SciELO - Scientific Electronic Library Online

vol.55 issue28 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Papéis Avulsos de Zoologia

Print version ISSN 0031-1049On-line version ISSN 1807-0205

Pap. Avulsos Zool. (São Paulo) vol.55 no.28 São Paulo  2015 






1Universidade Estadual de Goiás (UEG), Campus de Ciências Exatas e Tecnológicas (CCET), Programa de Pós-Graduação em Recursos Naturais do Cerrado. Rodovia BR-153, nº 3.105, Fazenda Barreiro do Meio, CEP 75132-903, Anápolis, GO, Brasil.


This paper consists on a bibliometric analysis of the international influences of the book "Studies on termites from the Mato Grosso State, Brazil", by AGA Mathews (1977). The number of citations has increased over the years after the first citation. Mathews book was cited in articles, reviews, theses, dissertations, books, book chapters, abstracts in conference proceedings, comments and scientific notes. Most these studies are empirical and descriptive. The studies were conducted in 35 countries of the Neotropical, Palearctic, Afrotropical, Nearctic, Australasia and Indomalaya regions. 55% of the studies were carried out in Brazil. The journals Sociobiology and Insectes Sociaux, have social insect studies within its scope, and the highest number of articles citing Mathews. Most of the 71 authors that cited Mathews more than twice are Brazilian. Constrictotermes cyphergaster was the most studied in over 80% of the studies addressing Isoptera. The most frequent keywords were termite, Isoptera and taxonomy, generalist terms indexed in most publications carried out in different countries. Most of the research studies were carried out in laboratories and native vegetation areas. Studies in agroecosystems were implemented predominantly in Brazil. This study shows the diversity of application (citations) of Mathews' book, and that the number of citations will continue to increase due to the large amount of information presented by the author.

KEY-WORDS: Citation number; Isoptera; Systematic review; Termitology


Este trabalho fez uma análise bibliométrica da repercussão internacional do livro "Studies on termites from the Mato Grosso State, Brazil", de AGA Mathews (1977). O número de citações aumentou ao longo dos anos após a primeira citação. O livro de Mathews foi citado em artigos e revisões, teses e dissertações, livros e capítulos, resumos em anais de eventos e notas científicas. A maioria destes trabalhos é empírico e descritivo. Os estudos foram realizados em 35 países das regiões Neotropical, Paleártica, Afrotropical, Neártica, Australásia e Indomalaia. Entretanto, 55% dos trabalhos foram realizados no Brasil. As revistas Sociobiology e Insectes Sociaux, cujo escopo é publicar pesquisas sobre insetos sociais, apresentam o maior número de artigos que citaram Mathews. A maioria dos 71 autores que citaram Mathews mais de duas vezes é brasileiro. Constrictotermes cyphergaster (Silvestri) foi a espécie mais estudada em 80% dos trabalhos que abordaram Isoptera. As palavras-chave mais frequentes (termite, Isoptera, taxonomy), são termos generalistas que foram associadas à maioria dos países. A maioria das pesquisas foi executada em laboratórios e em áreas de vegetação nativa. Estudos em agroecossistemas foram realizados predominantemente no Brasil. Este estudo mostra a diversidade de aplicações (citações) do livro Mathews, e que o número de citações tende a aumentar devido à grande quantidade de informações apresentadas pelo autor.

PALAVRAS-CHAVE: Número de citações; Isoptera; Revisão sistemática; Termitologia


Studies at different scales (local to global) are observed in the scientific literature, and influence the scientific community. Such studies bring new information, are characterized as pioneer studies (Cutright, 1989), and are commonly referred to as Hotpapers (Garfield, 1972). The impacts of such papers may be measured by bibliometric techniques (Pinto et al., 2003). Some studies have become renowned in wildlife inventories for being pioneers in the expeditions and for the richness in information (often not replicated in other regions). Therefore, analyzing the citations of scientific literature that refer to noteworthy studies becomes important, once it systematizes the knowledge generated. Such systematization is very important especially in Neotropical inventories studies.

Several inventories of the Neotropical fauna significantly contributed to the knowledge of specific groups (e.g., The Mulford Expedition; Hutchison, 1921; Snyder, 1926 and resulted in important applications as the study of Darwin's finches on the Galapagos Islands; Darwin, 1859: cap. XII). Several studies were extremely important for the Neotropical termites, and are still the basis of knowledge on certain taxonomic groups and biogeographic patterns. Holmgren (1906, 1910), Silvestri (1901, 1903), Emerson (1925) and Mathews (1977) are highlighted among the many studies that significantly contributed to understanding termites, their role in ecosystems, their taxonomy and species diversity.

Termites are among the animals with highest abundance and biomass in terrestrial ecosystems (Bignell & Eggleton, 2000). Termites are detritivorous (Wood & Sands, 1978; Bignell & Eggleton, 2000), ecosystem engineers (Jones et al., 1994), key species (Redford, 1984), food source for predators (Wood & Sands, 1978) and several species are major pests in agricultural and urban environments (Constantino, 2002; Rouland-Lefèvre, 2011). Therefore, the termites have been increasingly studied in the last two centuries, especially from the 20th century (Constantino, 2005). Since the 1950s, Neotropical termites have been gradually better known thanks to studies of European and American researchers and to increasing contributions of South American termite researchers (Araujo, 1977; Constantino, 2005).

Several Neotropical ecosystems already have a relatively well known termite fauna due to inventories and ecological studies (Eggleton, 2000). Termites are specially known in the Brazilian Amazon (Bandeira & Macambira, 1988; Constantino, 1992; Constantino & Cancello, 1992; DeSouza & Brown, 1994), Atlantic Forest (Brandão, 1998; Souza et al., 2012; Cancello et al., 2014), Caatinga (Vasconcellos et al., 2010; Vasconcellos & Moura, 2014) and Cerrado (Mathews, 1977; Constantino, 2005; Cunha et al., 2006). More complete lists are available in Cancello (1996) and Constantino & Acioli (2008). Among these studies, Mathew's book on the Cerrado (Brazilian savanna) had the most impact the termite knowledge. This work is considered a reference on Cerrado termites and is still a primary source of ecological and taxonomic data on Cerrado termites.

