Acessibilidade / Reportar erro

Cycle, physicochemical characterization and climatic adaptation of a white hybrid grape on different rootstocks

ABSTRACT

This study evaluated the cycle duration, physicochemical characteristics of fruits and climatic adaptation of the ‘SR 501-17’ hybrid grape grafted on four rootstocks for the production of white wine. We tested four rootstocks, ‘IAC 766 Campinas’, ‘IAC 572 Jales’, ‘IAC 571-6 Jundiaí’ and ‘IAC 313 Tropical’, planted in two climatic regions, Cfa and Aw, in the state of São Paulo, Brazil in the cultivation years 2014 and 2015. Cycle duration, production, cluster weight, number of berries per bunch, content of soluble solids, titratable acidity, a maturation index and the weight, length and width of berries were evaluated. A principal component analysis characterized the cultivar for both climatic regions and years. The rootstock did not influence the cycle, production or physicochemical characteristics of the ‘SR 501-17’ hybrid. The soluble-solid content in the must was higher and the production cycle in 2014 was longer for the Cfa climate. The production cycle was shorter and the weight and width of the berries were lower, mainly in 2015, for the Aw climate. The cycle was thus longer, production was higher and the chemical characteristics were better for the ‘SR 501-17’ hybrid under Cfa conditions, regardless of the rootstock.

Key words
canopy/rootstock; climate; principal component analysis; Vitis

INTRODUCTION

Grapes are an important fruit globally and can be used for making wine and oil or as table grapes and in other applications. The grape genus Vitis is highly variable, but V. vinifera is normally used for making wine in most countries because this species has better fruit for making high quality wines (Dolkar et al. 2017Dolkar, T., Sharma, M. K., Kumar, A., Mir, M. S., and Hussanin, S. (2017). Genetic variability and correlation studies in grapes (Vitis vinifera L.) in Leh District of Jammu and Kashmir. Advances in Horticultural Science, 31, 241-247. https://doi.org/10.13128/ahs-22376
https://doi.org/10.13128/ahs-22376...
; Miele and Rizzon 2017Miele, A., and Rizzon, L. A. (2017). Rootstock-scion interaction: 2. Effect on the composition of cabernet sauvignon grape must. Revista Brasileira de Fruticultura, 39, e434. https://doi.org/10.1590/0100-29452017434
https://doi.org/10.1590/0100-29452017434...
; Laucou et al. 2018Laucou, V., Launay, A., Bacilieri, R., Lacombe, T., Adam-Blondon, A. F., Bérard, A., Chauveau, A., Andrés, M. T., Hausmann, L., Ibáñez, J., Le Paslier, M. C., Maghradze, D., Martinez-Zapeter, J. M., Maul, E., Ponnaiah, M., Töpfer, R., Péros, J., and Boursiquot, J. (2018). Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PloS one, 13, e0192540. https://doi.org/10.1371/journal.pone.0192540
https://doi.org/10.1371/journal.pone.019...
). In contrast, most V. vinifera varieties are susceptible to many common grape diseases, partly because grapes mature during the rainy season, which is ideal for the development of diseases (Guan et al. 2016Guan, X., Essakhi, S., Laloue, H., Nick, P., Bertsch, C., and Chong, J. (2016). Mining new resources for grape resistance against Botryosphaeriaceae: a focus on Vitis vinifera subsp. sylvestris. Plant Pathology, 65, p. 273-284, 2016. https://doi.org/10.1111/ppa.12405
https://doi.org/10.1111/ppa.12405...
; Santos et al. 2018aSantos, R. F., Ciampi‐Guillardi, M., Amorim, L., Massola Júnior, N. S., and Spósito, M. B. (2018a) Aetiology of anthracnose on grapevine shoots in Brazil. Plant Pathology, 67, 692-706. https://doi.org/10.1111/ppa.12756
https://doi.org/10.1111/ppa.12756...
). Some breeding programs have therefore crossed V. vinifera with V. labrusca andV. riparia, native North American species, and other species to produce grape hybrids that are cultivated in unfavorable climatic conditions for the growth ofV. vinifera (Kapusta et al. 2017Kapusta, I., Cebulak, T., and Oszmia?ski, J. (2017). The anthocyanins profile of red grape cultivars growing in south-east Poland (Subcarpathia region). Journal of Food Measurement and Characterization, 11, 1863-1873. https://doi.org/10.1007/s11694-017-9568-4
https://doi.org/10.1007/s11694-017-9568-...
). Brazil, however, has great potential for wine production, because new markets for white and sparkling wines are promising (OIV 2016[OIV] International Organisation of Vine and Wine (2016). Global Economic Vitiviniculture Data. OIV; [acessed 2018 April 16]. http://www.oiv.int/public/medias/5009/en-communiqu-depresse-octobre-2016
http://www.oiv.int/public/medias/5009/en...
). The grape cycle, though, is problematic in some wine regions due to high rainfall and the development of diseases such as powdery mildew, downy mildew and anthracnose, which reduce fruit quality and cause up to 100% crop loss (Amorim et al. 2016Amorim, L., Spósito, M. B., and Kuniyuki, H. (2016). Doenças da videira. In L. Amorim, J. A. M. Rezende, A. Bergamin Filho and L. E. A. Camargo (Eds.), Manual de Fitopatologia: Doenças das plantas cultivadas (p. 745-758). São Paulo: Agronômica Ceres.; Santos et al. 2018bSantos, R. F., Spósito M. B., Ayres, M.R., and Sosnowski, M. R. (2018b). Phylogeny, morphology and pathogenicity of Elsinoë ampelina, the causal agent of grapevine anthracnose in Brazil and Australia. Journal of Phytopathology, 166, 187-198. https://doi.org/10.1111/jph.12675
https://doi.org/10.1111/jph.12675...
). Some grape-breedingprograms in Brazil have also developed new cultivars with good climatic adaptation and characteristics for making wine.

