Acessibilidade / Reportar erro

Rootstock and potassium fertilization, in terms of phenology, thermal demand and chemical evolution, of berries on Niagara Rosada grapevine under subtropical conditions

ABSTRACT

This study aimed to assess the effect of rootstocks (IAC 572 and IAC 766) and potassium fertilization at different concentrations (0, 75, 150 and 300 kg·ha-1 K2O) on the phenology and thermal demand of the Niagara Rosada grapevine, and to evaluate the development of chemical traits during maturation stage. The length of the main phenological stages was recorded within two production seasons. Total thermal demand was calculated using the degree-day concept. The berries’ titratable acidity and soluble solids contents were determined during maturation. Results indicated that IAC 572 and IAC 766 rootstocks along with potassium fertilization had no influence on the phenological cycle or thermal demand of the Niagara Rosada grapevine. The production cycle lasted 144 to 148 days with thermal demands ranging from 1,465.2 to 1,615.1 degree-days. For better grape quality, i.e., with a balance between soluble solids and acidity levels, it is estimated that the grape harvest is carried out around 21 to 24 days after the veraison.

Key words
table grapes; grafting; chemical characteristics; degrees-day; potassium fertilization

INTRODUCTION

Niagara Rosada is one of the most grown table grapes in Brazil. This cultivar is widely accepted among producers and consumers due to its agronomic traits, that is, great yield, foxy-flavoured grapes, wide climate adaptation and low production cost (Tecchio et al. 2018Tecchio, M. A., Hernandes, J. L., Pires, E. J. P., Terra, M. M. and Moura, M. F. (2018). Cultivo da videira para mesa, vinho e suco. In: R. Pio (ed.). Cultivo de fruteiras clima temperado em regiões subtropicais e tropicais (2 ed., p. 512-584). Lavras: UFLA.). The production cycle of this cultivar takes about 109 and 123 days during summer season, according to previous studies under tropical conditions (Ribeiro et al. 2009Ribeiro, D. F., Corsato, C. E., Lemos, J. P. and Scarpare Filho, J. A. (2009). Desenvolvimento e exigência térmica da videira ‘Niagara Rosada’, cultivada no norte de Minas Gerais. Revista Brasileira de Fruticultura, 31, 890-895. https://doi.org/10.1590/S0100-29452009000300036
https://doi.org/10.1590/S0100-2945200900...
; Tecchio et al. 2011Tecchio, M. A., Terra, M. M., Moura, M. F. and Paioli-Pires, E. J. (2011). Fenologia e acúmulo de graus dia da videira ‘Niagara Rosada’ cultivada ao noroeste do estado de São Paulo. Revista Brasileira de Fruticultura, 33, 248-254. https://doi.org/10.1590/S0100-29452011000500030
https://doi.org/10.1590/S0100-2945201100...
; Tofanelli et al. 2011Tofanelli, M. B. D., Botelho, R. V., Pires, E. J. P., Vilela, L. A. F. and Ribeiro, D. O. (2011). Phehology of “Niagara Rosada” grapevines grafted on different rootstocks grown on Cerrado (Brazilian savanna) of Goiás State, Brazil. African Journal of Biotechnology, 10, 3387-3392. https://doi.org/10.5897/AJB09.1950
https://doi.org/10.5897/AJB09.1950...
). On the other hand, the thermal demands ranges from 1,420 to 1,671 degree-days, which is 120 to 160 days under subtropical conditions (Hernandes et al. 2010Hernandes, J. L., Pedro Júnior, M. J., Santos, A. O. and Tecchio, M. A. (2010). Fenologia e produção de cultivares americanas e híbridas de uvas para vinho, em Jundiaí-SP. Revista Brasileira de Fruticultura, 32, 135-142. https://doi.org/10.1590/S0100-29452010005000040
https://doi.org/10.1590/S0100-2945201000...
; Anzanello et al. 2012Anzanello, R., Souza, P. V. D. and Coelho, P. F. (2012). Fenologia, exigência térmica e produtividade de videiras ‘Niagara Branca’, ‘Niagara Rosada’ e ‘Concord’ submetidas a duas safras por ciclo vegetativo. Revista Brasileira de Fruticultura, 34, 366-376. https://doi.org/10.1590/S0100-29452012000200008
https://doi.org/10.1590/S0100-2945201200...
; Tecchio et al. 2013Tecchio, M. A., Moura, M. F., Paioli-Pires, E. J. and Terra, M. M. (2013). Efeito do porta-enxerto e da época de poda na duração das fases fenológicas e no acúmulo de graus-dia pela videira ‘Niagara Rosada’. Revista Brasileira de Fruticultura, 35, 1073-1080. https://doi.org/10.1590/S0100-29452013000400019
https://doi.org/10.1590/S0100-2945201300...
; Bruna and Back 2015Bruna, E. D. and Back, A. J. (2015). Comportamento da cultivar Niágara Rosada enxertada sobre diferentes porta-enxertos no sul de Santa Catarina, Brasil. Revista Brasileira de Fruticultura, 37, 924-933. https://doi.org/10.1590/0100-2945-245/14
https://doi.org/10.1590/0100-2945-245/14...
). However, some variables such as rootstocks and climate patterns can influence the length of phenological cycles and thermal demand (Sato et al. 2008Sato, A. J., Silva, B. J., Santos, C. E., Bertolucci, R., Santos, R., Carielo, M., Guiraud, M. C., Fonseca, I. C. B. and Roberto, S. R. (2008). Fenologia e demanda térmica das videiras ‘Isabel’ e ‘Rubea’ sobre diferentes porta-enxertos na Região Norte do Paraná. Semina, 29, 283-292. https://doi.org/10.5433/1679-0359.2008v29n2p283
https://doi.org/10.5433/1679-0359.2008v2...
; Tecchio et al. 2019Tecchio, M. A., Silva, M. J. R., Paiva, A. P. M., Moura, M. F., Terra, M. M., Paioli-Pires, E. J. and Leonel, S. (2019). Phenological, physicochemical, and productive characteristics of ‘Vênus’ grapevine onto rootstocks. Pesquisa Agropecuária Brasileira, 54, e00335. https://doi.org/10.1590/S1678-3921.pab2019.v54.00335
https://doi.org/10.1590/S1678-3921.pab20...
).

