-177. http://dx.doi.org/10.1023/A:1026429922616.
http://dx.doi.org/10.1023/A:102642992261...
; Kyozuka et al. 2000Kyozuka, J., Kobayashi, T., Morita, M. and Shimamoto, K. (2000). Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant and Cell Physiology, 41, 710-718. http://dx.doi.org/10.1093/pcp/41.6.710.
http://dx.doi.org/10.1093/pcp/41.6.710...
; Rensing et al. 2008Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H., Nishiyama, T., Perroud, P. F., Lindquist, E. A., Kamisugi, Y., Tanahashi, T., Sakakibara, K., Fujita, T., Oishi, K., Shin-I, T., Kuroki, Y., Toyoda, A., Suzuki, Y., Hashimoto, S. I., Yamaguchi, K., Sugano, S., Kohara, Y., Fujiyama, A., Anterola, A., Aoki, S., Ashton, N., Barbazuk, W. B., Barker, E., Bennetzen, J. L., Blankenship, R., Cho, S. H., Dutcher, S. K., Estelle, M., Fawcett, J. A., Gundlach, H., Hanada, K., Heyl, A., Hicks, K. A., Hughes, J., Lohr, M., Mayer, K., Melkozernov, A., Murata, T., Nelson, D. R., Pils, B., Prigge, M., Reiss, B., Renner, T., Rombauts, S., Rushton, P. J., Sanderfoot, A., Schween, G., Shiu, S. H., Stueber, K., Theodoulou, F. L., Tu, H., van de Peer, Y., Verrier, P. J., Waters, E., Wood, A., Yang, L., Covem, D., Cumingm, A. C., Hasebem, M., Lucasm, S., Mishlerm, B. D., Reskim, R., Grigorievm, I. V., Quatranom, R. S. and Boorem, J. L. (2008). The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science, 319, 64-69. http://dx.doi.org/10.1126/science.1150646.
http://dx.doi.org/10.1126/science.115064...
; Wang et al. 2015Wang, H., Zhang, L., Cai, Q., Hu, Y., Jin, Z., Zhao, X., Fan, W., Huang, Q., Luo, Z., Chen, M., Zhang, D. and Yuan, Z. (2015). OsMADS32 interacts with PI-like proteins and regulates rice flower development. Journal of Integrative Plant Biology, 57, 504-513. http://dx.doi.org/10.1111/jipb.12248.
http://dx.doi.org/10.1111/jipb.12248...
), OsMADS3, OsMADS58, RAG, DL, CPP1 and DFO1, to Class C (Coen and Carpenter 1993Coen, E. S. and Carpenter, R. (1993). The metamorphosis of flowers. The Plant Cell, 5, 1175-1181. http://dx.doi.org/10.1105/tpc.5.10.1175.
http://dx.doi.org/10.1105/tpc.5.10.1175...
; Kang et al. 1995Kang, H. G., Noh, Y. Y., Chung, Y. Y., Costa, M. A., An, K. and An, G. (1995). Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Plant Molecular Biology, 29, 1-10. http://dx.doi.org/10.1007/BF00019114.
http://dx.doi.org/10.1007/BF00019114...
; Kang et al. 1998Kang, H. G., Jeon, J. S., Lee, S., Lee, S. H. and An, G. (1998). Identification of class B and class C floral organ identity genes from rice plants. Plant Molecular Biology, 38, 1021-1029. http://dx.doi.org/10.1023/A:1006051911291.
http://dx.doi.org/10.1023/A:100605191129...
; Kyozuka et al. 2000Kyozuka, J., Kobayashi, T., Morita, M. and Shimamoto, K. (2000). Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant and Cell Physiology, 41, 710-718. http://dx.doi.org/10.1093/pcp/41.6.710.
http://dx.doi.org/10.1093/pcp/41.6.710...
; Yamaguchi et al. 2004Yamaguchi, T., Nagasawa, N., Kawasaki, S., Matsuoka, M., Nagato, Y. and Hirano, H. Y. (2004). The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. The Plant Cell, 16, 500-509. http://dx.doi.org/10.1105/tpc.018044.
http://dx.doi.org/10.1105/tpc.018044...
; Yamaguchi et al. 2006Yamaguchi, T., Lee, D. Y., Miyao, A., Hirochika, H., An, G. and Hirano, H. Y. (2006). Functional diversification of the two C-Class MADS Box Genes OsMADS3 and OsMADS58 in Oryza sativa. The Plant Cell, 18, 15-28. http://dx.doi.org/10.1105/tpc.105.037200.
http://dx.doi.org/10.1105/tpc.105.037200...
; Li et al. 2011aLi, H., Liang, W., Yin, C., Zhu, L. and Zhang, D. (2011a). Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiology, 156, 263-274. http://dx.doi.org/10.1104/pp.111.172080.
http://dx.doi.org/10.1104/pp.111.172080...
; Yan et al. 2015Yan, D., Zhang, X., Zhang, L., Ye, S., Zeng, L., Liu, J., Li, Q. and He, Z. (2015). CURvED ChIMERIC PALEA 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development. The Plant Journal, 82, 12-24. http://dx.doi.org/10.1111/tpj.12784.
http://dx.doi.org/10.1111/tpj.12784...
; Zheng et al. 2015Zheng, M., Wang, Y., Wang, C., Ren, Y., Lv, J., Peng, C., Wu, T., Liu, K., Zhao, S., Liu, X., Guo, X., Jiang, L., Terzaghi, W. and Wan, J. (2015). DEFORMED FLORAL ORGAN1 (DFO1) regulates floral organ identity by epigenetically repressing the expression of OsMADS58 in rice (Oryza sativa). The New Phytologist, 206, 1476-1490. http://dx.doi.org/10.1111/nph.13318.
http://dx.doi.org/10.1111/nph.13318...
), OsMADS13 and OsMADS21, to Class D (Lopez-Dee et al. 1999Lopez-Dee, Z. P., Wittich, P., Enrico, P. M., Rigola, D., Del Buono, I., Gorla, M. S., Kater, M. M. and Colombo, L. (1999). OsMADS13, a novel rice MADS-box gene expressed during ovule development. Developmental Genetics, 25, 237-244. http://dx.doi.org/10.1002/(SICI)1520-6408(1999)25:3<237::AID-DVG6>3.0.CO;2-L.
http://dx.doi.org/10.1002/(SICI)1520-640...
; Dreni et al. 2007Dreni, L., Jacchia, S., Fornara, F., Fornari, M., Ouwerkerk, P. B. F., An, G., Colombo, L. and Kater, M. M. (2007). The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. The Plant Journal, 52, 690-699. http://dx.doi.org/10.1111/j.1365-313X.2007.03272.x.
http://dx.doi.org/10.1111/j.1365-313X.20...
; Li et al. 2011aLi, H., Liang, W., Yin, C., Zhu, L. and Zhang, D. (2011a). Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiology, 156, 263-274. http://dx.doi.org/10.1104/pp.111.172080.
http://dx.doi.org/10.1104/pp.111.172080...
), OsMADS1, OsMADS5, OsMADS6, OsMADS7, OsMADS8, OsMADS34, MJ706, and EMF2B, to Class E (Chung et al. 1994Chung, Y. Y., Kim, S. R., Finkel, D., Yanofsky, M. F. and An, G. (1994). Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene. Plant Molecular Biology, 26, 657-665. http://dx.doi.org/10.1007/BF00013751.
http://dx.doi.org/10.1007/BF00013751...
; Jeon et al. 2000Jeon, J. S., Jang, S., Lee, S., Nam, J., Kim, C., Chung, Y. Y., Kim, S. R., Lee, Y. H., Cho, Y. G. and An, G. (2000). Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. The Plant Cell, 12, 871-884. http://dx.doi.org/10.1105/tpc.12.6.871.
http://dx.doi.org/10.1105/tpc.12.6.871...
; Agrawal et al. 2005Agrawal, G. K., Abe, K., Yamazaki, M., Miyao, A. and Hirochika, H. (2005). Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-offunction mutants of the OsMADS1 gene. Plant Molecular Biology, 59, 125-135. http://dx.doi.org/10.1007/s11103-005-2161-y.
http://dx.doi.org/10.1007/s11103-005-216...
; Kalika et al. 2005Kalika, P., Sriram, P. and Usha, V. (2005). OsMADS1, a rice MADS-box factor, controls differentiation of specific cell type in lemma and plea and is an early-acting regulator of inner floral organs. The Plant Journal, 43, 915-928. http://dx.doi.org/10.1111/j.1365-313X.2005.02504.x.
http://dx.doi.org/10.1111/j.1365-313X.20...
; Sun and Zhou 2008Sun, Q. and Zhou, D. X. (2008). Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. Proceedings of the National Academy of Sciences of the United States of America, 105, 13679-13684. http://dx.doi.org/10.1073/pnas.0805901105.
http://dx.doi.org/10.1073/pnas.080590110...
; Cui et al. 2010Cui, R., Han, J., Zhao, S., Su, K., Wu, F., Du, X., Xu, Q., Chong, K., Theissen, G. and Meng, Z. (2010). Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). The Plant Journal, 61, 767-781. http://dx.doi.org/10.1111/j.1365-313X.2009.04101.x.
http://dx.doi.org/10.1111/j.1365-313X.20...
; Gao et al. 2010Gao, X., Liang, W., Yin, C., Ji, S., Wang, H., Su, X., Guo, C., Kong, H., Xue, H. and Zhang, D. (2010). The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiology, 153, 728-740. http://dx.doi.org/10.1104/pp.110.156711.
http://dx.doi.org/10.1104/pp.110.156711...
; Li et al. 2011bLi, H., Liang, W., Hu, Y., Zhu, L., Yin, C., Xu, J., Dreni, L., Kater, M. M. and Zhang, D. (2011b). Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. The Plant Cell, 23, 2536-2552. http://dx.doi.org/10.1105/tpc.111.087262.
http://dx.doi.org/10.1105/tpc.111.087262...
; Lin et al. 2013Lin, X., Wu, F., Du, X., Shi, X., Liu, Y., Liu, S., Hu, Y., Theissen, G. and Meng, Z. (2013). The pleiotropic SEPALLATA-like gene OsMADS34 reveals that the ‘empty glumes’ of rice (Oryza sativa) spikelets are in fact rudimentary lemmas. The New Phytologist, 202, 689-702. http://dx.doi.org/10.1111/nph.12657.
http://dx.doi.org/10.1111/nph.12657...
; Conrad et al. 2014Conrad, L. J., Khanday, I., Johnson, C., Guiderdoni, E., An, G., Vijayraghavan, U. and Sundaresan, V. (2014). The polycomb group gene EMF2B is essential for maintenance of floral meristem determinacy in rice. The Plant Journal, 80, 883-894. http://dx.doi.org/10.1111/tpj.12688.
http://dx.doi.org/10.1111/tpj.12688...
). The function analysis of these genes is very helpful to elucidate the molecular regulation mechanism of rice inflorescence.