In addition to climatic adaption, the rootstock is another crucial factor for viticultural production. The use of a rootstock is mandatory in vineyards due to phylloxera, a soilborne pest. Rootstocks can provide tolerance against this pest, influence the yield, quality and vegetative growth of grapes (Hartmann and Kester 1990Hartmann, H. T., and Kester, D. E. (1990). Propagación de plantas: principios y practicas. México: Continental.; Berdeja et al. 2015Berdeja, M., Nicolas, P., Kappel, C., Dai, Z. W., Hilbert, G., Peccoux, A., Lafontaine, M., Ollat, N., Gomès, E., and Delrot, S. (2015). Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture research, 2, 1-13. https://doi.org/10.1038/hortres.2015.12
https://doi.org/10.1038/hortres.2015.12...
; Ollat et al. 2015Ollat, N., Peccoux, A., Papura, D., Esmenjaud, D., Marguerit, E., Tandonnet, J. P., Bordenave, L.; Cookson, S. J., Barrieu, F., Rossdeustsch, L., Lecourt, J., Lauvergeat, V.; Vivin, P., Bert, P. F., and Delrot, S. (2015). Rootstocks as a component of adaptation to environment. In H. Gerós, M. M. Chaves, H. M. Gil and S. Derlot (Eds.), Grapevine in a changing environment: a molecular and ecophysiological perspective (p. 68-108). Hoboken: John Willey and Sons. https://doi.org/10.1002/9781118735985.ch4
https://doi.org/10.1002/9781118735985.ch...
). Good rootstocks are available, but each has limitations, so only regional experimentation can determine their suitability to different cropping conditions (Mota et al. 2009Mota, R. V., Souza, C. R., Favero, A. C., Silva, C. P. C, Carmo, E. L. Fonseca, A. R., and Regina, M. A. (2009). Produtividade e composição físico-química de bagas de cultivares de uva em distintos porta-enxertos. Pesquisa Agropecuária Brasileira, 44, 576-582.; Van Leeuwen and Destrac-Irvine 2016Van Leeuwen, C., and Destrac-Irvine, A. (2016). Modified grape composition under climate change conditions requires adaptations in the vineyard. Climwine, sustainable grape and wine production in the context of climate change. OENO One, 51, 147-154. https://doi.org/10.20870/oeno-one.2016.0.0.1647
https://doi.org/10.20870/oeno-one.2016.0...
).

The selection of rootstocks is based on their adaptation to environmental conditions and to scions, which will directly affect yield and some chemical characteristics of the berries, such as acidity and content of soluble solids (Fraga et al. 2016Fraga, H., Santos, J. A., Malheiro, A. C., Oliveira, A. A., Moutinho‐Pereira, J., and Jones, G. V. (2016). Climatic suitability of Portuguese grapevine varieties and climate change adaptation. International Journal of Climatology, 36, 1-12. https://doi.org/10.1002/joc.4325
https://doi.org/10.1002/joc.4325...
; Southey and Jooste 1991Southey, J. M., and Jooste, J. H. (1991). The effect of grapevine rootstock on the performance of Vitis vinifera L. (cv. Colombard) on a relatively saline soil. South African Journal of Enology and Viticulture, 12, 32-41. https://doi.org/10.21548/12-1-2222
https://doi.org/10.21548/12-1-2222...
). The composition of the berries at harvest affects the wine quality and will determine its distinctive character, which is directly associated with the genetic material of the cultivar, the cultural techniques adopted in a vineyard and the viticultural ecosystem (Miele and Rizzon 2017Miele, A., and Rizzon, L. A. (2017). Rootstock-scion interaction: 2. Effect on the composition of cabernet sauvignon grape must. Revista Brasileira de Fruticultura, 39, e434. https://doi.org/10.1590/0100-29452017434
https://doi.org/10.1590/0100-29452017434...
; Silva et al. 2015Silva, M. J. R., Tecchio, M. A., Moura, M. F., Brunelli, L. T., Imaizumi, V. M., and Venturini Filho W. G. (2015). Composição físico química do mosto e do vinho branco de cultivares de videiras em resposta a porta enxertos. Pesquisa Agropecuária Brasileira, 50, 1105-1113.). The influence of climate is another fundamental factor that has a strong relationship with wine quality. The effects of climate change on the adaptability and yield of grapes have been studied (Salinger et al. 2015Salinger, M. J., Baldi, M., Grifoni, D., Jones, G., Bartolini, G., Cecchi, S., Messeri, G., Marta, A. D., Orlandini, S., Dalu, G. A., and Maracchi, G. (2015). Seasonal differences in climate in the Chianti region of Tuscany and the relationship to vintage wine quality. International Journal of Biometeorology, 59, 1799-1811. https://doi.org/10.1007/s00484-015-0988-8
https://doi.org/10.1007/s00484-015-0988-...
; Bonfante et al. 2017Bonfante, A., Alfieri, S. M., Albrizio, R., Basile, A., De Mascellis, R., Gambuti, A., Giorio, P., Langella, G., Manna, P., Monaco, E,; Moio, L., and Terribile, F. (2017). Evaluation of the effects of future climate change on grape quality through a physically based model application: a case study for the Aglianico grapevine in Campania region, Italy. Agricultural Systems, 152, 100-109. https://doi.org/10.1016/j.agsy.2016.12.009
https://doi.org/10.1016/j.agsy.2016.12.0...
).

The aim of this study was to evaluate the performance of the ‘SR 501-17’ white hybrid grape grafted onto four rootstocks and to characterize this genotype in two climatic regions and years of cultivation.

