Acessibilidade / Reportar erro

Adaptability and stability via mixed models in elephantgrass (Cenchrus purpureus (Schumach.) Morrone) varieties for energy purposes

ABSTRACT

Elephant grass stands out among lignocellulosic biomass plants utilized for second-generation biofuel production due to several advantageous characteristics compared to other raw materials. Its short production cycle and ability to thrive in adverse soil and climate conditions contribute to its appeal. Additionally, breeders seek genotypes with high productivity potential and adaptability to various favorable cultivation environments. This study aimed to estimate genetic parameters, predict genetic values using mixed models (REML/BLUP), and evaluate stability and adaptability for energy biomass production in elephant grass genotypes. The experiment was conducted in Campos dos Goytacazes, RJ, Brazil, utilizing a two-replicate experimental block design that included 40 elephant grass genotypes. Four harvest assessments were performed between 2016 and 2019. Genetic parameter estimation and selection of superior genotypes based on genetic value using the REML/BLUP procedure were performed using Selegen software. Stability and adaptability analyses were obtained through the harmonic mean of genotypic values (HMGV), enabling the identification of stable and highly productive genotypes. Genotypes 17, 18, 32, 16, 36, 6, 15, 31, and 34 exhibited outstanding performance in terms of HMGV, indicating enhanced stability, adaptability, and simultaneous productivity, thus ensuring robustness in cultivation. These selected genotypes hold potential for future breeding programs aimed at improving elephant grass yield for biomass production.

Key words
bioenergy; biomass; genetic parameters; REML/BLUP; yield

INTRODUCTION

Elephant grass (Cenchrus purpureus (Schumach.) Morrone) is widely recognized as one of the most utilized tropical forages in Brazil (Cunha et al. 2011Cunha, M.V., Lira, M. A., Santos, M.V.F., Freitas, E.V., Dubeux Junior, J.C.B., Mello, A.C.L. and Martins, K.G.R. (2011). Associação entre características morfológicas e produtivas na seleção de clones de capimelefante. Revista Brasileira de Zootecnia, 40, 482–488. https://doi.org/10.1590/S1516-35982011000300004
https://doi.org/10.1590/S1516-3598201100...
). This perennial grass, belonging to the Poaceae family, exhibits dual aptitude with exceptional performance (Cavalcante et al. 2012Cavalcante, M., Lira, M.D.A., Santos, M.V.F., Pita, E.B.A.F., Ferreira, R.L.C. and Tabosa, J.N. (2012). Coeficiente de repetibilidade e parâmetros genéticos em capim-elefante. Pesqui. Agropecu. Bras. 47, 569–575. https://doi.org/10.1590/S0100-204X2012000400013
https://doi.org/10.1590/S0100-204X201200...
). Notably, elephant grass is renowned for its high dry matter yield potential (Fedenko et al. 2013Fedenko, J.J., Erickson, K., Woodard, L., Sollenberger , J.B. and Vendramini, R.A. (2013). Produção de biomassa e composição de gramíneas perenes cultivadas para bioenergia em um clima subtropical na Flórida, EUA. BioEnergy Research, 6, 1082-1093. https://doi.org/10.1007/s12155-013-9342-3
https://doi.org/10.1007/s12155-013-9342-...
). It is extensively cultivated in warm climate regions, serving multiple purposes such as cutting, grazing, ensilage, and bioenergy production (Tibayungwa et al. 2011Tibayungwa, F. J. Y. T. and Mugisha, M. (2011). Modelagem do efeito da suplementação de capim-elefante com lablab e desmodium no ganho de peso de novilhas leiteiras em sistema de confinamento. African Journal Agrícola Research, 6, 3232-3239. https://doi.org/10.5897/AJAR10.121
https://doi.org/10.5897/AJAR10.121...
). In terms of forage aptitude, it can provide up to 15.85 t·ha-1 of forage mass when interspecific-hybridized with millet (Pennisetum glaucum) (Emerenciano Neto et al. 2019Emerenciano Neto, J. V., Bezerra, M. G. S., França, A. F., Aguiar, E. M. and Difante, G. S. (2019). Características estruturais e produtivas em híbridos intraespecíficos e interespecíficos de capim-elefante. Ciência Animal Brasileira, 20, 1–11. https://doi.org/10.1590/1809-6891v20e-46788
https://doi.org/10.1590/1809-6891v20e-46...
). Furthermore, for bioenergy purposes its energy potential reaches up to 61.6 t·ha-1·year-1 of dry matter (Vidal et al. 2019Vidal, A.K.F., Daher, R.F., Freitas, R.S., Stida, W.F., Tardin, F.D., Rodrigues, E.V., Silva, V.B., Santos, R.M., Santos, P.R. and Oliveira, T.R.A. (2019). Screening of elephant grass genotypes following some agromarphological traits related to biomass production in Rio de Janeiro. JEAI, 39, 1-10.; 2022). Elephant grass possesses a short growth cycle of five to seven months, characterized by rapid leaf area expansion after planting or cutting, leading to its high biomass production potential. This remarkable biomass production results from various factors such as efficient sunlight interception, photosynthetic efficiency, regrowth and tillering capacity, reserve carbohydrate storage, nutrient absorption, and water use efficiency (Marafon et al. 2014Marafon, A. C., Santiago, A. D., Câmara, T. M. M., Rangel, J. H. A., Amaral, A. F. C., Lédo, F. J. S., Bierhals, A. N. and Paiva, H. L. (2014). Potencial Produtivo e Qualidade da Biomassa de Capim-elefante para fins Energéticos. Aracajú: Embrapa Tabuleiros Costeiros. Circular Técnica, 68. https://doi.org/10.13140/RG.2.1.4150.7361
https://doi.org/10.13140/RG.2.1.4150.736...
; Pereira et al. 2021Pereira, A. V., Auad, A. M., Santos, A. M.B. Dos, Mittelmann, A., Gomide, C. A. De M., Martins, C. E., Paciullo, D. S. C., Lédo, F. J. S., Oliveira, J. S. (2021). BRS CAPIAÇU E BRS KURUMI: cultivo e uso. Brasília, DF:Embrapa, 116 p.).

In studies focused on energy production, certain traits are of paramount importance. Notably, traits such as higher growth rate, increased yield, and enhanced energy efficiency are crucial considerations. These traits are dependent on the chemical composition and contents of cellulose, lignin, high calorific value, high carbon/nitrogen ratio, in addition to low levels of moisture, ash, and nitrogen (Jaradat 2010Jaradat, A. A. (2010). Genetic resources of energy crops: biological systems to combat climate change. Australian Journal of Crop Science, 4, 309-323. [Accessed Dec. 17, 2022]. Available at: https://www.researchgate.net/publication/228348083_Genetic_resources_of_energy_crops_Biological_systems_to_combat_climate_change
https://www.researchgate.net/publication...
; Quirino et al. 2005Quirino, W. F., Vale, A. T., Andrade, A. P. A., Abreu, V. L. S. and Azevedo, A. D. S. (2005). Poder calorífico da madeira e de materiais ligno-celulósicos. Revista da Madeira, 89, e106. [Accessed Dec. 17, 2022]. Available at: https://www.lippel.com.br/dados/download/05-05-2014-10-46poder-calorifico-da-madeira-e-de-materiais-ligno-celulosicos.pdf
https://www.lippel.com.br/dados/download...
). Elephant grass is highly productive in smaller areas, has a lower production, allows total mechanization, and provides renewable energy, greater carbon assimilation, and increased productivity by increasing the applications of nitrogen and potassium (Gravina et al. 2020Gravina, L. M., Oliveira, T. R. A., Daher, R. F., Gravina, G. A., Vidal, A. K. F., Stida, W. F., Cruz, D. P., Sant’Anna, C. Q. S. S., Rocha, R. S., Pereira, A.V. and Oliveira, G. H. F. (2020). Multivariate analysis in the selection of elephant grass genotypes for biomass production. Renewable Energy, 160, 1265-1268, 2020. https://doi.org/10.1016/j.renene.2020.06.094
https://doi.org/10.1016/j.renene.2020.06...
; Silva et al. 2020Silva, V.B., Daher, R.F. and Souza Y.P. (2020). Assessment of energy production in full-sibling families of elephant grass by mixed models. Renew Energy, 146, 744–749. https://doi.org/10.1016/j.renene.2019.06.152
https://doi.org/10.1016/j.renene.2019.06...
; Woodard et al. 20151 1 Woodard, K.R., L.E. Sollenberger Production of Biofuel Crops in Florida: Elephant grass SS-AGR-297, Agronomy Department, University of Florida UF)/Institute of Food and Agricultural Sciences (IFAS) Extension, Gainesville, Florida, USA (2015) Available at: https://edis.ifas.ufl.edu/ag302. ).

Over the past four decades, the energy sources in Brazil and other parts of the world have undergone significant structural transformations. This shift has led to the emergence of a new paradigm in energy generation and consumption, driven by concepts of sustainability and the increasing attractiveness of renewable energy sources (Alves et al., 2018Alves, F. G. S., Silva, S. F., Santos, F. N. S. and Carneiro, M. S. S. (2018). Elephant Grass: a Bioenergetic Resource. Nucleus Animalium. 10, 117–130. https://doi.org/10.3738/21751463.3032
https://doi.org/10.3738/21751463.3032...
; Fontoura et al. 2015Fontoura, C.F., Brandão, L.E. and Gomes, L.L. (2015). Elephant grass biorefineries: Towards a cleaner Brazilian energy matrix? Journal of Cleaner Production, 96, 85–93. https://doi.org/10.1016/j.jclepro.2014.02.062
https://doi.org/10.1016/j.jclepro.2014.0...
; Paterlini et al. 2013Paterlini, E. M., Donária, M., Arantes, C., Gomes, F., Vidaurre, G. B., Bauer, M. D. O. and Cabral, J., (2013). Evaluation of elephant grass for energy use. J. Biotechnol. Biodivers, 4, 119–125. [Accessed Dec. 17, 2022]. Available at: file:///C:/Users/Sistemas/Downloads/jbb,+6_paterlini%20(2).pdf; Sant’Ana et al. 2018Sant’Ana, J.A.A., Daher, R.F., Ponciano, N.J., Santos, M.M.P., Viana, A.P., Oliveira, E.S., Ledo, F.J.S., Menezes, B.R.S., Santos, C.L. and Lima, W.L. (2018). Nitrogen and phosphate fertilizers in elephant-grass for energy use. African Journal of Agricultural Research, 13, 806-813. https://doi.org/10.5897/ajar2016.11913
https://doi.org/10.5897/ajar2016.11913...
). Elephant grass (Cenchrus purpureus (Schumach.) Morrone) stands out as one of the available renewable energy sources. This species exhibits high photosynthetic efficiency, possesses a remarkable capacity for dry matter accumulation, and features a high fiber percentage. These characteristics make it a potential candidate for energy purposes (Quesada et al. 2004Quesada, D. M., Boddey, R. M., Reis, V. M. and Urquiaga, S.(2004). Parâmetros Qualitativos de Genótipos de Capim Elefante (Pennisetum purpureum Schum.) estudados para a produção de energia através da Biomassa. Seropédica: Embrapa Agrobiologia. Circular Técnica 4. [Accessed Dec. 17, 2022]. Available at: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAB-2010/32086/1/cit008.pdf
https://ainfo.cnptia.embrapa.br/digital/...
).

