Acessibilidade / Reportar erro

Small mammals and microhabitat selection in forest fragments in the transition zone between Atlantic Forest and Pampa biome

Abstract

Natural resources are depleted in fragmented landscapes that have their vegetation also altered. As a result, the microhabitat diversity and the composition and distribution of local species are affected. In this study, we evaluated the small mammals’ community diversity, composition and microhabitat selection in two Atlantic Forest fragments, in an ecotone area with the Pampa biome, southern Brazil. We recorded five rodents (Akodon montensis, Oligoryzomys nigripes, Sooretamys angouya, Juliomys pictipes and the exotic Rattus rattus) and one marsupial (Didelphis albiventris). Both fragments were dominated by the generalist rodent A. montensis. Akodon montensis and O. nigripes showed similar habitat preferences: ground covered by rocks and higher values of vegetation obstruction. Sooretamys angouya preferred places with higher abundance of trees. Fruit availability was important for A. montensis and D. albiventris, highlighting the importance of this food resource for local wildlife, and the potential role of these species as seed predators and dispersers. Small species richness, the presence of an exotic species and high dominance level suggest that the study area is highly degraded.

Keywords.
Habitat use; Rodent; Marsupial; Community ecology; Vegetation Structure

INTRODUCTION

The Atlantic Forest is a complex biome with several vegetational formations, which includes a significant part of Neotropical biodiversity (Tabarelli et al., 2005Tabarelli, M.; Pinto, L.P.; Silva, J.M.; Hirota, M. & Bede, L. 2005. Challenges and opportunities for biodiversity conservation in the Brazilian Atlantic Forest. Conservation Biology, 19(3): 695700. https://doi.org/10.1111/j.1523-1739.2005.00694.x.
https://doi.org/10.1111/j.1523-1739.2005...
; SOS Mata Atlântica & INPE, 2011SOS Mata Atlântica (Fundação SOS Mata Atlântica) & INPE (Instituto Nacional de Pesquisas Espaciais). 2011. Atlas dos remanescentes florestais da Mata Atlântica, período de 20082010 (p. 122). São Paulo, Fundação SOS Mata Atlântica; INPE. p. 122.; Leitman et al., 2015Leitman, P.; Amorim, A.M.; Sansevero, J.B. & Forzza, R.C. 2015. Floristic patterns of epiphytes in the Brazilian Atlantic Forest, a biodiversity hotspot. Botanical Journal of the Linnean Society, 179(4): 587601. https://doi.org/10.1111/boj.12342.
https://doi.org/10.1111/boj.12342...
). This high diversity is partly due to its great latitudinal extension, from 4°S to 32°S latitude, the widest latitudinal gradient of a tropical forest in the world (Ribeiro et al., 2009Ribeiro, M.C.; Metzger, J.P.; Martensen, A.C.; Ponzoni, F.J. & Hirota, M.M. 2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142(6): 11411153. https://doi.org/10.1016/j.biocon.2009.02.021.
https://doi.org/10.1016/j.biocon.2009.02...
). It is also one of the most threatened tropical forests, with agricultural and urban developments being the leading causes of deforestation and fragmentation (Ribeiro et al., 2009Ribeiro, M.C.; Metzger, J.P.; Martensen, A.C.; Ponzoni, F.J. & Hirota, M.M. 2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142(6): 11411153. https://doi.org/10.1016/j.biocon.2009.02.021.
https://doi.org/10.1016/j.biocon.2009.02...
; Lira et al., 2012Lira, P.K.; Tambosi, L.R.; Ewers, R.M. & Metzger, J.P. 2012. Land-use and land-cover change in Atlantic Forest landscapes. Forest Ecology and Management, 278: 8089. https://doi.org/10.1016/j.foreco.2012.05.008.
https://doi.org/10.1016/j.foreco.2012.05...
). Fragmentation of natural habitats can promote a reduction in species diversity through the extinction of specialist species (Pardini et al., 2010Pardini, R.; De Arruda Bueno, A.; Gardner, T.A.; Prado, P.I. & Metzger, J.P. 2010. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PloS ONE, 5(10): e13666. https://doi.org/10.1371/journal.pone.0013666.
https://doi.org/10.1371/journal.pone.001...
; Bregman et al., 2014Bregman, T.P.; Sekercioglu, C.H. & Tobias, J.A. 2014. Global patterns and predictors of bird species responses to forest fragmentation: implications for ecosystem function and conservation. Biological Conservation, 169: 372383. https://doi.org/10.1016/j.biocon.2013.11.024.
https://doi.org/10.1016/j.biocon.2013.11...
; Matthews et al., 2014Matthews, T.J.; Cottee Jones, H.E. & Whittaker, R.J. 2014. Habitat fragmentation and the species-area relationship: a focus on total species richness obscures the impact of habitat loss on habitat specialists. Diversity and Distribution, 20(10): 11361146. https://doi.org/10.1111/ddi.12227.
https://doi.org/10.1111/ddi.12227...
). Atlantic Forest fragmentation and its effects on biodiversity have been intensively studied in the last years, mainly in the northeast (e.g.,Lôbo et al., 2011Lôbo, D.; Leão, T.; Melo, F.P.; Santos, A.M. & Tabarelli, M. 2011. Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Diversity and Distribution, 17(2): 287296. https://doi.org/10.1111/j.1472-4642.2010.00739.x.
https://doi.org/10.1111/j.1472-4642.2010...
; Leal et al., 2012Leal, I.R.; Filgueiras, B.K.; Gomes, J.P.; Iannuzzi, L. & Andersen, A.N. 2012. Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest. Biodiversity and Conservation, 21(7): 16871701. https://doi.org/10.1007/s10531-012-0271-9.
https://doi.org/10.1007/s10531-012-0271-...
; Santo-Silva et al., 2016Santo-Silva, E.E.; Almeida, W.R.; Tabarelli, M. & Peres, C.A. 2016. Habitat fragmentation and the future structure of tree assemblages in a fragmented Atlantic forest landscape. Plant Ecology, 217(9): 11291140. https://doi.org/10.1007/s11258-016-0638-1.
https://doi.org/10.1007/s11258-016-0638-...
; Filgueiras et al., 2019Filgueiras, B.K.; Melo, D.H.; Andersen, A.N.; Tabarelli, M. & Leal, I.R. 2019. Cross-taxon congruence in insect responses to fragmentation of Brazilian Atlantic forest. Ecological Indicators, 98: 523530. https://doi.org/10.1016/j.ecolind.2018.11.036.
https://doi.org/10.1016/j.ecolind.2018.1...
) and the southeast of Brazil (e.g.,Umetsu & Pardini, 2007Umetsu, F. & Pardini, R. 2007. Small mammals in a mosaic of forest remnants and anthropogenic habitats - evaluating matrix quality in an Atlantic forest landscape. Landscape Ecology, 22(4): 517530. https://doi.org/10.1007/s10980-006-9041-y.
https://doi.org/10.1007/s10980-006-9041-...
; Vieira et al., 2009Vieira, M.V.; Olifiers, N.; Delciellos, A.C.; Antunes, V.Z.; Bernardo, L.R.; Grelle, C.E. & Cerqueira, R. 2009. Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic Forest remnants. Biological Conservation, 142(6): 11911200. https://doi.org/10.1016/j.biocon.2009.02.006.
https://doi.org/10.1016/j.biocon.2009.02...
; Almeida-Gomes & Rocha, 2014Almeida-Gomes, M. & Rocha, C.F.D. 2014. Landscape connectivity may explain anuran species distribution in an Atlantic forest fragmented area. Landscape Ecology, 29(1): 2940. https://doi.org/10.1007/s10980-013-9898-5.
https://doi.org/10.1007/s10980-013-9898-...
; Almeida-Gomes et al., 2019Almeida-Gomes, M.; Vieira, M.V.; Rocha, C.F.D. & Melo, A.S. 2019. Habitat amount drives the functional diversity and nestedness of anuran communities in an Atlantic Forest fragmented landscape. Biotropica, 51(6): 874884. https://doi.org/10.1111/btp.12687.
https://doi.org/10.1111/btp.12687...
). The southern Atlantic Forest, at the border with the Pampa biome, remains the least studied region of this biome regarding fragmentation studies.