Mathews' book has a large local termite inventory, and recorded more than 100 species, among seven vegetation types; many more species than the vast majority of other local termite fauna inventories (see Constantino, 2005; Constantino & Acioli, 2008). Mathews (1977) also features an array of ecological and behavioral information on termites and other species with which termites interact. The highlight of Mathews' work is a detailed taxonomic study of most species he found, including the description of five new genera and 28 new species. His book is also the only information available for several species. However, the area studied by Mathews is a transition region between the Cerrado and Amazon ecosystems, partially explaining the high species richness and many of the species described belonging to the Amazon fauna (Constantino, 2005).

The book "Studies on Termites from the Mato Grosso State, Brazil" is the doctoral thesis of Mathews and his only contribution to the study of termites. The book was Mathews' only publication. After that, he probably abandoned his academic career. Mathews earned his doctorate in the "Departament of Forestry and Natural Resources", under the supervision of Dr. David R. Gifford, and was co-supervised by the famous termite researcher W.A. Sands. The report of an expedition to Cappadocia in 1964 to assist in a friend's doctorate is one of the few information obtained on Mathews' life before he came to Brazil for the doctoral sampling procedures (Mackay, 2014). Lucinda L. Mackay is an artist who wrote her doctoral thesis on Catholic paintings of the Cappadocia churches at the University of Edinburgh. A.G.A. Mathews, then 22 years old, was one of her companions.

After nearly 40 years, the book on termites of Mato Grosso is still one of main reference for both Ecology and taxonomy of Cerrado termites. We made a bibliometric analysis of the Mathews' book to accurately measure its impact on termitology. In addition, we assembled a list of the species found by Mathews and updated it according to the current classification (Krishna et al., 2013).


The impact of the book "Studies on termites from the Mato Grosso State, Brazil by AGA Mathews 1977" was quantified by analyzing the literature that cited "Mathews 1977". The literature search was performed in Google Scholar from the year the book was published (from 1977 to 2014). Google Scholar platform was used because, only one (1) result was obtained on the Web of Knowledge-Thomsom Reuters plataform and none (zero) in SCOPUS. We obtained a total of 214 results, of which 178 were considered after excluding duplicates.

The variables obtained from the title, keywords and summary of each publication were: (i) publication year; (ii) type of publication (article, review, letter, note, book, book chapter, abstracts in conference proceedings, dissertation or thesis); (iii) study type (theoretical, empirical or descriptive); (iv) environment where the study was conducted (Forest, Cerrado, field, pasture, plantation, urban or laboratory); (v) biogeographical region where the study was conducted; (vi) names and number of authors per publication; (vii) taxonomic group studied (Isoptera species or other taxa ); and (viii) keywords.

The Pearson correlation coefficient (P < 0.05) was calculated to view the temporal growth between the number of publications that cited "Mathews 1977" and the number of authors per publication over the years.

We performed a Principal Component Analysis (PCA) between the keyword frequencies, ordered in regards to the study country. The PCA allows the quantification of the variation existing within large data sets (represented here by the keywords matrix by countries) by reducing the variables to few independent components (originally in Pearson, 1901; see Legendre & Legendre, 2012). Moreover, other bibliometric studies have used this approach to investigate temporal trends related to keywords (see Carneiro et al., 2008; Nabout et al., 2012). We first counted the number of times each keyword appeared in the articles, independently in each country. In this step, synonymous words were grouped. The PCA was performed using the Vegan package (Oksanen et al., 2013) of R software (R Core Team, 2012).

A correspondence analysis (CA) was performed to analyze the relationships between the study area (native vegetation, studies conducted in laboratories, agricultural ecosystems, urban area, fossil formation) and study country, based on the frequency of studies in these categories. We used the chi-square test (P < 0.05) to evaluate the dependence between the two matrices (study area and study country).


A total of 178 publications citing "Studies on termites from the Mato Grosso State, Brazil" were recorded over the 37 years since its publication (1977 until 2014). Prestwich et al. (1980), the first to cite Mathews (Oecologia; "Mathews 1977"), made a single citation, where they suggest that the digestion of litter feeding termites may be a nitrogen source for the ecosystem. The number of publications citing "Mathews 1977" varied over the years. However, citation number tends to increase over time (Fig. 1; n = 35 years; r = 0.6716; P < 0.001). The increase in publications citing "Mathews 1977" indicates a growth in termite research.

FIGURE 1: Number of publications citing Mathews 1977 (n = 178) from 1977 to 2014. 

The publications that cited "Mathews 1977" were classified into six categories, where 67% were published as scientific articles, 9% as review articles, 6% as abstracts in Conference Proceedings and as books or book chapters, and 3% as Comments and scientific notes. However, it is possible that citations made by theses and dissertations are underestimated, because some of these documents are not indexed by Google Scholar.

Over 50% of the studies are in the ecology area of study, 22% taxonomy, 17% entomology, 3% paleontology and 2% evolution and pedology. Most publications are of practical studies (49% empirical and 50% descriptive) and only 1% had a theoretical approach. Studies from collections or field/laboratory experiments were considered empirical. Revision articles and articles of taxonomic revision or description of morphological structures were classified as descriptive. Only two studies classified as theoretical: "Termite Eusocial Evolution: A Re-Examination of Bartz's Hypothesis and Assumptions" (Myles & Nutting, 1988) and "Explaining global termite diversity: productivity or history?" (Eggleton et al., 1994). Myles & Nutting (1988) cited "Mathews 1977" twice when cited the foraging habits of Rhinotermes and Embiratermes neotenicus.Eggleton et al. (1994) cited "Mathews 1977" only as a reference of South American termites to build the "Map of generic richness of termites worldwide".