Moreover, it is worth noting that the actions described in this study align with the Sustainable Development Goals (SDGs) recommended by the United Nations (UN) (Moreira et al. 2020Moreira, M. R., Kastrup, É., Ribeiro, J. M., Carvalho, A. I. D., Braga, A. P. (2020). O Brasil rumo a 2030? Percepções de especialistas brasileiros (as) em saúde sobre o potencial de o País cumprir os ODS Brazil heading to 2030. Saúde em Debate, 43, 22-35. https://doi.org/10.1590/0103-11042019S702
https://doi.org/10.1590/0103-11042019S70...
). Utilizing elephant grass for energy production presents an opportunity to harness renewable energy and mitigate the impact of carbon dioxide emissions resulting from the use of fossil fuels and their derivatives, ultimately contributing to environmental preservation and restoration. Therefore, elephant grass exhibits significant promise as an important alternative renewable energy source for regional, national, and global development (Borges et al. 2016Borges, S., Aquino, F. C., Evangelista, A. M. (2016). Potencial do capim elefante para geração de bioenergia – revisão. Nutritime Revista Eletrônica, 13, 4518-4523. [Accessed Dec. 17, 2022]. Available at: https://nutritime.com.br/wp-content/uploads/2020/02/Artigo-356.pdf
https://nutritime.com.br/wp-content/uplo...
).

Over the course of the last 15 years, the Universidade Estadual do Norte Fluminense (UENF) has been dedicated to conducting studies aimed at obtaining, evaluating, selecting, and indicating high-quality genotypes of elephant grass, with a focus on its application in the field of bioenergy. Throughout this period, the results obtained have been encouraging in terms of the enhancement of this cultivation, as evidenced in studies carried out by Silva et al. (2020)Silva, V.B., Daher, R.F. and Souza Y.P. (2020). Assessment of energy production in full-sibling families of elephant grass by mixed models. Renew Energy, 146, 744–749. https://doi.org/10.1016/j.renene.2019.06.152
https://doi.org/10.1016/j.renene.2019.06...
, Gravina et al. (2020)Gravina, L. M., Oliveira, T. R. A., Daher, R. F., Gravina, G. A., Vidal, A. K. F., Stida, W. F., Cruz, D. P., Sant’Anna, C. Q. S. S., Rocha, R. S., Pereira, A.V. and Oliveira, G. H. F. (2020). Multivariate analysis in the selection of elephant grass genotypes for biomass production. Renewable Energy, 160, 1265-1268, 2020. https://doi.org/10.1016/j.renene.2020.06.094
https://doi.org/10.1016/j.renene.2020.06...
, Vidal et al. (2022)Vidal, A.K.F., Daher, R.F., Freitas, R.S., Stida, W.F., Ambrósio, M., Santana, J.G.S., Souza, A.G., Gravina, G.A., Vivas, M. and Amaral Junior, A.T. (2022). Simultaneous selection for yield, adaptability and stability and repeatability coefficient in full-sib families of elephant grass for energy purposes via mixed models. Euphytica, 218,161. https://doi.org/10.1007/s10681-022-03092-y
https://doi.org/10.1007/s10681-022-03092...
, as well as Vidal et al. (2023a)Vidal, A.K.F., Daher, R.F., Freitas, R.S., et al. (2023a) Estimation of repeatability and genotypic superiority of elephant grass half-sib families for energy purposes using mixed models. Scientia Agricola, 80, 1-10, 2023. https://doi.org/10.1590/1678-992x-2022-0103
https://doi.org/10.1590/1678-992x-2022-0...
and Santana et al. (2023)Santana, J. G. S., Farias, J. E. C., Figueiredo Daher, R., Ambrósio, M., Lopes Leite, C., Kesia Faria Vidal, A., Nascimento, M. R. and Souza, A. G. (2023). Estimation of genetic diversity in full-sib families of elephant grass Cenchrus purpureus (Schumach.) Morrone. Pesquisa Agropecuária Tropical, 53, e75967. https://doi.org/10.1590/1983-40632023v5375967
https://doi.org/10.1590/1983-40632023v53...
. Simultaneously, the Empresa Brasileira Pesquisa Agro Pecuária (EMBRAPA) has played a significant role in the field of elephant grass studies, concentrating on the characterization and evaluation of germplasm, with an emphasis on biomass quality. These activities promote its utilization as a renewable energy source. In this context, the analysis of genetic variability and the careful selection of elephant grass genotypes for bioenergy purposes have the potential to generate superior combinations capable of optimizing direct biomass combustion. Furthermore, these initiatives can effectively broaden the contribution of elephant grass to the sustainable diversification of the energy landscape, as highlighted by Rocha et al. (2017)Rocha, J. R.A. S.C., Machado, J. C., Carneiro, P. C. S., Carneiro, J. C., Resende, M. D. V., Lédo, F. J. S. and Carneiro, J. E. S. (2017). Bioenergetic potential and genetic diversity of elephantgrass via morpho-agronomic and biomass quality traits. Industrial Crops and Products, 95, 485–492. https://doi.org/10.1016/j.indcrop.2016.10.060
https://doi.org/10.1016/j.indcrop.2016.1...
and Pereira et al. (2021)Pereira, A. V., Auad, A. M., Santos, A. M.B. Dos, Mittelmann, A., Gomide, C. A. De M., Martins, C. E., Paciullo, D. S. C., Lédo, F. J. S., Oliveira, J. S. (2021). BRS CAPIAÇU E BRS KURUMI: cultivo e uso. Brasília, DF:Embrapa, 116 p..

Elephant grass can generate 21 units of energy for each unit of fossil fuel (21:1) consumed during its production (combustion), while sugar cane, converted into ethanol, only reaches a ratio of 9:1 (Ferreira et al. 2021Ferreira, F. M., Bhering, L. L., Fernandes, F. D., Silva Lédo, F. J., Albuquerque Rangel, J. H., Kopp, M., Câmara, T.M.M., Silva, V.Q.R and Machado, J. C. (2021). Optimal harvest number and genotypic evaluation of total dry biomass, stability, and adaptability of elephant grass clones for bioenergy purposes. Biomass and Bioenergy, 149, 106104. https://doi.org/10.1016/j.biombioe.2021.106104
https://doi.org/10.1016/j.biombioe.2021....
). According to Rocha et al. (2017)Rocha, J. R.A. S.C., Machado, J. C., Carneiro, P. C. S., Carneiro, J. C., Resende, M. D. V., Lédo, F. J. S. and Carneiro, J. E. S. (2017). Bioenergetic potential and genetic diversity of elephantgrass via morpho-agronomic and biomass quality traits. Industrial Crops and Products, 95, 485–492. https://doi.org/10.1016/j.indcrop.2016.10.060
https://doi.org/10.1016/j.indcrop.2016.1...
, high total dry biomass (Mg·ha− 1 year− 1) is the main factor to consider in the production of bioenergy via the direct combustion of biomass. Elephant grass has been used as a raw material for thermal energy generation, cellulosic ethanol production, and other high-value biotechnological applications (Fontoura et al. 2015Fontoura, C.F., Brandão, L.E. and Gomes, L.L. (2015). Elephant grass biorefineries: Towards a cleaner Brazilian energy matrix? Journal of Cleaner Production, 96, 85–93. https://doi.org/10.1016/j.jclepro.2014.02.062
https://doi.org/10.1016/j.jclepro.2014.0...
). For example, private companies in Brazil and other parts of the world are using elephant grass as a substrate for biogas production and electricity generation (Fontoura et al. 2015Fontoura, C.F., Brandão, L.E. and Gomes, L.L. (2015). Elephant grass biorefineries: Towards a cleaner Brazilian energy matrix? Journal of Cleaner Production, 96, 85–93. https://doi.org/10.1016/j.jclepro.2014.02.062
https://doi.org/10.1016/j.jclepro.2014.0...
). The genetic selection of high-yield genotypes of elephant grass is important to increase its use in bioenergy production (Ferreira et al. 2022Ferreira, F. M., Leite, R. V., Malikouski, R. G., Peixoto, M. A., Bernardeli, A., Alves, R. S., Magalhães Júnior, W.C.P., Andrade, R.G., Leonardo Lopes Bhering, L.L, Machado, J. C. (2022). Bioenergy elephant grass genotype selection leveraged by spatial modeling of conventional and high-throughput phenotyping data. Journal of Cleaner Production, 363, 132286. https://doi.org/10.1016/j.jclepro.2022.132286
https://doi.org/10.1016/j.jclepro.2022.1...
; Silveira Júnior et al. 2022Silveira Junior, E. G. S., Costa Silveira, T., Perez, V. H., Justo, O. R., David, G. F.,Fernandes, S. A. (2022). Fast pyrolysis of elephant grass: Intensification of levoglucosan yield and other value-added pyrolytic by-products. Journal of the Energy Institute, 101, 254-264. https://doi.org/10.1016/j.joei.2022.02.003
https://doi.org/10.1016/j.joei.2022.02.0...
).

Furthermore, during the process of plant selection, accurate estimation of genetic superiority is essential (Negreiros et al. 2008Negreiros, J. R. S., Saraiva, L. L., Oliveira, T. K., Álvares, V. S. and Roncatto, G. (2008) Estimativas de repetibilidade de caracteres de produção em laranjeirasdoces no Acre. Pesquisa Agropecuária Brasileira, 43, 1763-1768. https://doi.org/10.1590/S0100-204X2008001200017
https://doi.org/10.1590/S0100-204X200800...
). Mixed models (REML/BLUP) have gained popularity in plant breeding as they enable the evaluation of individual genotypes, estimation of variance components (Restricted Maximum Likelihood - REML), and prediction of individual genetic values (Best Linear Unbiased Prediction - BLUP). These models maximize the capture of additive variance, enhancing the desired genetic gains and facilitating a more precise selection process (Viana and Resende 2014Resende, M.A.V., Freitas, J.A.de, Lanza, M.A., Resende, M.D.V. de., Azevedo, C.F. (2014) Divergência genética e índice de seleção via BLUP em acessos de algodoeiro para características tecnológicas da fibra. Pesquisa Agropecuária Tropical, 44:p.334-340. https://doi.org/10.1590/S1983-40632014000300006.
https://doi.org/10.1590/S1983-4063201400...
; Resende 2016Resende, M.D.V. (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16, 330 -339. https://doi.org/10.1590/1984-70332016v16n4a49
https://doi.org/10.1590/1984-70332016v16...
; Viana and Resende 2014Resende, M.A.V., Freitas, J.A.de, Lanza, M.A., Resende, M.D.V. de., Azevedo, C.F. (2014) Divergência genética e índice de seleção via BLUP em acessos de algodoeiro para características tecnológicas da fibra. Pesquisa Agropecuária Tropical, 44:p.334-340. https://doi.org/10.1590/S1983-40632014000300006.
https://doi.org/10.1590/S1983-4063201400...
).

To address stability, adaptability, and productivity simultaneously in breeding studies, Resende (2009)Resende, M.D.V. (2009) Genética Biométrica e Estatística no Melhoramento de Plantas Perenes. Embrapa. 975p. developed the harmonic mean of the relative performance of genotypic predicted values (HMRPGV-BLUP) method. This approach incorporates stability and adaptability analyses into a single statistical analysis, accounting for correlated errors within locations and aiding in the selection of superior genotypes. The method offers advantages such as providing genetic values discounted for instability, applicability to any number of environments, and simultaneous consideration of stability and adaptability (Ambrósio et al. 2023; Rosado et al. 2012Rosado, A. M., Rosado, T. B., Alves, A. A., Laviola, B. G. and Bhering, L. L. (2012). Seleção simultânea de clones de eucalipto de acordo com produtividade, estabilidade e adaptabilidade. Pesquisa Agropecuária Brasileira, 47, 964-971. https://doi.org/10.1590/S0100-204X2012000700013
https://doi.org/10.1590/S0100-204X201200...
; 2019Rosado, R.D.S., Rosado, T.B., Cruz, C.D., Ferraz, A.G., Conceição, L.D.H.C.S. and Laviola, B.G. (2019). Parâmetros genéticos e seleção simultânea para adaptabilidade e estabilidade da macaúba. Scientia Horticulturae, 248, 291-296. https://doi.org/10.1016/j.scienta.2018.12.041
https://doi.org/10.1016/j.scienta.2018.1...
; Silva et al. 2011Silva, G. O., Carvalho, A. D. F., Veira, J. V. and Benin, G. (2011). Verificação da adaptabilidade e estabilidade de populações de cenoura pelos métodos AMMI, GGE biplot e REML/BLUP. Bragantia, 70, 494-501. http://doi.org/10.1590/S0006-87052011005000003
https://doi.org/10.1590/S0006-8705201100...
).