Human occupation of the Atlantic Forest also caused structural alteration of the remnants, which could lead to some changes at the microhabitat scale (Chazdon, 2003Chazdon, R.L. 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology , Evolution and Systematics, 6: 5171. https://doi.org/10.1078/1433-8319-00042.
https://doi.org/10.1078/1433-8319-00042...
). Such scale is complex in Neotropical forests, such as the Atlantic Forest, once they show a high variety of vegetation structure (Richards, 1996Richards, P.W. 1996. The tropical rain forest. 2ed. Cambridge, Cambridge University Press.). Microhabitat has been described as environmental variables that affect the species behavior from an individual perspective and determine portions of the home range that are more intensively used (Morris, 1987Morris, D.W. 1987. Ecological scales and habitat use. Ecology, 68(2): 362369. https://doi.org/10.2307/1939267.
https://doi.org/10.2307/1939267...
; Warrick et al., 1998Warrick, G.D.; Kato, T.T. & Rose, B.R. 1998. Microhabitat use and home range characteristics of blunt-nosed leopard lizards. Journal of Herpetology, 32(2): 183191. https://doi.org/10.2307/1565295.
https://doi.org/10.2307/1565295...
; Akers et al., 2013Akers, A.A.; Islam, M.A. & Nijman, V. 2013. Habitat characterization of western hoolock gibbons Hoolock hoolock by examining home range microhabitat use. Primates, 54(4): 341348. https://doi.org/10.1007/s10329-013-0352-8.
https://doi.org/10.1007/s10329-013-0352-...
; Schirmer et al., 2019Schirmer, A.; Herde, A.; Eccard, J.A. & Dammhahn, M. 2019. Individuals in space: personality-dependent space use, movement and microhabitat use facilitate individual spatial niche specialization. Oecologia, 189(3): 647660. https://doi.org/10.1007/s00442-019-04365-5.
https://doi.org/10.1007/s00442-019-04365...
). It’s use has been specially related to resource availability (e.g.,Hodara & Busch, 2010Hodara, K. & Busch, M. 2010. Patterns of macro and microhabitat use of two rodent species in relation to agricultural practices. Ecological Research, 25(1): 113121. https://doi.org/10.1007/s11284-009-0638-x.
https://doi.org/10.1007/s11284-009-0638-...
; Pinotti et al., 2011Pinotti, B.T.; Naxara, L. & Pardini, R. 2011. Diet and food selection by small mammals in an old-growth Atlantic forest of south-eastern Brazil. Studies on Neotropical Fauna and Environment, 46(1): 19. https://doi.org/10.1080/01650521.2010.535250.
https://doi.org/10.1080/01650521.2010.53...
; Sponchiado et al., 2012Sponchiado, J.; Melo, G.L. & Cáceres, N.C. 2012. Habitat selection by small mammals in Brazilian Pampas biome. Journal of Natural History, 46(2122): 13211335. https://doi.org/10.1080/00222933.2012.655796.
https://doi.org/10.1080/00222933.2012.65...
; Corrêa et al., 2018Corrêa, M.R.; Bellagamba, Y.M.; de Magalhães, A.P.; Martins, J.P.; Cruz, A.J.D.R.; Kozovitz, A.R.; Messias, M.C.T.B. & de Azevedo, C.S. 2018. Microhabitat structure and food availability modelling a small mammal assemblage in restored riparian forest remnants. Mammalia, 82(4): 315327. https://doi.org/10.1515/mammalia-2017-0026.
https://doi.org/10.1515/mammalia-2017-00...
) and protection against predators (e.g.,Lima et al., 2010Lima, D.O.D.; Azambuja, B.O.; Camilotti, V.L. & Cáceres, N.C. 2010. Small mammal community structure and microhabitat use in the austral boundary of the Atlantic Forest, Brazil. Zoologia, Curitiba, 27: 99105. https://doi.org/10.1590/S1984-46702010000100015.
https://doi.org/10.1590/S1984-4670201000...
; Melo et al., 2013Melo, G.L.; Miotto, B.; Peres, B. & Caceres, N.C. 2013. Microhabitat of small mammals at ground and understorey levels in a deciduous, southern Atlantic Forest. Anais da Academia Brasileira de Ciências, 85(2): 727736. https://doi.org/10.1590/S0001-37652013000200017.
https://doi.org/10.1590/S0001-3765201300...
; Law et al., 2018Law, B.; Chidel, M.; Britton, A. & Threlfall, C. 2018. Comparison of microhabitat use in young regrowth and unlogged forest by the eastern pygmy-possum (Cercartetus nanus). Australian Mammalogy, 40(1): 19. https://doi.org/10.1071/AM16041.
https://doi.org/10.1071/AM16041...
; Bajaru et al., 2019Bajaru, S.B.; Kulavmode, A.R. & Manakadan, R. 2019. Influence of microhabitat and landscape-scale factors on the richness and occupancy of small mammals in the northern Western Ghats: A multi-species occupancy modeling approach. Mammalian Biology, 99(1): 8896. https://doi.org/10.1016/j.mambio.2019.10.003.
https://doi.org/10.1016/j.mambio.2019.10...
). Highlighting the importance of microhabitat characteristics in forest fragments, Delciellos et al. (2016Delciellos, A.C.; Vieira, M.V.; Grelle, C.E.V.; Cobra, P. & Cerqueira, R. 2016. Habitat quality versus spatial variables as determinants of small mammal assemblages in Atlantic Forest fragments. Journal of Mammalogy, 97(1): 253265. https://doi.org/10.1093/jmammal/gyv175.
https://doi.org/10.1093/jmammal/gyv175...
) found that the quality of vegetation structure had a comparative effect over small mammal richness and composition with fragment isolation and climate seasonality.

Small mammals play key ecological roles in the forest ecosystems, serving as seed dispersers and predators (Bricker et al., 2010Bricker, M.; Pearson, D. & Maron, J. 2010. Small mammal seed predation limits the recruitment and abundance of two perennial grassland forbs. Ecology, 91(1): 8592. https://doi.org/10.1890/081773.1.
https://doi.org/10.1890/081773.1...
; Grenha et al., 2010Grenha, V.; Macedo, M.V.; Pires, A.S. & Monteiro, R.F. 2010. The role of Cerradomys subflavus (Rodentia, Cricetidae) as seed predator and disperser of the palm Allagoptera arenaria. Mastozoología Neotropopical, 17(1): 6168.), insects predators (Kaunisto et al., 2012Kaunisto, S.; Kortet, R.; Härkönen, S.; Kaitala, A.; Laaksonen, S. & Ylönen, H. 2012. Do small mammals prey upon an invasive ectoparasite of cervids? Canadian Journal of Zoology, 90(8): 10441050. https://doi.org/10.1139/z2012-072.
https://doi.org/10.1139/z2012-072...
) and important prey for terrestrial vertebrates (Wang, 2002Wang, E. 2002. Diets of ocelots (Leopardus pardalis), margays (L. wiedii), and oncillas (L. tigrinus) in the Atlantic rainforest in southeast Brazil. Studies on Neotropical Fauna and Environment, 37(3): 207212. https://doi.org/10.1076/snfe.37.3.207.8564.
https://doi.org/10.1076/snfe.37.3.207.85...
; Bianchi et al., 2010Bianchi, R.D.C.; Mendes, S.L. & Júnior, P.D.M. 2010. Food habits of the ocelot, Leopardus pardalis, in two areas in southeast Brazil. Studies on Neotropical Fauna and Environment, 45(3): 111119. https://doi.org/10.1080/01650521.2010.514791.
https://doi.org/10.1080/01650521.2010.51...
). Studies on ecology and community structure of small mammal species have the potential to answer important questions related to forest dynamics since these species respond directly to local and regional changes in habitat (Castro & Fernandez, 2004Castro, E.B.V. & Fernandez, F.A.S. 2004. Determinants of differential extinction vulnerabilities of small mammals in Atlantic forest fragments in Brazil. Biological Conservation, 119: 7380. https://doi.org/10.1016/j.biocon.2003.10.023.
https://doi.org/10.1016/j.biocon.2003.10...
; Hodara & Busch, 2010Hodara, K. & Busch, M. 2010. Patterns of macro and microhabitat use of two rodent species in relation to agricultural practices. Ecological Research, 25(1): 113121. https://doi.org/10.1007/s11284-009-0638-x.
https://doi.org/10.1007/s11284-009-0638-...
; Delciellos et al., 2018Delciellos, A.C.; Barros, C.D.S.D.; Prevedello, J.A.; Ferreira, M.S.; Cerqueira, R. & Vieira, M.V. 2018. Habitat fragmentation affects individual condition: evidence from small mammals of the Brazilian Atlantic Forest. Journal of Mammalogy, 99(4): 936945. https://doi.org/10.1093/jmammal/gyy078.
https://doi.org/10.1093/jmammal/gyy078...
). In general, specialist species are negatively influenced by habitat loss and alteration whereas generalist species with a wider geographical range are positively influenced, or unaffected by these processes (Pardini et al., 2010Pardini, R.; De Arruda Bueno, A.; Gardner, T.A.; Prado, P.I. & Metzger, J.P. 2010. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PloS ONE, 5(10): e13666. https://doi.org/10.1371/journal.pone.0013666.
https://doi.org/10.1371/journal.pone.001...
; Püttker et al., 2013Püttker, T.; Bueno, A.A.; dos Santos de Barros, C.; Sommer, S. & Pardini, R. 2013. Habitat specialization interacts with habitat amount to determine dispersal success of rodents in fragmented landscapes. Journal of Mammalogy, 94(3): 714726. https://doi.org/10.1644/12-MAMM-A-119.1.
https://doi.org/10.1644/12-MAMM-A-119.1...
). Approximately 320 small mammals species have been recorded in Brazil (Quintela et al., 2020Quintela, F.M.; da Rosa, C.A. & Feijó, A. 2020. Updatd and annotated checklist of recent mammals from Brazil. Anais da Academia Brasileira de Ciências, 92(Supl. 2): 157. https://doi.org/10.1590/0001-3765202020191004.
https://doi.org/10.1590/0001-37652020201...
). Even though Atlantic Forest is the Brazilian biome with the highest number of studies regarding mammal species (Brito et al., 2009Brito, D.; Oliveira, L.C.; Oprea, M. & Mello, M.A. 2009. An overview of Brazilian mammalogy: trends, biases and future directions. Zoologia, Curitiba, 26(1): 6773. https://doi.org/10.1590/S1984-46702009000100011.
https://doi.org/10.1590/S1984-4670200900...
), there is still a significant knowledge gap on species composition in some areas, such as the southern Atlantic Forest, at the very border with the grassland dominated Pampa biome.