The studies were carried out in 35 countries, comprising almost all biogeographic regions, except the Antarctic and Oceanic regions: 51% in Neotropical countries, 17% in the Palearctic, 11% in the Afrotropical, 9% in the Nearctic, 6% in the Australasia and 6% in the Indomalaya. 100 studies (56%) were carried out in Brazil, 10 in Argentina and USA, 9 in Republic of Panama and French Guiana, five or less were carried out in other countries. In 20 countries only one study was performed. Some studies were implemented at more than one bio-geographical region, thus n = 179. The studies were carried out in different environments: 45% in native vegetation (Cerrado, savannas, Lhanos, Chaco, forests, Earth mound fields (murundus), Pantanal, mangroves, salt marshes and coastal areas), 45% in laboratories, 1% in fossil formations, 2% in urban areas and 7% in agricultural systems (pastures, plantations).

The 141 articles that cited "Mathews 1977" (scientific articles + review articles + comments + scientific notes) were published in 76 journals, and 23% of these articles were published in journals without impact factor. The article with the highest impact factor (FI = 13.59) was published in 1984 at the Annual Review of Entomology by Glenn Prestwich, a review of termite defense mechanisms, which has been cited over 150 times. Prestwich (1984) made a single citation of "Mathews 1977", mentioning the defensive behavior of New world soldiers and workers through abdominal dehiscence. The journals Sociobiology and Insectes Sociaux have social insect studies within its scope, and the highest number of articles citing "Mathews 1977" (Fig. 2). Most journals (87%) have only one or two publications and 21% of the studies have been published elsewhere (Universities, events, institutes, books, etc.). Most articles were published in US (30%) and Brazilian (28%) journals.

FIGURE 2: Journals (n = 76 journals) that cited Mathews 1977 on three or more publications (Articles + review articles + comments + notes). 

A total of 278 authors were involved in the 178 publications that cited "Mathews 1977". Most publications had only one author (35%; Fig. 3B), but the number of authors per publication is increasing (r = 0.4082; P < 0.00000002). However, there is a global trend in reducing the number of articles with single authors, even in zoology (Nabout et al., 2015). Most of the 71 authors that cited "Mathews 1977" more than twice are Brazilian (56%), followed by North American (21%) (Fig. 3A). The authors who most cited Mathews 1977 were: Eliana M. Cancello from Zoology Museum of the University of São Paulo (Museu de Zoologia da Universidade de São Paulo)/Brazil, and Rudolf H. Scheffrahn from Florida University/USA (13 citations each), Reginaldo Constantino from University of Brasilia (Universidade de Brasília)/Brazil and Yves Roisin from Université Libre de Bruxelles/Belgium (11 each), and Jan Křeček from Florida University/USA and Tiago F. Carrijo from Zoology Museum of the University of São Paulo (Museu de Zoologia da Universidade de São Paulo)/Brazil (8 citations each).

FIGURE 3: Number of authors compared to the number of citations of Mathews 1977 (A). Number publications compared to the number of authors who cited Mathews 1977 (B) (n = 178 publications). 

Many of the studies that cited "Mathews 1977" are taxonomic and the four authors that most cited Mathew's book are also taxonomists. It is important to update the names of the species reported by Mathews given the significant changes in the nomenclature of many termite taxa and higher clades. Nomenclature changes are even more important when we consider that the number of studies citing Mathews 1977 tends to increase in the next years (Fig. 1). Therefore we show a list of the species indexed by Mathews (sampled or not) and the updated nomenclature according to the most recent termite catalogs (Krishna et al., 2013) in the Supplementary Material. Constantino & Cancello (1999) also made important corrections and updates to Mathew's study, mainly indicating the nomina nuda events created by Mathews.

The study objects of the publications that cited "Mathews 1977" comprised insects (Isoptera, Apidae, Formicidae, Diptera, Coleoptera, Tettigoniidae), Oligochaeta, Scorpiones, Araneae, Anura, Lacertilia, Mammalia, Fungi and Plantae. It was not possible to classify the object of study of four studies. Earth mound fields (murundus) and soil were also listed as objects of study. Over 80% of the studies were conducted with Isoptera: Nasutitermitinae (49%), Termitinae (19%), Syntermitinae (14%), Rhinotermidae (8%), Apicotermitinae (7%) and Serritermitidae (2%). We could not identify the species or family/subfamily studied in 41% of the studies conducted with termites. A total of 48 termite genus and 44 species were listed as the object of study. Constrictotermes cyphergaster (Silvestri, 1901) was the most studied species (10 studies). Constrictotermes cyphergaster has been extensively studied in the ecosystems where it occurs, and studies citing "Mathews 1977" have regarded its interaction with other species residing the termite nest (Cunha & Brandão, 2000; Cunha et al., 2003; Cristaldo et al., 2012; Cristaldo et al., 2014), supplementary reproductives (Cunha & Brandão, 2002), eating habits (Moura et al., 2006a; Moura et al., 2006b), link between nest building and some plant species (Lima-Ribeiro et al., 2006; Silva et al., 2007; Bezerra-Gusmão et al., 2013), nest population and biomass (Vasconcellos et al., 2007), development of the caste system (Moura et al., 2011), and contribution to the carbon cycle (Bezerra-Gusmão et al., 2011).

About 30% of the articles and reviews did not provide keywords. A total of 244 keywords were grouped by the PCA in regards to the country where the study was conducted (Fig. 4). The two PCA axes explained about 26% of the keyword variability. Fig. 4 shows the keywords that most contributed to the 1st and 2nd PCA axes. The terms "termite", "Isoptera" and "taxonomy" were the most common keywords and are positively correlated to the study countries in the 1st axys. The terms "Inquilinitermes johnchapmani" and "Lhanos de Mojos" were negatively correlated with Bolivia in the 1st axys, once these terms appeared only in the single Bolivian study recorded. The terms "defense", "autothysis" and "forest" are positively correlated with the 2nd PCA axis. The terms "enteric valve", "proctodeal segments" and "Anoplotermes" are negatively correlated with the countries where the study was carried out (e.g., French Guiana, Panama, Trinidad & Tobago, Paraguai and Czech Republic) in the 2nd axis. The distribution of keywords along the PCA axis depends on its frequency in each country. Brazil had the highest keyword frequency and holds the highest 1st axis value, since most studies were conducted in Brazil (97 versus less than 10 in all the countries).