Simultaneous selection for productivity, stability, and adaptability using mixed models (REML/BLUP) has been successfully employed in various crops, including sugarcane (Bastos et al. 2007Bastos, I. T., Barbosa, M. H. P., Resende, M. D. V., Peternelii, L. A., Silveira, L. C. I., Donda, L. R., Fortunato, A. A., Costa, P. M. A. and Figueiredo, I. C. R. (2007). Avaliação da interação genótipo × ambiente em cana-de-açúcar via modelos mistos. Pesquisa Agropecuária Tropical, 37, 195-203. [Accessed Dec. 17, 2022]. Available at: https://revistas.ufg.br/pat/article/view/3077
https://revistas.ufg.br/pat/article/view...
), common bean (Carbonell et al. 2007Carbonell, S. A. M., Chioratto, A. F., Resende, M. D. V., Dias, L. A. S., Beraldo, A. L. A. and Perina, E. F. (2007). Estabilidade de cultivares e linhagens de feijoeiro em diferentes ambientes no Estado de São Paulo. Bragantia, 66, 193-201. http://doi.org/10.1590/S0006-87052007000200003
https://doi.org/10.1590/S0006-8705200700...
), rice (Borges et al. 2010Borges, V., Soares, A. A., Reis, M. S., Resende, M. D. V., Cornélio, V. M. O., Leite, N. A. and Vieira, A. R. (2010). Desempenho genotípico de linhagens de arroz de terras altas utilizando metodologia de modelos mistos. Bragantia, 69, 833-842. https://doi.org/10.1590/S0100-204X2012000200010
https://doi.org/10.1590/S0100-204X201200...
), carrot (Silva et al. 2011Silva, G. O., Carvalho, A. D. F., Veira, J. V. and Benin, G. (2011). Verificação da adaptabilidade e estabilidade de populações de cenoura pelos métodos AMMI, GGE biplot e REML/BLUP. Bragantia, 70, 494-501. http://doi.org/10.1590/S0006-87052011005000003
https://doi.org/10.1590/S0006-8705201100...
), cowpea (Santos et al. 2016Santos, A., Ceccon, G., Teodoro, P.E., Correa, A.M., Alvarez, R.C.F., Silva, J.F. and Alves, V.B. (2016). Adaptabilidade e estabilidade de genótipos de feijão caupi ereto via REML/BLUP e GGE Biplot. Bragantia, 75, 299-306. https://doi.org/10.1590/1678-4499.280
https://doi.org/10.1590/1678-4499.280...
), grugru palm (Rosado et al. 2019Rosado, R.D.S., Rosado, T.B., Cruz, C.D., Ferraz, A.G., Conceição, L.D.H.C.S. and Laviola, B.G. (2019). Parâmetros genéticos e seleção simultânea para adaptabilidade e estabilidade da macaúba. Scientia Horticulturae, 248, 291-296. https://doi.org/10.1016/j.scienta.2018.12.041
https://doi.org/10.1016/j.scienta.2018.1...
), maize (Krause et al. 2020Krause, M. D., Dias, K. O. G., Santos, J. P. R., Oliveira, A. A., Guimarães, L. J. M., Pastina, M. M., Margarido, G. R. A. and Garcia, A. A. F. (2020). Boosting predictive ability of tropical maize hybrids via genotype-by-environment interaction under multivariate GBLUP models. Crop Science, 60, 3049-3065. https://doi.org/10.1002/csc2.20253
https://doi.org/10.1002/csc2.20253...
), and safflower (Oliveira Neto et al. 2021Oliveira Neto, S. S., Zeffa, D. M., Ebertz, O. F. and Zanotto, T. M. (2021). Genetic variability, adaptability and, stability of safflower genotypes developed for the Brazilian conditions by REML/BLUP. Agronomy Journal. 113, 4. https://doi.org/10.1002/agj2.20775
https://doi.org/10.1002/agj2.20775...
). However, there is limited research utilizing the REML/BLUP method in elephant grass breeding, representing an innovative approach to successfully select potential genotypes for bioenergy production. Therefore, this study aims to estimate genetic parameters, predict genetic values using mixed models (REML/BLUP), and assess stability and adaptability for energy biomass production in elephant grass genotypes.

METHODS

Location, design, population, and evaluated traits

The experiment was carried out at the Colégio Estadual Agrícola Antônio Sarlo Research Farm, in Campos dos Goytacazes/RJ, Brazil (321º45S, 41º20W, 11 m asl). The experimental design employed in this study was a randomized complete block design with two replications. The experimental plots were arranged in rows that were 1.5 cm apart and 3 m long. The use of two replications in elephant grass cultivation has been widely supported by previous studies conducted by Souza et al. (2017)Souza, Y. P, Daher, R. F., Pereira, A. V., Silva, V.B., Freitas, R.S. and Gravina, G. (2017). Repetibilidade e número mínimo de avaliações para caracteres morfoagronômicos de capim-elefante para fins energéticos. Revista Brasileira de Ciências Agrárias, 12, 391-397. https://doi.org/10.5039/agraria.v12i3a5456
https://doi.org/10.5039/agraria.v12i3a54...
, Stida et al. (2018)Stida, W. F., Daher, R. F., Viana, A. P., Vidal, A. K. F., Freitas, Rafael S., Silva, Verónica B., Pereira, A.V., Cassaro, S., Menezes, B. R. S. and Furlani, E. P.. 2018). Estimation of genetic parameters and selection of elephant-grass (Pennisetum purpureum Schumach.) for forage production using mixed models. Chilean journal of agricultural research, 78, 198-204. https://doi.org/10.4067/S0718-58392018000200198
https://doi.org/10.4067/S0718-5839201800...
, Daher et al. (2020)Daher, R.F., Menezes, B. R. S., Gravina, G. A., Filho, B F.S., Vidal, A.K.F., Stida, W.F., Freitas, R.S., Souza, A.G., Vander, A.P. and Santos, P.R. (2020). Correlations between stability statistics of forage production in elephant grass. Journal of Agricultural Science Archives, 12, 118-128. https://doi.org/10.5539/jas.v12n1p118
https://doi.org/10.5539/jas.v12n1p118...
, Rodrigues et al. (2020)Rodrigues, E.V., Daher, R.F., Gravina, G. A., Viana, A.P., Araújo, M.S.B., Oliveira, M.L.F., Vivas, M., Menezes, B.R. S. and Pereira, A.V. (2020). Repeatability estimates and minimum number of evaluations for selection of elephant-grass genotypes for herbage production. Bioscience Journal, 36, 30-41. https://doi.org/10.14393/BJ-v36n1a2020-42075
https://doi.org/10.14393/BJ-v36n1a2020-4...
and Vidal et al. (2023b)Vidal, A.K.F., Freitas, R.S. and Daher, R.F. et al. (2023b). Genotypic superiority and repeatability coefficient in elephant grass clones for forage production via mixed models. Euphytica, 219, 43. https://doi.org/10.1007/s10681-023-03170-9
https://doi.org/10.1007/s10681-023-03170...
.

The utilization of two replications is crucial as it facilitates the application of mixed models analysis, as a smaller number or lack of replications hinders the use of traditional analysis methods. In the present study, the selection process was conducted using mixed models due to the following reasons: a) Extrapolation: Two replications enable the extrapolation of sample values (variance and mean) to represent the entire population; b) Improved Predictions: The adoption of mixed models leads to more accurate predictions, particularly when dealing with missing data. The predictions are based on genetic values rather than phenotypic values, thereby resolving issues related to unbalanced data resulting from varying numbers of replications, treatments, or experiments conducted across multiple locations. This methodology effectively handles complex data structures, including repeated measurements, different years, and diverse experimental designs. By adopting the BLUP methodology, selection accuracy can be maximized while minimizing prediction errors (Resende 2004; Resende et al. 2014Resende, M.A.V., Freitas, J.A.de, Lanza, M.A., Resende, M.D.V. de., Azevedo, C.F. (2014) Divergência genética e índice de seleção via BLUP em acessos de algodoeiro para características tecnológicas da fibra. Pesquisa Agropecuária Tropical, 44:p.334-340. https://doi.org/10.1590/S1983-40632014000300006.
https://doi.org/10.1590/S1983-4063201400...
; Viana and Resende 2014Resende, M.A.V., Freitas, J.A.de, Lanza, M.A., Resende, M.D.V. de., Azevedo, C.F. (2014) Divergência genética e índice de seleção via BLUP em acessos de algodoeiro para características tecnológicas da fibra. Pesquisa Agropecuária Tropical, 44:p.334-340. https://doi.org/10.1590/S1983-40632014000300006.
https://doi.org/10.1590/S1983-4063201400...
).

Forty elephant grass genotypes from the elephant grass germplasm bank of UENF were used in this study (Table 1). These were selected based on previous research on biomass production, incorporating traits such as late flowering, dry matter yield, stem diameter, and number of tillers (Rossi et al. 2014Rossi, D.A., Menezes, B.R.S., Daher, R.F., Gravina, G.A., Lima, R.S.N., Lédo, F.J.S. (2014). Canonical correlations in elephant grass for energy purposes. African Journal of Biotechnology 13:3666-3671. https://doi.org/10.5897/AJB2014.13915
https://doi.org/10.5897/AJB2014.13915...
). Table 1 provides the code number and origin of the genotypes studied. The evaluated genotypes are highly heterozygous clonal varieties.

Throughout the experiment, fertilization was carried out following the recommended practices outlined in the manual of the state of Rio de Janeiro, taking into consideration the results of soil analysis (Almeida et al., 1988Almeida, D. L., Santos, G. A., Depolli, H., Cunha, L. H., Freire, L. R., Amaral Sobrinho, N. M. B., Pereira, N. N. C., Eira, P. A., Blaise, R. M. and Salek, R. C. (1998). Manual de adubação para o Estado do Rio de Janeiro. Itaguaí: Editora Universidade Rural.). Fertilizers were applied on five occasions: during planting and once at each assessment harvest. The application consisted of 100 kg·ha-1 of P2O5 (single superphosphate) prior to sowing, and 25 kg·ha-1 of N (ammonium sulfate) and 25 kg·ha-1 of K2O (potassium chloride) during the harvesting period, over the course of four years. The crop was irrigated as required, and weed control was managed manually (Freire et al. 2013Freire, L. R., Campos, D. V. B., Lima, E., Zonta, E., Balieiro, F.C., Guerra, J. G. M., Polidoro, J. C., Anjos, L. H. C., Leal, M. A. A., Pereira, M. G. and Ferreira, M. B. C. (2013). Manual de calagem e adubação do Estado do Rio de Janeiro. Seropédica: Editora Universidade Rural, 430p.).

Table 1
Identification and origin of the 40 elephant grass accessions belonging to the germplasm bank (Universidade Estadual do Norte Fluminense Darcy Ribeiro, municipality of Campos dos Goytacazes, RJ, Brazil, 2023).

The plant was cut near ground level and weighed in the field. Subsequently, to determine dry matter yield (DMY), a sample was taken from each randomly chopped plant, placed in a labeled paper bag, and weighed. The samples were then oven-dried at 65 °C for 72 h to obtain the air-dried weight (ADW) (Menezes et al. 2016Menezes, B.R.F., R.F. Daher, G.A. Gravina, A.T. Amaral Junior, A.V. Oliveira, L.S.A. Schneider, V.B. Silva. (2016) Selection of elephant grass genotypes (Pennisetum purpureum) using the REML/BLUP methodology. Rev. Ciencias Agrar., 39: pp. 360-365. https://doi.org/10.19084/RCA15073
https://doi.org/10.19084/RCA15073...
). Afterward, the samples were ground using a Wiley mill with a 5 mm sieve and packed in plastic bags to determine the oven-dried weight (ODW). For ODW determination, 2 g of each ground material were kept in an oven at 105 °C for 18 h and then weighed again.