In this study, we investigated species richness, abundance, and composition of a small mammal community in two Atlantic Forest fragments and evaluated the microhabitat selection by the most abundant species. Firstly, we hypothesized the existence of a poor community dominated by common and generalist species, because the sampled fragments are medium to small-sized and the general landscape is poorly forested. Secondly, we hypothesized that small mammals’ abundance would be related to fruit availability, an important resource for these species. Additionally, we considered that small mammals would be more abundant in areas where the vegetation structure could provide protection against predators, such as vegetation obstruction.

MATERIAL AND METHODS

Study area

The study was carried out from April 2015 to October 2016 in two Atlantic Forest fragments (Fragment 1: 28°08′38″S, 54°45′36″W, 30 ha; Fragment 2: 28°07′33″S, 54°44′57″W, 20 ha) in Cerro Largo municipality, Rio Grande do Sul State, Brazil (Fig. 1). This region is an ecotone between the Atlantic Forest and the grassland dominated Pampa biome. The vegetation is classified as deciduous forest, with Fabaceae being the most abundant botanical family (Souza et al., 2020Souza, S.S.; Ramos, R.F.; Bremm, N.; Garcia, P.B.; Grzybowski, N.; Ferrera, T.S.; Chassot, T. & Pinheiro, T. 2020. Estrutura arbórea de um fragmento de floresta estacional decidual na região fisiográfica Missões, Rio Grande do Sul, Brasil. Pesquisas, Botânica, 74: 133145.). The local climate is subtropical (Cfa type, Köppen classification: Peel et al., 2007Peel, M.C.; Finlayson, B.L. & McMahon, T.A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 4(2): 439473. https://doi.org/10.5194/hess-11-1633-2007.
https://doi.org/10.5194/hess-11-1633-200...
) with high annual rainfall (mean: 1,800 mm). The mean temperatures range from 20℃ to 30℃ in the hottest months (December, January, and February) and 10℃ to 20℃ in the coldest months (June, July, and August) (Kuinchtner & Buriol, 2001Kuinchtner, A. & Buriol, G.A. 2001. Clima do Estado do Rio Grande do Sul segundo a classificação climática de Köppen e Thornthwaite. Disciplinarum Scientia - Ciencias Naturais e Tecnológicas, 2(1): 171182.).

Figure 1
Location of the study area in South America and Rio Grande do Sul State, Brazil. Atlantic Forest and Pampa biome extents in the Rio Grande do Sul. Regional landscape with forest fragments, main roads, and matrix extent. Numbers 1 and 2 indicate the studied fragments (Fragment 1 - 28°08′38″S, 54°45′36″W, 30 ha, Fragment 2 - 28°07′33″S, 54°44′57″W, 20 ha).

Trapping procedures

In each fragment, we sampled small mammals for ten nights per season from Autumn 2015 to Spring 2016. We set three 120 m long transects in each fragment, each with seven trapping stations 20 m apart and at least 25 m from the fragment edge. We used Sherman (31 × 10 × 08 cm) and Tomahawk (45 × 17 × 17 cm) live-traps. In each trapping station, we placed two live-traps - one on the ground and one in the understory (approximately at 1.5 m high) - totalizing 42 live-traps per fragment. Each trap was baited with a mixture of peanut butter, banana, corn flour, sardine, and commercial cod-liver oil. This study was authorized by IBAMA - Brazilian Institute of Environment and Natural Resources (authorization number 469472) and the ethics procedures were authorized by the UFFS Animal Ethics Committee (authorization number 009/CEUA/UFFS/2015).

Species identification

A total of 32 specimens were field-collected and deposited in the Universidade Luterana do Brasil (ULBRA), Museu de Ciências Naturais, Laboratório de Sistemática de Mamíferos (seeTable S1). An ear plug was sampled from each voucher, which received a numbered tag and was released in the same capture point. The taxonomic identity of specimens was determined either based on morphological analyses of vouchers, compared with museum specimens from ULBRA and published morphological data (Bonvicino et al., 2008Bonvicino, C.R.; Oliveira, J.D. & D’Andrea, P.S. 2008. Guia dos roedores do Brasil, com chaves para gêneros baseadas em caracteres externos. Rio de Janeiro, Ventro Pan-Americano de Febre Aftosa/OPAS/OMS. 122p. (Série de Manuais Técnicos; 11).) or DNA.

Total DNA was extracted from muscle tissue (ear plug) preserved in ethanol 100% from 26 vouchers, using the PureLink Genomic DNA kit (Invitrogen), following manufacturer protocols. A fragment of 801 base pairs of the mitochondrial DNA (mtDNA) gene cytochrome b (Cytb) was amplified with primers MVZ05 and MVZ16 and conditions described by Smith & Patton (1993Smith, M.F. & Patton, J.L. 1993. The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biological Journal of the Linnean Society, 50(3): 149177. https://doi.org/10.1111/j.1095-8312.1993.tb00924.x.
https://doi.org/10.1111/j.1095-8312.1993...
). PCR products were cleaned using Exonuclease I and Thermosensitive Alkaline Phosphatase (FastAP; Thermo Scientific) and purified amplicons were directly sequenced (forward strand) in an ABI 3730xl genetic analyzer by Macrogen (Republic of South Korea). Chromatograms were edited and aligned using Geneious v.9.1.8 (Biomatters, available at https://www.geneious.com; Kearse et al., 2012Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; Thierer, T.; Ashton, B.; Meintjes, P. & Drummond, A. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12): 16471649. https://doi.org/10.1093/bioinformatics/bts199.
https://doi.org/10.1093/bioinformatics/b...
). Using the Local Alignment Search Tool (BLASTN 2.10.1+) (Zhang et al., 2000Zhang, Z.; Schwartz, S.; Wagner, L. & Miller, W. 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(12): 203214. https://doi.org/10.1089/10665270050081478.
https://doi.org/10.1089/1066527005008147...
), the resulting sequences were compared to those in the public database Genbank (NCBI: https://blast.ncbi.nlm.nih.gov) to identify species matches based on sequence similarity. We considered an identity value between 98.5 and 100% as a reliable match for a species (seeTable S2).

Microhabitat variables

To understand species associations with microhabitat, we measured 13 variables at each trapping station (Freitas et al., 2002Freitas, S.R.; Cerqueira, R. & Vieira, M.V. 2002. A device and standard variables to describe microhabitat structure of small mammals based on plant cover. Brazilian Journal of Biology, 62(4b): 795800. https://doi.org/10.1590/S1519-69842002000500008.
https://doi.org/10.1590/S1519-6984200200...
; Vieira et al., 2005Vieira, E.M.; Iob, G.; Briani, D.C. & Palma, A.R.T. 2005. Microhabitat selection and daily movements of two rodents (Nectomys lasiurus and Oryzomys scotti) in Brazilian Cerrado, as revealed by a spool-and-line device. Mammalian Biology, 70(6): 359365. https://doi.org/10.1016/j.mambio.2005.08.002.
https://doi.org/10.1016/j.mambio.2005.08...
). Ground cover in the trapping station was measured with a 0.25 m² horizontally-placed grid divided into 100 equal parts (Freitas et al., 2002Freitas, S.R.; Cerqueira, R. & Vieira, M.V. 2002. A device and standard variables to describe microhabitat structure of small mammals based on plant cover. Brazilian Journal of Biology, 62(4b): 795800. https://doi.org/10.1590/S1519-69842002000500008.
https://doi.org/10.1590/S1519-6984200200...
). We estimated the percentage of grid cells covered by (Variable 1) leaf litter, (V2) rocks, (V3) herbaceous vegetation, and (V4) bare soil. We repeated this measure in each cardinal direction around each trapping station and averaged across the four directions to characterize the ground cover at each trapping station. Ground cover variables showed high correlation values as they were measured as proportions of the same grid (Hair et al., 2010Hair, J.F.; Black, W.C.; Babin, B.J. & Anderson, R.E. 2010. Multivariate data analysis. 7ed. New Jersey, Prentice Hall.). Therefore, these variables were grouped in a Principal Component Analysis (PCA) before the microhabitat selection analysis. The two first axis of this Principal Component Analysis, PC1GC, and PC2GC (Table 1), represented 92% of the variation in the original data.

Table 1
Principal Component Analysis values of the four original ground cover variables into the PC1GC and PC2GC. Together, these two axes represented 92% of the variation in the original data.

We measured the vegetation obstruction at three heights: (V5) 0 to 0.50 m, (V6) 0.51 and 1.00 m, and (V7) 1.01 and 1.50 m. We used the same grid as above, vertically positioned and estimated the percentage of grid cells with vegetation cover within 3 m. This measurement was performed in each cardinal direction and their average was used to characterize the vegetation obstruction at each trapping station. The vegetation obstruction showed high correlation values (Hair et al., 2010Hair, J.F.; Black, W.C.; Babin, B.J. & Anderson, R.E. 2010. Multivariate data analysis. 7ed. New Jersey, Prentice Hall.) so we used the average across the three heights in the subsequent analysis.

Additionally, we measured four variables within a 3 m radius of each trapping station. We counted the measured perimeter at breast height (PBH) of all trees and grouped them into three subcategories: (V8) 10 to 30 cm, (V9) 31 to 60 cm, and (V10) above 61 cm. We also recorded the (V11) presence or absence of trees or shrubs with fruits that could be eaten by small mammals. Canopy height (V12) was estimated, always by the same person, by comparing it to an object of known height. Canopy cover (V13) was also estimated by holding the grid horizontally above the head and counting the percentage of grid cells covered by vegetation. All microhabitat variables (expect fruit availability) were estimated once a year and averaged for the subsequent analysis. Fruit availability was estimated seasonally, and an average for each season was used in the subsequent analysis.