FIGURE 4: Principal Component Analysis (PCA) using the keywords frequency in articles in regards to the country of study. The shown terms are the ones which most contributed to the formation of the first and second axes. Dots represent the countries and indicate to which words they are more related. 

The correspondence analysis showed relationships between study area and study country (χ2 = 152.82; df = 166; P < 0.05). In general, most countries conducted the studies in laboratories and native vegetation areas. Laboratory studies were performed in different countries, while most studies in natural vegetation areas were conducted in tropical countries, such as Brazil, Costa Rica, French Guiana, etc. Studies in agroecosystems were conducted predominantly in Brazil. Few surveys were performed in urban areas (Brazil and USA) and on fossil species (Argentina and the Dominican Republic).


The data analyzed in this study provide some indicators of the international repercussions of Mathews' book. The number of publications citing "Mathews 1977" varied over the past 37 years, with a rising trend. Much of the scientific literature citing Mathews are empirical and descriptive studies, and were published in journals as articles and reviews. The literature citing Mathews were concentrated in Neotropical countries, especially Brazil, despite the all citations coming from studies carried out in 35 countries of nearly all biogeographic regions. Most studies were conducted by one researcher throughout the years, but lately more publications with multiple authors have emerged. The authors that most cited Mathews are internationally renowned termite researchers who published their research studies in journals focused on the study of social insects, although most publications cited the book only once. Isoptera was the most studied taxonomic group, but other publications using other insects, scorpions, worms, herpetofauna, mammals, plants and fungi as objects of study also cited Mathews. The keywords that were used in each publication are so diverse that it was not possible find a pattern that characterizes termite research within the countries. There is a strong association between the area of study and the study country despite the diverse subjects and objects of study of the publications analyzed. Lastly, this study shows the diversity of application (citations) of Mathews' book, and that the number of citations will continue to increase due to the large amount of information presented by the author.


We thank the anonymous reviewer for discussion and suggestions that improved previous version of the manuscript. This project is partially supported by CAPES and the FAPEG (AUXPE 2036/2013). DEO was supported by a post-doctoral scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/PNPD nº 20132984). JCN was supported by CNPq productivity fellowships (306719/2013-4). HFC was supported by University Research and Scientific Production Support Program (PROBIP/UEG).


ARAUJO, R.L. 1977. Catálogo dos Isoptera do Novo Mundo Rio de Janeiro, Academia Brasileira de Ciências. [ Links ]

BANDEIRA, A.G. & MACAMBIRA, M.L.J. 1988. Térmitas de Carajás, Estado do Pará, Brasil: Composição faunística, distribuição e hábito alimentar. Boletim do Museu Paraense Emílio Goeldi, Série Zoologia 4: 175-190. [ Links ]

BEZERRA-GUSMÃO, M.A.; BARBOSA, J.R.C.; BARBOSA, M.R.V.; BANDEIRA, A.G. & SAMPAIO, E.V.S.B. 2011. Are nests of Constrictotermes cyphergaster (Isoptera, Termitidae) important in the C cycle in the driest area of semiarid caatinga in northeast Brazil? Applied Soil Ecology 47: 1-5. [ Links ]

BEZERRA-GUSMÃO, M.A.; MARINHO, R.A.; KOGISO, K.A.; BANDEIRA, A.G. & BARBOSA, M.R.V. 2013. Nest dynamics of Constrictotermes cyphergaster (Termitidae, Nasutitermitinae) and its association with the supporting vegetation in a semiarid area, northeast, Brazil. Journal of Arid Environments 91: 1-6. [ Links ]

BIGNELL, D.E. & EGGLETON P. 2000. Termites in ecosystem. Abe, T.; Bignell, D.E. & Higashi, M. (Eds.). Termites: evolution, sociality, symbioses, ecology Netherlands, Kluwer Academic Publishers. p. 363-387. [ Links ]

BRANDÃO, D. 1998. Patterns of termite (Isoptera) diversity in the Reserva Florestal de Linhares, state of Espírito Santo, Brasil. Revista Brasileira de Entomologia 41: 151-153. [ Links ]

CANCELLO, E.M. 1996. Termite diversity and richness in Brazil - an overview. Bicudo, C.E. & Menezes, N.A. (Eds.). Biodiversity in Brazil - a first approach São Paulo, CNPq. p. 173-182. [ Links ]

CANCELLO, E.M.; SILVA, R.R.; VASCONCELLOS, A.; REIS, Y.T. & OLIVEIRA, L.M. 2014. Latitudinal variation in termite species richness and abundance along the Brazilian Atlantic Forest Hotspot. Biotropica 46: 441-450. [ Links ]

CARNEIRO, F.M.; NABOUT, J.C. & BINI, L.M. 2008. Trends in the scientific literature on phytoplankton. Limnology 9: 153-158. [ Links ]

CONSTANTINO, R. 1992. Abundance and diversity of termites (Insecta: Isoptera) in two sites of primary rain forest in Brazilian Amazonia. Biotropica 24: 420-430. [ Links ]

CONSTANTINO, R. 2002. The pest termites of South America: taxonomy, distribution and status. Journal of Applied Entomology 126: 355-365. [ Links ]

CONSTANTINO, R. 2005. Padrões de diversidade e endemismo de térmitas no bioma Cerrado. Scariot, A.O.; Silva, J.C.S. & Felfili, J.M. (Eds.). Cerrado: ecologia, biodiversidade e conservação Brasília, Ministério do Meio Ambiente. p. 319-333. [ Links ]

CONSTANTINO, R. & ACIOLI, A.N.S. 2008. Diversidade de Cupins (Insecta: Isoptera) no Brasil. Moreira, F.M.S.; Siqueira, J.O. & Brussaard, L. (Eds.). Biodiversidade do Solo em Ecossistemas Brasileiros Lavras, UFLA. p. 278-297. [ Links ]

CONSTANTINO, R. & CANCELLO, E.M. 1992. Cupins (Insecta, Isoptera) da Amazônia Brasileira: Distribuição geográfica e esforço de coleta. Revista Brasileira de Biologia 52: 401-413. [ Links ]

CONSTANTINO, R. & CANCELLO, E.M. 1999. Updates and Correction to Mathews's "termites From Mato Grosso" (Isoptera). Sociobiology 33(2): 195-198. [ Links ]