Dry matter yield was measured based on the performance of each plot. The plants were harvested for evaluation on four occasions: twice during the summer (rainy season) and twice during the winter (dry season). Hence, a total of 40 elephant grass genotypes were evaluated across four harvesting seasons between 2016 and 2019.

Adaptability and stability analysis via mixed models

The analysis of deviance, estimation of genetic parameters, prediction of gains, and assessment of repeatability, adaptability, and stability of genotypes were carried out for the aforementioned traits. Following the model proposed by Viana and Resende (2014)Resende, M.A.V., Freitas, J.A.de, Lanza, M.A., Resende, M.D.V. de., Azevedo, C.F. (2014) Divergência genética e índice de seleção via BLUP em acessos de algodoeiro para características tecnológicas da fibra. Pesquisa Agropecuária Tropical, 44:p.334-340. https://doi.org/10.1590/S1983-40632014000300006.
https://doi.org/10.1590/S1983-4063201400...
, the analysis of deviance was performed as follows:

D = 2 l n ( L ) (1)
l n ( L ) = 1 21 n | X V 1 X | 1 21 n | V | 1 2 ( y X m ) V 1 ( y X m ) (2)

where ln(L) is the maximum point of the restricted maximum likelihood logarithm function (REML); y is the vector of the analyzed variable; m is the vector of observation effects, considered fixed; X is the incidence matrix of fixed effects; and V is the variance-covariance matrix of y.

The statistical LRT (likelihood ratio test) was used for testing the significance of the effects, as shown below:

L R T = | 21 n L we + 21 n L f m | (3)

where Lwe is the maximum point of the maximum likelihood function for the reduced model (without the effects) and Lfm is the maximum point of the maximum likelihood function for the full model. Variables were analyzed by Selegen-REML/BLUP software (Resende 2016Resende, M.D.V. (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16, 330 -339. https://doi.org/10.1590/1984-70332016v16n4a49
https://doi.org/10.1590/1984-70332016v16...
), which was used to obtain the components of variance by the restricted maximum likelihood (REML), and the individual genotypic values using the best linear unbiased predictor (BLUP).

To investigate the genotype x environment interaction, adaptability and stability analyses were combined using the REML/BLUP mixed model in Selegen-REML/BLUP software (Resende 2016Resende, M.D.V. (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16, 330 -339. https://doi.org/10.1590/1984-70332016v16n4a49
https://doi.org/10.1590/1984-70332016v16...
). The present study adopted the statistical model no 55. This model consists of the evaluation in a single location across several harvests, in a complete block design with temporal stability and adaptability (HMRPGV method).

It is noteworthy that Resende (2009)Resende, M.D.V. (2009) Genética Biométrica e Estatística no Melhoramento de Plantas Perenes. Embrapa. 975p. developed the Selegen-REML/BLUP (Statistical System and Computerized Genetic Selection via Mixed Linear Models) software with the aim of enhancing genetic selection methodologies through the statistical analysis of field experimental data. The REML/BLUP procedure is currently regarded as the optimal selection approach in plant breeding. It enables the adjustment of a wide range of models, including complex ones, to suit the characteristics of the study population. Furthermore, it is easy access and facilitates efficient handling of various typical situations encountered in plant breeding, making it highly accessible and interpretable (Resende 2009Resende, M.D.V. (2009) Genética Biométrica e Estatística no Melhoramento de Plantas Perenes. Embrapa. 975p.; Viana and Resende 2014Resende, M.A.V., Freitas, J.A.de, Lanza, M.A., Resende, M.D.V. de., Azevedo, C.F. (2014) Divergência genética e índice de seleção via BLUP em acessos de algodoeiro para características tecnológicas da fibra. Pesquisa Agropecuária Tropical, 44:p.334-340. https://doi.org/10.1590/S1983-40632014000300006.
https://doi.org/10.1590/S1983-4063201400...
).

This model is applied to an experiment with a Complete Block design with Temporal Stability and Adaptability (HMRPGV method), with evaluation in a single location across several harvests:

y = X m + Z g + W p + T i + e (4)

where y is the vector of data, m is the vector of the measurement-replication combinations effects (assumed as fixed) added to the overall mean, g is the vector of genotypic effects (assumed as random), p is the vector of permanent environmental effects (plots, in this case) (random), i is the vector of the genotype x measurement interaction effects, and e is the vector of errors or residuals (random). The uppercase letters represent the incidence matrices for the aforementioned effects. Vector m comprises all the measurements across all replications and adjusts simultaneously for the effects of replications, measurement, and replication x measurement interaction.

The distributions and structures of means (E) and variances (Var) were assumed as shown next:

E   [ y g p i e ] = [ X m 0 0 0 0 ] ;   V a r   [ g p i e ] = [ I σ g 2 0 0 0 0 I σ p 2 0 0 0 0 I σ i 2 0 0 0 0 I σ e 2 ] (5)

The adjustment of the mixed model equation was obtained from the following equations:

[ X X X Z X W X T Z X Z Z + I λ 1 Z W Z T W X W Z W W + I λ 2 W T T X T Z T W T T + I λ 3 ] X [ g ^ p ^ ı ^ ] = [ Z y W y T y ] (6)

The following parameters were estimated: Vg: genotypic variance; Vperm: permanent environmental variance; Vgm: genotype x measurement interaction variance; Ve: temporary residual variance; and Vp: individual phenotypic variance.

where λ1=σe2σg2=(1hg2ha2)hg2; λ2=σe2σperm 2=(1hg2cperm2)cperm 2; λ3=σe2σgm2=(1hg2cgm2)cgm2; denote hg2=σg2σg2+σperm 2+σgm2+σe2, broad-sense heritability of individual plot; hg2=σg2σg2+σperm 2+σgm2+σe2, mean heritability of genotypes; r^ gmed=σgm2σg2+σgm2=hg2hg2+cgm2, genotypic correlation through measurements (harvests); r^gg=hmg2, accuracy of genotype selection; cperm 2=σperm 2σg2+σperm 2+σe2, coefficient of determination of permanent environmental effects; cgm2=σgm2σg2+σgm2+σe2, coefficient of determination of the genotype x measurement interaction effects (harvests); r=σg2+σperm2σp2, repeatability at the plot level; and overall mean of the experiment.

The phenotypic observations at four harvesting times were considered to estimate the adaptability and stability of different grass genotypes. The selection of the superior genotypes was based on the harmonic mean of the relative performance of genetic predicted value (HMRPGV), using the following strategies: selection based on the predicted genetic value, considering the mean performance in all crops (no interaction effect); selection based on the predicted genotypic value, considering the performance of the genotypes at each harvest (with interaction effect); and simultaneous selection for production, stability (HMGV) and adaptability (RPGV).

The stability estimation was obtained by the harmonic mean of the genetic values (HMGV) method using the estimator:

H M G V = n Σ j = 1 n 1 V g i j (7)

where n represents the number of environments or cutting seasons (n=3 cutting seasons), i is the evaluated genotype, and Vgij is the genotypic value i in environment j.

Adaptability was measured by the relative performance of genetic values (RPGV), using the expression below:

R P G V = 1 n x Σ j = 1 n V g i j M j (8)

where Mj is the mean of the analyzed variable (dry matter yield), in environment j.

The HMRPGV method was used to select the best individuals within each progeny that stood out, based on three aspects: selection based on the predicted genetic value, considering the mean performance in all harvesting seasons (with no interaction effect); selection based on the predicted genetic value, considering the mean performance in each harvesting season (with the mean interaction effect) and without the interaction effect; and simultaneous selection for production, stability (HMGV), and adaptability (RPGV). This joint selection is given by:

H M R P G V = n / Σ j = 1 n x 1 V g i j (9)

where n represents the number of environments or harvesting seasons (n=3 harvesting seasons) and Vgij is the value of genotype i in environment j, expressed as a proportion of the mean in that environment (Viana and Resende 2014Resende, M.A.V., Freitas, J.A.de, Lanza, M.A., Resende, M.D.V. de., Azevedo, C.F. (2014) Divergência genética e índice de seleção via BLUP em acessos de algodoeiro para características tecnológicas da fibra. Pesquisa Agropecuária Tropical, 44:p.334-340. https://doi.org/10.1590/S1983-40632014000300006.
https://doi.org/10.1590/S1983-4063201400...
).

SELEGEN software was used for the REML/BLUP approach as well as for adaptability and stability (Resende 2016Resende, M.D.V. (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16, 330 -339. https://doi.org/10.1590/1984-70332016v16n4a49
https://doi.org/10.1590/1984-70332016v16...
). Individuals were ranked according to the genotypic values found. From these values, the selection was applied for the most promising genotypes for each trait at the four harvests.

RESULTS AND DISCUSSION

Analysis of deviance revealed that the genotypes had significant effects on dry matter yield (Table 2), indicating variability between the evaluated genotypes. This suggests the potential for genetic gain through the selection of superior individuals with respect to this trait.

Table 2
Analysis of deviance for the dry matter yield trait in elephant grass genotypes evaluated at four harvests (Universidade Estadual do Norte Fluminense Darcy Ribeiro, municipality of Campos dos Goytacazes, RJ, Brazil, 2022).

The genotype x measurement interaction effects were highly significant. This result can be attributed to environmental factors, which confirmed the significance of the genotype x measurement interaction. Since these traits are quantitative and governed by multiple genes and environmental conditions, such an interaction was expected (Ambrósio et al. 2021Ambrósio, M., Viana, A.P., Ribeiro, R.M., Preisigke, S.C., Cavalcante, N.R., Silva, F.A., Torres, G. X. and Sousa, C.M.B. (2021) Genotypic superiority of Psidium Guajava S1 families using mixed modeling for truncated and simultaneous selection. Sciencia Agricola, 78, e20190179. https://doi.org/10.1590/1678-992X-2019-0179
https://doi.org/10.1590/1678-992X-2019-0...
; Vidal et al. 2022Vidal, A.K.F., Daher, R.F., Freitas, R.S., Stida, W.F., Ambrósio, M., Santana, J.G.S., Souza, A.G., Gravina, G.A., Vivas, M. and Amaral Junior, A.T. (2022). Simultaneous selection for yield, adaptability and stability and repeatability coefficient in full-sib families of elephant grass for energy purposes via mixed models. Euphytica, 218,161. https://doi.org/10.1007/s10681-022-03092-y
https://doi.org/10.1007/s10681-022-03092...
). The variation in precipitation between harvests resulted in varying yields at each harvest, exposing the plants to different environmental conditions. Consequently, the phenotypic expression of the traits varied across the different harvests, leading to a significant genotype x harvest interaction (Pereira et al. 2013Pereira, T. B., Carvalho, J. P. F, Botelho, C. E., Resende, M. D. V., Juliana Costa de Rezende, J. C. and Mendes, A. N. G. (2013). Selection efciency of F4 cofee progenies by mixed model methodology (REML/BLUP). Bragantia 72, 230–236. https://doi.org/10.1590/brag.2013.031
https://doi.org/10.1590/brag.2013.031...
).

This presents challenges in selection, as there is limited consistency among the best-performing genotypes in the evaluated harvests. To address this issue, a model that considers the genotype x harvest interaction is required to accurately recommend promising genotypes. The REML/BLUP methodology used in this study offers several advantages in this regard. It allows for the comparison of individuals or varieties across time (generations, years) and space (locations, blocks), simultaneous correction for environmental effects, estimation of variance components, and prediction of genetic values. Additionally, it can handle complex data structures, such as repeated measurements, different years, locations, and non-orthogonal designs and is particularly useful when dealing with unbalanced data (Viana and Resende 2014Viana, A. P., Resende, M. D. V. (2014). Genética quantitativa do melhoramento de fruteiras. Rio de Janeiro: Interciência.).