A PCA was performed on canopy height, canopy cover, PBH, and vegetation obstruction as these variables showed a high correlation. The two first axes, PC1VS and PC2VS (Table 2), represented 55% of the variation in the original data and were used in the subsequent analysis of microhabitat selection.

Table 2
Principal Component Analysis values of the six original vegetation variables into the PC1VS and PC2VS. Together, these two axes represented 55% of the variation in the original data.

Microhabitat analysis

We analyzed the influence of microhabitat variables in species abundance using Generalized Linear Models (GLM) with a Poisson distribution. To analyze the influence of each variable over the four most abundant species, we created 32 models using all possible combinations of the five variables (PC1GC, PC2GC, PC1VS, PC2VS, and fruits) and a null model (seeTable S3) for each species.

To carry out model selection, we used the corrected Akaike Information Criteria (AICc) for small sample sizes (Burnham & Anderson, 2002Burnham, K.P. & Anderson, D.R. 2002. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. 2. ed. Heidelberg, Springer-Verlag.). The top model was the one with the lowest AICc, and all models with ΔAICc less than two were considered important models to explain the small mammal abundance (Burnham & Anderson, 2002Burnham, K.P. & Anderson, D.R. 2002. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. 2. ed. Heidelberg, Springer-Verlag.). The importance of each variable was evaluated by using the sum of the model’s weight that included each variable. The model weight (wi) represents the relative likelihood of a model considering the set of models created (Burnham & Anderson, 2002Burnham, K.P. & Anderson, D.R. 2002. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. 2. ed. Heidelberg, Springer-Verlag.). The importance analysis output consists of values ranging between zero and one, where zero represents a variable with no importance and a value of one represents the highest possible importance. Before the analyses, the variables’ magnitude orders were standardized so all the variables were on the same scale, allowing comparisons of the magnitude of the effect of each variable. All the analyses were performed in the R, Version 3.5.1 (R Core Team, 2018R Core Team. 2018. Version 3.5.1. Vienna, R Foundation for Statistical Computing. https://www.r-project.org.
https://www.r-project.org...
), and the MuMIn package was used for model selection procedures (Barton, 2018Barton, K. 2018. MuMIn: Multi-Model Inference . R package Version 1.42.1. https://cran.rproject.org/web/packages/MuMIn/index.html.
https://cran.rproject.org/web/packages/M...
).

RESULTS

Community composition

Overall, 198 individuals of six species, five rodents (sequence identity match of two retrieved from NCBI; Table S2), and one marsupial, were recorded in 406 captures over 5,320 trap-nights (7.61% trapping success). The most abundant species was Akodon montensis (Thomas, 1913; 219 captures of 101 individuals), followed by Oligoryzomys nigripes (Olfers, 1818; 87 captures of 50 individuals), Sooretamys angouya (Fischer, 1814; 52 captures of 20 individuals), Didelphis albiventris (Lund, 1840; 43 captures of 19 individuals), Juliomys pictipes (Osgood, 1933; 2 captures of 1 individual during Winter 2016 on Fragment 1), and the exotic Rattus rattus (Linnaeus, 1758; 1 individual during Summer 2016 on Fragment 2). Akodon montensis individuals were captured during all seasons but were most abundant during 2015 winter and spring, and 2016 winter (Fig. 2A). For O. nigripes, the highest abundance was recorded during 2015 spring and 2016 winter (Fig. 2B). Sooretamys angouya had similar abundance during all seasons (Fig. 2C) and D. albiventris was most abundant during summer 2016 (Fig. 2D).

Figure 2
Number of individuals captured for the four most abundant species of small mammals in two forest fragments of Atlantic Forest between Autumn 2015 and Spring 2016 in Cerro Largo, Rio Grande do Sul, Brazil. (A) Akodon montensis; (B) Oligoryzomys nigripes; (C) Sooretamys angouya; (D) Didelphis albiventris. F1 = Fragment 1; F2 = Fragment 2.

The rarefaction curve (seeFig. S4) indicated that the sampling effort was enough to characterize community richness, as it remained stable for more than 215 captures.

Microhabitat variables

The variables driving microhabitat selection varied among the four species. Three models had a ΔAICc ≤ 2 for A. montensis (Fig. 3A), which included fruit, PC2GC, PC1VS, and PC2VS as the most important variables (importance values ranging from 0.99 to 0.68; Table 3). For O. nigripes, five models were selected (four models with variables - Fig. 3B - and the null model: AIC 168.2); the most important variables were PC1VS and PC2GC (importance value of 0.63 and 0.57; Table 3). For S. angouya only one model was selected (Fig. 3C), and PC2VS was the most important variable (importance value of 0.95; Table 3). D. albiventris had two models selected (Fig. 3D) and fruit availability was the most important variable influencing microhabitat selection (importance value of 0.78; Table 3).

Figure 3
Variables coefficients and their confidence intervals in the models selected (with ΔAIC ≤ 2) for each small mammal species. (A) Akodon montensis; (B) Oligoryzomys nigripes; (C) Sooretamys angouya; (D) Didelphis albiventris. PC1GC = first axis of the PCA for soil variables; PC2GC = second axis of the PCA for soil variables; PC1VS = first axis of the PCA for vegetation structure; PC2VS = second axis of the PCA for vegetation structure.

Table 3
Importance of microhabitat variables for four species of small mammals in two forest fragments of Atlantic Forest in Cerro Largo, Rio Grande do Sul, Brazil. Variables’ importance values closer to 1.0 indicate greater importance of this variable.

DISCUSSION

Our results indicate that the local habitat is highly degraded. The small mammal community had a low species richness and was dominated by a single generalist species (A. montensis). The species composition also evidences the degradation status of the study area as most of the species are generalists adapted to anthropogenic landscapes in Atlantic Forest biome and no threatened species were recorded. In comparison, Melo et al. (2011Melo, G.L.; Sponchiado, J.; Machado, A.F. & Cáceres, N.C. 2011. Small-mammal community structure in a South American deciduous Atlantic Forest. Community Ecology, 12(1): 5866. https://doi.org/10.1556/comec.12.2011.1.8.
https://doi.org/10.1556/comec.12.2011.1....
) found 12 small mammals species in the Parque Estadual do Turvo (PET), a 17,000 ha forest in a protected area, 120 km from our study area. The small mammal community at our study site represents a subset of the PET community, suggesting that the community was affected by the fragmentation process. All native rodents captured in our study were represented at the PET. However, the congeneric marsupial species D. aurita was present at the PET (Melo et al., 2011Melo, G.L.; Sponchiado, J.; Machado, A.F. & Cáceres, N.C. 2011. Small-mammal community structure in a South American deciduous Atlantic Forest. Community Ecology, 12(1): 5866. https://doi.org/10.1556/comec.12.2011.1.8.
https://doi.org/10.1556/comec.12.2011.1....
) whereas D. albiventris was present at our study site. Both fragments sampled in our study had the same species richness and similar abundance of the four most common species. This suggests that it is likely for most of the fragments in the regional landscape to have a similar small mammals’ composition, once they are all similar small forest fragments surrounded by agricultural and urban areas.

The low species richness may also be related to the latitudinal position of the study area. Our fragments are in the southern portion of the Atlantic Forest biome, outside the tropical region. Studies with a similar methodology in the Atlantic Forest have found between six to 21 species, and, in general, studies in lower latitudes had greater species richness (e.g.,Pardini et al., 2005Pardini, R.; De Souza, S.M.; Braga-Neto, R. & Metzger, J.P. 2005. The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biological Conservation, 124(2): 253266. https://doi.org/10.1016/j.biocon.2005.01.033.
https://doi.org/10.1016/j.biocon.2005.01...
; Vieira et al., 2009Vieira, M.V.; Olifiers, N.; Delciellos, A.C.; Antunes, V.Z.; Bernardo, L.R.; Grelle, C.E. & Cerqueira, R. 2009. Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic Forest remnants. Biological Conservation, 142(6): 11911200. https://doi.org/10.1016/j.biocon.2009.02.006.
https://doi.org/10.1016/j.biocon.2009.02...
; Lima et al., 2010Lima, D.O.D.; Azambuja, B.O.; Camilotti, V.L. & Cáceres, N.C. 2010. Small mammal community structure and microhabitat use in the austral boundary of the Atlantic Forest, Brazil. Zoologia, Curitiba, 27: 99105. https://doi.org/10.1590/S1984-46702010000100015.
https://doi.org/10.1590/S1984-4670201000...
; Maestri et al., 2014Maestri, R.; Galiano, D.; Kubiak, B.B. & Marinho, J.R. 2014. Diversity of small land mammals in a subtropical Atlantic forest in the western region of the state of Santa Catarina, southern Brazil. Biota Neotropica, 14(4): 17. https://doi.org/10.1590/1676-06032014012914.
https://doi.org/10.1590/1676-06032014012...
). The PET itself, the most preserved forest area in the southernmost portion of Atlantic Forest, had lower species richness than other well-preserved forests further north (Melo et al., 2011Melo, G.L.; Sponchiado, J.; Machado, A.F. & Cáceres, N.C. 2011. Small-mammal community structure in a South American deciduous Atlantic Forest. Community Ecology, 12(1): 5866. https://doi.org/10.1556/comec.12.2011.1.8.
https://doi.org/10.1556/comec.12.2011.1....
). While several factors, such as fragment size, isolation, habitat amount and matrix type (e.g.,Pardini, 2004Pardini, R. 2004. Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodiversity and Conservation, 13(13): 25672586. https://doi.org/10.1023/B:BIOC.0000048452.18878.2d.
https://doi.org/10.1023/B:BIOC.000004845...
; Umetsu & Pardini, 2007Umetsu, F. & Pardini, R. 2007. Small mammals in a mosaic of forest remnants and anthropogenic habitats - evaluating matrix quality in an Atlantic forest landscape. Landscape Ecology, 22(4): 517530. https://doi.org/10.1007/s10980-006-9041-y.
https://doi.org/10.1007/s10980-006-9041-...
; Vieira et al., 2009Vieira, M.V.; Olifiers, N.; Delciellos, A.C.; Antunes, V.Z.; Bernardo, L.R.; Grelle, C.E. & Cerqueira, R. 2009. Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic Forest remnants. Biological Conservation, 142(6): 11911200. https://doi.org/10.1016/j.biocon.2009.02.006.
https://doi.org/10.1016/j.biocon.2009.02...
), interact to determine small mammals richness in fragmented landscapes, latitudinal was recently shown to be an important factor driving on small mammal richness in 122 forest fragments in Atlantic forest (Rodrigues et al., 2020Rodrigues, D.P.; Skupien, F.L.; Sausen, J.O. & Lima, D.O. 2020. Small mammals in fragments of Atlantic Forest: species richness answering to field methods and environment. Journal of Tropical Ecology, 36(3): 101108. https://doi.org/10.1017/S0266467420000048.
https://doi.org/10.1017/S026646742000004...
).