It was also known that the divergence of monocot and dicot happened about 200 million years ago (Wolfe et al. 1989Wolfe, K. H., Gouy, M., Yang, Y. W., Sharp, P. M. and Li, W. H. (1989). Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proceedings of the National Academy of Sciences of the United States of America, 86, 6201-6205. http://dx.doi.org/10.1073/pnas.86.16.6201.
http://dx.doi.org/10.1073/pnas.86.16.620...
). However, the morphological characteristics and development process of monocot flower are distinct from those of dicot flower. For example, the lemma, palea, and lodicule around the stamen and pistil in rice floret are obviously different from the calyx and petal in dicot flower; in addition, there is a pair of sterile lemmas and rudimentary glumes remained outside each rice floret, respectively (Yoshida and Nagato 2011Yoshida, H. and Nagato, Y. (2011). Flower development in rice. Journal of Experimental Botany, 62, 4719-4730. http://dx.doi.org/10.1093/jxb/err272.
http://dx.doi.org/10.1093/jxb/err272...
), which seems an unique floral organ in grass species. In some studies, it was believed that rice lodicule is similar to the petal in dicot flower (Kang et al. 1998Kang, H. G., Jeon, J. S., Lee, S., Lee, S. H. and An, G. (1998). Identification of class B and class C floral organ identity genes from rice plants. Plant Molecular Biology, 38, 1021-1029. http://dx.doi.org/10.1023/A:1006051911291.
http://dx.doi.org/10.1023/A:100605191129...
; Ambrose et al. 2000Ambrose, B. A., Lerner, D. R., Ciceri, P., Padilla, C. M. P., Yanofsky, M. F. and Schmidt, R. J. (2000). Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell, 5, 569-579. http://dx.doi.org/10.1016/S1097-2765(00)80450-5.
http://dx.doi.org/10.1016/S1097-2765(00)...
) and the lemma and the palea amount to the calyx (Prasad et al. 2001Prasad, K., Sriram, P., Kumar, C. S., Kushalappa, K. and Vijayraghavan, U. (2001). Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Development Genes and Evolution, 211, 281-290. http://dx.doi.org/10.1007/s004270100153.
http://dx.doi.org/10.1007/s004270100153...
). Besides, the sterile lemmas might be derived from the lemma (Prasad et al. 2001Prasad, K., Sriram, P., Kumar, C. S., Kushalappa, K. and Vijayraghavan, U. (2001). Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Development Genes and Evolution, 211, 281-290. http://dx.doi.org/10.1007/s004270100153.
http://dx.doi.org/10.1007/s004270100153...
; Yoshida et al. 2009Yoshida, A., Suzaki, T., Tanaka, W. and Hirano, H. Y. (2009). The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proceedings of the National Academy of Sciences of the United States of America, 106, 20103-20108. http://dx.doi.org/10.1073/pnas.0907896106.
http://dx.doi.org/10.1073/pnas.090789610...
). Nevertheless, many questions still remain to be further studied, such as “the lemma and the palea are the same organ?”, “where do the sterile lemma and the rudimentary glume derive from?”, and “how does every gene of floral organ work in perfect union?”. In this study, we attempted to analyze the genetic characteristics of sterile lemma trait and cloned the target gene using 4 mutants with long sterile lemma in order to reveal the gene function and structure.