The analysis of variance components revealed the breakdown of individual phenotypic variance into genotypic variance, variance of genotype x measurement interaction, variance of permanent effects, and temporary residual variance. Notably, for the dry matter yield variable, genetic variance made a relatively small contribution (8.9421), while environmental effects, particularly temporary residual variance (27.7699), were predominant. This suggests a strong influence of environmental conditions on the trait, supported by the low broad-sense heritability at the individual level (Table 3). Nevertheless, the identified genetic variance (Vg) signifies a considerable genetic variability that can be leveraged for selection purposes. As elucidated by Cruz et al. (2012)Cruz, C.D., Regazzi A.J. and Carneiro, P.C.S. (2012). Modelos biométricos aplicados ao melhoramento genético. v.1, 4.ed. Editora UFV, Viçosa., lower genetic variance coupled with greater environmental effects leads to reduced trait heritability, as demonstrated by our results. Consequently, the expression of the trait is complex due to the involvement of numerous segregating loci that control it, while simultaneously being influenced by environmental effects. Therefore, comprehending the inheritance patterns and determinant components of trait variation is pivotal in the study of quantitative traits.

Table 3
Variance components as obtained by individual REML for the dry matter yield trait in elephant grass genotypes evaluated at four harvests (Universidade Estadual do Norte Fluminense Darcy Ribeiro, municipality of Campos dos Goytacazes, RJ, Brazil, 2023).

The obtained broad-sense heritability at the individual level for the dry matter yield variable was 0.15. At the genotype-mean level, a heritability value of 0.45 was observed. According to Resende (2016)Resende, M.D.V. (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16, 330 -339. https://doi.org/10.1590/1984-70332016v16n4a49
https://doi.org/10.1590/1984-70332016v16...
, heritability can be classified into low magnitude (h < 0.15), medium magnitude (0.15 < h < 0.50), and high magnitude (h > 0.50). In this study, the identified heritability values were considered to be of low and medium magnitude for the individual level and genotype-mean level, respectively. However, it is important to note that low and medium magnitude heritability values are expected, particularly for quantitative traits in perennial species that are susceptible to climatic variations over time. Resende (2016)Resende, M.D.V. (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16, 330 -339. https://doi.org/10.1590/1984-70332016v16n4a49
https://doi.org/10.1590/1984-70332016v16...
highlights that low magnitude individual heritability is common for quantitative traits. Moreover, the utilization of mixed models for selection procedures in this study is justified since favorable genetic gains can be predicted even for traits with low heritability, and the genotypes under investigation possess selection potential.

The repeatability coefficient of the trait of interest enables the assessment of the time and labor required for the selection of genetically superior individuals. In this study, the repeatability at the plot level yielded low results (0.255), indicating that multiple repetitions will be necessary to achieve a satisfactory determination value. Additionally, the coefficient of determination of permanent effects (0.1052) suggests reduced environmental variability between plots.

For the purpose of selection, the 40 individuals were ranked and selected based on the evaluated trait (Table 4). The predicted genetic gains and the new estimated mean varied depending on the type of gain targeted in relation to the overall mean of the trait. Notably, the selection of genotypes for the agronomic trait yielded significant gains through individual BLUP estimates.

Table 4
Predicted genetic gain for dry matter yield considering the mean performance at four harvests (Universidade Estadual do Norte Fluminense Darcy Ribeiro, municipality of Campos dos Goytacazes, RJ, Brazil, 2023).

In previous studies on sugarcane, the mixed models methodology has been employed to select superior genotypes for biomass production (Lucius 2014Lucius, A. S. F., Oliveira, R. A., Daros, E., Zambon, J. L. C., Bespalhok Filho, J. C.; M. and Verissimo, A. A.O. (2014). Desempenho de famílias de cana-de-açúcar em diferentes fases no melhoramento genético via REML/BLUP. Semina: Ciências Agrárias, 35, 101-112. https://doi.org/10.5433/1679-0359.2014v35n1p101
https://doi.org/10.5433/1679-0359.2014v3...
; Oliveira et al. 2008Oliveira, R. A., Daros, E., Bespalhok Filho, J. C., Zambon, J. L. C., Ido, O. T., Weber, H.M.D.V. and Zeni Neto, H. (2008). Seleção de famílias de cana-de-açúcar via modelos mistos. Scientia agraria, 9, 269-274. [Accessed Dec. 17, 2022]. Available at: https://www.redalyc.org/pdf/995/99516777001.pdf
https://www.redalyc.org/pdf/995/99516777...
; 2011Oliveira, R. A., Daros, E., Resende, M. D. V., Bespalhok-Filho, J. C., Zambon, J. L. C., Souza, T. R. and Lucius, A. S. F. (2011). Procedimento Blupis e seleção massal em cana-de-açúcar. Bragantia, 70, 796-800. https://doi.org/10.1590/S0006-87052011000400010
https://doi.org/10.1590/S0006-8705201100...
; Xavier et al. 2014Xavier, M. A., Perecin, D., Alvim, K. R. D. T., LandelL, M. G. D. A. and Arantes, F. C. (2014). Selecting families and full-sib progenies of sugarcane for technological attributes and production by the method of REML/BLUP. Bragantia, 73, 253-262. https://doi.org/10.1590/1678-4499.0193
https://doi.org/10.1590/1678-4499.0193...
). These studies have shown that selecting genotypes with genotypic values above the experimental mean can lead to substantial gains in sugarcane yield per hectare. Furthermore, using the REML/BLUP mixed models approach enables the identification of genotypes with high genotypic values, increasing the likelihood of selecting potential clones.

Although studies on elephant grass are limited, it is worth mentioning the work of Silva et al. (2020)Silva, V.B., Daher, R.F. and Souza Y.P. (2020). Assessment of energy production in full-sibling families of elephant grass by mixed models. Renew Energy, 146, 744–749. https://doi.org/10.1016/j.renene.2019.06.152
https://doi.org/10.1016/j.renene.2019.06...
, who selected segregating plants for cloning elephant grass for energy production using REML/BLUP. The results identified 18 potential plants with the highest gain in dry matter yield, particularly progenies from the IJ7139 x Cameroon family showing notable gains in dry matter and neutral detergent fiber production.

Regarding the most promising genotypes, satisfactory predicted genetic gains were observed for dry matter yield (ranging from 3.8% to 0.1%). All individuals evaluated (100%) exhibited new means that surpassed the overall mean (22.0981) for the evaluated trait, indicating a high probability of finding promising new genotypes. Consequently, successful selection can be achieved when focusing on this trait.

Genotypes 17, 18, 36, 32, 16, 31, 15, 6, and 10 displayed the highest values of genetic gain, indicating their potential for selection. Notably, the production of dry biomass is a crucial trait when aiming to increase bioenergy production. Therefore, selecting a larger number of superior genotypes for biomass production is important as it enhances the probability of identifying individuals with superior bioenergy production potential.

The individual selection of these promising varieties led to the acquisition of significant gains. Consequently, the selected individuals are suitable for advancing elephant grass breeding to develop superior cultivars specifically for macro-regions with environmental conditions similar to those of the north and northwest regions of the state of Rio de Janeiro, Brazil. These selected varieties can serve as parents in new crosses or self-pollinations, contributing to ongoing breeding programs. Additionally, they can be cloned for VCU trials with the goal of releasing a new elephant grass cultivar for energy purposes.

It is worth emphasizing that these selected genotypes exhibited superior performance consistently across assessment harvests. This stability is advantageous considering that elephant grass, like other forage plants, is subject to seasonal variations (Cunha et al. 2011Cunha, M.V., Lira, M. A., Santos, M.V.F., Freitas, E.V., Dubeux Junior, J.C.B., Mello, A.C.L. and Martins, K.G.R. (2011). Associação entre características morfológicas e produtivas na seleção de clones de capimelefante. Revista Brasileira de Zootecnia, 40, 482–488. https://doi.org/10.1590/S1516-35982011000300004
https://doi.org/10.1590/S1516-3598201100...
), resulting in fluctuations in yield throughout the year. With the possibility of harvesting twice per year, it is desirable to select genotypes that exhibit stable dry biomass production across the harvests.

Regarding the difference between the highest (25.9665) and the lowest (22.0982) new mean in the genotype ranking, there is a small amplitude for the trait. This narrow range is due to the compression of predicted means caused by REML/BLUP, which reduces the differences between genotypes, making them primarily attributable to genetic rather than environmental effects (Resende 2016Resende, M.D.V. (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16, 330 -339. https://doi.org/10.1590/1984-70332016v16n4a49
https://doi.org/10.1590/1984-70332016v16...
).

Elephant grass undergoes multiple harvests during periodic evaluations, allowing for the identification of clones with high stability, adaptability, and suitability for energy production. Therefore, in terms of stability and phenotypic adaptability analysis, there is a consensus in the ranking of the most productive genotypes based on adaptability (RPGV), stability (HMGV), and both criteria simultaneously (HMRPGV) (Resende 2016Resende, M.D.V. (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16, 330 -339. https://doi.org/10.1590/1984-70332016v16n4a49
https://doi.org/10.1590/1984-70332016v16...
; Neto et al. 2021).

In the stability analysis, genotypes 18, 17, 32, 36, 16, 6, 34, 15, 40, and 31 were found to be the most stable (Table 5). The harmonic mean of genotypic values (HMGV) simultaneously evaluates stability and productivity. Therefore, selection based on HMGV takes into account both attributes. By penalizing instability when genotypes are evaluated in different locations, the resulting new mean is adjusted accordingly. This approach ensures greater precision and accuracy in ranking genotypes within and between locations. Moreover, HMGV values represent the productivity values themselves, penalized for instability, which facilitates the selection of productive and stable genotypes. Considering the greater climatic instability and soil heterogeneity in tropical conditions, recommended cultivars should combine productivity and stability. Thus, the HMGV criterion fulfills these two premises of an ideal cultivar (Borges et al. 2010Borges, V., Soares, A. A., Reis, M. S., Resende, M. D. V., Cornélio, V. M. O., Leite, N. A. and Vieira, A. R. (2010). Desempenho genotípico de linhagens de arroz de terras altas utilizando metodologia de modelos mistos. Bragantia, 69, 833-842. https://doi.org/10.1590/S0100-204X2012000200010
https://doi.org/10.1590/S0100-204X201200...
).

Adaptability refers to the ability of genotypes to respond advantageously to improved environmental conditions (Mariotti et al. 1976Mariotti, J. A., Oyarzabal, E. S., Osa, J. M.; Bulacio, A. N. R. and Almada, G. H. (1976). Analisis de estabilidad y adaptabilidad de genótipos de caña de azucar. Revista Agronomica del Noroeste Argentino, 13, 105-27.), making it a highly valuable trait sought after by breeders for new cultivars. In this context, genotypes 18, 17, 36, 32, 16, 6, 15, 31, 34, and 27 demonstrated greater phenotypic stability, indicating a reduced contribution to genotype × harvest interaction. These genotypes displayed higher genotypic adaptability associated with productivity, showing a favorable response to improved environments.

Table 5
Genotype x mean environment interaction (u+g+gem), stability of genotypic values (HMGV), adaptability of genotypic values (RPGV), and stability and adaptability of genotypic values (HMRPGV) for dry matter yield in elephant grass from the evaluation of 40 genotypes cultivated in four harvesting seasons (Universidade Estadual do Norte Fluminense Darcy Ribeiro, municipality of Campos dos Goytacazes, RJ, Brazil, 2023).

Genotypes 17, 18, 32, 16, 36, 6, 15, 31, and 34 exhibited both adaptability and stability, along with high dry matter yield, consistently across different harvests. These results suggest that the most productive genotypes also demonstrate stable responses and greater adaptability, particularly among the first nine genotypes selected. Therefore, the harmonic mean of the relative performance of predicted genotypic values (HMRPGV) method, based on predicted genotypic values using mixed models, integrates stability, adaptability, and productivity into a single statistic, facilitating the selection of superior genotypes (Borges et al. 2010Borges, V., Soares, A. A., Reis, M. S., Resende, M. D. V., Cornélio, V. M. O., Leite, N. A. and Vieira, A. R. (2010). Desempenho genotípico de linhagens de arroz de terras altas utilizando metodologia de modelos mistos. Bragantia, 69, 833-842. https://doi.org/10.1590/S0100-204X2012000200010
https://doi.org/10.1590/S0100-204X201200...
; Regitano Neto et al. 2013Regitano Neto, A., Ramos Júnior, E. U., Gallo, P. B., Freitas, J. G. and Azzini, L. E. (2013) Behavior of upland rice genotypes in the State of São Paulo, Brazil. Agronomic Science Magazine, 44, 512-519. http://doi.org/10.1590/S1806-66902013000300013
https://doi.org/10.1590/S1806-6690201300...
).