CRISTALDO, P.F.; ROSA, C.S.; FLORENCIO, D.F.; MARINS, A. & DESOUZA, O. 2012. Termitarium volume as a determinant of invasion by obligatory termitophiles and inquilines in the nests of Constrictotermes cyphergaster (Termitidae, Nasutitermitinae). Insectes Sociaux 59(4): 541-548. [ Links ]

CRISTALDO, P.F.; DESOUZA, O.; KRASULOVÁ, J.; JIROŠOVÁ, A.; KUTALOVÁ, K.; LIMA, E.R.; ŠOBOTNÍK, J. & SILLAM-DUSSÈS, D. 2014. Mutual Use of Trail-Following Chemical Cues by a Termite Host and Its Inquiline. PLoS ONE 9(1): e85315. doi: 10.1371/journal.pone.0085315. [ Links ]

CUNHA, H.F. & BRANDÃO, D. 2000. Invertebrates associated with the neotropical termite Constrictotermes cyphergaster (Isoptera, Termitidae, Nasutitermitinae). Sociobiology 37(3B): 593-599. [ Links ]

CUNHA, H.F. & BRANDÃO, D. 2002. Multiple reproductives in nests of the Neotropical termite Constrictotermes cyphergaster (Isoptera, Termitidae, Nasutitermitinae). Revista Brasileira de Entomologia 46(1): 21-24. [ Links ]

CUNHA, H.F.; COSTA, D.A. & BRANDÃO, D. 2006. Termite (Isoptera) assemblages in some regions of the Goiás State, Brazil. Sociobiology 47: 505-518. [ Links ]

CUNHA, H.F.; COSTA, D.A.; ESPÍRITO-SANTO FILHO, K.; SILVA, L.O. & BRANDÃO, D. 2003. Relationship between Constrictotermes cyphergaster and inquiline termites in the Cerrado (Isoptera, Termitidae). Sociobiology 42(3): 761-770. [ Links ]

CUTRIGHT, P.R. 1989. Lewis and Clark: Pioneering Naturalists Lincoln, University of Nebraska Press. [ Links ]

DARWIN, C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life London, John Murray. p. 397-398. [ Links ]

DESOUZA, O. & BROWN, W.L. 1994. Effects of habitat fragmentation on amazonian termite communities. Journal of Tropical Ecology 10: 197-206. [ Links ]

EGGLETON, P. 2000. Global patterns of termite diversity. Abe, T.; Bignell, D.E. & Higashi, M. (Eds.). Termites: evolution, sociality, symbioses, ecology. Netherlands, Kluwer Academic Publishersp. 25-52. [ Links ]

EGGLETON, P.; WILLIANS, P.H. & GASTON, K.J. 1994. Explaining global termite diversity: productivity or history? Biodiversity and Conservation 3: 318-330. [ Links ]

EMERSON, A.E. 1925. The termites of Kartabo: Bartica District, British Guiana. Zoologica 6: 291-459. [ Links ]

GARFIELD, E. 1972. Citation analysis as a tool in journal evaluation. Science 178: 471-479. [ Links ]

HOLMGREN, N. 1906. Studien über südamerikanische Termiten. Zoologische Jahrbücher Abteilungen Systematik 23: 521-676. [ Links ]

HOLMGREN, N. 1910. Versuch einer Monographie der amerikanische Eutermes - Arten. Jahrbuch der hamburgischen Wissennschaftlichen Anstalten 27: 171-325. [ Links ]

HUTCHISON, R.H. 1921. The Mulford Biological Exploration of the Amazon Basin. Entomological News 32: 245-247, 281, 316. [ Links ]

JONES, C.G.; LAWTON, J.H. & SHACHAK, M. 1994. Organisms as ecosystem engineers. Oikos 373-386. [ Links ]

KRISHNA, K.; GRIMALDI, D.; KRISHNA, V. & ENGEL, M. 2013. Treatise on the Isoptera of the world. Introduction. Bulletin of the American Museum of Natural History 377: 1-200. [ Links ]

LEGENDRE, P. & LEGENDRE, L. 2012. Numerical Ecology 3.ed. Amsterdam, Elsevier Science. [ Links ]

LIMA-RIBEIRO, M.S.; PINTO, M.P.; COSTA, S.S.; NABOUT, J.C.; RANGEL, T.F.L.V.B.; MELO, T.L. & MOURA, I.O. 2006. Associação de Constrictotermes cyphergaster Silvestri (Isoptera: Termitidae) com espécies arbóreas do Cerrado brasileiro. Neotropical Entomology 35(1): 49-55. [ Links ]

MACKAY, L.L. 2014. To Cappadocia in Turkey: a students' research expedition in 1964. University of Edinburgh Journal 46: 155-160. [ Links ]

MATHEWS, A.G.A. 1977. Studies on termites from the Mato Grosso State, Brazil. Rio de Janeiro, Academia Brasileira de Ciências 267p. [ Links ]

MOURA, F.M.S.; VASCONCELLOS, A.; ARAUJO, V.F.P.; BANDEIRA, A.G. 2006a. Feeding Habit of Constrictotermes cyphergaster (Isoptera, Termitidae) in an Area of Caatinga, Northeast Brazil. Sociobiology 48(2): 21-26. [ Links ]

MOURA, F.M.S.; VASCONCELLOS, A.; ARAUJO, V.F.P. & BANDEIRA, A.G. 2006b. Seasonality in foraging behaviour of Constrictotermes cyphergaster (Termitidae, Nasutitermitinae) in the Caatinga of Northeastern Brazil. Insectes Sociaux 53: 472-479. [ Links ]

MOURA, F.M.S.; VASCONCELLOS, A.; SILVA, N.B. & BANDEIRA, A.G. 2011. Caste development systems of the Neotropical termite Constrictotermes cyphergaster (Isoptera, Termitidae). Insectes Sociaux (58): 169-175. [ Links ]

MYLES, T.G. & NUTTING, W.L. 1988. A Re-Examination of Bartz's Hypothesis and Assumptions. The Quarterly Review of Biology 63: 1-23. [ Links ]