MATERIAL AND METHODS

The Indica long sterile lemma (LSL) mutants, JF11, JF12 and JF13, were selected from a mutant population that derived from rice mature pollens induced by 60Co-γ ray irradiation with 30Gy in the Rice Genetics and Breeding Laboratory of Xiamen University, China (Figure 1a). The Japonica LSL mutant, JNY-7, was donated from China National Center for Crop Germplasm Preservation (Figure 1a). Aijiaonante (AJNT) and Nipponbare (NIP) are the germplasm materials preserved in our lab. F1 and F2 populations were constructed from the crossings between JF11 and AJNT (JF11/AJNT), NIP and JF11 (NIP/JF11), JNY-7 and AJNT (JNY-7/AJNT), NIP and JNY-7 (NIP/JNY-7), JF11 and JNY-7 (JF11/JNY-7) and JF11 and JF13 (JF11/JF13), respectively.

Figure 1
Grain phenotypes of the parents and their F1s. (a) The parent grains, from left to right, are: AJNT, JNY-7, JF13, JF12 and JF11. White arrows show sterile lemmas and the red ones show long sterile lemmas; (b) The grains, from left to right, are JNY-7, JF11, AJNT, F1 from JNY-7/JF11 and F1from JNY-7/AJNT, respectively; (c) The grains, from left to right, are JF11, JF13, AJNT, F1 from JF11/AJNT and F1 from JF11/JF13, respectively; (d) The grains, from left to right, are NIP, JNY-7, and F1 from NIP/JNY-7, respectively; (e) The grains, from left to right, are NIP, JF11 and F1 from AJNT/JF11, respectively.

DNA extraction and linked SSR marker screening

DNA extraction referred to Cetyltrimethyl Ammonium Bromide (CTAB) extracting method (Wang and Fang 2003Wang, Z. and Fang, X. (2003). Plant DNA isolation. Molecular Plant Breeding, 2, 281-288.). The marker tightly linked to the target trait was followed the approach of Bulk Segregant Analysis (BSA) (Michelmore et al. 1991Michelmore, R. W., Paran, I. and Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 88, 9828-9832. http://dx.doi.org/10.1073/pnas.88.21.9828.
http://dx.doi.org/10.1073/pnas.88.21.982...
). In this study, DNA was extracted from individual F2 plant. DNAs from 15 individuals with LSL trait were equally mixed and developed the mutant gene pool. Similarly, the wild type (WT) gene pool was developed as well. These 2 gene pools were subjected to screen the simple sequence repeats (SSR) markers. The polymorphic markers between the 2 gene pools might link tightly to the locus of LSL trait.