It is worth highlighting that the HMGV, RPGV, and HMRPGV methods, as noted by Pinto Júnior et al. (2006)Pinto Júnior, J. E., Sturion, J. A., Resende, M. D. V. and Ronzelli Júnior, P. (2006) Avaliação simultânea de produtividade, adaptabilidade e estabilidade genotípica de Eucalyptus grandis em distintos ambientes do estado de São Paulo. Boletim de Pesquisa Florestal, 53, 79-108. [Accessed Dec. 17, 2022]. Available at: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPF-2009-09/42060/1/BPF_53_p79-108.pdf
https://ainfo.cnptia.embrapa.br/digital/...
, Resende (2007)Resende, M.D. V. (2007). Matemática e estatística na análise de experimentos e no melhoramento genético. Colombo: Embrapa Florestas., and Resende (2016)Resende, M.D.V. (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16, 330 -339. https://doi.org/10.1590/1984-70332016v16n4a49
https://doi.org/10.1590/1984-70332016v16...
, are consistent in ranking genetic materials. These selection criteria contribute to the refinement of selection processes and provide reliable predictions of genetic values while considering productivity, stability, and adaptability (Streck et al. 2019Streck, E. A., de Júnior, A. M., & Aguiar, G. A. (2019). Genotypic performance, adaptability and stability in special types of irrigated rice using mixed models. Revista Ciencia Agronomica 50: 66–75. https://doi.org/10.5935/1806-6690.20190008
https://doi.org/10.5935/1806-6690.201900...
). The corresponding HMRPGV values indicate the superiority of genotypes in relation to the mean of the environment in which they are grown, offering an estimate of expected productivity (Resende 2009Resende, M.D.V. (2009) Genética Biométrica e Estatística no Melhoramento de Plantas Perenes. Embrapa. 975p.). Such estimates are useful for planting in multiple locations with varying genotype-environment interaction patterns.

In a study involving full-sib families of elephant grass, Vidal et al. (2022)Vidal, A.K.F., Daher, R.F., Freitas, R.S., Stida, W.F., Ambrósio, M., Santana, J.G.S., Souza, A.G., Gravina, G.A., Vivas, M. and Amaral Junior, A.T. (2022). Simultaneous selection for yield, adaptability and stability and repeatability coefficient in full-sib families of elephant grass for energy purposes via mixed models. Euphytica, 218,161. https://doi.org/10.1007/s10681-022-03092-y
https://doi.org/10.1007/s10681-022-03092...
observed agreement between the HMGV, RPGV, and HMRPGV statistics in selecting the most productive, adaptable, and stable genotypes. The selected families were considered genetically superior due to their high productive potential, adaptability, and genotypic stability. These selected individuals can contribute to the advancement of elephant grass breeding, specifically targeting the development of superior cultivars for the north and northwest regions of the state of Rio de Janeiro.

Atroch et al. (2013)Atroch, A. L, Nascimento, F. J., Resende, M. D. V. (2013). Seleção genética simultânea de progênies de guaranazeiro para produção, adaptabilidade e estabilidade temporal. Revista Ciências Agrárias, 56, 347–352. https://doi.org/10.4322/rca.2013.052
https://doi.org/10.4322/rca.2013.052...
, Ambrósio et al. (2021)Ambrósio, M., Viana, A.P., Ribeiro, R.M., Preisigke, S.C., Cavalcante, N.R., Silva, F.A., Torres, G. X. and Sousa, C.M.B. (2021) Genotypic superiority of Psidium Guajava S1 families using mixed modeling for truncated and simultaneous selection. Sciencia Agricola, 78, e20190179. https://doi.org/10.1590/1678-992X-2019-0179
https://doi.org/10.1590/1678-992X-2019-0...
, Carvalho et al. (2020)Carvalho, I. R., Szareski, V. J., Silva, J. A. G., Nunes, A. C. P., Rosa, T. C., Barbosa, M. H., Magano, D. A., Conte, G. G., Caron, B. O. and Souza, V. Q. (2020). Multivariate best linear unbiased predictor as a tool to improve multi-trait selection in sugarcane. Pesquisa Agropecuária Brasileira, 55, 1–8. https://doi.org/10.1590/S1678-3921.pab2020.v55.00518
https://doi.org/10.1590/S1678-3921.pab20...
, Ambrósio et al. (2023)Ambrósio, M., Viana, A. P., Cavalcante, N. R., Preisigke, S.C., Santana, J. G. S. and Crevelari, J.A. (2023). Coefficient of repeatability, stability, and adaptability estimates for Psidium guajava S1 progenies via mixed models. Revista Brasileira de Fruticultura, 45, 1-15. https://doi.org/10.1590/0100-29452023502
https://doi.org/10.1590/0100-29452023502...
and Vidal et al. (2022Vidal, A.K.F., Daher, R.F., Freitas, R.S., Stida, W.F., Ambrósio, M., Santana, J.G.S., Souza, A.G., Gravina, G.A., Vivas, M. and Amaral Junior, A.T. (2022). Simultaneous selection for yield, adaptability and stability and repeatability coefficient in full-sib families of elephant grass for energy purposes via mixed models. Euphytica, 218,161. https://doi.org/10.1007/s10681-022-03092-y
https://doi.org/10.1007/s10681-022-03092...
; 2023a)Vidal, A.K.F., Daher, R.F., Freitas, R.S., et al. (2023a) Estimation of repeatability and genotypic superiority of elephant grass half-sib families for energy purposes using mixed models. Scientia Agricola, 80, 1-10, 2023. https://doi.org/10.1590/1678-992x-2022-0103
https://doi.org/10.1590/1678-992x-2022-0...
emphasized that stability, adaptability, and yield (HMRPGV) should be the primary criteria for selecting the best genotypes/varieties/progenies. Therefore, characterizing elephant grass genotypes based on their patterns of adaptability and stability after the selection process for dry matter yield capacity is crucial for selecting genotypes to continue the breeding program. Based on the patterns of adaptability, stability, and productivity, superior genotypes can be identified for the development of full-sib, half-sib, and inbred families, thus ensuring the progress of the ongoing breeding program.

Furthermore, the results obtained in this study indicate that it is possible to utilize elephant grass as a bioenergetic plant. The varieties of elephant grass showed high dry matter production, which can be exploited for direct biomass combustion. Consequently, this biomass can be employed for direct combustion, generating energy in a more sustainable manner compared to fossil fuels. Moreover, cultivating elephant grass for this purpose presents environmental benefits, as its combustion releases carbon neutrally and contributes to efficient land use, as it can thrive in diverse conditions without competing with food crops. This approach holds significant potential to drive the global transition to cleaner and renewable energy sources.

CONCLUSION

The implementation of mixed models to estimate the harmonic mean of genotypic values successfully enabled the identification of genotypes that exhibited both stability and adaptability, while also displaying higher yield.

Specifically, genotypes/varieties 17, 18, 32, 16, 36, 6, 15, 31, and 34 demonstrated remarkable adaptability, stability, and notably high dry matter yield across multiple harvests. These findings highlight the prevalence of these desirable attributes in these genotypes/varieties.

The superior genotypes/varieties can be used to obtain full-sib, half-sib, and inbred families, allowing the continuity of the program under development.

  • 1
    Woodard, K.R., L.E. Sollenberger Production of Biofuel Crops in Florida: Elephant grass SS-AGR-297, Agronomy Department, University of Florida UF)/Institute of Food and Agricultural Sciences (IFAS) Extension, Gainesville, Florida, USA (2015) Available at: https://edis.ifas.ufl.edu/ag302.

ACKNOWLEDGMENTS

The authors thank the FAPERJ, CAPES, and CNPq, for the financial support to this experiment.

  • How to cite: Ambrósio, M., Daher, R. F., Santana J. G. S., Gonçalves Júnior D. H., Leite C. L., Vidal A. K. F., Nascimento M. R., Freitas, R. S., Souza, A. G., Stida, W. F., Santos, R. M. and Farias, J. E. C. (2023). Adaptability and stability via mixed models in elephant-grass (Cenchrus purpureus (Schumach.) Morrone) varieties for energy purposes. Bragantia, 82, e20230150. https://doi.org/10.1590/1678-4499.20230150
  • FUNDING

    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
    https://doi.org/10.13039/501100002322
    Finance code: 001

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on request from the corresponding author.