NABOUT, J.C.; CARVALHO, P.; PRADO, M.U.; BORGES, P.P.; MACHADO, K.B.; HADDAD, K.B.; MICHELAN, T.S.; CUNHA, H.F. & SOARES, T.N. 2012. Trends and biases in global climate change literature. Natureza & Conservação 10: 45-51. [ Links ]

NABOUT, J.C.; PARREIRA, M.C.; TERESA, F.B.; CARNEIRO, F.M.; CUNHA, H.F.; ONDEI, L.S.; CARAMORI, S.S.; SOARES, T.N. 2015. Publish (in a group) or perish (alone): the trend from single- to multi-authorship in biological papers. Scientometrics 102: 357-364. [ Links ]

OKSANEN, J.; BLANCHET, F.G.; KINDT, R.; LEGENDRE, P.; MINCHIN, P.R.; O'HARA, R.B.; SIMPSON, G.L.; SOLYMOS, P.; STEVENS, M.H.H. & WAGNER, H. 2013. Vegan: Community Ecology Package. R package version 2.0-6 >. Accessed on June, 19 2013. [ Links ]

PEARSON, K. 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2: 559-572. [ Links ]

PINTO, M.P.; BINI, L.M. & DINIZ-FILHO, J.A.F. 2003. Análise quantitativa da influência de um novo paradigma ecológico: autocorrelação espacial. Acta Scientiarum Biological Sciences 25: 137-143. [ Links ]

PRESTWICH, G.D. 1984. Defense mechanisms of termites. Annual Review of Entomology 29: 201-32. [ Links ]

PRESTWICH, G.D.; BENTLEY, B.L. & CARPENTER, E.J. 1980. Nitrogen sources for Neotropical nasute termites: fixation and selective foraging. Oecologia 46: 397-401. [ Links ]

R CORE TEAM. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,Austria. URL [ Links ]

REDFORD, K.H. 1984. The termitaria of Cornitermes cumulans (Isoptera, Termitidae) and their role in determining a potential keystone species. Biotropica 16: 112-119. [ Links ]

ROULAND-LEFÈVRE, C. 2011. Termites as pests of agriculture. Bignell, D.E.; Roisin, Y. & Lo, N. (Eds.). Biology of Termites: a modern synthesis London, Springer. p. 499-517. [ Links ]

SILVA, L.O.; CUNHA, H.F.; COSTA, D.A.; ESPÍRITO-SANTO FILHO, K. & BRANDÃO, D. 2007. An association between Constrictotermes cyphergaster nests (Isoptera, Termitidae) and tree species in Serra de Caldas Novas - State of Goiás, Brazil. Brazilian Journal of Ecology 11(1/2): 66-71. [ Links ]

SILVESTRI, F. 1901. Nota preliminare sui termitidi sudamericani. Bollettino dei Musei di Zoologia e Anatomia Comparata della Universita di Torino 16: 1-8. [ Links ]

SILVESTRI, F. 1903. Contribuzione alla conoscenza dei termiti e termitofili dell'America Meridionale. Redia 1: 1-234. [ Links ]

SNYDER, T.E. 1926. Termites collected on the Mulford Biological Exploration to the Amazon Basin. Proceedings of the United States National Museum 68: 1-76. [ Links ]

SOUZA, H.B.A.; ALVES, W.F. & VASCONCELLOS, A. 2012. Termite assemblages in five semideciduous Atlantic Forest fragments in the northern coastland limit of the biome. Revista Brasileira de Entomologia 56(1): 67-72. [ Links ]

VASCONCELLOS, A. & MOURA, F.M.S. 2014. Térmitas de Oito Ecossistemas Inseridos no Domínio do Semiárido Brasileiro. Bravo, F. & Calor, A. (Eds.) Artrópodes do Semiárido: Biodiversidade e Conservação Feira de Santana, Printmidiap. p. 99-109. [ Links ]

VASCONCELLOS, A.; ARAÚJO, V.F.P.; MOURA, F.M.S. & BANDEIRA, A.G. 2007. Biomass and population structure of Constrictotermes cyphergaster Silvestri (Isoptera: Termitidae) in the dry forest of Caatinga, northeastern Brazil. Neotropical Entomology 36(5): 693-698. [ Links ]

VASCONCELLOS, A.; BANDEIRA, A.G.; MOURA, F.M.S.; ARAÚJO, V.F.P.; BEZERRA-GUSMÃO, M.A. & CONSTANTINO, R. 2010. Termite assemblages in three habitats under different disturbance regimes in the semi-arid Caatinga of NE Brazil. Journal of Arid Environmental 74: 298-302. [ Links ]

WOOD, T.G. & SANDS, W.A. 1978. The role of termites in ecosystems. Brian, M.V. (Ed.) Production ecology of ants and termites Cambridge, Cambridge University Press. p. 245-292. [ Links ]


List of species cited by Mathews 1977 and their present names according to Krishna et al. (2013). See also Constantino & Cancello 1999 for the nomina nuda cases. Names in bold were changed according to the catalog of Krishna et al. (2013). C = sampled in "Base Camp"; X = sampled in"Xavantina"; ¹ new species, described by Mathews for the first time; ² new combination; ³ typographical error.