In general, rodents were most abundant during winter. This could be due to a lower food availability making the trapping baits more attractive when compared with seasons of higher food availability. A higher abundance of O. nigripes during winter has been observed in the southern region of the Atlantic Forest, both in Araucaria Forest (Galiano et al., 2013Galiano, D.; Kubiak, B.B.; Marinho, J.R. & de Freitas, T.R.O. 2013. Population dynamics of Akodon montensis and Oligoryzomys nigripes in an Araucaria forest of southern Brazil. Mammalia, 77(2): 173179. https://doi.org/10.1515/mammalia-2011-0128.
https://doi.org/10.1515/mammalia-2011-01...
) and in Dense Ombrophilous Forest (Antunes et al., 2009Antunes, P.C.; Campos, M.A.A.; Oliveira-Santos, L.G.R. & Graipel, M.E. 2009. Population dynamics of Euryoryzomys russatus and Oligoryzomys nigripes (Rodentia, Cricetidae) in an Atlantic forest area, Santa Catarina Island, Southern Brazil. Biotemas, 22(2): 143151. https://doi.org/10.5007/2175-7925.2009v22n2p143.
https://doi.org/10.5007/2175-7925.2009v2...
). However, for A. montensis, no relationship was previously found between population peaks and seasons in the south of Atlantic Forest (Antunes et al., 2010Antunes, P.C.; Campos, M.A.A.; Oliveira-Santos, L.G.R. & Graipel, M.E. 2010. Population dynamics of Akodon montensis (Rodentia, Cricetidae) in the Atlantic forest of Southern Brazil. Mammalian Biology, 75(2): 186190. https://doi.org/10.1016/j.mambio.2009.03.016.
https://doi.org/10.1016/j.mambio.2009.03...
; Galiano et al., 2013Galiano, D.; Kubiak, B.B.; Marinho, J.R. & de Freitas, T.R.O. 2013. Population dynamics of Akodon montensis and Oligoryzomys nigripes in an Araucaria forest of southern Brazil. Mammalia, 77(2): 173179. https://doi.org/10.1515/mammalia-2011-0128.
https://doi.org/10.1515/mammalia-2011-01...
). In the southeast of Brazil, where rainfall rather than temperature drives seasonality, a higher abundance of rodents was related to food scarcity during the dry season instead of the winter season (Dalmaschio & Passamani, 2003Dalmaschio, J. & Passamani, M. 2003. Aspectos da ecologia de Marmosa murina (Linnaeus, 1758) (Mammalia, Didelphimorphia), em uma região de Mata Atlântica no estado do Espírito Santo. Biotemas, 16(2): 145158. https://doi.org/10.5007/%25x.
https://doi.org/10.5007/%25x...
).

The key variables influencing microhabitat selection varied among the small mammal species. Akodon montensis and O. nigripes showed similar preferences in the ground cover and vegetation variables, preferring ground covered by rocks and higher vegetation obstruction. Both variables can provide protection against predators while the animal is moving on the ground. The null model was among those selected for O. nigripes, decreasing our confidence regarding microhabitat selection for this species. Akodon montensis and S. angouya differed in preference for tree abundance, with S. angouya preferring a higher abundance of trees while A. montensis showed the inverse relationship. The positive relationship with higher abundance of trees may indicate a preference of S. angouya for more preserved characteristics within the forest fragment.

Habitat segregation can facilitate species coexistence through resource partitioning (Schoener, 1974Schoener, T.W. 1974. Resource partitioning in ecological communities. Science, 185: 2739. https://doi.org/10.1126/science.185.4145.27.
https://doi.org/10.1126/science.185.4145...
; Rosenzweig, 1981Rosenzweig, M.L. 1981. A theory of habitat selection. Ecology, 62(2): 327335. https://doi.org/10.2307/1936707.
https://doi.org/10.2307/1936707...
; Abreu & Oliveira, 2014Abreu, M.S.L. & Oliveira, L.R. 2014. Patterns of arboreal and terrestrial space use by non-volant small mammals in an Araucaria forest of Southern Brazil. Anais da Academia Brasileira de Ciências, 86(2): 807819. https://doi.org/10.1590/0001-3765201420130063.
https://doi.org/10.1590/0001-37652014201...
). Previous studies demonstrated that small mammal species tend to coexist more often than would be expected in highly heterogeneous environments, while the inverse pattern is observed in environments with lower heterogeneity (Stevens et al., 2012Stevens, R.D.; Gavilanez, M.M.; Tello, J.S. & Ray, D.A. 2012. Phylogenetic structure illuminates the mechanistic role of environmental heterogeneity in community organization. Journal of Animal Ecology, 81(2): 455462. https://doi.org/10.1111/j.1365-2656.2011.01900.x.
https://doi.org/10.1111/j.1365-2656.2011...
; Camargo et al., 2018Camargo, N.F.D.; Sano, N.Y. & Vieira, E.M. 2018. Forest vertical complexity affects alpha and beta diversity of small mammals. Journal of Mammalogy, 99(6): 14441454. https://doi.org/10.1093/jmammal/gyy136.
https://doi.org/10.1093/jmammal/gyy136...
). Our results suggest that resource partitioning may be supporting coexistence of A. montensis and S. angouya. Additionally, if the landscape would be fully preserved, with greater microhabitat heterogeneity, this would allow more microhabitat segregation opportunities and, therefore, more species would occur in this area.

Fruit availability had a positive influence for A. montensis and D. albiventris. This is highly expected, as several species of small mammals in the Atlantic Forest have a diet based on fruit and seeds (Paglia et al., 2012Paglia, A.P.; Fonseca, G.A.B. da.; Rylands, A.B.; Herrmann, G.; Aguiar, L.M.S.; Chiarello, A.G.; Leite, Y.L.R.; Costa, L.P.; Siciliano, S.; Kierulff, M.C.M.; Mendes, S.L.; Tavares, V. da. C.; Mittermeier, R.A. & Patton, J.L. 2012. Lista Anotada dos Mamíferos do Brasil/Annotated Checklist of Brazilian Mammals. 2. ed. Arlington, VA.,Conservation International, 76p. (Occasional Papers in Conservation Biology, No. 6).). Therefore, they can also contribute to seed dispersal (Bricker et al., 2010Bricker, M.; Pearson, D. & Maron, J. 2010. Small mammal seed predation limits the recruitment and abundance of two perennial grassland forbs. Ecology, 91(1): 8592. https://doi.org/10.1890/081773.1.
https://doi.org/10.1890/081773.1...
; Grenha et al., 2010Grenha, V.; Macedo, M.V.; Pires, A.S. & Monteiro, R.F. 2010. The role of Cerradomys subflavus (Rodentia, Cricetidae) as seed predator and disperser of the palm Allagoptera arenaria. Mastozoología Neotropopical, 17(1): 6168.). Vieira et al. (2006Vieira, E.M.; Paise, G. & Machado, P.H.D. 2006. Feeding of small rodents on seeds and fruits: a comparative analysis of three species of rodents of the Araucaria forest, southern Brazil. Acta Theriologica, 51(3): 311318. https://doi.org/10.1007/BF03192683.
https://doi.org/10.1007/BF03192683...
) found that A. montensis individuals feed intensely on fruits, but also on invertebrates and fungi. Fruits are one of the most important items on D. albiventris diet (Cantor et al., 2010Cantor, M.; Ferreira, L.A.; Silva, W.A. & Setz, E.Z.F. 2010. Potential seed dispersal by Didelphis albiventris (Marsupialia, Didelphidae) in highly disturbed environment. Biota Neotropica, 10(2): 4551. https://doi.org/10.1590/S1676-06032010000200004.
https://doi.org/10.1590/S1676-0603201000...
), with opportunistic consumption (Cáceres, 2002Cáceres, N.C. 2002. Food habits and seed dispersal by the white-eared opossum, Didelphis albiventris, in southern Brazil. Studies on Neotropical Fauna and Environment, 37(2): 97104. https://doi.org/10.1076/snfe.37.2.97.8582.
https://doi.org/10.1076/snfe.37.2.97.858...
). These species can help pioneer plants and forest regeneration, by dispersing their seeds in more suitable environments, since, as generalist species, they can move more frequently along forest edges and matrix (Cáceres et al., 1999Cáceres, N.C.; Dittrich, V.A.O. & Monteiro-Filho, E.L.A. 1999. Fruit consumption, distance of seed dispersal and germination of Solanaceous plants ingested by the common opossum (Didelphis aurita) in Southern Brazil. Revue d’écologie, La Terre et la Vie, 54(3): 225234.; Cáceres, 2006Cáceres, N.C. 2006. O papel dos marsupiais na dispersão de sementes. In: Cáceres, N.C. & Monteiro-Filho, E.L.A. (Eds.). Os marsupiais do Brasil - Biologia, Ecologia e Evolução. Campo Grande, Editora UFMS. p. 255269.).