REFERENCES

  • Almeida, D. L., Santos, G. A., Depolli, H., Cunha, L. H., Freire, L. R., Amaral Sobrinho, N. M. B., Pereira, N. N. C., Eira, P. A., Blaise, R. M. and Salek, R. C. (1998). Manual de adubação para o Estado do Rio de Janeiro. Itaguaí: Editora Universidade Rural.
  • Alves, F. G. S., Silva, S. F., Santos, F. N. S. and Carneiro, M. S. S. (2018). Elephant Grass: a Bioenergetic Resource. Nucleus Animalium. 10, 117–130. https://doi.org/10.3738/21751463.3032
    » https://doi.org/10.3738/21751463.3032
  • Ambrósio, M., Viana, A.P., Ribeiro, R.M., Preisigke, S.C., Cavalcante, N.R., Silva, F.A., Torres, G. X. and Sousa, C.M.B. (2021) Genotypic superiority of Psidium Guajava S1 families using mixed modeling for truncated and simultaneous selection. Sciencia Agricola, 78, e20190179. https://doi.org/10.1590/1678-992X-2019-0179
    » https://doi.org/10.1590/1678-992X-2019-0179
  • Ambrósio, M., Viana, A. P., Cavalcante, N. R., Preisigke, S.C., Santana, J. G. S. and Crevelari, J.A. (2023). Coefficient of repeatability, stability, and adaptability estimates for Psidium guajava S1 progenies via mixed models. Revista Brasileira de Fruticultura, 45, 1-15. https://doi.org/10.1590/0100-29452023502
    » https://doi.org/10.1590/0100-29452023502
  • Atroch, A. L, Nascimento, F. J., Resende, M. D. V. (2013). Seleção genética simultânea de progênies de guaranazeiro para produção, adaptabilidade e estabilidade temporal. Revista Ciências Agrárias, 56, 347–352. https://doi.org/10.4322/rca.2013.052
    » https://doi.org/10.4322/rca.2013.052
  • Bastos, I. T., Barbosa, M. H. P., Resende, M. D. V., Peternelii, L. A., Silveira, L. C. I., Donda, L. R., Fortunato, A. A., Costa, P. M. A. and Figueiredo, I. C. R. (2007). Avaliação da interação genótipo × ambiente em cana-de-açúcar via modelos mistos. Pesquisa Agropecuária Tropical, 37, 195-203. [Accessed Dec. 17, 2022]. Available at: https://revistas.ufg.br/pat/article/view/3077
    » https://revistas.ufg.br/pat/article/view/3077
  • Borges, V., Soares, A. A., Reis, M. S., Resende, M. D. V., Cornélio, V. M. O., Leite, N. A. and Vieira, A. R. (2010). Desempenho genotípico de linhagens de arroz de terras altas utilizando metodologia de modelos mistos. Bragantia, 69, 833-842. https://doi.org/10.1590/S0100-204X2012000200010
    » https://doi.org/10.1590/S0100-204X2012000200010
  • Borges, S., Aquino, F. C., Evangelista, A. M. (2016). Potencial do capim elefante para geração de bioenergia – revisão. Nutritime Revista Eletrônica, 13, 4518-4523. [Accessed Dec. 17, 2022]. Available at: https://nutritime.com.br/wp-content/uploads/2020/02/Artigo-356.pdf
    » https://nutritime.com.br/wp-content/uploads/2020/02/Artigo-356.pdf
  • Carbonell, S. A. M., Chioratto, A. F., Resende, M. D. V., Dias, L. A. S., Beraldo, A. L. A. and Perina, E. F. (2007). Estabilidade de cultivares e linhagens de feijoeiro em diferentes ambientes no Estado de São Paulo. Bragantia, 66, 193-201. http://doi.org/10.1590/S0006-87052007000200003
    » https://doi.org/10.1590/S0006-87052007000200003
  • Carvalho, I. R., Szareski, V. J., Silva, J. A. G., Nunes, A. C. P., Rosa, T. C., Barbosa, M. H., Magano, D. A., Conte, G. G., Caron, B. O. and Souza, V. Q. (2020). Multivariate best linear unbiased predictor as a tool to improve multi-trait selection in sugarcane. Pesquisa Agropecuária Brasileira, 55, 1–8. https://doi.org/10.1590/S1678-3921.pab2020.v55.00518
    » https://doi.org/10.1590/S1678-3921.pab2020.v55.00518
  • Cavalcante, M., Lira, M.D.A., Santos, M.V.F., Pita, E.B.A.F., Ferreira, R.L.C. and Tabosa, J.N. (2012). Coeficiente de repetibilidade e parâmetros genéticos em capim-elefante. Pesqui. Agropecu. Bras. 47, 569–575. https://doi.org/10.1590/S0100-204X2012000400013
    » https://doi.org/10.1590/S0100-204X2012000400013
  • Cruz, C.D., Regazzi A.J. and Carneiro, P.C.S. (2012). Modelos biométricos aplicados ao melhoramento genético. v.1, 4.ed. Editora UFV, Viçosa.
  • Cunha, M.V., Lira, M. A., Santos, M.V.F., Freitas, E.V., Dubeux Junior, J.C.B., Mello, A.C.L. and Martins, K.G.R. (2011). Associação entre características morfológicas e produtivas na seleção de clones de capimelefante. Revista Brasileira de Zootecnia, 40, 482–488. https://doi.org/10.1590/S1516-35982011000300004
    » https://doi.org/10.1590/S1516-35982011000300004
  • Daher, R.F., Menezes, B. R. S., Gravina, G. A., Filho, B F.S., Vidal, A.K.F., Stida, W.F., Freitas, R.S., Souza, A.G., Vander, A.P. and Santos, P.R. (2020). Correlations between stability statistics of forage production in elephant grass. Journal of Agricultural Science Archives, 12, 118-128. https://doi.org/10.5539/jas.v12n1p118
    » https://doi.org/10.5539/jas.v12n1p118
  • Emerenciano Neto, J. V., Bezerra, M. G. S., França, A. F., Aguiar, E. M. and Difante, G. S. (2019). Características estruturais e produtivas em híbridos intraespecíficos e interespecíficos de capim-elefante. Ciência Animal Brasileira, 20, 1–11. https://doi.org/10.1590/1809-6891v20e-46788
    » https://doi.org/10.1590/1809-6891v20e-46788
  • Fedenko, J.J., Erickson, K., Woodard, L., Sollenberger , J.B. and Vendramini, R.A. (2013). Produção de biomassa e composição de gramíneas perenes cultivadas para bioenergia em um clima subtropical na Flórida, EUA. BioEnergy Research, 6, 1082-1093. https://doi.org/10.1007/s12155-013-9342-3
    » https://doi.org/10.1007/s12155-013-9342-3
  • Ferreira, F. M., Bhering, L. L., Fernandes, F. D., Silva Lédo, F. J., Albuquerque Rangel, J. H., Kopp, M., Câmara, T.M.M., Silva, V.Q.R and Machado, J. C. (2021). Optimal harvest number and genotypic evaluation of total dry biomass, stability, and adaptability of elephant grass clones for bioenergy purposes. Biomass and Bioenergy, 149, 106104. https://doi.org/10.1016/j.biombioe.2021.106104
    » https://doi.org/10.1016/j.biombioe.2021.106104
  • Ferreira, F. M., Leite, R. V., Malikouski, R. G., Peixoto, M. A., Bernardeli, A., Alves, R. S., Magalhães Júnior, W.C.P., Andrade, R.G., Leonardo Lopes Bhering, L.L, Machado, J. C. (2022). Bioenergy elephant grass genotype selection leveraged by spatial modeling of conventional and high-throughput phenotyping data. Journal of Cleaner Production, 363, 132286. https://doi.org/10.1016/j.jclepro.2022.132286
    » https://doi.org/10.1016/j.jclepro.2022.132286
  • Fontoura, C.F., Brandão, L.E. and Gomes, L.L. (2015). Elephant grass biorefineries: Towards a cleaner Brazilian energy matrix? Journal of Cleaner Production, 96, 85–93. https://doi.org/10.1016/j.jclepro.2014.02.062
    » https://doi.org/10.1016/j.jclepro.2014.02.062
  • Freire, L. R., Campos, D. V. B., Lima, E., Zonta, E., Balieiro, F.C., Guerra, J. G. M., Polidoro, J. C., Anjos, L. H. C., Leal, M. A. A., Pereira, M. G. and Ferreira, M. B. C. (2013). Manual de calagem e adubação do Estado do Rio de Janeiro. Seropédica: Editora Universidade Rural, 430p.
  • Gravina, L. M., Oliveira, T. R. A., Daher, R. F., Gravina, G. A., Vidal, A. K. F., Stida, W. F., Cruz, D. P., Sant’Anna, C. Q. S. S., Rocha, R. S., Pereira, A.V. and Oliveira, G. H. F. (2020). Multivariate analysis in the selection of elephant grass genotypes for biomass production. Renewable Energy, 160, 1265-1268, 2020. https://doi.org/10.1016/j.renene.2020.06.094
    » https://doi.org/10.1016/j.renene.2020.06.094
  • Jaradat, A. A. (2010). Genetic resources of energy crops: biological systems to combat climate change. Australian Journal of Crop Science, 4, 309-323. [Accessed Dec. 17, 2022]. Available at: https://www.researchgate.net/publication/228348083_Genetic_resources_of_energy_crops_Biological_systems_to_combat_climate_change
    » https://www.researchgate.net/publication/228348083_Genetic_resources_of_energy_crops_Biological_systems_to_combat_climate_change
  • Krause, M. D., Dias, K. O. G., Santos, J. P. R., Oliveira, A. A., Guimarães, L. J. M., Pastina, M. M., Margarido, G. R. A. and Garcia, A. A. F. (2020). Boosting predictive ability of tropical maize hybrids via genotype-by-environment interaction under multivariate GBLUP models. Crop Science, 60, 3049-3065. https://doi.org/10.1002/csc2.20253
    » https://doi.org/10.1002/csc2.20253
  • Lucius, A. S. F., Oliveira, R. A., Daros, E., Zambon, J. L. C., Bespalhok Filho, J. C.; M. and Verissimo, A. A.O. (2014). Desempenho de famílias de cana-de-açúcar em diferentes fases no melhoramento genético via REML/BLUP. Semina: Ciências Agrárias, 35, 101-112. https://doi.org/10.5433/1679-0359.2014v35n1p101
    » https://doi.org/10.5433/1679-0359.2014v35n1p101
  • Marafon, A. C., Santiago, A. D., Câmara, T. M. M., Rangel, J. H. A., Amaral, A. F. C., Lédo, F. J. S., Bierhals, A. N. and Paiva, H. L. (2014). Potencial Produtivo e Qualidade da Biomassa de Capim-elefante para fins Energéticos. Aracajú: Embrapa Tabuleiros Costeiros. Circular Técnica, 68. https://doi.org/10.13140/RG.2.1.4150.7361
    » https://doi.org/10.13140/RG.2.1.4150.7361
  • Mariotti, J. A., Oyarzabal, E. S., Osa, J. M.; Bulacio, A. N. R. and Almada, G. H. (1976). Analisis de estabilidad y adaptabilidad de genótipos de caña de azucar. Revista Agronomica del Noroeste Argentino, 13, 105-27.
  • Moreira, M. R., Kastrup, É., Ribeiro, J. M., Carvalho, A. I. D., Braga, A. P. (2020). O Brasil rumo a 2030? Percepções de especialistas brasileiros (as) em saúde sobre o potencial de o País cumprir os ODS Brazil heading to 2030. Saúde em Debate, 43, 22-35. https://doi.org/10.1590/0103-11042019S702
    » https://doi.org/10.1590/0103-11042019S702
  • Menezes, B.R.F., R.F. Daher, G.A. Gravina, A.T. Amaral Junior, A.V. Oliveira, L.S.A. Schneider, V.B. Silva. (2016) Selection of elephant grass genotypes (Pennisetum purpureum) using the REML/BLUP methodology. Rev. Ciencias Agrar., 39: pp. 360-365. https://doi.org/10.19084/RCA15073
    » https://doi.org/10.19084/RCA15073
  • Negreiros, J. R. S., Saraiva, L. L., Oliveira, T. K., Álvares, V. S. and Roncatto, G. (2008) Estimativas de repetibilidade de caracteres de produção em laranjeirasdoces no Acre. Pesquisa Agropecuária Brasileira, 43, 1763-1768. https://doi.org/10.1590/S0100-204X2008001200017
    » https://doi.org/10.1590/S0100-204X2008001200017
  • Regitano Neto, A., Ramos Júnior, E. U., Gallo, P. B., Freitas, J. G. and Azzini, L. E. (2013) Behavior of upland rice genotypes in the State of São Paulo, Brazil. Agronomic Science Magazine, 44, 512-519. http://doi.org/10.1590/S1806-66902013000300013
    » https://doi.org/10.1590/S1806-66902013000300013
  • Oliveira, R. A., Daros, E., Bespalhok Filho, J. C., Zambon, J. L. C., Ido, O. T., Weber, H.M.D.V. and Zeni Neto, H. (2008). Seleção de famílias de cana-de-açúcar via modelos mistos. Scientia agraria, 9, 269-274. [Accessed Dec. 17, 2022]. Available at: https://www.redalyc.org/pdf/995/99516777001.pdf
    » https://www.redalyc.org/pdf/995/99516777001.pdf
  • Oliveira, R. A., Daros, E., Resende, M. D. V., Bespalhok-Filho, J. C., Zambon, J. L. C., Souza, T. R. and Lucius, A. S. F. (2011). Procedimento Blupis e seleção massal em cana-de-açúcar. Bragantia, 70, 796-800. https://doi.org/10.1590/S0006-87052011000400010