Several studies have assessed the influence of rootstocks on the phenology and thermal demand of the cv. Niagara Rosada (Tecchio et al. 2011Tecchio, M. A., Terra, M. M., Moura, M. F. and Paioli-Pires, E. J. (2011). Fenologia e acúmulo de graus dia da videira ‘Niagara Rosada’ cultivada ao noroeste do estado de São Paulo. Revista Brasileira de Fruticultura, 33, 248-254. https://doi.org/10.1590/S0100-29452011000500030
https://doi.org/10.1590/S0100-2945201100...
; Anzanello et al. 2012Anzanello, R., Souza, P. V. D. and Coelho, P. F. (2012). Fenologia, exigência térmica e produtividade de videiras ‘Niagara Branca’, ‘Niagara Rosada’ e ‘Concord’ submetidas a duas safras por ciclo vegetativo. Revista Brasileira de Fruticultura, 34, 366-376. https://doi.org/10.1590/S0100-29452012000200008
https://doi.org/10.1590/S0100-2945201200...
; Tecchio et al. 2013Tecchio, M. A., Moura, M. F., Paioli-Pires, E. J. and Terra, M. M. (2013). Efeito do porta-enxerto e da época de poda na duração das fases fenológicas e no acúmulo de graus-dia pela videira ‘Niagara Rosada’. Revista Brasileira de Fruticultura, 35, 1073-1080. https://doi.org/10.1590/S0100-29452013000400019
https://doi.org/10.1590/S0100-2945201300...
; Bruna and Back 2015Bruna, E. D. and Back, A. J. (2015). Comportamento da cultivar Niágara Rosada enxertada sobre diferentes porta-enxertos no sul de Santa Catarina, Brasil. Revista Brasileira de Fruticultura, 37, 924-933. https://doi.org/10.1590/0100-2945-245/14
https://doi.org/10.1590/0100-2945-245/14...
). These studies indicated a highly unique outcome with regards to the interaction and affinity between rootstocks and scion, in addition to climate adaptations (Silva et al. 2018Silva, M. J. R., Paiva, A. P. M., Pimentel Junior, A., Sánchez, C. A. P. C., Callili, D., Moura, M. F., Leonel, S. and Tecchio, M. A. (2018). Yield performance of new juice grape varieties grafted onto different rootstocks under tropical conditions. Scientia Horticulturae, 241, 194-200. https://doi.org/10.1016/j.scienta.2018.06.085
https://doi.org/10.1016/j.scienta.2018.0...
; Tecchio et al. 2020Tecchio, M. A., Silva, M. J., Callili, D., Hernandes, J. L. and Moura, M. F. (2020). Yield of white and red grapes, in terms of quality, from hybrids and Vitis labrusca grafted on different rootstocks. Scientia Horticulturae, 259, 108846. https://doi.org/10.1016/j.scienta.2019.108846
https://doi.org/10.1016/j.scienta.2019.1...
). Moreover, specific analyses based on the growing area are required to select the appropriate rootstock.

Potassium fertilization is a critical component for grapevines. Potassium (K) is the cation with the highest concentration in grape berries (Rogiers et al. 2006Rogiers, S., Greer, D., Hatfield, J., Orchard, B. and Keller, M. (2006). Mineral sinks within ripening grape berries (Vitis vinifera L.). Vitis, 45, 115-123. https://doi.org/10.5073/vitis.2006.45.115-123
https://doi.org/10.5073/vitis.2006.45.11...
) and, therefore, can influence vine development and grape quality because it plays numerous roles in the physiological processes in plants, including protein and starch synthesis, osmotic control, anion neutralization, enzymatic activation, and assimilate translocation (Wang and Wu 2013Wang, Y. and Wu, W. H. (2013). Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 64, 451-476. https://doi.org/10.1146/annurev-arplant-050312-120153
https://doi.org/10.1146/annurev-arplant-...
; Ahmad and Maathuis 2014Ahmad, I. and Maathuis, F. J. M. (2014). Cellular and tissue distribution of potassium: physiological relevance, mechanisms and regulation. Journal of Plant Physiology, 171, 708-714. https://doi.org/10.1016/j.jplph.2013.10.016
https://doi.org/10.1016/j.jplph.2013.10....
; Shabala and Pottosin 2014Shabala, S. and Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 151, 257-279. https://doi.org/10.1111/ppl.12165
https://doi.org/10.1111/ppl.12165...
). Nonetheless, the effectiveness of K fertilization is influenced by several factors, including soil quality, fertilizer formulations and concentrations, treatment interval, climate conditions, scion, and rootstock genotypes (Mpelasoka et al. 2003Mpelasoka, B., Schachtman, D., Treeby, M. and Thomas, M. R. (2003). A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Australian Journal of Grape and Wine Research, 9, 154-168. https://doi.org/10.1111/j.1755-0238.2003.tb00265.x
https://doi.org/10.1111/j.1755-0238.2003...
).

K fertilization has a direct impact on grapevine outcome, according to Tecchio et al. (2006)Tecchio, M. A., Pires, E. J. P., Terra, M. M., Grassi Filho, H., Corrêa, J. C. and Ide Vieira, C. R. Y. (2006). Correlação entre a produtividade e os resultados de análise foliar e de solo em vinhedos de Niagara Rosada. Ciência e Agrotecnologia, 30, 1056-1064. https://doi.org/10.1590/S1413-70542006000600002
https://doi.org/10.1590/S1413-7054200600...
and Pushpavathi et al. (2021)Pushpavathi, Y., Satisha, J., Satisha, G. C., and Reddy, M. L. (2021). Influence of potassium fertilization on yield, petiole and soil nutrient status of table grape cv. Sharad seedless. Journal of Plant Nutrition, 45, 2218-2227. https://doi.org/10.1080/01904167.2021.1889595
https://doi.org/10.1080/01904167.2021.18...
. Some other studies have already demonstrated that K is intrinsically linked to chemical traits of grape must (Fogaça et al. 2007Fogaça, A. O., Daudt, C. E. and Dorneles, F. (2007). Potássio em uvas II – Análise peciolar e sua correlação com o teor de potássio em uvas viníferas. Food Science and Technology, 27, 597-601. https://doi.org/10.1590/S0101-20612007000300026
https://doi.org/10.1590/S0101-2061200700...
; Walker and Blackmore 2012Walker, R. R. and Blackmore, D. H. (2012). Potassium concentration and pH inter-relationships in grape juice and wine of Chardonnay and Shiraz from a range of rootstocks in different environments. Australian Journal of Grape and Wine Research, 18, 183-192. https://doi.org/10.1111/j.1755-0238.2012.00189.x
https://doi.org/10.1111/j.1755-0238.2012...
). So far, no research has assessed the effects of K fertilization on phenological cycle and thermal demands of grapevines.

It is worth mentioning that the characterization of phenological stages and the measurement of thermal demands are used to identify the climatic potential of a specific region for grapevine production. Furthermore, grape growers will be able to plan harvest dates, agricultural methods, and phytosanitary control, as well as periods when there is a high demand for labour work, if they know the length of each phenological subperiod. Therefore, it is crucial to understand how chemical components in berries change as they ripen, but it is also effective to establish the best time to harvest them, that is, when there is a balance between soluble solids and acidity levels. In viticulture, phenology, temperature demands, and grape maturation development are all essential.

This study aimed to assess the effects of rootstocks and K concentrations on grapevine phenology and thermal demand, as well as to analyse the quality attributes of the Niagara Rosada grapes produced under subtropical conditions.