CONCLUSION

Our study found a poor small mammal community in forest fragments as we recorded only six species and the community was strongly dominated by the generalist rodent. The low species richness and presence of an exotic species (R. rattus) suggest that the study area is highly degraded. Akodon montensis and O. nigripes showed similar habitat preferences, with ground covered mainly by rocks and with greater vegetation obstruction. Sooretamys angouya preferred places with a higher abundance of trees. Fruit availability was important for A. montensis and D. albiventris, highlighting the importance of this food resource for local wildlife, and the potential role of these species as seed predators and dispersers.

ACKNOWLEDGMENTS

We are thankful to Camila S. Barros and Jessica Rowland for their suggestions in an early version of this manuscript. We also thank Luana G.A. Braun, Aline Kolling, and Ana Lúcia de Oliveira Rodrigues for field assistance, and Alexandre Uarth for the morphological inspection of the voucher specimens. Lucas Piovesan helped with the figure’s layout.

REFERENCES

  • Abreu, M.S.L. & Oliveira, L.R. 2014. Patterns of arboreal and terrestrial space use by non-volant small mammals in an Araucaria forest of Southern Brazil. Anais da Academia Brasileira de Ciências, 86(2): 807819. https://doi.org/10.1590/0001-3765201420130063
    » https://doi.org/10.1590/0001-3765201420130063
  • Akers, A.A.; Islam, M.A. & Nijman, V. 2013. Habitat characterization of western hoolock gibbons Hoolock hoolock by examining home range microhabitat use. Primates, 54(4): 341348. https://doi.org/10.1007/s10329-013-0352-8
    » https://doi.org/10.1007/s10329-013-0352-8
  • Almeida-Gomes, M. & Rocha, C.F.D. 2014. Landscape connectivity may explain anuran species distribution in an Atlantic forest fragmented area. Landscape Ecology, 29(1): 2940. https://doi.org/10.1007/s10980-013-9898-5
    » https://doi.org/10.1007/s10980-013-9898-5
  • Almeida-Gomes, M.; Vieira, M.V.; Rocha, C.F.D. & Melo, A.S. 2019. Habitat amount drives the functional diversity and nestedness of anuran communities in an Atlantic Forest fragmented landscape. Biotropica, 51(6): 874884. https://doi.org/10.1111/btp.12687
    » https://doi.org/10.1111/btp.12687
  • Antunes, P.C.; Campos, M.A.A.; Oliveira-Santos, L.G.R. & Graipel, M.E. 2010. Population dynamics of Akodon montensis (Rodentia, Cricetidae) in the Atlantic forest of Southern Brazil. Mammalian Biology, 75(2): 186190. https://doi.org/10.1016/j.mambio.2009.03.016
    » https://doi.org/10.1016/j.mambio.2009.03.016
  • Antunes, P.C.; Campos, M.A.A.; Oliveira-Santos, L.G.R. & Graipel, M.E. 2009. Population dynamics of Euryoryzomys russatus and Oligoryzomys nigripes (Rodentia, Cricetidae) in an Atlantic forest area, Santa Catarina Island, Southern Brazil. Biotemas, 22(2): 143151. https://doi.org/10.5007/2175-7925.2009v22n2p143
    » https://doi.org/10.5007/2175-7925.2009v22n2p143
  • Bajaru, S.B.; Kulavmode, A.R. & Manakadan, R. 2019. Influence of microhabitat and landscape-scale factors on the richness and occupancy of small mammals in the northern Western Ghats: A multi-species occupancy modeling approach. Mammalian Biology, 99(1): 8896. https://doi.org/10.1016/j.mambio.2019.10.003
    » https://doi.org/10.1016/j.mambio.2019.10.003
  • Barton, K. 2018. MuMIn: Multi-Model Inference . R package Version 1.42.1 https://cran.rproject.org/web/packages/MuMIn/index.html
    » https://cran.rproject.org/web/packages/MuMIn/index.html
  • Bianchi, R.D.C.; Mendes, S.L. & Júnior, P.D.M. 2010. Food habits of the ocelot, Leopardus pardalis, in two areas in southeast Brazil. Studies on Neotropical Fauna and Environment, 45(3): 111119. https://doi.org/10.1080/01650521.2010.514791
    » https://doi.org/10.1080/01650521.2010.514791
  • Bonvicino, C.R.; Oliveira, J.D. & D’Andrea, P.S. 2008. Guia dos roedores do Brasil, com chaves para gêneros baseadas em caracteres externos Rio de Janeiro, Ventro Pan-Americano de Febre Aftosa/OPAS/OMS. 122p. (Série de Manuais Técnicos; 11).
  • Bregman, T.P.; Sekercioglu, C.H. & Tobias, J.A. 2014. Global patterns and predictors of bird species responses to forest fragmentation: implications for ecosystem function and conservation. Biological Conservation, 169: 372383. https://doi.org/10.1016/j.biocon.2013.11.024
    » https://doi.org/10.1016/j.biocon.2013.11.024
  • Bricker, M.; Pearson, D. & Maron, J. 2010. Small mammal seed predation limits the recruitment and abundance of two perennial grassland forbs. Ecology, 91(1): 8592. https://doi.org/10.1890/081773.1
    » https://doi.org/10.1890/081773.1
  • Brito, D.; Oliveira, L.C.; Oprea, M. & Mello, M.A. 2009. An overview of Brazilian mammalogy: trends, biases and future directions. Zoologia, Curitiba, 26(1): 6773. https://doi.org/10.1590/S1984-46702009000100011
    » https://doi.org/10.1590/S1984-46702009000100011
  • Burnham, K.P. & Anderson, D.R. 2002. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. 2. ed. Heidelberg, Springer-Verlag.
  • Cáceres, N.C. 2002. Food habits and seed dispersal by the white-eared opossum, Didelphis albiventris, in southern Brazil. Studies on Neotropical Fauna and Environment, 37(2): 97104. https://doi.org/10.1076/snfe.37.2.97.8582
    » https://doi.org/10.1076/snfe.37.2.97.8582
  • Cáceres, N.C. 2006. O papel dos marsupiais na dispersão de sementes. In: Cáceres, N.C. & Monteiro-Filho, E.L.A. (Eds.). Os marsupiais do Brasil - Biologia, Ecologia e Evolução Campo Grande, Editora UFMS. p. 255269.
  • Cáceres, N.C.; Dittrich, V.A.O. & Monteiro-Filho, E.L.A. 1999. Fruit consumption, distance of seed dispersal and germination of Solanaceous plants ingested by the common opossum (Didelphis aurita) in Southern Brazil. Revue d’écologie, La Terre et la Vie, 54(3): 225234.
  • Camargo, N.F.D.; Sano, N.Y. & Vieira, E.M. 2018. Forest vertical complexity affects alpha and beta diversity of small mammals. Journal of Mammalogy, 99(6): 14441454. https://doi.org/10.1093/jmammal/gyy136
    » https://doi.org/10.1093/jmammal/gyy136
  • Cantor, M.; Ferreira, L.A.; Silva, W.A. & Setz, E.Z.F. 2010. Potential seed dispersal by Didelphis albiventris (Marsupialia, Didelphidae) in highly disturbed environment. Biota Neotropica, 10(2): 4551. https://doi.org/10.1590/S1676-06032010000200004
    » https://doi.org/10.1590/S1676-06032010000200004
  • Castro, E.B.V. & Fernandez, F.A.S. 2004. Determinants of differential extinction vulnerabilities of small mammals in Atlantic forest fragments in Brazil. Biological Conservation, 119: 7380. https://doi.org/10.1016/j.biocon.2003.10.023
    » https://doi.org/10.1016/j.biocon.2003.10.023
  • Chazdon, R.L. 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology , Evolution and Systematics, 6: 5171. https://doi.org/10.1078/1433-8319-00042
    » https://doi.org/10.1078/1433-8319-00042
  • Corrêa, M.R.; Bellagamba, Y.M.; de Magalhães, A.P.; Martins, J.P.; Cruz, A.J.D.R.; Kozovitz, A.R.; Messias, M.C.T.B. & de Azevedo, C.S. 2018. Microhabitat structure and food availability modelling a small mammal assemblage in restored riparian forest remnants. Mammalia, 82(4): 315327. https://doi.org/10.1515/mammalia-2017-0026
    » https://doi.org/10.1515/mammalia-2017-0026
  • Dalmaschio, J. & Passamani, M. 2003. Aspectos da ecologia de Marmosa murina (Linnaeus, 1758) (Mammalia, Didelphimorphia), em uma região de Mata Atlântica no estado do Espírito Santo. Biotemas, 16(2): 145158. https://doi.org/10.5007/%25x
    » https://doi.org/10.5007/%25x
  • Delciellos, A.C.; Barros, C.D.S.D.; Prevedello, J.A.; Ferreira, M.S.; Cerqueira, R. & Vieira, M.V. 2018. Habitat fragmentation affects individual condition: evidence from small mammals of the Brazilian Atlantic Forest. Journal of Mammalogy, 99(4): 936945. https://doi.org/10.1093/jmammal/gyy078
    » https://doi.org/10.1093/jmammal/gyy078
  • Delciellos, A.C.; Vieira, M.V.; Grelle, C.E.V.; Cobra, P. & Cerqueira, R. 2016. Habitat quality versus spatial variables as determinants of small mammal assemblages in Atlantic Forest fragments. Journal of Mammalogy, 97(1): 253265. https://doi.org/10.1093/jmammal/gyv175
    » https://doi.org/10.1093/jmammal/gyv175
  • Filgueiras, B.K.; Melo, D.H.; Andersen, A.N.; Tabarelli, M. & Leal, I.R. 2019. Cross-taxon congruence in insect responses to fragmentation of Brazilian Atlantic forest. Ecological Indicators, 98: 523530. https://doi.org/10.1016/j.ecolind.2018.11.036
    » https://doi.org/10.1016/j.ecolind.2018.11.036
  • Freitas, S.R.; Cerqueira, R. & Vieira, M.V. 2002. A device and standard variables to describe microhabitat structure of small mammals based on plant cover. Brazilian Journal of Biology, 62(4b): 795800. https://doi.org/10.1590/S1519-69842002000500008
    » https://doi.org/10.1590/S1519-69842002000500008
  • Galiano, D.; Kubiak, B.B.; Marinho, J.R. & de Freitas, T.R.O. 2013. Population dynamics of Akodon montensis and Oligoryzomys nigripes in an Araucaria forest of southern Brazil. Mammalia, 77(2): 173179. https://doi.org/10.1515/mammalia-2011-0128
    » https://doi.org/10.1515/mammalia-2011-0128
  • Grenha, V.; Macedo, M.V.; Pires, A.S. & Monteiro, R.F. 2010. The role of Cerradomys subflavus (Rodentia, Cricetidae) as seed predator and disperser of the palm Allagoptera arenaria Mastozoología Neotropopical, 17(1): 6168.
  • Hair, J.F.; Black, W.C.; Babin, B.J. & Anderson, R.E. 2010. Multivariate data analysis 7ed. New Jersey, Prentice Hall.
  • Hodara, K. & Busch, M. 2010. Patterns of macro and microhabitat use of two rodent species in relation to agricultural practices. Ecological Research, 25(1): 113121. https://doi.org/10.1007/s11284-009-0638-x
    » https://doi.org/10.1007/s11284-009-0638-x
  • Kaunisto, S.; Kortet, R.; Härkönen, S.; Kaitala, A.; Laaksonen, S. & Ylönen, H. 2012. Do small mammals prey upon an invasive ectoparasite of cervids? Canadian Journal of Zoology, 90(8): 10441050. https://doi.org/10.1139/z2012-072
    » https://doi.org/10.1139/z2012-072
  • Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; Thierer, T.; Ashton, B.; Meintjes, P. & Drummond, A. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12): 16471649. https://doi.org/10.1093/bioinformatics/bts199
    » https://doi.org/10.1093/bioinformatics/bts199
  • Kuinchtner, A. & Buriol, G.A. 2001. Clima do Estado do Rio Grande do Sul segundo a classificação climática de Köppen e Thornthwaite. Disciplinarum Scientia - Ciencias Naturais e Tecnológicas, 2(1): 171182.
  • Law, B.; Chidel, M.; Britton, A. & Threlfall, C. 2018. Comparison of microhabitat use in young regrowth and unlogged forest by the eastern pygmy-possum (Cercartetus nanus). Australian Mammalogy, 40(1): 19. https://doi.org/10.1071/AM16041
    » https://doi.org/10.1071/AM16041