    » https://doi.org/10.1590/S0006-87052011000400010
  • Oliveira Neto, S. S., Zeffa, D. M., Ebertz, O. F. and Zanotto, T. M. (2021). Genetic variability, adaptability and, stability of safflower genotypes developed for the Brazilian conditions by REML/BLUP. Agronomy Journal. 113, 4. https://doi.org/10.1002/agj2.20775
    » https://doi.org/10.1002/agj2.20775
  • Paterlini, E. M., Donária, M., Arantes, C., Gomes, F., Vidaurre, G. B., Bauer, M. D. O. and Cabral, J., (2013). Evaluation of elephant grass for energy use. J. Biotechnol. Biodivers, 4, 119–125. [Accessed Dec. 17, 2022]. Available at: file:///C:/Users/Sistemas/Downloads/jbb,+6_paterlini%20(2).pdf
  • Pereira, T. B., Carvalho, J. P. F, Botelho, C. E., Resende, M. D. V., Juliana Costa de Rezende, J. C. and Mendes, A. N. G. (2013). Selection efciency of F4 cofee progenies by mixed model methodology (REML/BLUP). Bragantia 72, 230–236. https://doi.org/10.1590/brag.2013.031
    » https://doi.org/10.1590/brag.2013.031
  • Pereira, A. V., Auad, A. M., Santos, A. M.B. Dos, Mittelmann, A., Gomide, C. A. De M., Martins, C. E., Paciullo, D. S. C., Lédo, F. J. S., Oliveira, J. S. (2021). BRS CAPIAÇU E BRS KURUMI: cultivo e uso. Brasília, DF:Embrapa, 116 p.
  • Pinto Júnior, J. E., Sturion, J. A., Resende, M. D. V. and Ronzelli Júnior, P. (2006) Avaliação simultânea de produtividade, adaptabilidade e estabilidade genotípica de Eucalyptus grandis em distintos ambientes do estado de São Paulo. Boletim de Pesquisa Florestal, 53, 79-108. [Accessed Dec. 17, 2022]. Available at: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPF-2009-09/42060/1/BPF_53_p79-108.pdf
    » https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPF-2009-09/42060/1/BPF_53_p79-108.pdf
  • Quesada, D. M., Boddey, R. M., Reis, V. M. and Urquiaga, S.(2004). Parâmetros Qualitativos de Genótipos de Capim Elefante (Pennisetum purpureum Schum.) estudados para a produção de energia através da Biomassa. Seropédica: Embrapa Agrobiologia. Circular Técnica 4. [Accessed Dec. 17, 2022]. Available at: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAB-2010/32086/1/cit008.pdf
    » https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAB-2010/32086/1/cit008.pdf
  • Quirino, W. F., Vale, A. T., Andrade, A. P. A., Abreu, V. L. S. and Azevedo, A. D. S. (2005). Poder calorífico da madeira e de materiais ligno-celulósicos. Revista da Madeira, 89, e106. [Accessed Dec. 17, 2022]. Available at: https://www.lippel.com.br/dados/download/05-05-2014-10-46poder-calorifico-da-madeira-e-de-materiais-ligno-celulosicos.pdf
    » https://www.lippel.com.br/dados/download/05-05-2014-10-46poder-calorifico-da-madeira-e-de-materiais-ligno-celulosicos.pdf
  • Resende, M.D.V. (2009) Genética Biométrica e Estatística no Melhoramento de Plantas Perenes. Embrapa. 975p.
  • Resende, M.D. V. (2007). Matemática e estatística na análise de experimentos e no melhoramento genético. Colombo: Embrapa Florestas.
  • Resende, M.A.V., Freitas, J.A.de, Lanza, M.A., Resende, M.D.V. de., Azevedo, C.F. (2014) Divergência genética e índice de seleção via BLUP em acessos de algodoeiro para características tecnológicas da fibra. Pesquisa Agropecuária Tropical, 44:p.334-340. https://doi.org/10.1590/S1983-40632014000300006.
    » https://doi.org/10.1590/S1983-40632014000300006
  • Resende, M.D.V. (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16, 330 -339. https://doi.org/10.1590/1984-70332016v16n4a49
    » https://doi.org/10.1590/1984-70332016v16n4a49
  • Rocha, J. R.A. S.C., Machado, J. C., Carneiro, P. C. S., Carneiro, J. C., Resende, M. D. V., Lédo, F. J. S. and Carneiro, J. E. S. (2017). Bioenergetic potential and genetic diversity of elephantgrass via morpho-agronomic and biomass quality traits. Industrial Crops and Products, 95, 485–492. https://doi.org/10.1016/j.indcrop.2016.10.060
    » https://doi.org/10.1016/j.indcrop.2016.10.060
  • Rosado, A. M., Rosado, T. B., Alves, A. A., Laviola, B. G. and Bhering, L. L. (2012). Seleção simultânea de clones de eucalipto de acordo com produtividade, estabilidade e adaptabilidade. Pesquisa Agropecuária Brasileira, 47, 964-971. https://doi.org/10.1590/S0100-204X2012000700013
    » https://doi.org/10.1590/S0100-204X2012000700013
  • Rosado, R.D.S., Rosado, T.B., Cruz, C.D., Ferraz, A.G., Conceição, L.D.H.C.S. and Laviola, B.G. (2019). Parâmetros genéticos e seleção simultânea para adaptabilidade e estabilidade da macaúba. Scientia Horticulturae, 248, 291-296. https://doi.org/10.1016/j.scienta.2018.12.041
    » https://doi.org/10.1016/j.scienta.2018.12.041
  • Rossi, D.A., Menezes, B.R.S., Daher, R.F., Gravina, G.A., Lima, R.S.N., Lédo, F.J.S. (2014). Canonical correlations in elephant grass for energy purposes. African Journal of Biotechnology 13:3666-3671. https://doi.org/10.5897/AJB2014.13915
    » https://doi.org/10.5897/AJB2014.13915
  • Rodrigues, E.V., Daher, R.F., Gravina, G. A., Viana, A.P., Araújo, M.S.B., Oliveira, M.L.F., Vivas, M., Menezes, B.R. S. and Pereira, A.V. (2020). Repeatability estimates and minimum number of evaluations for selection of elephant-grass genotypes for herbage production. Bioscience Journal, 36, 30-41. https://doi.org/10.14393/BJ-v36n1a2020-42075
    » https://doi.org/10.14393/BJ-v36n1a2020-42075
  • Sant’Ana, J.A.A., Daher, R.F., Ponciano, N.J., Santos, M.M.P., Viana, A.P., Oliveira, E.S., Ledo, F.J.S., Menezes, B.R.S., Santos, C.L. and Lima, W.L. (2018). Nitrogen and phosphate fertilizers in elephant-grass for energy use. African Journal of Agricultural Research, 13, 806-813. https://doi.org/10.5897/ajar2016.11913
    » https://doi.org/10.5897/ajar2016.11913
  • Santana, J. G. S., Farias, J. E. C., Figueiredo Daher, R., Ambrósio, M., Lopes Leite, C., Kesia Faria Vidal, A., Nascimento, M. R. and Souza, A. G. (2023). Estimation of genetic diversity in full-sib families of elephant grass Cenchrus purpureus (Schumach.) Morrone. Pesquisa Agropecuária Tropical, 53, e75967. https://doi.org/10.1590/1983-40632023v5375967
    » https://doi.org/10.1590/1983-40632023v5375967
  • Santos, A., Ceccon, G., Teodoro, P.E., Correa, A.M., Alvarez, R.C.F., Silva, J.F. and Alves, V.B. (2016). Adaptabilidade e estabilidade de genótipos de feijão caupi ereto via REML/BLUP e GGE Biplot. Bragantia, 75, 299-306. https://doi.org/10.1590/1678-4499.280
    » https://doi.org/10.1590/1678-4499.280
  • Silva, G. O., Carvalho, A. D. F., Veira, J. V. and Benin, G. (2011). Verificação da adaptabilidade e estabilidade de populações de cenoura pelos métodos AMMI, GGE biplot e REML/BLUP. Bragantia, 70, 494-501. http://doi.org/10.1590/S0006-87052011005000003
    » https://doi.org/10.1590/S0006-87052011005000003
  • Silva, V.B., Daher, R.F. and Souza Y.P. (2020). Assessment of energy production in full-sibling families of elephant grass by mixed models. Renew Energy, 146, 744–749. https://doi.org/10.1016/j.renene.2019.06.152
    » https://doi.org/10.1016/j.renene.2019.06.152
  • Silveira Junior, E. G. S., Costa Silveira, T., Perez, V. H., Justo, O. R., David, G. F.,Fernandes, S. A. (2022). Fast pyrolysis of elephant grass: Intensification of levoglucosan yield and other value-added pyrolytic by-products. Journal of the Energy Institute, 101, 254-264. https://doi.org/10.1016/j.joei.2022.02.003
    » https://doi.org/10.1016/j.joei.2022.02.003
  • Stida, W. F., Daher, R. F., Viana, A. P., Vidal, A. K. F., Freitas, Rafael S., Silva, Verónica B., Pereira, A.V., Cassaro, S., Menezes, B. R. S. and Furlani, E. P.. 2018). Estimation of genetic parameters and selection of elephant-grass (Pennisetum purpureum Schumach.) for forage production using mixed models. Chilean journal of agricultural research, 78, 198-204. https://doi.org/10.4067/S0718-58392018000200198
    » https://doi.org/10.4067/S0718-58392018000200198
  • Souza, Y. P, Daher, R. F., Pereira, A. V., Silva, V.B., Freitas, R.S. and Gravina, G. (2017). Repetibilidade e número mínimo de avaliações para caracteres morfoagronômicos de capim-elefante para fins energéticos. Revista Brasileira de Ciências Agrárias, 12, 391-397. https://doi.org/10.5039/agraria.v12i3a5456
    » https://doi.org/10.5039/agraria.v12i3a5456
  • Streck, E. A., de Júnior, A. M., & Aguiar, G. A. (2019). Genotypic performance, adaptability and stability in special types of irrigated rice using mixed models. Revista Ciencia Agronomica 50: 66–75. https://doi.org/10.5935/1806-6690.20190008
    » https://doi.org/10.5935/1806-6690.20190008
  • Tibayungwa, F. J. Y. T. and Mugisha, M. (2011). Modelagem do efeito da suplementação de capim-elefante com lablab e desmodium no ganho de peso de novilhas leiteiras em sistema de confinamento. African Journal Agrícola Research, 6, 3232-3239. https://doi.org/10.5897/AJAR10.121
    » https://doi.org/10.5897/AJAR10.121
  • Viana, A. P., Resende, M. D. V. (2014). Genética quantitativa do melhoramento de fruteiras. Rio de Janeiro: Interciência.
  • Vidal, A.K.F., Daher, R.F., Freitas, R.S., Stida, W.F., Tardin, F.D., Rodrigues, E.V., Silva, V.B., Santos, R.M., Santos, P.R. and Oliveira, T.R.A. (2019). Screening of elephant grass genotypes following some agromarphological traits related to biomass production in Rio de Janeiro. JEAI, 39, 1-10.
  • Vidal, A.K.F., Daher, R.F., Freitas, R.S., Stida, W.F., Ambrósio, M., Santana, J.G.S., Souza, A.G., Gravina, G.A., Vivas, M. and Amaral Junior, A.T. (2022). Simultaneous selection for yield, adaptability and stability and repeatability coefficient in full-sib families of elephant grass for energy purposes via mixed models. Euphytica, 218,161. https://doi.org/10.1007/s10681-022-03092-y
    » https://doi.org/10.1007/s10681-022-03092-y
  • Vidal, A.K.F., Daher, R.F., Freitas, R.S., et al. (2023a) Estimation of repeatability and genotypic superiority of elephant grass half-sib families for energy purposes using mixed models. Scientia Agricola, 80, 1-10, 2023. https://doi.org/10.1590/1678-992x-2022-0103
    » https://doi.org/10.1590/1678-992x-2022-0103
  • Vidal, A.K.F., Freitas, R.S. and Daher, R.F. et al. (2023b). Genotypic superiority and repeatability coefficient in elephant grass clones for forage production via mixed models. Euphytica, 219, 43. https://doi.org/10.1007/s10681-023-03170-9
    » https://doi.org/10.1007/s10681-023-03170-9
  • Xavier, M. A., Perecin, D., Alvim, K. R. D. T., LandelL, M. G. D. A. and Arantes, F. C. (2014). Selecting families and full-sib progenies of sugarcane for technological attributes and production by the method of REML/BLUP. Bragantia, 73, 253-262. https://doi.org/10.1590/1678-4499.0193
    » https://doi.org/10.1590/1678-4499.0193

Edited by

Section Editor: Gabriel Constantino Blain https://orcid.org/0000-0001-8832-7734

Publication Dates

  • Publication in this collection
    20 Nov 2023
  • Date of issue
    2023

History

  • Received
    19 July 2023
  • Accepted
    13 Sept 2023
Instituto Agronômico de Campinas Avenida Barão de Itapura, 1481, 13020-902, Tel.: +55 19 2137-0653, Fax: +55 19 2137-0666 - Campinas - SP - Brazil
E-mail: bragantia@iac.sp.gov.br