Subfamily Names cited in Mathews 1977 Updated names Source
Rhinotermitinae Acorhinotermes Acorhinotermes
Termitinae Amitermes sp. Amitermes sp. C
Nasutitermitinae Angularitermes clypeatus¹ Angularitermes clypeatus C
Nasutitermitinae Angularitermes nasutissimus Angularitermes nasutissimus
Nasutitermitinae Angularitermes orestes² Angularitermes orestes C
Apicotermitinae Anoplotermes arboreus Ruptitermes arboreus
Apicotermitinae Anoplotermes hageni Anoplotermes hageni
Apicotermitinae Anoplotermes jheringhi³ Anoplotermes jheringi
Apicotermitinae Anoplotermes pacificus Anoplotermes pacificus
Apicotermitinae Anoplotermes spp. Anoplotermes spp. C
Apicotermitinae Anoplotermes turricola Anoplotermes turricola C
Syntermitinae Armitermes cerradoensis¹ Silvestritermes euamignathus C
Syntermitinae Armitermes euamignathus Silvestritermes euamignathus X
Syntermitinae Armitermes festivellus Embiratermes festivellus C
Syntermitinae Armitermes holmgreni Silvestritermes heyeri CX
Syntermitinae Armitermes neotenicus Embiratermes neotenicus C
Syntermitinae Armitermes peruanus Mapinguaritermes peruanus CX
Termitinae Cavitermes parmae¹ Cavitermes parmae X
Termitinae Cavitermes parvicavus¹ Cavitermes parvicavus C
Termitinae Cavitermes tuberosus Cavitermes tuberosus
Nasutitermitinae Constictotermes cavifrons Constictotermes cavifrons
Nasutitermitinae Constictotermes cyphergaster Constictotermes cyphergaster CX
Nasutitermitinae Constictotermes latinotus Constictotermes latinotus
Nasutitermitinae Constictotermes sp. Constictotermes sp.
Nasutitermitinae Convexitermes clevelandi Coatitermes clevelandi C
Nasutitermitinae Convexitermes spp. Convexitermes spp. C
Coptotermitinae Coptotermes crassus Coptotermes crassus
Coptotermitinae Coptotermes gestroi Coptotermes gestroi
Coptotermitinae Coptotermes marabitanas Coptotermes testaceus
Coptotermitinae Coptotermes niger Coptotermes niger
Coptotermitinae Coptotermes sp. Coptotermes sp.
Coptotermitinae Coptotermes testaceus Coptotermes testaceus CX
Syntermitinae Cornitermes bequaerti Cornitermes bequaerti C
Syntermitinae Cornitermes cumulans Cornitermes cumulans
Syntermitinae Cornitermes snyderi Cornitermes silvestrii CX
Nasutitermitinae Cortaritermes silvestrii² Cortaritermes silvestrii CX
Termitinae Crepititermes verruculosus Crepititermes verruculosus C
Syntermitinae Curvitermes angulariceps¹ Cyrilliotermes angulariceps C
Syntermitinae Curvitermes minor Curvitermes minor
Syntermitinae Curvitermes odontognathus Curvitermes odontognathus C
Syntermitinae Curvitermes planioculus¹ Curvitermes minor C
Syntermitinae Curvitermes projectidens¹ Paracurvitermes manni C
Syntermitinae Curvitermes strictinasus¹ Cyrilliotermes strictinasus C
Termitinae Cylindrotermes flangiatus¹ Cylindrotermes flangiatus C
Termitinae Cylindrotermes parvignathus Cylindrotermes parvignathus C
Nasutitermitinae Cyranotermes timuassu Cyranotermes timuassu C
Termitinae Dentispicotermes brevicarinatus Dentispicotermes brevicarinatus
Termitinae Dentispicotermes conjunctus Dentispicotermes conjunctus
Termitinae Dentispicotermes pantanalis¹ Dentispicotermes pantanalis X
Termitinae Dihoplotermes inusitatus Dihoplotermes inusitatus C
Nasutitermitinae Diversitermes aporeticus¹ Diversitermes aporeticus C
Nasutitermitinae Diversitermes castaniceps Diversitermes castaniceps
Nasutitermitinae Diversitermes diversimiles Diversitermes diversimiles CX
Nasutitermitinae Diversitermes dubius Diversitermes aporeticus
Rhinotermitinae Dolichorhinotermes longilabius Dolichorhinotermes longilabius C
Nasutitermitinae Eutermes arenarius Nasutitermes arenarius
Termitinae Genuotermes spinifer Genuotermes spinifer C
Apicotermitinae Grigiotermes inquilinus Grigiotermes metoecus
Apicotermitinae Grigiotermes metoecus¹ Grigiotermes metoecus C
Apicotermitinae Grigiotermes sp. Grigiotermes sp. C
Heterotermitinae Heterotermes aureus Heterotermes aureus
Heterotermitinae Heterotermes cardini Heterotermes cardini
Heterotermitinae Heterotermes convexinotatus Heterotermes convexinotatus
Heterotermitinae Heterotermes longiceps Heterotermes longiceps C
Heterotermitinae Heterotermes sulcatus¹ Heterotermes sulcatus C
Heterotermitinae Heterotermes tenuis Heterotermes tenuis CX
Termitinae Inquilinitermes fur² Inquilinitermes fur C
Termitinae Inquilinitermes inquilinus² Inquilinitermes inquilinus
Termitinae Inquilinitermes microcerus² Inquilinitermes microcerus C
Syntermitinae Labiotermes brevilabius Labiotermes brevilabius
Syntermitinae Labiotermes labralis Labiotermes labralis C
Syntermitinae Labiotermes leptothrix¹ Labiotermes leptothrix C
Syntermitinae Labiotermes longilabius Labiotermes longilabius
Syntermitinae Labiotermes pelliceus Labiotermes pelliceus
Syntermitinae Labiotermes pellisetaceus Labiotermes leptothrix
Termitinae Microcerotermes arboreus Microcerotermes arboreus
Termitinae Microcerotermes bouvieri Microcerotermes bouvieri
Incertae sedis Microcerotermes debilis Microcerotermes arboreus
Termitinae Microcerotermes exiguus Microcerotermes exiguus C
Termitinae Microcerotermes indistinctus¹ Microcerotermes indistinctus C
Termitinae Microcerotermes strunckii Microcerotermes strunckii C
Nasutitermitinae Nasutitermes acajutlae Nasutitermes acajutlae
Nasutitermitinae Nasutitermes bivalens Nasutitermes bivalens