  • Leal, I.R.; Filgueiras, B.K.; Gomes, J.P.; Iannuzzi, L. & Andersen, A.N. 2012. Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest. Biodiversity and Conservation, 21(7): 16871701. https://doi.org/10.1007/s10531-012-0271-9
    » https://doi.org/10.1007/s10531-012-0271-9
  • Leitman, P.; Amorim, A.M.; Sansevero, J.B. & Forzza, R.C. 2015. Floristic patterns of epiphytes in the Brazilian Atlantic Forest, a biodiversity hotspot. Botanical Journal of the Linnean Society, 179(4): 587601. https://doi.org/10.1111/boj.12342
    » https://doi.org/10.1111/boj.12342
  • Lima, D.O.D.; Azambuja, B.O.; Camilotti, V.L. & Cáceres, N.C. 2010. Small mammal community structure and microhabitat use in the austral boundary of the Atlantic Forest, Brazil. Zoologia, Curitiba, 27: 99105. https://doi.org/10.1590/S1984-46702010000100015
    » https://doi.org/10.1590/S1984-46702010000100015
  • Lira, P.K.; Tambosi, L.R.; Ewers, R.M. & Metzger, J.P. 2012. Land-use and land-cover change in Atlantic Forest landscapes. Forest Ecology and Management, 278: 8089. https://doi.org/10.1016/j.foreco.2012.05.008
    » https://doi.org/10.1016/j.foreco.2012.05.008
  • Lôbo, D.; Leão, T.; Melo, F.P.; Santos, A.M. & Tabarelli, M. 2011. Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Diversity and Distribution, 17(2): 287296. https://doi.org/10.1111/j.1472-4642.2010.00739.x
    » https://doi.org/10.1111/j.1472-4642.2010.00739.x
  • Maestri, R.; Galiano, D.; Kubiak, B.B. & Marinho, J.R. 2014. Diversity of small land mammals in a subtropical Atlantic forest in the western region of the state of Santa Catarina, southern Brazil. Biota Neotropica, 14(4): 17. https://doi.org/10.1590/1676-06032014012914
    » https://doi.org/10.1590/1676-06032014012914
  • Matthews, T.J.; Cottee Jones, H.E. & Whittaker, R.J. 2014. Habitat fragmentation and the species-area relationship: a focus on total species richness obscures the impact of habitat loss on habitat specialists. Diversity and Distribution, 20(10): 11361146. https://doi.org/10.1111/ddi.12227
    » https://doi.org/10.1111/ddi.12227
  • Melo, G.L.; Miotto, B.; Peres, B. & Caceres, N.C. 2013. Microhabitat of small mammals at ground and understorey levels in a deciduous, southern Atlantic Forest. Anais da Academia Brasileira de Ciências, 85(2): 727736. https://doi.org/10.1590/S0001-37652013000200017
    » https://doi.org/10.1590/S0001-37652013000200017
  • Melo, G.L.; Sponchiado, J.; Machado, A.F. & Cáceres, N.C. 2011. Small-mammal community structure in a South American deciduous Atlantic Forest. Community Ecology, 12(1): 5866. https://doi.org/10.1556/comec.12.2011.1.8
    » https://doi.org/10.1556/comec.12.2011.1.8
  • Morris, D.W. 1987. Ecological scales and habitat use. Ecology, 68(2): 362369. https://doi.org/10.2307/1939267
    » https://doi.org/10.2307/1939267
  • Paglia, A.P.; Fonseca, G.A.B. da.; Rylands, A.B.; Herrmann, G.; Aguiar, L.M.S.; Chiarello, A.G.; Leite, Y.L.R.; Costa, L.P.; Siciliano, S.; Kierulff, M.C.M.; Mendes, S.L.; Tavares, V. da. C.; Mittermeier, R.A. & Patton, J.L. 2012. Lista Anotada dos Mamíferos do Brasil/Annotated Checklist of Brazilian Mammals 2. ed. Arlington, VA.,Conservation International, 76p. (Occasional Papers in Conservation Biology, No. 6).
  • Pardini, R. 2004. Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodiversity and Conservation, 13(13): 25672586. https://doi.org/10.1023/B:BIOC.0000048452.18878.2d
    » https://doi.org/10.1023/B:BIOC.0000048452.18878.2d
  • Pardini, R.; De Arruda Bueno, A.; Gardner, T.A.; Prado, P.I. & Metzger, J.P. 2010. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PloS ONE, 5(10): e13666. https://doi.org/10.1371/journal.pone.0013666
    » https://doi.org/10.1371/journal.pone.0013666
  • Pardini, R.; De Souza, S.M.; Braga-Neto, R. & Metzger, J.P. 2005. The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biological Conservation, 124(2): 253266. https://doi.org/10.1016/j.biocon.2005.01.033
    » https://doi.org/10.1016/j.biocon.2005.01.033
  • Peel, M.C.; Finlayson, B.L. & McMahon, T.A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 4(2): 439473. https://doi.org/10.5194/hess-11-1633-2007
    » https://doi.org/10.5194/hess-11-1633-2007
  • Pinotti, B.T.; Naxara, L. & Pardini, R. 2011. Diet and food selection by small mammals in an old-growth Atlantic forest of south-eastern Brazil. Studies on Neotropical Fauna and Environment, 46(1): 19. https://doi.org/10.1080/01650521.2010.535250
    » https://doi.org/10.1080/01650521.2010.535250
  • Püttker, T.; Bueno, A.A.; dos Santos de Barros, C.; Sommer, S. & Pardini, R. 2013. Habitat specialization interacts with habitat amount to determine dispersal success of rodents in fragmented landscapes. Journal of Mammalogy, 94(3): 714726. https://doi.org/10.1644/12-MAMM-A-119.1
    » https://doi.org/10.1644/12-MAMM-A-119.1
  • Quintela, F.M.; da Rosa, C.A. & Feijó, A. 2020. Updatd and annotated checklist of recent mammals from Brazil. Anais da Academia Brasileira de Ciências, 92(Supl. 2): 157. https://doi.org/10.1590/0001-3765202020191004
    » https://doi.org/10.1590/0001-3765202020191004
  • R Core Team. 2018. Version 3.5.1 Vienna, R Foundation for Statistical Computing. https://www.r-project.org
    » https://www.r-project.org
  • Ribeiro, M.C.; Metzger, J.P.; Martensen, A.C.; Ponzoni, F.J. & Hirota, M.M. 2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142(6): 11411153. https://doi.org/10.1016/j.biocon.2009.02.021
    » https://doi.org/10.1016/j.biocon.2009.02.021
  • Richards, P.W. 1996. The tropical rain forest 2ed. Cambridge, Cambridge University Press.
  • Rodrigues, D.P.; Skupien, F.L.; Sausen, J.O. & Lima, D.O. 2020. Small mammals in fragments of Atlantic Forest: species richness answering to field methods and environment. Journal of Tropical Ecology, 36(3): 101108. https://doi.org/10.1017/S0266467420000048
    » https://doi.org/10.1017/S0266467420000048
  • Rosenzweig, M.L. 1981. A theory of habitat selection. Ecology, 62(2): 327335. https://doi.org/10.2307/1936707
    » https://doi.org/10.2307/1936707
  • Santo-Silva, E.E.; Almeida, W.R.; Tabarelli, M. & Peres, C.A. 2016. Habitat fragmentation and the future structure of tree assemblages in a fragmented Atlantic forest landscape. Plant Ecology, 217(9): 11291140. https://doi.org/10.1007/s11258-016-0638-1
    » https://doi.org/10.1007/s11258-016-0638-1
  • Schirmer, A.; Herde, A.; Eccard, J.A. & Dammhahn, M. 2019. Individuals in space: personality-dependent space use, movement and microhabitat use facilitate individual spatial niche specialization. Oecologia, 189(3): 647660. https://doi.org/10.1007/s00442-019-04365-5
    » https://doi.org/10.1007/s00442-019-04365-5
  • Schoener, T.W. 1974. Resource partitioning in ecological communities. Science, 185: 2739. https://doi.org/10.1126/science.185.4145.27
    » https://doi.org/10.1126/science.185.4145.27
  • Smith, M.F. & Patton, J.L. 1993. The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biological Journal of the Linnean Society, 50(3): 149177. https://doi.org/10.1111/j.1095-8312.1993.tb00924.x
    » https://doi.org/10.1111/j.1095-8312.1993.tb00924.x
  • SOS Mata Atlântica (Fundação SOS Mata Atlântica) & INPE (Instituto Nacional de Pesquisas Espaciais). 2011. Atlas dos remanescentes florestais da Mata Atlântica, período de 20082010 (p. 122). São Paulo, Fundação SOS Mata Atlântica; INPE. p. 122.
  • Souza, S.S.; Ramos, R.F.; Bremm, N.; Garcia, P.B.; Grzybowski, N.; Ferrera, T.S.; Chassot, T. & Pinheiro, T. 2020. Estrutura arbórea de um fragmento de floresta estacional decidual na região fisiográfica Missões, Rio Grande do Sul, Brasil. Pesquisas, Botânica, 74: 133145.
  • Sponchiado, J.; Melo, G.L. & Cáceres, N.C. 2012. Habitat selection by small mammals in Brazilian Pampas biome. Journal of Natural History, 46(2122): 13211335. https://doi.org/10.1080/00222933.2012.655796
    » https://doi.org/10.1080/00222933.2012.655796
  • Stevens, R.D.; Gavilanez, M.M.; Tello, J.S. & Ray, D.A. 2012. Phylogenetic structure illuminates the mechanistic role of environmental heterogeneity in community organization. Journal of Animal Ecology, 81(2): 455462. https://doi.org/10.1111/j.1365-2656.2011.01900.x
    » https://doi.org/10.1111/j.1365-2656.2011.01900.x
  • Tabarelli, M.; Pinto, L.P.; Silva, J.M.; Hirota, M. & Bede, L. 2005. Challenges and opportunities for biodiversity conservation in the Brazilian Atlantic Forest. Conservation Biology, 19(3): 695700. https://doi.org/10.1111/j.1523-1739.2005.00694.x
    » https://doi.org/10.1111/j.1523-1739.2005.00694.x
  • Umetsu, F. & Pardini, R. 2007. Small mammals in a mosaic of forest remnants and anthropogenic habitats - evaluating matrix quality in an Atlantic forest landscape. Landscape Ecology, 22(4): 517530. https://doi.org/10.1007/s10980-006-9041-y
    » https://doi.org/10.1007/s10980-006-9041-y
  • Vieira, E.M.; Iob, G.; Briani, D.C. & Palma, A.R.T. 2005. Microhabitat selection and daily movements of two rodents (Nectomys lasiurus and Oryzomys scotti) in Brazilian Cerrado, as revealed by a spool-and-line device. Mammalian Biology, 70(6): 359365. https://doi.org/10.1016/j.mambio.2005.08.002
    » https://doi.org/10.1016/j.mambio.2005.08.002
  • Vieira, E.M.; Paise, G. & Machado, P.H.D. 2006. Feeding of small rodents on seeds and fruits: a comparative analysis of three species of rodents of the Araucaria forest, southern Brazil. Acta Theriologica, 51(3): 311318. https://doi.org/10.1007/BF03192683
    » https://doi.org/10.1007/BF03192683
  • Vieira, M.V.; Olifiers, N.; Delciellos, A.C.; Antunes, V.Z.; Bernardo, L.R.; Grelle, C.E. & Cerqueira, R. 2009. Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic Forest remnants. Biological Conservation, 142(6): 11911200. https://doi.org/10.1016/j.biocon.2009.02.006
    » https://doi.org/10.1016/j.biocon.2009.02.006
  • Wang, E. 2002. Diets of ocelots (Leopardus pardalis), margays (L. wiedii), and oncillas (L. tigrinus) in the Atlantic rainforest in southeast Brazil. Studies on Neotropical Fauna and Environment, 37(3): 207212. https://doi.org/10.1076/snfe.37.3.207.8564
    » https://doi.org/10.1076/snfe.37.3.207.8564
  • Warrick, G.D.; Kato, T.T. & Rose, B.R. 1998. Microhabitat use and home range characteristics of blunt-nosed leopard lizards. Journal of Herpetology, 32(2): 183191. https://doi.org/10.2307/1565295
    » https://doi.org/10.2307/1565295
  • Zhang, Z.; Schwartz, S.; Wagner, L. & Miller, W. 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(12): 203214. https://doi.org/10.1089/10665270050081478
    » https://doi.org/10.1089/10665270050081478
  • 3
    FUNDING INFORMATION: The first author is grateful to PET/SESu/MEC - Programa de Educação Tutorial for the scholarship. The second, third, and fourth authors received personal grants by FAPERGS - Fundação de Amparo à Pesquisa do Rio Grande do Sul.
  • Published with the financial support of the “Programa de Apoio às Publicações Científicas Periódicas da USP”.