MATERIAL AND METHODS

The study took place in an experimental vineyard in the city of Botucatu, Sao Paulo, Brazil (at the following GPS coordinates 22°50’S, 48°26’W and at an altitude of 790 m above sea level) across two production seasons (2017 and 2018). According to Köppen’s classification, the climate is Cfa (subtropical with hot summers). From July to December, the experiment’s minimum average temperature was 15.9 °C in 2017 and 15.8 °C in 2018. Also, the maximum average temperatures were 26.1 and 26.3 °C in 2017 and 2018, respectively. The annual precipitation was 729 mm in 2017, while 648 mm in 2018, being the summer the responsible for most of the precipitation (Fig. 1).

Figure 1
Climate data (temperature and cumulative rainfall) from the experimental site in 2017 and 2018. Botucatu, state of São Paulo, Brazil.

In the area, the soil is classified as red latosol (Embrapa 2018[Embrapa] Empresa Brasileira de Pesquisa Agropecuária. (2018). Sistema Brasileiro de Classificação de Solos. Centro Nacional de Pesquisa de Solos. Rio de Janeiro: Embrapa Solos.), and the soil chemical analysis was performed prior to the beginning of the experiment (Table 1).

Table 1
Results of soil analysis performed prior to treatments applications.

In September 2013, grapevine nurseries grafted on rootstocks were planted at a spacing of 2 m between rows and 0.8 m between vines (density of 6,250 vines per hectare). The support system consisted of a three-wire espalier suspended at 1, 1.3, and 1.6 m above ground. For irrigation, inverted micro-sprinklers were placed every 2.5 m and 50 cm above the ground. A polyethylene screen with 18% shading was installed to keep birds at bay. Other agricultural and phytosanitary managements were done in accordance with regional agricultural practices.

Winter pruning and harvesting occurred in the months of July and December, respectively, in 2017 and 2018. One or two buds per spur were retained during winter pruning, and 2.5% hydrogen cyanamide was sprayed to stimulate consistent budburst. To standardize the grapevines, 10 to 12 bearing canes per vine were chosen once sprouting began.

A 4 × 2-factorial scheme (eight treatments) with four blocks and five vines per plot was used to place 160 plants in randomized blocks, that is, four K concentrations (0, 75, 150, and 300 kg·ha-1 K2O) and two rootstocks (IAC 572 Jales and IAC 766 Campinas) were used as variables.

In this study, the chosen scion was cv. Niagara Rosada, a mutant of cv. Niagara Branca that is the product of a cross between the cvs. Concord × Cassady, with 75% Vitis labrusca and 25% Vitis vinifera in their genealogy. Moreover, the rootstocks were obtained by the Agronomic Institute of Campinas (IAC) and were derived from the following crosses: IAC 572 Jales (Vitis caribaea × [Vitis riparia × Vitis rupestris 101-14]) and IAC 766 Campinas (Riparia do Traviú × Vitis caribaea).

With regards to K concentrations, the grape fertilization guideline of the studied area was considered (Terra et al. 1997Terra, M. M., Tecchio, M. A., Pires, E. J. P. and Teixeira, L. A. J. (1997). Uvas comuns para mesa e vinho. In: B. van Raij, H. Cantarella, J. A. Quaggio and A. M. C. Furlani (Eds.). Recomendações de adubação e calagem para o estado de São Paulo (2 ed., p. 152-153). Campinas: Instituto Agronômico/Fundação IAC. (Boletim Técnico, 100.)), that is, no fertilization (0 kg·ha-1 K2O), half of the recommended dose (75 kg·ha-1 K2O), recommended dose (150 kg·ha-1 K2O), and double the recommended dose (300 kg·ha-1 K2O).

In accordance to the plot size (8 m2), fertiliser treatments were weighted and applied along 40-cm line in a top-dressing pattern next to the grapevines. In all the production seasons (2017 and 2018), fertilization was divided into two application times within each production season, i.e., half of the dose was delivered one week after production pruning and the remaining amount administered at veraison.

The phenological stages were assessed through the Coombe’sCoombe, B. G. (1995). Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1, 104-110. https://doi.org/10.1111/j.1755-0238.1995.tb00086.x
https://doi.org/10.1111/j.1755-0238.1995...
recommended criteria (1995). The length of each phenological stage was calculated in days after pruning (DAP) by using visual observations. All the subperiods between pruning and budburst, full bloom, setting, veraison, and harvest were measured. The grape harvest was determined via maturity curve, that is, when soluble solids and titratable acidity levels stabilized between two samples.

To determine the thermal demand in degree-days (DD), the sum of pruning to harvest was computed using the following Winkler’sWinkler, A. J. (1965). Viticultura. Mexico: Compañia Editorial Continental. equation (1965) (Eq. 1):

DD   =   Σ   ( mean   temperature   -   10   ° C )   ×   days   after   pruning (1)

The grape maturation curves were calculated through the development of the titratable acidity (TA) and soluble solids (SS). TA was obtained by titration with 0.1 N NaOH to the equivalence point of pH of 8.2, which was expressed as a percentage of tartaric acid. The SS was determined using a digital refractometer and direct refractometry of grape must (Model: r2i300, Reichert®, United States of America), and the findings were reported in °Brix.

Ten bunches per experimental plot were randomly selected and marked at veraison to be monitored from the time of marking until the grapes were fully ripe. The berries were harvested every six days in the 2017 season, at 0, 6, 12, 18, and 24 days after veraison (coinciding with 124, 130, 136, 142 and 148 DAP). In the 2018 season, berry harvests were carried out every seven days, on days 0, 7, 14, 21, and 28 after veraison (coinciding with 116, 123, 130, 137 and 144 DAP).

Statistical analyses were carried out in the two production seasons of 2017 and 2018. All data was submitted to analysis of variance (two-way ANOVA) to investigate the influence of rootstocks and K concentration along with their interactions. The Tukey’s test compared the means of rootstocks at 5% of probability. A regression analysis was performed to quantify the effects of K concentrations by using the SISVAR® statistical program, version 5.6 (Lavras, MG, Brazil).

RESULTS AND DISCUSSION

There was no significant interaction (p > 0.05) in all assessed variables between rootstocks and K concentrations. Subsequently, the variables were examined independently.

In the first production season, the rootstocks had no effect (p > 0.05) on any phenological stages. In the second cycle, the rootstocks had an influence (p > 0.05) on the setting and veraison, since IAC 766 provided two and three days of precocity, respectively (Table 2).

Table 2
Phenological stages (DAP) and thermal demands (DD) of Niagara Rosada grapevine grafted on IAC 572 Jales and IAC 766 Campinas rootstocks in two production seasons* * Mean ± standard deviation (n = 16) is used to express the data. .