MATERIAL AND METHODS

Experiments were carried out with the ‘SR 501-17’ white hybrid grape, developed by Wilson Corrêa Ribas from an unknown parent in the IAC grapevine program in São Roque (Fig. 1). The experimental site in the Cfa climatic region (23°17 S, 46°09 W; 715 m a.s.l.) has a humid temperate climate with dry winters and hot summers. Rainfall during cultivation in this region was 810 mm in 2014 and 1750 mm in 2015. The temperature ranged from 7 to 30 °C, with an average temperature of 22 °C (Fig. 2). The experimental site in the Aw climatic region (20°15 S, 50°30 W; 483 m a.s.l.) has a tropical climate with dry winters. Rainfall during cultivation in this region was 740 mm in 2014 and 630 mm in 2015. The average temperature during grape growth was26 °C, varying between 13 and 35 °C (Fig. 2). Neither site was irrigated.

Figure 1
Locations of the two climatic regions in Brazil.
Figure 2
Maximum and minimum temperatures per month in the Cfa (a) and Aw (b) climatic regions and rainfall per month in the Cfa (c) and Aw (d) climatic regions.

The experimental design was randomized blocks with four replicates. Treatments consisted of combinations of the ‘SR 501-17’ hybrid grafted onto the four rootstocks, ‘IAC 313 Tropical’, ‘IAC 572 Jales’, ‘IAC 766 Campinas’ and ‘IAC 571-6 Jundiaí, in two production cycles,2014 and 2015, in the two climatic regions, Cfa and Aw. The support system for the grapevines during training was a traditional vertical-trellis system. The row × plant spacing was 2 × 1 m in the Cfa region and 2 × 1.5 m in the Aw region. Each plot consisted of six and four vines per rootstock in the Cfa and Aw regions, respectively. Rootstocks were planted in September 2008, and the ‘SR 501-17’ hybrid was grafted onto them in June 2009. The vines were short-pruned in July 2014 and 2015, leaving one or two buds per spur.

Production was measured at harvest, sampling 10 representative clusters per experimental plot. The number of days to maturation (NDM) and cycle duration was recorded at harvest, which was determined by the stabilization of the content of soluble solids and pH (< 3.5) of the cultivar. We recorded the fresh mass of a cluster (FMC), the fresh mass of berries (FMB), berry length (BL) for 10 berries, berry width (BW) for 10 berries and the number of berries per cluster (NB). The chemical composition of the juice was characterized by the soluble-solid content (SSC) (°Brix) and titratable acidity (TA) of the juice, and a maturity index (MI) was calculated based on the SSC/TA ratio (Instituto Adolfo Lutz 1985Instituto Adolfo Lutz (1985). Normas analíticas do Instituto Adolfo Lutz: métodos químicos e físicos para análise de alimentos. São Paulo: Instituto Adolfo Lutz.).

Statistical analysis was carried out using Statistical Analysis Software (SAS Institute 2002SAS Institute (2002). Statiscal Analyses Software for Windows, version 9.1.). Data were submitted to an analysis of variance with the comparison of means using Tukey’s test (p < 0.05) to evaluate the rootstock and climatic interaction. A multivariate analysis of the correlations between the variables (p < 0.01) and a principal component analysis (PCA) were used to characterize the performance of the hybrid in the climatic regions and production years. Efforts were made to follow the criterion of the sum of variances of the first principal component exceeding 80% of the total variance of the originaldata.

RESULTS

The climatic regions interacted with the rootstocks for variable SSCs (Table 1). SSC did not differ among the rootstocks in the Cfa region but was higher for ‘IAC 313 Tropical’ and ‘IAC 571-6 Jundiaí’ than ‘IAC 572 Jales’ in the Aw region. ‘IAC 766 Campinas’ and ‘IAC 572 Jales’ influenced the variety in the Cfa region, producing more soluble solids. The cycle was 20 days longer in the Cfa than the Aw region (Table 2) because the Cfa region received more rain and less sunlight than the Aw region (Fig. 2). The more days to harvest in the Cfa than the Aw region led to higher SSC, FMB, BL and NB, demonstrating a better adaptation of the‘SR 501-17’ cultivar. ‘SR 501-17’ produced more fruits in the humid temperate climate than in the tropical climate.

Table 1
Soluble-solid content (SSC) assessed for the ‘SR 501-17’ white hybrid grape grafted onto the four rootstocks in the two regions for two cycles.
Table 2
Cycle, mean production (Prod), soluble-solid content (SSC), titratable acidity (TA), maturity index (MI), fresh mass of cluster (FMC), fresh mass of berries (FMB), berry length (BL), berry width (BW) and number of berries per cluster (NB) for the ‘SR 501-17’ white hybrid grape grafted onto the four rootstocks in the two climatic regions.

The rootstocks did not influence the parameters of the white hybrid grape ‘SR 501-17’ (Table 2). The ‘IAC 766 Campinas’, ‘IAC 572 Jales’, ‘IAC 313 Tropical’ and ‘IAC 571-6 Jundiai’ rootstocks, though, are most commonly used in temperate and tropical regions such as Cfa, Cfb and Aw. The grapevine-breeding program of the Agronomic Institute of Campinas was responsible for creating the white hybrid grape and the four rootstocks, so these rootstocks have been adapted to many varieties in these regions.

Cycle and SSC were positively correlated (Table 3 and Fig. 2). A shorter cycle provided higher MI, FMC andFMB, but MI, the interaction between two chemical variables (SSC and TA), was higher when TA was lower and BW was higher (Table 3). The physical variable FMC was correlated with FMB, BL and NB because the cluster size was proportional to the weight, size and number of the berries.

Table 3
Correlations between cycle, soluble-solid content (SSC), titratable acidity (TA), maturity index (MI), fresh mass of cluster (FMC), fresh mass of berries (FMB), berry length (BL), berry width (BW) and number of berries per cluster (NB) for the ‘SR 501-17’ white hybrid grape grafted onto the four rootstocks in the two climatic regions.

The first two components of the PCA accounted for 83.43% of the variation, demonstrating the influence of climate and year on the hybrid/rootstock combination(Fig. 3). The first component was associated with the climatic region, characterized by values of variables production, cycles, FMC, FMB, BL and NB. The second component was associated with year by means of TA, MI, SSC and BW.