Genotyping and mapping

The SSR markers linked tightly to LSL trait were used to genotype 700 individuals with LSL in the F2 population derived from the JF13/AJNT crossing. Linkage analysis between genotype and phenotype was conducted by MAPMAKER/EXP 3.0 (Lander et al. 1987Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E. and Newburg, L. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1, 174-181. http://dx.doi.org/10.1016/0888-7543(87)90010-3.
http://dx.doi.org/10.1016/0888-7543(87)9...
; Lincoln et al. 1992Lincoln, S., Daly, M. and Lander, E. (1992). Constructing genetic maps with MAPMAKER/EXP 3.0. 3. ed. Cambridge: Whitehead Institute for Biomedical Research.), and the linkage map was drawn by MapChart 2.2 (Voorrips 2002Voorrips, R. E. (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77-78. http://dx.doi.org/10.1093/jhered/93.1.77.
http://dx.doi.org/10.1093/jhered/93.1.77...
).

SSR markers and specific primers

Sequences of 522 SSR markers used in this research were downloaded from the GRAMENE website (http://www.gramene.org/microsat/ssr.html). According to the NIP sequence at the 2 flanks of the target locus, 72 SSR markers were designed by Preimer 5.0 and synthesized by Life Technologies Corporation.

A pair of primers, XMsl-7 (For ward primer: GAATGGAGGGTTGGGTCACT; XMsl-7, and Reverse primer: CGAAGCAACGGAACGAACAC), was designed and synthesized to amplify the Open Reading Frame (ORF), its upstream and downstream sequences of G1.

RESULTS AND DISCUSSION

All F1 individuals generated from the crossings JF11/AJNT, NIP/JF11, JNY-7/AJNT and NIP/JNY-7 showed the phenotype of wild type (Figures 1b,c,d,e), whereas the F1 plants from the crosses JNY-7/ JF11 and JF11/JF13 showed the phenotype of long sterile lemma (Figures 1b,c). In the F2 population from the crossing of JF11/AJNT, there are 4,741 wild type individuals and 1,565 mutant individuals, respectively, presenting 3:1 segregation ratio (WT/LSL) (χ2 = 0.102; χ20.05 = 3.84). This indicated that the LSL trait of JF11, JF13, and JNY-7 should be controlled by a recessive locus named sl-1(t).

A set of 137 SSR markers with polymorphism between JF11 and AJNT was used to test the genotype of the DNA pools of wild type and mutant. Two markers with polymorphism on the short arm of chromosome 7, RM51 and RM295, were further applied to validate the genotype of 200 F2 LSL individuals. Linkage analysis between molecular marker and phenotype trait showed that the locus of sl-1(t) was mapped on the inner side of RM51 and RM295, and the genetic distances from the target locus to RM51 and RM295 were 13.5 and 12.7 cM, respectively. In addition, another 6 SSR markers on chromosome 7, RM20828, RM20852, RM20903, RM20948, RM21004, and RM21035, were used to fine map the sl-1(t), through genotyping 700 mutants of F2 plants. The sl-1(t) was narrowed in the interval between RM20903 and RM20948, and the genetic distances between sl-1(t) and the 2 markers were 3.8 and 4.9 cM, respectively (Figure 2).

Figure 2
The location of sl-1(t) in the molecular linkage map on the short arm of chromosome 7. The bar is sl-1(t), and the numbers on the left of the linkage map represent genetic distance (cM).

The G1 gene (LOC_Os07g04670) with a 831-base length ORF was deemed to confer the sterile lemma trait (Yoshida et al. 2009Yoshida, A., Suzaki, T., Tanaka, W. and Hirano, H. Y. (2009). The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proceedings of the National Academy of Sciences of the United States of America, 106, 20103-20108. http://dx.doi.org/10.1073/pnas.0907896106.
http://dx.doi.org/10.1073/pnas.090789610...
). In the present research, sl-1(t) was located in the interval between RM20903 and RM20948, which harbored G1. So we speculated that the SL-1(t) might be allelic to G1.

The PCR product with 1,873 bases included an 831-base ORF, an 874-base upstream sequence, and a 168-base downstream sequence of G1. Allelic sequencing showed that the homologous G1 sequences of JF11, JF12 and JF13 mutants had a same deletion with 11 bases (GACGGCGCCGC) in the exon (Figure 3a), which directly led to the event of frame-shifting mutation, while JNY-7 had a base substitution which made an arginine convert into a histidine at the site of the 117th amino residue (Figures 3b,c). The results indicated that the mutation of G1 should be able to generate the phenotype of long sterile lemma of the 4 mutants in this study.

Figure 3
DNA or amino sequence alignment of G1 in the research materials. (a) DNA sequence alignment of G1 between AJNT and the 3 mutants. Each dot (.) means a 1-base deletion; 621 and 670 mean the base position in gene sequence; (b) DNA sequence alignment between NIP and JNY-7; 322 and 360 mean the base position in gene sequence; “|” shows the same base between NIP and JNY-7; “:” shows the different base between the 2 materials. The base, G, in NIP, was turned to A in JNY-7; (c) Amino sequence alignment of G1 between NIP and JNY-7; 108 and 120 mean the amino position in protein sequence; “|” shows the same amino between NIP and JNY-7; “:” shows the different base between the 2 materials. One base mutation led to 1 amino change, from H to R.

Rice sterile lemma was a characteristic floral organ that was considered to be a vestigial floret in rice (Yoshida et al. 2009Yoshida, A., Suzaki, T., Tanaka, W. and Hirano, H. Y. (2009). The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proceedings of the National Academy of Sciences of the United States of America, 106, 20103-20108. http://dx.doi.org/10.1073/pnas.0907896106.
http://dx.doi.org/10.1073/pnas.090789610...
). Some genes related to the sterile lemma have been mapped or cloned in rice. G1 was cloned by the map-based cloning method (Yoshida et al. 2009Yoshida, A., Suzaki, T., Tanaka, W. and Hirano, H. Y. (2009). The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proceedings of the National Academy of Sciences of the United States of America, 106, 20103-20108. http://dx.doi.org/10.1073/pnas.0907896106.
http://dx.doi.org/10.1073/pnas.090789610...
). Osleg was mapped in a 207-kb region on the short arm of chromosome 7, which was close to G1 (Chen et al. 2010Chen, D. B., Zhan, X. D., Chao, W. U., Shen, X. H., Wei-Ming, W. U., Gao, Z. Q. and Cheng, S. H. (2010). Genetic analysis and gene mapping of a long empty glumes mutant in rice (Oryza sativa L.). Acta Agronomica Sinica, 36, 1506-1511.). In the present study, it was believed that sl-1(t) gene should be allelic to G1 based on the locus location and allelic sequencing. It was very obvious that G1 would be a key gene for further research on rice sterile lemma.