The whole phenological cycle of the cv. Niagara Rosada lasted on average 148 days among rootstocks in the first production cycle and 144.2 days in the second one. Other studies have showed that the length was shorter in cv. Niagara Rosada under tropical conditions, such as 115.8 days under an Aw climate (high temperatures) (Ribeiro et al. 2009Ribeiro, D. F., Corsato, C. E., Lemos, J. P. and Scarpare Filho, J. A. (2009). Desenvolvimento e exigência térmica da videira ‘Niagara Rosada’, cultivada no norte de Minas Gerais. Revista Brasileira de Fruticultura, 31, 890-895. https://doi.org/10.1590/S0100-29452009000300036
https://doi.org/10.1590/S0100-2945200900...
); and from 109 to 113 days under Aw climate (Tofanelli et al. 2011Tofanelli, M. B. D., Botelho, R. V., Pires, E. J. P., Vilela, L. A. F. and Ribeiro, D. O. (2011). Phehology of “Niagara Rosada” grapevines grafted on different rootstocks grown on Cerrado (Brazilian savanna) of Goiás State, Brazil. African Journal of Biotechnology, 10, 3387-3392. https://doi.org/10.5897/AJB09.1950
https://doi.org/10.5897/AJB09.1950...
).

Although there were no significant differences between rootstocks in this study, previous studies have reported that the IAC 572 and IAC 766 showed different effects on the length of the phenological cycle of cv. Niagara Rosada. Alvarenga et al. (2002)Alvarenga, A. A., Regina, M. de A., Fráguas, J. C., Chalfun, N. N. J. and Silva, A. L. da. (2002). Influência do porta-enxerto sobre o crescimento e produção da cultivar videira Niágara Rosada (Vitis labrusca L. x Vitis vinifera L.), em condições de solo ácido. Ciência e Agrotecnologia, 26, 1459-1464., Tecchio et al. (2011)Tecchio, M. A., Terra, M. M., Moura, M. F. and Paioli-Pires, E. J. (2011). Fenologia e acúmulo de graus dia da videira ‘Niagara Rosada’ cultivada ao noroeste do estado de São Paulo. Revista Brasileira de Fruticultura, 33, 248-254. https://doi.org/10.1590/S0100-29452011000500030
https://doi.org/10.1590/S0100-2945201100...
, and Tecchio et al. (2013)Tecchio, M. A., Moura, M. F., Paioli-Pires, E. J. and Terra, M. M. (2013). Efeito do porta-enxerto e da época de poda na duração das fases fenológicas e no acúmulo de graus-dia pela videira ‘Niagara Rosada’. Revista Brasileira de Fruticultura, 35, 1073-1080. https://doi.org/10.1590/S0100-29452013000400019
https://doi.org/10.1590/S0100-2945201300...
found that the IAC 766 induced higher precocity in the Niagara Rosada grapevine when compared to the IAC 572.

Through a literature search, it was found an influence of IAC 766 and IAC 572 on the phenology of several types of grapevines, but the findings differed from each other. Nonetheless, Borges et al. (2014)Borges, R. S., Roberto, S. R., Yamashita, F., Assis, A. M. and Yamamoto, L. Y. (2014). Ciclo de produção e demanda térmica de clones da videira ‘Concord’ sobre diferentes porta-enxertos. Revista Brasileira de Fruticultura, 36, 884-891. https://doi.org/10.1590/0100-2945-384/13
https://doi.org/10.1590/0100-2945-384/13...
reported that IAC 572 promotes an extension of the phenological cycle of cv. Concord. Sato et al. (2008)Sato, A. J., Silva, B. J., Santos, C. E., Bertolucci, R., Santos, R., Carielo, M., Guiraud, M. C., Fonseca, I. C. B. and Roberto, S. R. (2008). Fenologia e demanda térmica das videiras ‘Isabel’ e ‘Rubea’ sobre diferentes porta-enxertos na Região Norte do Paraná. Semina, 29, 283-292. https://doi.org/10.5433/1679-0359.2008v29n2p283
https://doi.org/10.5433/1679-0359.2008v2...
observed that IAC 572 increased six days of precocity in cv. Isabel when compared to IAC 766 under subtropical conditions. Besides that, any rootstock affected the entire period of the Rubea phenological cycle in this respective study. The discrepancies between these outcomes are most likely due to factors such as interaction affinity between rootstock and scion, as well as their adaptation to edaphoclimatic conditions, genetic and agronomic characteristics, such as vigour and capacity for solute and nutrient absorption and translocation.

There was no significant effect of rootstocks on thermal demands in this study, but some authors claim that rootstocks can affect grapevines’ thermal demands (Miele 2019Miele, A. (2019). Rootstock-scion interaction: 6. Phenology, chilling and heat requirements of Cabernet Sauvignon grapevine. Revista Brasileira de Fruticultura, 41, 1-14. https://doi.org/10.1590/0100-29452019446
https://doi.org/10.1590/0100-29452019446...
; Tecchio et al. 2019Tecchio, M. A., Silva, M. J. R., Paiva, A. P. M., Moura, M. F., Terra, M. M., Paioli-Pires, E. J. and Leonel, S. (2019). Phenological, physicochemical, and productive characteristics of ‘Vênus’ grapevine onto rootstocks. Pesquisa Agropecuária Brasileira, 54, e00335. https://doi.org/10.1590/S1678-3921.pab2019.v54.00335
https://doi.org/10.1590/S1678-3921.pab20...
). Thus, grapevines required an average of 1,615.1 DD and 1,465.2 DD to complete the first and second production cycles, respectively (Table 2).

The differences in climate conditions also affect the accumulation in degree-days of grapevines between areas (Pedro Júnior et al. 1993Pedro Júnior, M. J., Sentelhas, P. C., Pommer, C. V., Martins, F. P., Gallo, P. B., Santos, R. R., Bovi, V. and Sabino, J. C. (1993). Caracterização fenológica da videira ‘Niagara Rosada’ em diferentes regiões paulistas. Bragantia, 52, 153-160. https://doi.org/10.1590/S0006-87051993000200007
https://doi.org/10.1590/S0006-8705199300...
) and seasons (Ahmed et al. 2019Ahmed, S., Roberto, S. R., Shahab, M., Colombo, R. C., Silvestre, J. P., Koyama, R. and Souza, R. T. (2019). Proposal of double-cropping system for ‘BRS Isis’ seedless grape grown in subtropical area. Scientia Horticulturae, 251, 118-126. https://doi.org/10.1016/j.scienta.2019.03.022
https://doi.org/10.1016/j.scienta.2019.0...
), as shown in this current study. The DD concept is, therefore, predicated on the difference between mean and baseline temperature (10°C), with no development taking place below it (Miranda et al. 2013Miranda, C., Santesteban, L. G. and Royo, J. B. (2013). Evaluation and fitting of models for determining peach phenological stages at a regional scale. Agricultural and Forest Meteorology, 178-179, 129-139. https://doi.org/10.1016/j.agrformet.2013.04.016
https://doi.org/10.1016/j.agrformet.2013...
; Tecchio et al. 2013Tecchio, M. A., Moura, M. F., Paioli-Pires, E. J. and Terra, M. M. (2013). Efeito do porta-enxerto e da época de poda na duração das fases fenológicas e no acúmulo de graus-dia pela videira ‘Niagara Rosada’. Revista Brasileira de Fruticultura, 35, 1073-1080. https://doi.org/10.1590/S0100-29452013000400019
https://doi.org/10.1590/S0100-2945201300...
). It is worth mentioning that this concept is beneficial for forecasting plant development in various environments, and it is also a valuable indicator for analysing grapevine behaviour in a specific growing area.