Figure 3
Principal component regression (PCR) of cycle, soluble-solid content (SSC), titratable acidity (TA), maturity index (MI), fresh mass of cluster (FMC), fresh mass of berries (FMB), berry length (BL), berry width (BW) and number of berries per cluster (NB) of the ‘SR 501-17’ white hybrid grape grafted onto the four rootstocks, ‘IAC 766 Campinas’ (766), ‘IAC 572 Jales’ (572), ‘IAC 571-6 Jundiaí’(571-6) and ‘IAC 313 Tropical’ (313), in the two climatic regions, Aw and Cfa, and years, 2014 and 2015.

BL, CFM, BFM and NB were lowest and the production cycle was shorter for ‘SR 501-17’ cultivated in the Aw climate in 2014, whereas all combinations had the highest values for these variables in the Cfa climate in 2015 (Fig. 3). The larger berry size in Cfa in 2015 may be a consequence of the longer cycle and the longer exposure of the fruit to a higher rainfall index in this climatic region (Fig. 2).

The number of berries per cluster was largest and FMC was highest in the Cfa climate in 2015 due to the larger and heavier berries (Table 2). All canopy/rootstock combinations in the hotter temperature of the Aw region in 2015 (Fig. 2) had the highest TA and the lowest MI and SSC, with a shorter production cycle (Fig. 3). All combinations in the milder temperature of the Cfa region in 2014 (Fig. 2), however, had inversely proportional values, i.e. TA was lowest and MI and SSC were highest with the longer production cycle. The higher SSC in the grapes harvested in 2014 was due to the slower maturation, probably caused by the characteristic lower nighttime temperatures and precipitation common in Cfa region (Fig. 2).

DISCUSSION

The interaction between rootstock and canopy is fundamental for the most important V. vinifera cultivars, such as Cabernet Sauvignon and Merlot, but it is less pronounced for interspecific hybrids because these materials are rustic (Barros et al. 2015Barros, L. B., Biasi, L. A., Carisse, O., and De Mio, L. L. M. (2015). Incidence of grape anthracnose on different VITIS labrusca and hibrid cultivars and rootstocks combination under humid subtropical climate. Australasian Plant Pathology, 44, 397-403. https://doi.org/10.1007/s13313-015-0353-8
https://doi.org/10.1007/s13313-015-0353-...
; Phillips et al. 2015Phillips, N., Reynolds, A., and Di Profio, F. (2015). Nonstructural Carbohydrate Concentrations in Dormant Grapevine Scionwood and Rootstock Impact Propagation Success and Vine Growth. HortTechnology, 25, 536-550.). Most cultivated hybrids are usually from crosses with North American species of Vitis, which provide better homogeneity when these varieties are grafted onto many rootstocks from the same region (Corso et al. 2015Corso, M., Vannozzi, A., Maza, E., Vitulo, N., Meggio, F., Pitacco, A., Telatin, A., D’angelo, M., Feltrin, E., Prinsi, B., Valle, G., Ramina, A., Bouzayen, M., and Bonghi Lucchin, M. (2015). Comprehensive transcript profiling of two grapevine rootstock genotypes contrasting in drought susceptibility links the phenylpropanoid pathway to enhanced tolerance. Journal of experimental botany, 66, 5739-5752. https://doi.org/10.1093/jxb/erv274
https://doi.org/10.1093/jxb/erv274...
; Nimbolkar et al. 2016Nimbolkar, P. K., Awachare, C., Reddy, Y. T. N., Chander, S., and Hussain, F. (2016). Role of Rootstocks in Fruit Production–A Review. Journal of Agricultural Engineering and Food Technology, 3, 183-188.; Bascuñán-Godoy et al. 2017Bascuñán-Godoy, L., Franck, N., Zamorano, D., Sanhueza, C., Carvajal, D. E., and Ibacache, A. (2017). Rootstock effect on irrigated grapevine yield under arid climate conditions are explained by changes in traits related to light absorption of the scion. Scientia Horticulturae, 218, 284-292. https://doi.org/10.1016/j.scienta.2017.02.034
https://doi.org/10.1016/j.scienta.2017.0...
).

Climate influences the production of grapes in many parts of the world (Campos et al. 2016Campos, C. G. C., Malinovski, L. I., Marengo, J. A., Oliveira, L. V., Vieira, H. J., and Silva, A. L. (2016). The impact of climate projections when analyzing the risk of frost to viticulture in the southern region of Brazil. Acta Horticulturae, 1188, 165-172. https://doi.org/10.17660/ActaHortic.2017.1188.22
https://doi.org/10.17660/ActaHortic.2017...
; Van Leeuwen and Darriet 2016Van Leeuwen, C., and Darriet, P. (2016). The impact of climate change on viticulture and wine quality. Journal of Wine Economics, 11, 150-167. https://doi.org/10.1017/jwe.2015.21
https://doi.org/10.1017/jwe.2015.21...
; Pons et al. 2017Pons, A., Allamy, L., Schüttler, A., Rauhut, D., Thibon, C., and Darriet, P. (2017). What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO One, 51, 141-146. https://doi.org/10.20870/oeno-one.2016.0.0.1868
https://doi.org/10.20870/oeno-one.2016.0...
). SSC and TA are typically the main chemical variables studied in the production of grapes for wine. Grape maturation increases SSC and decreases acidity in berries (Rombaldi et al. 2004Rombaldi, C. V., Bergamasqui, M., Lucchetta, L., Zanuzo, M., and Silva, J. A. (2004). Produtividade e qualidade de uva, cv. Isabel, em dois sistemas de produção. Revista Brasileira de Fruticultura, 26, 89-91. https://doi.org/10.1590/S0100-29452004000100024
https://doi.org/10.1590/S0100-2945200400...
). Higher SSC is mainly due to the accumulation of sugars, and lower acidity is mainly due to the reduction of the main organic acids involved in fruit maturation (Rizzon et al. 2000Rizzon, L. A., Miele, A., and Meneguzzo, J. (2000). Avaliação da uva cv. Isabel para a elaboração de vinho tinto. Food Science and Technology, 20, 115-121. https://doi.org/10.1590/S0101-20612000000100022
https://doi.org/10.1590/S0101-2061200000...
; Keller et al. 2015Keller, M., Zhang, Y. U. N., Shrestha, P. M., Biondi, M., and Bondada, B. R. (2015). Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem. Plant, cell & environment, 38, p. 1048-1059. https://doi.org/10.1111/pce.12465
https://doi.org/10.1111/pce.12465...
).