G1 has only 1 exon with 831 bp, which codes a ALOG domain, a distinct N-terminal DNA-binding domain with an additional zinc ribbon (Figure 4) (Yoshida et al. 2009Yoshida, A., Suzaki, T., Tanaka, W. and Hirano, H. Y. (2009). The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proceedings of the National Academy of Sciences of the United States of America, 106, 20103-20108. http://dx.doi.org/10.1073/pnas.0907896106.
http://dx.doi.org/10.1073/pnas.090789610...
; Iyer and Aravind 2012Iyer, L. M. and Aravind, L. (2012). ALOG domains: provenance of plant homeotic and developmental regulators from the DNA-binding domain of a novel class of DIRS1-type retroposons. Biology Direct, 7, 39. http://dx.doi.org/10.1186/1745-6150-7-39.
http://dx.doi.org/10.1186/1745-6150-7-39...
). The g1-4 mutant has a 68-base deletion in the downstream of ALOG domain; g1-2 and g1-3 have a same base transversion in the zinc ribbon insert region and a transition in the third helix of the ALOG domain, respectively (Yoshida et al. 2009Yoshida, A., Suzaki, T., Tanaka, W. and Hirano, H. Y. (2009). The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proceedings of the National Academy of Sciences of the United States of America, 106, 20103-20108. http://dx.doi.org/10.1073/pnas.0907896106.
http://dx.doi.org/10.1073/pnas.090789610...
). In this research, the mutant locus, an 11-base deletion near to the mutant site of g1-4, happened downstream the ALOG domain (Figure 4). In the G1 gene of JNY-7, a base transition happened at the base No. 344 in the third helix of the ALOG domain (Figure 4). In the ORF and the upstream from −1 to −824 base of G1, there were 8 and 10 base substitutions between Indica and Japonica rice, respectively, and 2 of the 8 mutants located at the ORF caused the changes of the amino acid sequence. The aminoacid No. 133, V, becomes G, and the No. 190, M, becomes R (Figure 4). These 2 amino acids are located at the ALOG domain, but do not impact on the gene function.

Figure 4
The CDS, protein, and ALOG domain of G1. Pink words represent the mutant loci of 4 mutants in the present study. Blue words mean the different loci between Indica and Japonica rice. Black lines and orange cylinders show the secondary structure of ALOG domain (Iyer and Aravind 2012Iyer, L. M. and Aravind, L. (2012). ALOG domains: provenance of plant homeotic and developmental regulators from the DNA-binding domain of a novel class of DIRS1-type retroposons. Biology Direct, 7, 39. http://dx.doi.org/10.1186/1745-6150-7-39.
http://dx.doi.org/10.1186/1745-6150-7-39...
).

It is known that ALOG domain is far different from the MADS domain tightly linked with the development of the floral organ in eudicots and monocots, which suggested that the molecular mechanism of rice sterile lemma identity is different from that of other floral organs, particularly in eudicots. However, in the transgenic rice plants with Oryza sativa MADS box gene 1 (OsMADS1) and the rice actin1 promoter, the 2 sterile lemmas elongated and developed palea-like and lemma-like glumes (Jeon et al. 2000Jeon, J. S., Jang, S., Lee, S., Nam, J., Kim, C., Chung, Y. Y., Kim, S. R., Lee, Y. H., Cho, Y. G. and An, G. (2000). Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. The Plant Cell, 12, 871-884. http://dx.doi.org/10.1105/tpc.12.6.871.
http://dx.doi.org/10.1105/tpc.12.6.871...
), which seemed that the sterile lemma identity should also be related to the MADS gene family.

How is the rice sterile lemma regulated? Is there a real link between ALOG domain and MADS domain? How do the 2 domains work together? Now all of these questions are little known to us. The research on gene regulation and signal path should be further conducted in the future. The present study might provide some good mutant materials and theoretical basis for further studying the key domain, gene regulation, and signal path related to rice sterile lemma.

CONCLUSION

Rice sterile lemma is a unique outer floral organ in gramineous plants. Long sterile lemma is a recessive trait and regulated by a key gene, G1. The mutant genes, sl-1(t), in JF11, JF12, JF13 and JNY-7 are alleles of G1. JF11, JF12 and JF13 have an 11-base deletion, which gives rise to a frame-shifting mutation. JNY-7 has a base substitution which triggers a missense mutation.

G1 codes an ALOG domain, which is a distinct N-terminal DNA-binding domain with an additional zinc ribbon. In this study, we found 2 mutations. One locates the downstream of the ALOG domain, and the other, in the third helix of the ALOG domain. These 2 mutations both affect the gene function. Also, 8 and 10 base substitutions happen in the ORF and the upstream from −1 to −824 base of G1 between Indica and Japonica rice, respectively, and only 2 of them in the ORF lead to the change of amino acid sequence. Although these 2 polymorphisms are located at the ALOG domain, there is no impact on the gene function, which shows these polymorphism loci are not the key conservative ones for supporting the structure and function of ALOG domain.

In a word, this study makes the researcher to further understand the structure and function of the G1 gene and provides 2 available mutants for exploring the development mechanism of rice floral organ.