With regards to K fertilization, a significant effect was only observed at veraison in the second production season, when a quadratic polynomial model was adjusted (Table 3).

Table 3
Phenological stages (DAP) and thermal demands (DD) of Niagara Rosada grapevine subjected to potassium fertilization with different concentrations of K in two production seasons# # Values are expressed as mean ± standard deviation (n = 8); .

The K doses had no effect on the other phenological stages and thermal demands of the grapevines, and the average lengths of the phenological periods from pruning to budburst, full bloom, setting, veraison, and harvest were 21.4, 50.2, 55.3, 125.4, and 148 days for the first production season and 27.7, 58.7, 65.3, 117.4, and 144.2 days for the second production cycle, respectively.

According to Mpelasoka et al. (2003)Mpelasoka, B., Schachtman, D., Treeby, M. and Thomas, M. R. (2003). A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Australian Journal of Grape and Wine Research, 9, 154-168. https://doi.org/10.1111/j.1755-0238.2003.tb00265.x
https://doi.org/10.1111/j.1755-0238.2003...
, both biotic and abiotic factors influence K fertilization, including rootstock and scion genotypes, as well as microclimatic conditions and soil features. This study’s non-significant effect of K concentrations is most likely related to soil conditions, as the amount of available K in the soil was higher at the beginning of the experiment, that is, 4.2 mmolc·dm-3 at the depth of 0-20 cm; and it was the average with 2.5 mmolc·dm-3 at the depth of 20-40 cm, according to Raij’sRaij, B. van., Quaggio, J. A., Cantarella, H. and Abreu, C. A. (1997). Interpretação de resultados de análise de solo. In: B. van Raij, H. Cantarella, J. A. Quaggio and A. M. C. Furlani (Eds.). Recomendações de adubação e calagem para o Estado de São Paulo (2. ed., p. 8-13). Campinas: Instituto Agronômico/Fundação IAC. (Boletim Técnico, 100.) criteria (1997) (Table 1). Currently, soils are performing huge quantities of K, exceeding 1.6 mmolc·dm-3. This is due to overfertilization, which is widespread in the grapevine-growing areas of the state of São Paulo (Tecchio et al. 2006Tecchio, M. A., Pires, E. J. P., Terra, M. M., Grassi Filho, H., Corrêa, J. C. and Ide Vieira, C. R. Y. (2006). Correlação entre a produtividade e os resultados de análise foliar e de solo em vinhedos de Niagara Rosada. Ciência e Agrotecnologia, 30, 1056-1064. https://doi.org/10.1590/S1413-70542006000600002
https://doi.org/10.1590/S1413-7054200600...
). Therefore, fertilizer is only necessary to keep the amount of K available in the soil constant with a suggested concentration of 150 kg·ha-1 K2O (Terra et al. 1997Terra, M. M., Tecchio, M. A., Pires, E. J. P. and Teixeira, L. A. J. (1997). Uvas comuns para mesa e vinho. In: B. van Raij, H. Cantarella, J. A. Quaggio and A. M. C. Furlani (Eds.). Recomendações de adubação e calagem para o estado de São Paulo (2 ed., p. 152-153). Campinas: Instituto Agronômico/Fundação IAC. (Boletim Técnico, 100.)). Moreover, excess K fertilization can cause an imbalance in calcium and magnesium levels, in addition to having no positive effects on the grapevines and raising the cost of production (Tecchio et al. 2006Tecchio, M. A., Pires, E. J. P., Terra, M. M., Grassi Filho, H., Corrêa, J. C. and Ide Vieira, C. R. Y. (2006). Correlação entre a produtividade e os resultados de análise foliar e de solo em vinhedos de Niagara Rosada. Ciência e Agrotecnologia, 30, 1056-1064. https://doi.org/10.1590/S1413-70542006000600002
https://doi.org/10.1590/S1413-7054200600...
; Dalbó et al. 2015Dalbó, M. A., Bettoni, J. C., Gardin, J. P. P. and Basso, C. (2015). Produtividade e qualidade de uvas da cv. Isabel (Vitis labrusca L.) submetidas à adubação potássica. Revista Brasileira de Fruticultura, 37, 789-796. https://doi.org/10.1590/0100-2945-190/14
https://doi.org/10.1590/0100-2945-190/14...
; Pushpavathi et al. 2021Pushpavathi, Y., Satisha, J., Satisha, G. C., and Reddy, M. L. (2021). Influence of potassium fertilization on yield, petiole and soil nutrient status of table grape cv. Sharad seedless. Journal of Plant Nutrition, 45, 2218-2227. https://doi.org/10.1080/01904167.2021.1889595
https://doi.org/10.1080/01904167.2021.18...
).

There was no significant interaction between the chemical variables studied during maturation (p > 0.05). Consequently, the treatments means were calculated as a function of the number of days since veraison. During maturation, changes in soluble solids content and titratable acidity followed the expected pattern, with an increase in soluble solids content and a decrease in titratable acidity, and quadratic regression models for both crops were adjusted accordingly (Fig. 2).

Figure 2
Development of titratable acidity and soluble solids content during the ripening of Niagara Rosada grape grown in subtropical conditions in (a) 2017 and (b) 2018 production seasons.

In the first production season, TA dropped from 1.33% at veraison to 0.88% during harvest (24 days after veraison), which was the lowest point of the quadratic regression model (Fig. 2a). The minimum point of the equation was obtained 28 days after veraison in the second cycle, when berries presented 0.74% (Fig. 2b), which is comparable to other table grape cultivars produced under subtropical regions of Brazil, such as BRS Vitória (Maia et al. 2016Maia, J. D. G., Ritschel, P. S., Souza, R. T. and Garrido, L. R. (2016). ‘BRS Vitória’ - uva para mesa, sem sementes, de sabor especial e tolerante ao míldio: recomendações agronômicas para a região de Campinas, São Paulo. Embrapa Uva e Vinho. (Comunicado Técnico, 129.)), BRS Ísis (Ahmed et al. 2019Ahmed, S., Roberto, S. R., Shahab, M., Colombo, R. C., Silvestre, J. P., Koyama, R. and Souza, R. T. (2019). Proposal of double-cropping system for ‘BRS Isis’ seedless grape grown in subtropical area. Scientia Horticulturae, 251, 118-126. https://doi.org/10.1016/j.scienta.2019.03.022
https://doi.org/10.1016/j.scienta.2019.0...
), and BRS Melodia (Koyama et al. 2020Koyama, R., Borges, W. F. S., Colombo, R. C., Hussain, I., Souza, R. T. and Roberto, S. R. (2020). Phenology and yield of the hybrid seedless grape ‘BRS Melodia’ grown in an annual double cropping system in a subtropical area. Horticulturae, 6, 3. https://doi.org/10.3390/horticulturae6010003
https://doi.org/10.3390/horticulturae601...
).