Increased berry weight and production are associated with the number of seeds per berry, the accumulation of sugar in the fruit, cluster compaction, number of berries and berry water content (Rizzon and Mieli 2002Rizzon, L. A., and Miele, A. (2002). Avaliação da cv. Cabernet Sauvignon para elaboração de vinho tinto. Food Science and Technology, 22, 192-198. https://doi.org/10.1590/S0101-20612002000200015
https://doi.org/10.1590/S0101-2061200200...
). Physical and chemical interactions are conditioned by factors such as dilution of organic acids and decreased acidity due to the increased berry size, from early maturation to ripening (Santos et al. 2011Santos, A. O., Hernandes, J. L., Pedro Junior, M. J., and Pereira, S. E. (2011). Composição da produção e qualidade da uva em videira cultivada sob dupla poda e regime microclimático estacional contrastante Revista Brasileira de Fruticultura, 33, 1135-1154. https://doi.org/10.1590/S0100-29452011000400012
https://doi.org/10.1590/S0100-2945201100...
). Berry mass increases proportionally with berry length and width, which are correlated accounting for the correlation between FMB, BL and BW (Regina et al. 2010Regina, M. D. A., Carmo, E. L. D., Fonseca, A. R., Purgatto, E., Shiga, T. M., Lajolo, F. M., and Mota, R. V. D. (2010). Influência da altitude na qualidade das uvas ‘Chardonnay’ e ‘Pinot Noir’ em Minas Gerais. Revista Brasileira de Fruticultura, 32, 143-150. https://doi.org/10.1590/S0100-29452010005000023
https://doi.org/10.1590/S0100-2945201000...
; Chialva et al. 2016Chialva, C., Eichler, E., Grissi, C., Muñoz, C., Gomez-Talquenca, S., Martínez-Zapater, J. M., and Lijavetzky, D. (2016). Expression of grapevine AINTEGUMENTA-like genes is associated with variation in ovary and berry size. Plant molecular biology, 91, 67-80. https://doi.org/10.1007/s11103-016-0443-1
https://doi.org/10.1007/s11103-016-0443-...
).

Bunch weight directly depends on the number and size of berries (Rizzon and Miele 2004Rizzon, L. A., and Miele, A. (2004). Avaliação da cv. Tannat para elaboração de vinho tinto. Food Science and Technology, 24, 223-229. https://doi.org/10.1590/S0101-20612004000200011
https://doi.org/10.1590/S0101-2061200400...
). Berry size is also an important characteristic for wine quality due to the relationship between the berry skin, a major source of aromatic compounds and tannins, and the juice, mainly composed of organic acids and sugars (Houel et al. 2010Houel, C., Bounon, R., Chaïb, J., Guichard, C., Péros, J. P., Bacilieri, R., Dereeper, A., Canaguier, A., Lacombe, T., N’diaye, A., Le Paslier, M.C., Vernerey, M.S., Coriton, O., Brunel, D., This, P., Torregrosa, L., and Adam-Blondon, A.F. (2010). Patterns of sequence polymorphism in the fleshless berry locus in cultivated and wild Vitis vinifera accessions. BMC Plant Biology, 10, 284. https://doi.org/10.1186/1471-2229-10-284
https://doi.org/10.1186/1471-2229-10-284...
). Allowing clusters to remain on the plant longer due to the lower risk of losses by fungal diseases contributes to better berry composition (Mota et al. 2011Mota, R. V., Silva, C. P. C., Favero, A. C., Purgatto, E., Shiga, T. M., and Regina, M. A. (2011) Composição físico-química de uvas para vinho fino em ciclos de verão e inverno. Revista Brasileira de Fruticultura, 32, 1127-1137. https://doi.org/10.1590/S0100-29452011005000001
https://doi.org/10.1590/S0100-2945201100...
).

Berry size is influenced by the availability of soil water (Mota et al. 2011Mota, R. V., Silva, C. P. C., Favero, A. C., Purgatto, E., Shiga, T. M., and Regina, M. A. (2011) Composição físico-química de uvas para vinho fino em ciclos de verão e inverno. Revista Brasileira de Fruticultura, 32, 1127-1137. https://doi.org/10.1590/S0100-29452011005000001
https://doi.org/10.1590/S0100-2945201100...
). Excessive rainfall during ripening forms a fine moist layer on the surface on the berries, especially in compact clusters, which may be responsible for their larger diameters caused by the absorption of water through the skin (Blouin and Guimberteau 2004Blouin, J., and Guimberteau, G. (2004). Maduración y madurez de la uva. Madrid: Mundi-Prensa.; Malinovski et al. 2016Malinovski, L. I., Vieira, H. J., Campos, C. G. C., Stefanini, M., and Silva, A. L. (2016). Climate and Phenology: Behavior of Autochthonous Italian Grapevine Varieties in the Uplands of Southern Brazil. Journal of Agricultural Science, 8, 26-33. https://doi.org/10.5539/jas.v8n5p26
https://doi.org/10.5539/jas.v8n5p26...
).