ACKNOWLEDGEMENTS

This study was supported by grants from the National Natural Science Foundation of China (31100866), the Education Science Research Projects in Fujian Province for Young and Middle-aged Teachers (JAT160014), and the Fundamental Research Funds for the Central Universities (2013121040).

REFERENCES

  • Agrawal, G. K., Abe, K., Yamazaki, M., Miyao, A. and Hirochika, H. (2005). Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-offunction mutants of the OsMADS1 gene. Plant Molecular Biology, 59, 125-135. http://dx.doi.org/10.1007/s11103-005-2161-y
    » http://dx.doi.org/10.1007/s11103-005-2161-y
  • Ambrose, B. A., Lerner, D. R., Ciceri, P., Padilla, C. M. P., Yanofsky, M. F. and Schmidt, R. J. (2000). Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell, 5, 569-579. http://dx.doi.org/10.1016/S1097-2765(00)80450-5
    » http://dx.doi.org/10.1016/S1097-2765(00)80450-5
  • Angenent, G. C., Franken, J., Busscher, M., van Dijken, A., van Went, J. L., Dons, H. J. and van Tunen, A. J. (1995). A novel class of MADS box genes is involved in ovule development in petunia. The Plant Cell, 7, 1569-1582. http://dx.doi.org/10.1105/tpc.7.10.1569
    » http://dx.doi.org/10.1105/tpc.7.10.1569
  • Bowman, J. L., Smyth, D. R. and Meyerowitz, E. M. (1991). Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112, 1-20.
  • Carpenter, R. and Coen, E. S. (1990). Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus Genes and Development, 4, 1483-1493. http://dx.doi.org/10.1101/gad.4.9.1483
    » http://dx.doi.org/10.1101/gad.4.9.1483
  • Chen, D. B., Zhan, X. D., Chao, W. U., Shen, X. H., Wei-Ming, W. U., Gao, Z. Q. and Cheng, S. H. (2010). Genetic analysis and gene mapping of a long empty glumes mutant in rice (Oryza sativa L.). Acta Agronomica Sinica, 36, 1506-1511.
  • Chung, Y. Y., Kim, S. R., Finkel, D., Yanofsky, M. F. and An, G. (1994). Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene. Plant Molecular Biology, 26, 657-665. http://dx.doi.org/10.1007/BF00013751
    » http://dx.doi.org/10.1007/BF00013751
  • Chung, Y. Y., Kim, S. R., Kang, H. G., Noh, Y. S., Min, C. P., Finkel, D. and An, G. (1995). Characterization of two rice MADS box genes homologous to GLOBOSA Plant Science, 109, 45-56. http://dx.doi.org/10.1016/0168-9452(95)04153-L
    » http://dx.doi.org/10.1016/0168-9452(95)04153-L
  • Coen, E. S. and Carpenter, R. (1993). The metamorphosis of flowers. The Plant Cell, 5, 1175-1181. http://dx.doi.org/10.1105/tpc.5.10.1175
    » http://dx.doi.org/10.1105/tpc.5.10.1175
  • Coen, E. S. and Meyerowitz, E. M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature, 353, 31-37. http://dx.doi.org/10.1038/353031a0
    » http://dx.doi.org/10.1038/353031a0
  • Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H. J., Angenent, G. C. and van Tunen, A. J. (1995). The petunia MADS box gene FBP11 determines ovule identity. The Plant Cell, 7, 1859-1868. http://dx.doi.org/10.1105/tpc.7.11.1859
    » http://dx.doi.org/10.1105/tpc.7.11.1859
  • Conrad, L. J., Khanday, I., Johnson, C., Guiderdoni, E., An, G., Vijayraghavan, U. and Sundaresan, V. (2014). The polycomb group gene EMF2B is essential for maintenance of floral meristem determinacy in rice. The Plant Journal, 80, 883-894. http://dx.doi.org/10.1111/tpj.12688
    » http://dx.doi.org/10.1111/tpj.12688
  • Cui, R., Han, J., Zhao, S., Su, K., Wu, F., Du, X., Xu, Q., Chong, K., Theissen, G. and Meng, Z. (2010). Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). The Plant Journal, 61, 767-781. http://dx.doi.org/10.1111/j.1365-313X.2009.04101.x
    » http://dx.doi.org/10.1111/j.1365-313X.2009.04101.x
  • Dreni, L., Jacchia, S., Fornara, F., Fornari, M., Ouwerkerk, P. B. F., An, G., Colombo, L. and Kater, M. M. (2007). The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. The Plant Journal, 52, 690-699. http://dx.doi.org/10.1111/j.1365-313X.2007.03272.x
    » http://dx.doi.org/10.1111/j.1365-313X.2007.03272.x
  • Fornara, F., Pařenicová, L., Falasca, G., Pelucchi, N., Masiero, S., Ciannamea, S., Lopez-Dee, Z., Altamura, M. M., Colombo, L. and Kater, M. M. (2004). Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiology, 135, 2207-2219. http://dx.doi.org/10.1104/pp.104.045039
    » http://dx.doi.org/10.1104/pp.104.045039
  • Galimba, K. D., Tolkin, T. R., Sullivan, A. M., Melzer, R., Theißen, G. and Di Stilio, V. S. (2012). Loss of deeply conserved C-class floral homeotic gene function and C- and E-class protein interaction in a double-flowered ranunculid mutant. Proceedings of the National Academy of Sciences of the United States of America, 109, E2267-E2275. http://dx.doi.org/10.1073/pnas.1203686109
    » http://dx.doi.org/10.1073/pnas.1203686109
  • Gao, X., Liang, W., Yin, C., Ji, S., Wang, H., Su, X., Guo, C., Kong, H., Xue, H. and Zhang, D. (2010). The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiology, 153, 728-740. http://dx.doi.org/10.1104/pp.110.156711