The TA of cv. Niagara Rosada is about 60 meq/L, according to Maia and Camargo (2012)Maia, J. D. G. and Camargo, U. A. (2012). O cultivo da videira Niagara no Brasil. Brasília: Embrapa.. However, it was clear that the different climate conditions that occurred throughout each harvest, as shown in Fig. 1, had a major effect on the chemical properties of the grapes (Fig. 2). The reduction in TA during ripening is caused by multiple physiological processes, including dilution of organic acids, increased berry size, synthesis suppression and transformation of organic acids into sugar. Furthermore, temperature, insolation, and rainfall have a huge effect on grape metabolism, which may promote or hinder the genetic potential of the grapes (Ribeiro et al. 2012Ribeiro, T. P., Lima, M. A. C. and Alves, R. E. (2012). Maturação e qualidade de uvas para suco em condições tropicais, nos primeiros ciclos de produção. Pesquisa Agropecuária Brasileira, 47, 1057-1065. https://doi.org/10.1590/S0100-204X2012000800005
https://doi.org/10.1590/S0100-204X201200...
).

In terms of soluble solids content, it was found that the highest value was reached 24 days after veraison (15.6 °Brix) in the first production cycle. The maximum value of soluble solids was validated 21 days after veraison in the second production cycle, with 17.0 °Brix (Fig. 2). According to Maia and Camargo (2012)Maia, J. D. G. and Camargo, U. A. (2012). O cultivo da videira Niagara no Brasil. Brasília: Embrapa., the Niagara Rosada grape may achieve up to 16.3 °Brix under lower temperature, such as temperate and subtropical conditions. One of the primary features of the maturation development is the accumulation of sugars, which are glucose and fructose in grapes. This is the most significant commercial factor for growers when identifying the appropriate time to harvest. The second production cycle had greater amounts of soluble solids, presumably due to the higher temperature and reduced rainfall in November and December (Fig. 1), which coincided with the end of the ripening season. Heat waves directly boost sugar imports for grape berries (Mori et al. 2007Mori, K., Goto-Yamamoto, N., Kitayama, M. and Hashizume, K. (2007). Loss of anthocyanins in red-wine grape under high temperature. Journal of Experimental Botany, 58, 1935-1945. https://doi.org/10.1093/jxb/erm055
https://doi.org/10.1093/jxb/erm055...
; Parker et al. 2011Parker, A. K., Garcia de Cortazar-Atauri, I., van Leeuwen, C., and Chuine, I. (2011). General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Australian Journal of Grape and Wine Research, 17, 206-216. https://doi.org/10.1111/j.1755-0238.2011.00140.x
https://doi.org/10.1111/j.1755-0238.2011...
). Orduña (2010)Orduña, R. M. (2010). Climate change associated effects on grape and wine quality and production. Food Research International, 43, 1844-1855. https://doi.org/10.1016/j.foodres.2010.05.001
https://doi.org/10.1016/j.foodres.2010.0...
also stated that sugar contents are greater in fruits under high temperatures. Furthermore, studies showed that high precipitation leads to reduced SS deposition in berries (Ribeiro et al. 2012Ribeiro, T. P., Lima, M. A. C. and Alves, R. E. (2012). Maturação e qualidade de uvas para suco em condições tropicais, nos primeiros ciclos de produção. Pesquisa Agropecuária Brasileira, 47, 1057-1065. https://doi.org/10.1590/S0100-204X2012000800005
https://doi.org/10.1590/S0100-204X201200...
), as happened in this study. This occurs when sugars are diluted in berries because of the increased water absorption.

It is worth mentioning that the SS content dropped around 25 days after veraison in the second production cycle (Fig. 2b), and some berries showed signs of wilting and deterioration. Therefore, it may be advised that grapes be harvested within 25 days after veraison. Nonetheless, this may vary based on the climate conditions at the production area.

CONCLUSION

The Niagara Rosada vine’s full phenological cycle lasted 144 to 148 days, with thermal demands ranging from 1,465.2 to 1,615.1 DD.

The rootstocks IAC 572 Jales and IAC 766 Campinas had no effect on the overall length of the phenological cycle or the vines’ thermal demand, indicating that they had similar climate adaptability and affinity with cv. Niagara Rosada.

K fertilization at varied concentrations had no effect on the phenology or thermal demand of cv. Niagara Rosada, when there was a high amount of K available in the soil.

The harvest is expected to take place at 21 to 24 days after veraison, i.e., when there is a better balance between soluble solids and acidity levels.

ACKNOWLEDGMENTS

We would thank to the Instituto Agronômico de Campinas (IAC) and the Sulfate of Potash Information Board (SOPIB) for their support in the analyses and the product supplying.

  • How to cite: Callili, D., Silva, M. J. R., Sanchez, C. A. P. C., Watanabe, C. Y., Macedo, B. M. P., Domingues Neto, F. J., Teixeira, L. A. J. and Tecchio, M. A. (2022). Rootstock and potassium fertilization, in terms of phenology, thermal demand and chemical evolution, of berries on Niagara Rosada grapevine under subtropical conditions. Bragantia, 81, e2022. https://doi.org/10.1590/1678-4499.20210245
  • DATA AVAILABILITY STATEMENT

    All dataset were generated and analyzed in the current study.
  • FUNDING

    Fundação de Amparo à Pesquisa do Estado de São Paulo
    Grant No. 2015/16440-5
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
    Finance Code 001
    Conselho Nacional de Desenvolvimento Científico e Tecnológico
    Grants Nos. 05724/2018-5 and 307571/2019-0