Prolonged periods with temperatures > 30 °C in the Aw climate, though, may have promoted vegetative growth. Consequently, the period of fruit maturation was shorted, affecting the accumulation of compounds in the berries and decreasing the quality of the raw material (Mullins et al. 1992Mullins, F., Bouquet, A., and Williams, L. E. (1992). Biology of the grapevine. Cambridge: Cambridge University Press.; Borghezan et al. 2011Borghezan, M., Gavioli, O., Pit, F. A., and Silva, A. L. (2011). Comportamento vegetativo e produtivo da videira e composição da uva em São Joaquim, Santa Catarina. Pesquisa Agropecuária Brasileira, 46, 398-405.; Nunes et al. 2016Nunes, N. A. S., Leite, A. V., and Castro, C. C. (2016). Phenology, reproductive biology and growing degree days of the grapevine ‘Isabel’ (Vitis labrusca, Vitaceae) cultivated in northeastern Brazil. Brazilian Journal of Biology, 76, 975-982. https://doi.org/10.1590/1519-6984.05315
https://doi.org/10.1590/1519-6984.05315...
). The chemical characteristics of the juice were thus best and the cycle was longest for the ‘SR 501-17’ hybrid in the Cfa climatic region for all rootstocks.

CONCLUSION

The rootstocks did not influence the production or physicochemical parameters of the ‘SR 501-17’ genotype. The chemical characteristics of the juice was better, production was higher and the cycle was longer for the ‘SR 501-17’ white hybrid grape grown in the Cfa climatic region for all rootstocks.

ACKNOWLEDGEMENTS

We are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) for scholarship grants and to the Fundação de Amparo à Pesquisa do Estado de São Paulo for financial support (FAPESP grant no. 2012/00292-9).