    » http://dx.doi.org/10.1104/pp.110.156711
  • Honma, T. and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409, 525-529. http://dx.doi.org/10.1038/35054083
    » http://dx.doi.org/10.1038/35054083
  • Iyer, L. M. and Aravind, L. (2012). ALOG domains: provenance of plant homeotic and developmental regulators from the DNA-binding domain of a novel class of DIRS1-type retroposons. Biology Direct, 7, 39. http://dx.doi.org/10.1186/1745-6150-7-39
    » http://dx.doi.org/10.1186/1745-6150-7-39
  • Jeon, J. S., Jang, S., Lee, S., Nam, J., Kim, C., Chung, Y. Y., Kim, S. R., Lee, Y. H., Cho, Y. G. and An, G. (2000). Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. The Plant Cell, 12, 871-884. http://dx.doi.org/10.1105/tpc.12.6.871
    » http://dx.doi.org/10.1105/tpc.12.6.871
  • Kalika, P., Sriram, P. and Usha, V. (2005). OsMADS1, a rice MADS-box factor, controls differentiation of specific cell type in lemma and plea and is an early-acting regulator of inner floral organs. The Plant Journal, 43, 915-928. http://dx.doi.org/10.1111/j.1365-313X.2005.02504.x
    » http://dx.doi.org/10.1111/j.1365-313X.2005.02504.x
  • Kang, H. G., Jeon, J. S., Lee, S., Lee, S. H. and An, G. (1998). Identification of class B and class C floral organ identity genes from rice plants. Plant Molecular Biology, 38, 1021-1029. http://dx.doi.org/10.1023/A:1006051911291
    » http://dx.doi.org/10.1023/A:1006051911291
  • Kang, H. G., Noh, Y. Y., Chung, Y. Y., Costa, M. A., An, K. and An, G. (1995). Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Plant Molecular Biology, 29, 1-10. http://dx.doi.org/10.1007/BF00019114
    » http://dx.doi.org/10.1007/BF00019114
  • Kyozuka, J., Kobayashi, T., Morita, M. and Shimamoto, K. (2000). Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant and Cell Physiology, 41, 710-718. http://dx.doi.org/10.1093/pcp/41.6.710
    » http://dx.doi.org/10.1093/pcp/41.6.710
  • Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E. and Newburg, L. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1, 174-181. http://dx.doi.org/10.1016/0888-7543(87)90010-3
    » http://dx.doi.org/10.1016/0888-7543(87)90010-3
  • Li, H., Liang, W., Hu, Y., Zhu, L., Yin, C., Xu, J., Dreni, L., Kater, M. M. and Zhang, D. (2011b). Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. The Plant Cell, 23, 2536-2552. http://dx.doi.org/10.1105/tpc.111.087262
    » http://dx.doi.org/10.1105/tpc.111.087262
  • Li, H., Liang, W., Yin, C., Zhu, L. and Zhang, D. (2011a). Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiology, 156, 263-274. http://dx.doi.org/10.1104/pp.111.172080
    » http://dx.doi.org/10.1104/pp.111.172080
  • Lim, J., Moon, Y. H., An, G. and Jang, S. K. (2000). Two rice MADS domain proteins interact with OsMADS1 Plant Molecular Biology, 44, 513-527. http://dx.doi.org/10.1023/A:1026517111843
    » http://dx.doi.org/10.1023/A:1026517111843
  • Lin, X., Wu, F., Du, X., Shi, X., Liu, Y., Liu, S., Hu, Y., Theissen, G. and Meng, Z. (2013). The pleiotropic SEPALLATA-like gene OsMADS34 reveals that the ‘empty glumes’ of rice (Oryza sativa) spikelets are in fact rudimentary lemmas. The New Phytologist, 202, 689-702. http://dx.doi.org/10.1111/nph.12657
    » http://dx.doi.org/10.1111/nph.12657
  • Lincoln, S., Daly, M. and Lander, E. (1992). Constructing genetic maps with MAPMAKER/EXP 3.0. 3. ed. Cambridge: Whitehead Institute for Biomedical Research.
  • Lopez-Dee, Z. P., Wittich, P., Enrico, P. M., Rigola, D., Del Buono, I., Gorla, M. S., Kater, M. M. and Colombo, L. (1999). OsMADS13, a novel rice MADS-box gene expressed during ovule development. Developmental Genetics, 25, 237-244. http://dx.doi.org/10.1002/(SICI)1520-6408(1999)25:3<237::AID-DVG6>3.0.CO;2-L
    » http://dx.doi.org/10.1002/(SICI)1520-6408(1999)25:3<237::AID-DVG6>3.0.CO;2-L
  • Mena, M., Ambrose, B. A., Meeley, R. B., Briggs, S. P., Yanofsky, M. F. and Schmidt, R. J. (1996). Diversification of C-function activity in maize flower development. Science, 274, 1537-1540. http://dx.doi.org/10.1126/science.274.5292.1537
    » http://dx.doi.org/10.1126/science.274.5292.1537
  • Michelmore, R. W., Paran, I. and Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 88, 9828-9832. http://dx.doi.org/10.1073/pnas.88.21.9828
    » http://dx.doi.org/10.1073/pnas.88.21.9828
  • Moon, Y. H., Jung, J. Y., Kang, H. G. and An, G. (1999). Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Molecular Biology, 40, 167-177. http://dx.doi.org/10.1023/A:1026429922616
    » http://dx.doi.org/10.1023/A:1026429922616
  • Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E. and Yanofsky, M. F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405, 200-203. http://dx.doi.org/10.1038/35012103
    » http://dx.doi.org/10.1038/35012103