REFERENCES

  • Ahmad, I. and Maathuis, F. J. M. (2014). Cellular and tissue distribution of potassium: physiological relevance, mechanisms and regulation. Journal of Plant Physiology, 171, 708-714. https://doi.org/10.1016/j.jplph.2013.10.016
    » https://doi.org/10.1016/j.jplph.2013.10.016
  • Ahmed, S., Roberto, S. R., Shahab, M., Colombo, R. C., Silvestre, J. P., Koyama, R. and Souza, R. T. (2019). Proposal of double-cropping system for ‘BRS Isis’ seedless grape grown in subtropical area. Scientia Horticulturae, 251, 118-126. https://doi.org/10.1016/j.scienta.2019.03.022
    » https://doi.org/10.1016/j.scienta.2019.03.022
  • Alvarenga, A. A., Regina, M. de A., Fráguas, J. C., Chalfun, N. N. J. and Silva, A. L. da. (2002). Influência do porta-enxerto sobre o crescimento e produção da cultivar videira Niágara Rosada (Vitis labrusca L. x Vitis vinifera L.), em condições de solo ácido. Ciência e Agrotecnologia, 26, 1459-1464.
  • Anzanello, R., Souza, P. V. D. and Coelho, P. F. (2012). Fenologia, exigência térmica e produtividade de videiras ‘Niagara Branca’, ‘Niagara Rosada’ e ‘Concord’ submetidas a duas safras por ciclo vegetativo. Revista Brasileira de Fruticultura, 34, 366-376. https://doi.org/10.1590/S0100-29452012000200008
    » https://doi.org/10.1590/S0100-29452012000200008
  • Borges, R. S., Roberto, S. R., Yamashita, F., Assis, A. M. and Yamamoto, L. Y. (2014). Ciclo de produção e demanda térmica de clones da videira ‘Concord’ sobre diferentes porta-enxertos. Revista Brasileira de Fruticultura, 36, 884-891. https://doi.org/10.1590/0100-2945-384/13
    » https://doi.org/10.1590/0100-2945-384/13
  • Bruna, E. D. and Back, A. J. (2015). Comportamento da cultivar Niágara Rosada enxertada sobre diferentes porta-enxertos no sul de Santa Catarina, Brasil. Revista Brasileira de Fruticultura, 37, 924-933. https://doi.org/10.1590/0100-2945-245/14
    » https://doi.org/10.1590/0100-2945-245/14
  • Coombe, B. G. (1995). Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1, 104-110. https://doi.org/10.1111/j.1755-0238.1995.tb00086.x
    » https://doi.org/10.1111/j.1755-0238.1995.tb00086.x
  • Dalbó, M. A., Bettoni, J. C., Gardin, J. P. P. and Basso, C. (2015). Produtividade e qualidade de uvas da cv. Isabel (Vitis labrusca L.) submetidas à adubação potássica. Revista Brasileira de Fruticultura, 37, 789-796. https://doi.org/10.1590/0100-2945-190/14
    » https://doi.org/10.1590/0100-2945-190/14
  • [Embrapa] Empresa Brasileira de Pesquisa Agropecuária. (2018). Sistema Brasileiro de Classificação de Solos. Centro Nacional de Pesquisa de Solos. Rio de Janeiro: Embrapa Solos.
  • Fogaça, A. O., Daudt, C. E. and Dorneles, F. (2007). Potássio em uvas II – Análise peciolar e sua correlação com o teor de potássio em uvas viníferas. Food Science and Technology, 27, 597-601. https://doi.org/10.1590/S0101-20612007000300026
    » https://doi.org/10.1590/S0101-20612007000300026
  • Hernandes, J. L., Pedro Júnior, M. J., Santos, A. O. and Tecchio, M. A. (2010). Fenologia e produção de cultivares americanas e híbridas de uvas para vinho, em Jundiaí-SP. Revista Brasileira de Fruticultura, 32, 135-142. https://doi.org/10.1590/S0100-29452010005000040
    » https://doi.org/10.1590/S0100-29452010005000040
  • Koyama, R., Borges, W. F. S., Colombo, R. C., Hussain, I., Souza, R. T. and Roberto, S. R. (2020). Phenology and yield of the hybrid seedless grape ‘BRS Melodia’ grown in an annual double cropping system in a subtropical area. Horticulturae, 6, 3. https://doi.org/10.3390/horticulturae6010003
    » https://doi.org/10.3390/horticulturae6010003
  • Maia, J. D. G. and Camargo, U. A. (2012). O cultivo da videira Niagara no Brasil. Brasília: Embrapa.
  • Maia, J. D. G., Ritschel, P. S., Souza, R. T. and Garrido, L. R. (2016). ‘BRS Vitória’ - uva para mesa, sem sementes, de sabor especial e tolerante ao míldio: recomendações agronômicas para a região de Campinas, São Paulo. Embrapa Uva e Vinho. (Comunicado Técnico, 129.)
  • Miele, A. (2019). Rootstock-scion interaction: 6. Phenology, chilling and heat requirements of Cabernet Sauvignon grapevine. Revista Brasileira de Fruticultura, 41, 1-14. https://doi.org/10.1590/0100-29452019446
    » https://doi.org/10.1590/0100-29452019446
  • Miranda, C., Santesteban, L. G. and Royo, J. B. (2013). Evaluation and fitting of models for determining peach phenological stages at a regional scale. Agricultural and Forest Meteorology, 178-179, 129-139. https://doi.org/10.1016/j.agrformet.2013.04.016
    » https://doi.org/10.1016/j.agrformet.2013.04.016
  • Mori, K., Goto-Yamamoto, N., Kitayama, M. and Hashizume, K. (2007). Loss of anthocyanins in red-wine grape under high temperature. Journal of Experimental Botany, 58, 1935-1945. https://doi.org/10.1093/jxb/erm055
    » https://doi.org/10.1093/jxb/erm055
  • Mpelasoka, B., Schachtman, D., Treeby, M. and Thomas, M. R. (2003). A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Australian Journal of Grape and Wine Research, 9, 154-168. https://doi.org/10.1111/j.1755-0238.2003.tb00265.x
    » https://doi.org/10.1111/j.1755-0238.2003.tb00265.x
  • Orduña, R. M. (2010). Climate change associated effects on grape and wine quality and production. Food Research International, 43, 1844-1855. https://doi.org/10.1016/j.foodres.2010.05.001
    » https://doi.org/10.1016/j.foodres.2010.05.001
  • Parker, A. K., Garcia de Cortazar-Atauri, I., van Leeuwen, C., and Chuine, I. (2011). General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Australian Journal of Grape and Wine Research, 17, 206-216. https://doi.org/10.1111/j.1755-0238.2011.00140.x
    » https://doi.org/10.1111/j.1755-0238.2011.00140.x
  • Pedro Júnior, M. J., Sentelhas, P. C., Pommer, C. V., Martins, F. P., Gallo, P. B., Santos, R. R., Bovi, V. and Sabino, J. C. (1993). Caracterização fenológica da videira ‘Niagara Rosada’ em diferentes regiões paulistas. Bragantia, 52, 153-160. https://doi.org/10.1590/S0006-87051993000200007
    » https://doi.org/10.1590/S0006-87051993000200007
  • Pushpavathi, Y., Satisha, J., Satisha, G. C., and Reddy, M. L. (2021). Influence of potassium fertilization on yield, petiole and soil nutrient status of table grape cv. Sharad seedless. Journal of Plant Nutrition, 45, 2218-2227. https://doi.org/10.1080/01904167.2021.1889595