REFERENCES

  • Amorim, L., Spósito, M. B., and Kuniyuki, H. (2016). Doenças da videira. In L. Amorim, J. A. M. Rezende, A. Bergamin Filho and L. E. A. Camargo (Eds.), Manual de Fitopatologia: Doenças das plantas cultivadas (p. 745-758). São Paulo: Agronômica Ceres.
  • Barros, L. B., Biasi, L. A., Carisse, O., and De Mio, L. L. M. (2015). Incidence of grape anthracnose on different VITIS labrusca and hibrid cultivars and rootstocks combination under humid subtropical climate. Australasian Plant Pathology, 44, 397-403. https://doi.org/10.1007/s13313-015-0353-8
    » https://doi.org/10.1007/s13313-015-0353-8
  • Bascuñán-Godoy, L., Franck, N., Zamorano, D., Sanhueza, C., Carvajal, D. E., and Ibacache, A. (2017). Rootstock effect on irrigated grapevine yield under arid climate conditions are explained by changes in traits related to light absorption of the scion. Scientia Horticulturae, 218, 284-292. https://doi.org/10.1016/j.scienta.2017.02.034
    » https://doi.org/10.1016/j.scienta.2017.02.034
  • Berdeja, M., Nicolas, P., Kappel, C., Dai, Z. W., Hilbert, G., Peccoux, A., Lafontaine, M., Ollat, N., Gomès, E., and Delrot, S. (2015). Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture research, 2, 1-13. https://doi.org/10.1038/hortres.2015.12
    » https://doi.org/10.1038/hortres.2015.12
  • Blouin, J., and Guimberteau, G. (2004). Maduración y madurez de la uva. Madrid: Mundi-Prensa.
  • Bonfante, A., Alfieri, S. M., Albrizio, R., Basile, A., De Mascellis, R., Gambuti, A., Giorio, P., Langella, G., Manna, P., Monaco, E,; Moio, L., and Terribile, F. (2017). Evaluation of the effects of future climate change on grape quality through a physically based model application: a case study for the Aglianico grapevine in Campania region, Italy. Agricultural Systems, 152, 100-109. https://doi.org/10.1016/j.agsy.2016.12.009
    » https://doi.org/10.1016/j.agsy.2016.12.009
  • Borghezan, M., Gavioli, O., Pit, F. A., and Silva, A. L. (2011). Comportamento vegetativo e produtivo da videira e composição da uva em São Joaquim, Santa Catarina. Pesquisa Agropecuária Brasileira, 46, 398-405.
  • Campos, C. G. C., Malinovski, L. I., Marengo, J. A., Oliveira, L. V., Vieira, H. J., and Silva, A. L. (2016). The impact of climate projections when analyzing the risk of frost to viticulture in the southern region of Brazil. Acta Horticulturae, 1188, 165-172. https://doi.org/10.17660/ActaHortic.2017.1188.22
    » https://doi.org/10.17660/ActaHortic.2017.1188.22
  • Chialva, C., Eichler, E., Grissi, C., Muñoz, C., Gomez-Talquenca, S., Martínez-Zapater, J. M., and Lijavetzky, D. (2016). Expression of grapevine AINTEGUMENTA-like genes is associated with variation in ovary and berry size. Plant molecular biology, 91, 67-80. https://doi.org/10.1007/s11103-016-0443-1
    » https://doi.org/10.1007/s11103-016-0443-1
  • Corso, M., Vannozzi, A., Maza, E., Vitulo, N., Meggio, F., Pitacco, A., Telatin, A., D’angelo, M., Feltrin, E., Prinsi, B., Valle, G., Ramina, A., Bouzayen, M., and Bonghi Lucchin, M. (2015). Comprehensive transcript profiling of two grapevine rootstock genotypes contrasting in drought susceptibility links the phenylpropanoid pathway to enhanced tolerance. Journal of experimental botany, 66, 5739-5752. https://doi.org/10.1093/jxb/erv274
    » https://doi.org/10.1093/jxb/erv274
  • Dolkar, T., Sharma, M. K., Kumar, A., Mir, M. S., and Hussanin, S. (2017). Genetic variability and correlation studies in grapes (Vitis vinifera L.) in Leh District of Jammu and Kashmir. Advances in Horticultural Science, 31, 241-247. https://doi.org/10.13128/ahs-22376
    » https://doi.org/10.13128/ahs-22376
  • Fraga, H., Santos, J. A., Malheiro, A. C., Oliveira, A. A., Moutinho‐Pereira, J., and Jones, G. V. (2016). Climatic suitability of Portuguese grapevine varieties and climate change adaptation. International Journal of Climatology, 36, 1-12. https://doi.org/10.1002/joc.4325
    » https://doi.org/10.1002/joc.4325
  • Guan, X., Essakhi, S., Laloue, H., Nick, P., Bertsch, C., and Chong, J. (2016). Mining new resources for grape resistance against Botryosphaeriaceae: a focus on Vitis vinifera subsp. sylvestris. Plant Pathology, 65, p. 273-284, 2016. https://doi.org/10.1111/ppa.12405
    » https://doi.org/10.1111/ppa.12405
  • Hartmann, H. T., and Kester, D. E. (1990). Propagación de plantas: principios y practicas. México: Continental.
  • Houel, C., Bounon, R., Chaïb, J., Guichard, C., Péros, J. P., Bacilieri, R., Dereeper, A., Canaguier, A., Lacombe, T., N’diaye, A., Le Paslier, M.C., Vernerey, M.S., Coriton, O., Brunel, D., This, P., Torregrosa, L., and Adam-Blondon, A.F. (2010). Patterns of sequence polymorphism in the fleshless berry locus in cultivated and wild Vitis vinifera accessions. BMC Plant Biology, 10, 284. https://doi.org/10.1186/1471-2229-10-284
    » https://doi.org/10.1186/1471-2229-10-284
  • Instituto Adolfo Lutz (1985). Normas analíticas do Instituto Adolfo Lutz: métodos químicos e físicos para análise de alimentos. São Paulo: Instituto Adolfo Lutz.
  • Kapusta, I., Cebulak, T., and Oszmia?ski, J. (2017). The anthocyanins profile of red grape cultivars growing in south-east Poland (Subcarpathia region). Journal of Food Measurement and Characterization, 11, 1863-1873. https://doi.org/10.1007/s11694-017-9568-4
    » https://doi.org/10.1007/s11694-017-9568-4
  • Keller, M., Zhang, Y. U. N., Shrestha, P. M., Biondi, M., and Bondada, B. R. (2015). Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem. Plant, cell & environment, 38, p. 1048-1059. https://doi.org/10.1111/pce.12465
    » https://doi.org/10.1111/pce.12465
  • Laucou, V., Launay, A., Bacilieri, R., Lacombe, T., Adam-Blondon, A. F., Bérard, A., Chauveau, A., Andrés, M. T., Hausmann, L., Ibáñez, J., Le Paslier, M. C., Maghradze, D., Martinez-Zapeter, J. M., Maul, E., Ponnaiah, M., Töpfer, R., Péros, J., and Boursiquot, J. (2018). Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PloS one, 13, e0192540. https://doi.org/10.1371/journal.pone.0192540
    » https://doi.org/10.1371/journal.pone.0192540
  • Malinovski, L. I., Vieira, H. J., Campos, C. G. C., Stefanini, M., and Silva, A. L. (2016). Climate and Phenology: Behavior of Autochthonous Italian Grapevine Varieties in the Uplands of Southern Brazil. Journal of Agricultural Science, 8, 26-33. https://doi.org/10.5539/jas.v8n5p26
    » https://doi.org/10.5539/jas.v8n5p26
  • Miele, A., and Rizzon, L. A. (2017). Rootstock-scion interaction: 2. Effect on the composition of cabernet sauvignon grape must. Revista Brasileira de Fruticultura, 39, e434. https://doi.org/10.1590/0100-29452017434
    » https://doi.org/10.1590/0100-29452017434
  • Mota, R. V., Silva, C. P. C., Favero, A. C., Purgatto, E., Shiga, T. M., and Regina, M. A. (2011) Composição físico-química de uvas para vinho fino em ciclos de verão e inverno. Revista Brasileira de Fruticultura, 32, 1127-1137. https://doi.org/10.1590/S0100-29452011005000001