  • Prasad, K., Sriram, P., Kumar, C. S., Kushalappa, K. and Vijayraghavan, U. (2001). Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Development Genes and Evolution, 211, 281-290. http://dx.doi.org/10.1007/s004270100153
    » http://dx.doi.org/10.1007/s004270100153
  • Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H., Nishiyama, T., Perroud, P. F., Lindquist, E. A., Kamisugi, Y., Tanahashi, T., Sakakibara, K., Fujita, T., Oishi, K., Shin-I, T., Kuroki, Y., Toyoda, A., Suzuki, Y., Hashimoto, S. I., Yamaguchi, K., Sugano, S., Kohara, Y., Fujiyama, A., Anterola, A., Aoki, S., Ashton, N., Barbazuk, W. B., Barker, E., Bennetzen, J. L., Blankenship, R., Cho, S. H., Dutcher, S. K., Estelle, M., Fawcett, J. A., Gundlach, H., Hanada, K., Heyl, A., Hicks, K. A., Hughes, J., Lohr, M., Mayer, K., Melkozernov, A., Murata, T., Nelson, D. R., Pils, B., Prigge, M., Reiss, B., Renner, T., Rombauts, S., Rushton, P. J., Sanderfoot, A., Schween, G., Shiu, S. H., Stueber, K., Theodoulou, F. L., Tu, H., van de Peer, Y., Verrier, P. J., Waters, E., Wood, A., Yang, L., Covem, D., Cumingm, A. C., Hasebem, M., Lucasm, S., Mishlerm, B. D., Reskim, R., Grigorievm, I. V., Quatranom, R. S. and Boorem, J. L. (2008). The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science, 319, 64-69. http://dx.doi.org/10.1126/science.1150646
    » http://dx.doi.org/10.1126/science.1150646
  • Schmidt, R. J., Veit, B., Mandel, M. A., Mena, M., Hake, S. and Yanofsky, M. F. (1993). Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. The Plant Cell, 5, 729-737. http://dx.doi.org/10.1105/tpc.5.7.729
    » http://dx.doi.org/10.1105/tpc.5.7.729
  • Sun, Q. and Zhou, D. X. (2008). Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. Proceedings of the National Academy of Sciences of the United States of America, 105, 13679-13684. http://dx.doi.org/10.1073/pnas.0805901105
    » http://dx.doi.org/10.1073/pnas.0805901105
  • Voorrips, R. E. (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77-78. http://dx.doi.org/10.1093/jhered/93.1.77
    » http://dx.doi.org/10.1093/jhered/93.1.77
  • Wang, H., Zhang, L., Cai, Q., Hu, Y., Jin, Z., Zhao, X., Fan, W., Huang, Q., Luo, Z., Chen, M., Zhang, D. and Yuan, Z. (2015). OsMADS32 interacts with PI-like proteins and regulates rice flower development. Journal of Integrative Plant Biology, 57, 504-513. http://dx.doi.org/10.1111/jipb.12248
    » http://dx.doi.org/10.1111/jipb.12248
  • Wang, Z. and Fang, X. (2003). Plant DNA isolation. Molecular Plant Breeding, 2, 281-288.
  • Wolfe, K. H., Gouy, M., Yang, Y. W., Sharp, P. M. and Li, W. H. (1989). Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proceedings of the National Academy of Sciences of the United States of America, 86, 6201-6205. http://dx.doi.org/10.1073/pnas.86.16.6201
    » http://dx.doi.org/10.1073/pnas.86.16.6201
  • Yamaguchi, T., Lee, D. Y., Miyao, A., Hirochika, H., An, G. and Hirano, H. Y. (2006). Functional diversification of the two C-Class MADS Box Genes OsMADS3 and OsMADS58 in Oryza sativa The Plant Cell, 18, 15-28. http://dx.doi.org/10.1105/tpc.105.037200
    » http://dx.doi.org/10.1105/tpc.105.037200
  • Yamaguchi, T., Nagasawa, N., Kawasaki, S., Matsuoka, M., Nagato, Y. and Hirano, H. Y. (2004). The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa The Plant Cell, 16, 500-509. http://dx.doi.org/10.1105/tpc.018044
    » http://dx.doi.org/10.1105/tpc.018044
  • Yan, D., Zhang, X., Zhang, L., Ye, S., Zeng, L., Liu, J., Li, Q. and He, Z. (2015). CURvED ChIMERIC PALEA 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development. The Plant Journal, 82, 12-24. http://dx.doi.org/10.1111/tpj.12784
    » http://dx.doi.org/10.1111/tpj.12784
  • Yoshida, A., Suzaki, T., Tanaka, W. and Hirano, H. Y. (2009). The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proceedings of the National Academy of Sciences of the United States of America, 106, 20103-20108. http://dx.doi.org/10.1073/pnas.0907896106
    » http://dx.doi.org/10.1073/pnas.0907896106
  • Yoshida, H. and Nagato, Y. (2011). Flower development in rice. Journal of Experimental Botany, 62, 4719-4730. http://dx.doi.org/10.1093/jxb/err272
    » http://dx.doi.org/10.1093/jxb/err272
  • Zheng, M., Wang, Y., Wang, C., Ren, Y., Lv, J., Peng, C., Wu, T., Liu, K., Zhao, S., Liu, X., Guo, X., Jiang, L., Terzaghi, W. and Wan, J. (2015). DEFORMED FLORAL ORGAN1 (DFO1) regulates floral organ identity by epigenetically repressing the expression of OsMADS58 in rice (Oryza sativa). The New Phytologist, 206, 1476-1490. http://dx.doi.org/10.1111/nph.13318
    » http://dx.doi.org/10.1111/nph.13318

Publication Dates

  • Publication in this collection
    15 May 2017
  • Date of issue
    Apr-Jun 2017

History

  • Received
    01 Apr 2016
  • Accepted
    17 Aug 2016
Instituto Agronômico de Campinas Avenida Barão de Itapura, 1481, 13020-902, Tel.: +55 19 2137-0653, Fax: +55 19 2137-0666 - Campinas - SP - Brazil
E-mail: bragantia@iac.sp.gov.br