    » https://doi.org/10.1080/01904167.2021.1889595
  • Raij, B. van., Quaggio, J. A., Cantarella, H. and Abreu, C. A. (1997). Interpretação de resultados de análise de solo. In: B. van Raij, H. Cantarella, J. A. Quaggio and A. M. C. Furlani (Eds.). Recomendações de adubação e calagem para o Estado de São Paulo (2. ed., p. 8-13). Campinas: Instituto Agronômico/Fundação IAC. (Boletim Técnico, 100.)
  • Ribeiro, D. F., Corsato, C. E., Lemos, J. P. and Scarpare Filho, J. A. (2009). Desenvolvimento e exigência térmica da videira ‘Niagara Rosada’, cultivada no norte de Minas Gerais. Revista Brasileira de Fruticultura, 31, 890-895. https://doi.org/10.1590/S0100-29452009000300036
    » https://doi.org/10.1590/S0100-29452009000300036
  • Ribeiro, T. P., Lima, M. A. C. and Alves, R. E. (2012). Maturação e qualidade de uvas para suco em condições tropicais, nos primeiros ciclos de produção. Pesquisa Agropecuária Brasileira, 47, 1057-1065. https://doi.org/10.1590/S0100-204X2012000800005
    » https://doi.org/10.1590/S0100-204X2012000800005
  • Rogiers, S., Greer, D., Hatfield, J., Orchard, B. and Keller, M. (2006). Mineral sinks within ripening grape berries (Vitis vinifera L.). Vitis, 45, 115-123. https://doi.org/10.5073/vitis.2006.45.115-123
    » https://doi.org/10.5073/vitis.2006.45.115-123
  • Sato, A. J., Silva, B. J., Santos, C. E., Bertolucci, R., Santos, R., Carielo, M., Guiraud, M. C., Fonseca, I. C. B. and Roberto, S. R. (2008). Fenologia e demanda térmica das videiras ‘Isabel’ e ‘Rubea’ sobre diferentes porta-enxertos na Região Norte do Paraná. Semina, 29, 283-292. https://doi.org/10.5433/1679-0359.2008v29n2p283
    » https://doi.org/10.5433/1679-0359.2008v29n2p283
  • Shabala, S. and Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 151, 257-279. https://doi.org/10.1111/ppl.12165
    » https://doi.org/10.1111/ppl.12165
  • Silva, M. J. R., Paiva, A. P. M., Pimentel Junior, A., Sánchez, C. A. P. C., Callili, D., Moura, M. F., Leonel, S. and Tecchio, M. A. (2018). Yield performance of new juice grape varieties grafted onto different rootstocks under tropical conditions. Scientia Horticulturae, 241, 194-200. https://doi.org/10.1016/j.scienta.2018.06.085
    » https://doi.org/10.1016/j.scienta.2018.06.085
  • Tecchio, M. A., Hernandes, J. L., Pires, E. J. P., Terra, M. M. and Moura, M. F. (2018). Cultivo da videira para mesa, vinho e suco. In: R. Pio (ed.). Cultivo de fruteiras clima temperado em regiões subtropicais e tropicais (2 ed., p. 512-584). Lavras: UFLA.
  • Tecchio, M. A., Moura, M. F., Paioli-Pires, E. J. and Terra, M. M. (2013). Efeito do porta-enxerto e da época de poda na duração das fases fenológicas e no acúmulo de graus-dia pela videira ‘Niagara Rosada’. Revista Brasileira de Fruticultura, 35, 1073-1080. https://doi.org/10.1590/S0100-29452013000400019
    » https://doi.org/10.1590/S0100-29452013000400019
  • Tecchio, M. A., Pires, E. J. P., Terra, M. M., Grassi Filho, H., Corrêa, J. C. and Ide Vieira, C. R. Y. (2006). Correlação entre a produtividade e os resultados de análise foliar e de solo em vinhedos de Niagara Rosada. Ciência e Agrotecnologia, 30, 1056-1064. https://doi.org/10.1590/S1413-70542006000600002
    » https://doi.org/10.1590/S1413-70542006000600002
  • Tecchio, M. A., Silva, M. J., Callili, D., Hernandes, J. L. and Moura, M. F. (2020). Yield of white and red grapes, in terms of quality, from hybrids and Vitis labrusca grafted on different rootstocks. Scientia Horticulturae, 259, 108846. https://doi.org/10.1016/j.scienta.2019.108846
    » https://doi.org/10.1016/j.scienta.2019.108846
  • Tecchio, M. A., Silva, M. J. R., Paiva, A. P. M., Moura, M. F., Terra, M. M., Paioli-Pires, E. J. and Leonel, S. (2019). Phenological, physicochemical, and productive characteristics of ‘Vênus’ grapevine onto rootstocks. Pesquisa Agropecuária Brasileira, 54, e00335. https://doi.org/10.1590/S1678-3921.pab2019.v54.00335
    » https://doi.org/10.1590/S1678-3921.pab2019.v54.00335
  • Tecchio, M. A., Terra, M. M., Moura, M. F. and Paioli-Pires, E. J. (2011). Fenologia e acúmulo de graus dia da videira ‘Niagara Rosada’ cultivada ao noroeste do estado de São Paulo. Revista Brasileira de Fruticultura, 33, 248-254. https://doi.org/10.1590/S0100-29452011000500030
    » https://doi.org/10.1590/S0100-29452011000500030
  • Terra, M. M., Tecchio, M. A., Pires, E. J. P. and Teixeira, L. A. J. (1997). Uvas comuns para mesa e vinho. In: B. van Raij, H. Cantarella, J. A. Quaggio and A. M. C. Furlani (Eds.). Recomendações de adubação e calagem para o estado de São Paulo (2 ed., p. 152-153). Campinas: Instituto Agronômico/Fundação IAC. (Boletim Técnico, 100.)
  • Tofanelli, M. B. D., Botelho, R. V., Pires, E. J. P., Vilela, L. A. F. and Ribeiro, D. O. (2011). Phehology of “Niagara Rosada” grapevines grafted on different rootstocks grown on Cerrado (Brazilian savanna) of Goiás State, Brazil. African Journal of Biotechnology, 10, 3387-3392. https://doi.org/10.5897/AJB09.1950
    » https://doi.org/10.5897/AJB09.1950
  • Walker, R. R. and Blackmore, D. H. (2012). Potassium concentration and pH inter-relationships in grape juice and wine of Chardonnay and Shiraz from a range of rootstocks in different environments. Australian Journal of Grape and Wine Research, 18, 183-192. https://doi.org/10.1111/j.1755-0238.2012.00189.x
    » https://doi.org/10.1111/j.1755-0238.2012.00189.x
  • Wang, Y. and Wu, W. H. (2013). Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 64, 451-476. https://doi.org/10.1146/annurev-arplant-050312-120153
    » https://doi.org/10.1146/annurev-arplant-050312-120153
  • Winkler, A. J. (1965). Viticultura. Mexico: Compañia Editorial Continental.

Edited by

Section Editor: Cláudia Sales Marinho

Publication Dates

  • Publication in this collection
    14 Mar 2022
  • Date of issue
    2022

History

  • Received
    18 Aug 2021
  • Accepted
    25 Nov 2021
Instituto Agronômico de Campinas Avenida Barão de Itapura, 1481, 13020-902, Tel.: +55 19 2137-0653, Fax: +55 19 2137-0666 - Campinas - SP - Brazil
E-mail: bragantia@iac.sp.gov.br