    » https://doi.org/10.1590/S0100-29452011005000001
  • Mota, R. V., Souza, C. R., Favero, A. C., Silva, C. P. C, Carmo, E. L. Fonseca, A. R., and Regina, M. A. (2009). Produtividade e composição físico-química de bagas de cultivares de uva em distintos porta-enxertos. Pesquisa Agropecuária Brasileira, 44, 576-582.
  • Mullins, F., Bouquet, A., and Williams, L. E. (1992). Biology of the grapevine. Cambridge: Cambridge University Press.
  • Nimbolkar, P. K., Awachare, C., Reddy, Y. T. N., Chander, S., and Hussain, F. (2016). Role of Rootstocks in Fruit Production–A Review. Journal of Agricultural Engineering and Food Technology, 3, 183-188.
  • Nunes, N. A. S., Leite, A. V., and Castro, C. C. (2016). Phenology, reproductive biology and growing degree days of the grapevine ‘Isabel’ (Vitis labrusca, Vitaceae) cultivated in northeastern Brazil. Brazilian Journal of Biology, 76, 975-982. https://doi.org/10.1590/1519-6984.05315
    » https://doi.org/10.1590/1519-6984.05315
  • [OIV] International Organisation of Vine and Wine (2016). Global Economic Vitiviniculture Data. OIV; [acessed 2018 April 16]. http://www.oiv.int/public/medias/5009/en-communiqu-depresse-octobre-2016
    » http://www.oiv.int/public/medias/5009/en-communiqu-depresse-octobre-2016
  • Ollat, N., Peccoux, A., Papura, D., Esmenjaud, D., Marguerit, E., Tandonnet, J. P., Bordenave, L.; Cookson, S. J., Barrieu, F., Rossdeustsch, L., Lecourt, J., Lauvergeat, V.; Vivin, P., Bert, P. F., and Delrot, S. (2015). Rootstocks as a component of adaptation to environment. In H. Gerós, M. M. Chaves, H. M. Gil and S. Derlot (Eds.), Grapevine in a changing environment: a molecular and ecophysiological perspective (p. 68-108). Hoboken: John Willey and Sons. https://doi.org/10.1002/9781118735985.ch4
    » https://doi.org/10.1002/9781118735985.ch4
  • Phillips, N., Reynolds, A., and Di Profio, F. (2015). Nonstructural Carbohydrate Concentrations in Dormant Grapevine Scionwood and Rootstock Impact Propagation Success and Vine Growth. HortTechnology, 25, 536-550.
  • Pons, A., Allamy, L., Schüttler, A., Rauhut, D., Thibon, C., and Darriet, P. (2017). What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO One, 51, 141-146. https://doi.org/10.20870/oeno-one.2016.0.0.1868
    » https://doi.org/10.20870/oeno-one.2016.0.0.1868
  • Regina, M. D. A., Carmo, E. L. D., Fonseca, A. R., Purgatto, E., Shiga, T. M., Lajolo, F. M., and Mota, R. V. D. (2010). Influência da altitude na qualidade das uvas ‘Chardonnay’ e ‘Pinot Noir’ em Minas Gerais. Revista Brasileira de Fruticultura, 32, 143-150. https://doi.org/10.1590/S0100-29452010005000023
    » https://doi.org/10.1590/S0100-29452010005000023
  • Rizzon, L. A., and Miele, A. (2002). Avaliação da cv. Cabernet Sauvignon para elaboração de vinho tinto. Food Science and Technology, 22, 192-198. https://doi.org/10.1590/S0101-20612002000200015
    » https://doi.org/10.1590/S0101-20612002000200015
  • Rizzon, L. A., and Miele, A. (2004). Avaliação da cv. Tannat para elaboração de vinho tinto. Food Science and Technology, 24, 223-229. https://doi.org/10.1590/S0101-20612004000200011
    » https://doi.org/10.1590/S0101-20612004000200011
  • Rizzon, L. A., Miele, A., and Meneguzzo, J. (2000). Avaliação da uva cv. Isabel para a elaboração de vinho tinto. Food Science and Technology, 20, 115-121. https://doi.org/10.1590/S0101-20612000000100022
    » https://doi.org/10.1590/S0101-20612000000100022
  • Rombaldi, C. V., Bergamasqui, M., Lucchetta, L., Zanuzo, M., and Silva, J. A. (2004). Produtividade e qualidade de uva, cv. Isabel, em dois sistemas de produção. Revista Brasileira de Fruticultura, 26, 89-91. https://doi.org/10.1590/S0100-29452004000100024
    » https://doi.org/10.1590/S0100-29452004000100024
  • Salinger, M. J., Baldi, M., Grifoni, D., Jones, G., Bartolini, G., Cecchi, S., Messeri, G., Marta, A. D., Orlandini, S., Dalu, G. A., and Maracchi, G. (2015). Seasonal differences in climate in the Chianti region of Tuscany and the relationship to vintage wine quality. International Journal of Biometeorology, 59, 1799-1811. https://doi.org/10.1007/s00484-015-0988-8
    » https://doi.org/10.1007/s00484-015-0988-8
  • Santos, R. F., Ciampi‐Guillardi, M., Amorim, L., Massola Júnior, N. S., and Spósito, M. B. (2018a) Aetiology of anthracnose on grapevine shoots in Brazil. Plant Pathology, 67, 692-706. https://doi.org/10.1111/ppa.12756
    » https://doi.org/10.1111/ppa.12756
  • Santos, A. O., Hernandes, J. L., Pedro Junior, M. J., and Pereira, S. E. (2011). Composição da produção e qualidade da uva em videira cultivada sob dupla poda e regime microclimático estacional contrastante Revista Brasileira de Fruticultura, 33, 1135-1154. https://doi.org/10.1590/S0100-29452011000400012
    » https://doi.org/10.1590/S0100-29452011000400012
  • Santos, R. F., Spósito M. B., Ayres, M.R., and Sosnowski, M. R. (2018b). Phylogeny, morphology and pathogenicity of Elsinoë ampelina, the causal agent of grapevine anthracnose in Brazil and Australia. Journal of Phytopathology, 166, 187-198. https://doi.org/10.1111/jph.12675
    » https://doi.org/10.1111/jph.12675
  • SAS Institute (2002). Statiscal Analyses Software for Windows, version 9.1.
  • Silva, M. J. R., Tecchio, M. A., Moura, M. F., Brunelli, L. T., Imaizumi, V. M., and Venturini Filho W. G. (2015). Composição físico química do mosto e do vinho branco de cultivares de videiras em resposta a porta enxertos. Pesquisa Agropecuária Brasileira, 50, 1105-1113.
  • Southey, J. M., and Jooste, J. H. (1991). The effect of grapevine rootstock on the performance of Vitis vinifera L. (cv. Colombard) on a relatively saline soil. South African Journal of Enology and Viticulture, 12, 32-41. https://doi.org/10.21548/12-1-2222
    » https://doi.org/10.21548/12-1-2222
  • Van Leeuwen, C., and Darriet, P. (2016). The impact of climate change on viticulture and wine quality. Journal of Wine Economics, 11, 150-167. https://doi.org/10.1017/jwe.2015.21
    » https://doi.org/10.1017/jwe.2015.21
  • Van Leeuwen, C., and Destrac-Irvine, A. (2016). Modified grape composition under climate change conditions requires adaptations in the vineyard. Climwine, sustainable grape and wine production in the context of climate change. OENO One, 51, 147-154. https://doi.org/10.20870/oeno-one.2016.0.0.1647
    » https://doi.org/10.20870/oeno-one.2016.0.0.1647

Publication Dates

  • Publication in this collection
    29 July 2019
  • Date of issue
    Jul-Sept 2019

History

  • Received
    11 Jan 2019
  • Accepted
    22 Feb 2019
Instituto Agronômico de Campinas Avenida Barão de Itapura, 1481, 13020-902, Tel.: +55 19 2137-0653, Fax: +55 19 2137-0666 - Campinas - SP - Brazil
E-mail: bragantia@iac.sp.gov.br