Nasutitermitinae Nasutitermes bolivari² Nasutitermes bolivari C
Nasutitermitinae Nasutitermes callimorphus¹ Nasutitermes callimorphus C
Nasutitermitinae Nasutitermes corniger Nasutitermes corniger
Nasutitermitinae Nasutitermes costalis Nasutitermes costalis
Nasutitermitinae Nasutitermes coxipoensis Nasutitermes coxipoensis C
Nasutitermitinae Nasutitermes ephratae Nasutitermes ephratae CX
Nasutitermitinae Nasutitermes fulviceps Cortaritermes fulviceps
Nasutitermitinae Nasutitermes hubbardi Nasutitermes hubbardi
Nasutitermitinae Nasutitermes indistinctus Nasutitermes callimorphus
Nasutitermitinae Nasutitermes kemneri Nasutitermes kemneri CX
Nasutitermitinae Nasutitermes macrocephalus Nasutitermes macrocephalus
Nasutitermitinae Nasutitermes nigriceps Nasutitermes nigriceps C
Nasutitermitinae Nasutitermes octopilis Nasutitermes octopilis
Nasutitermitinae Nasutitermes silvestrii Cortaritermes silvestrii
Nasutitermitinae Nasutitermes stricticeps¹ Nasutitermes stricticeps C
Nasutitermitinae Nasutitermes surinamensis Nasutitermes surinamensis CX
Nasutitermitinae Nasutitermes tatarendae Nasutitermes tatarendae C
Nasutitermitinae Nasutitermes unduliceps¹ Nasutitermes unduliceps C
Nasutitermitinae Nasutitermes wheeleri Nasutitermes wheeleri C
Termitinae Neocapritermes bodkini Neocapritermes bodkini
Termitinae Neocapritermes opacus Neocapritermes opacus C
Termitinae Neocapritermes sp. Neocapritermes sp. C
Termitinae Neocapritermes taracua Neocapritermes taracua C
Kalotermitinae Neotermes acceptus¹ Neotermes acceptus C
Kalotermitinae Neotermes araguaensis Neotermes araguaensis
Kalotermitinae Neotermes fulvescens Neotermes fulvescens
Kalotermitinae Neotermes hirtellus Neotermes hirtellus
Kalotermitinae Neotermes magnoculus Neotermes magnoculus C
Kalotermitinae Neotermes manni Comatermes perfectus
Kalotermitinae Neotermes setifer Neotermes setifer
Termitinae Orthognathotermes aduncus Orthognathotermes aduncus C
Termitinae Orthognathotermes brevipilosus Orthognathotermes brevipilosus
Termitinae Orthognathotermes gibberorum Orthognathotermes gibberorum C
Termitinae Orthognathotermes macrocephalus Orthognathotermes macrocephalus
Termitinae Orthognathotermes wheeleri Orthognathotermes wheeleri
Syntermitinae Paracornitermes hirsutus Labiotermes orthocephalus CX
Nasutitermitinae Parvitermes bacchanalis¹ Obtusitermes bacchanalis C
Nasutitermitinae Parvitermes laticephalus Velocitermes laticephalus
Nasutitermitinae Parvitermes pallidiceps Parvitermes pallidiceps
Nasutitermitinae Parvitermes wolcotti Parvitermes wolcotti
Termitinae Planicapritermes planiceps Planicapritermes planiceps C
Rhinotermitinae Rhinotermes marginalis Rhinotermes marginalis C
Syntermitinae Rhynchotermes cerradoensis Rhynchotermes nyctobius
Syntermitinae Rhynchotermes diphyes¹ Rhynchotermes diphyes C
Syntermitinae Rhynchotermes diversimiles Rhynchotermes diphyes
Syntermitinae Rhynchotermes nasutissimus Rhynchotermes nasutissimus C
Syntermitinae Rhynchotermes nyctobius¹ Rhynchotermes nyctobius C
Syntermitinae Rhynchotermes perarmatus Rhynchotermes perarmatus
Nasutitermitinae Rotunditermes rotundiceps Rotunditermes bragantinus C
Apicotermitinae Ruptitermes arboreus² Ruptitermes arboreus
Apicotermitinae Ruptitermes grandis Ruptitermes xanthochiton
Apicotermitinae Ruptitermes proratus² Ruptitermes proratus
Apicotermitinae Ruptitermes reconditus² Ruptitermes reconditus CX
Apicotermitinae Ruptitermes xanthochiton¹ Ruptitermes xanthochiton C
Serritermitinae Serritermes serrifer Serritermes serrifer C
Apicotermitinae Speculitermes proratus Ruptitermes proratus
Termitinae Spinitermes allognathus¹ Divinotermes allognathus C
Termitinae Spinitermes brevicornutus Spinitermes brevicornutus
Termitinae Spinitermes nigrostomus Spinitermes nigrostomus CX
Termitinae Spinitermes robustus Spinitermes robustus C
Termitinae Spinitermes trispinosus Spinitermes trispinosus CX
Nasutitermitinae Subulitermes spp. Subulitermes spp. C
Syntermitinae Syntermes brasiliensis Syntermes molestus
Syntermitinae Syntermes chaquimayensis Syntermes spinosus
Syntermitinae Syntermes grandis Syntermes grandis C
Syntermitinae Syntermes molestus Syntermes molestus C
Syntermitinae Syntermes snyderi Syntermes spinosus CX
Nasutitermitinae Tenuirostritermes incisus Tenuirostritermes incisus
Termitinae Termes baculi Termes baculi
Termitinae Termes bolivianus Termes bolivianus C
Termitinae Termes hospes Termes hospes
Termitinae Termes medioculatus Termes medioculatus C
Nasutitermitinae Triangularitermes triangulariceps¹ Triangularitermes triangulariceps C
Nasutitermitinae Velocitermes antillarum Parvitermes antillarum
Nasutitermitinae Velocitermes beebei Velocitermes beebei
Nasutitermitinae Velocitermes bolivari Nasutitermes bolivari
Nasutitermitinae Velocitermes glabrinotus¹ Velocitermes glabrinotus C
Nasutitermitinae Velocitermes heteropterus Velocitermes heteropterus CX
Nasutitermitinae Velocitermes melanocephalus² Velocitermes melanocephalus
Nasutitermitinae Velocitermes paucipilis¹ Velocitermes paucipilis CX
Nasutitermitinae Velocitermes uniformis² Velocitermes uniformis
Nasutitermitinae Velocitermes velox² Velocitermes velox C

Received: September 22, 2015; Accepted: December 23, 2015

2E-mail to correspondence author:

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License