SUPPLEMENTARY ONLINE MATERIAL

Table S1
Specimens deposited at Museu de Ciências Naturais (MCNU), Laboratório de Sistemática de Mamíferos, Universidade Luterana do Brasil - ULBRA. MCNU = identification number of the specimen in the MCNU collection. Data = data that the specimen was collected in the field. Material = type of material that is deposited at MCNU.

Table S2
Species assignment based on DNA sequences (fragment of the Cytochrome b gene) using the program BLASTN 2.10.1+ (Zhang et al., 2000Zhang, Z.; Schwartz, S.; Wagner, L. & Miller, W. 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(12): 203214. https://doi.org/10.1089/10665270050081478.
https://doi.org/10.1089/1066527005008147...
) in the NCBI database (https://blast.ncbi.nlm.nih.gov).

Table S3
Fit and selection statistics of models affecting small mammals microhabitat selection in two forest fragments in the southernmost portion of Atlantic Forest biome, Brazil. Models with delta AIC ≤ 2 for each species are shown in bold.

Figure S4
Rarefaction curve for both studied fragments in the Atlantic Forest biome, Brazil. Sample coverage is the proportion of the total number of individuals that belong to the species detected in the sample. F1 = Fragment 1 (28°08′38″S, 54°45′36″W); F2 = Fragment 2 (28°07′33″S, 54°44′57″W).

Edited by

Edited by: Luís Fábio Silveira.

Publication Dates

  • Publication in this collection
    03 Oct 2022
  • Date of issue
    2022

History

  • Received
    17 Oct 2020
  • Accepted
    20 Apr 2022
  • Published
    02 Aug 2022
Museu de Zoologia da Universidade de São Paulo Av. Nazaré, 481, Ipiranga, 04263-000 São Paulo SP Brasil, Tel.: (55 11) 2065-8133 - São Paulo - SP - Brazil
E-mail: einicker@usp.br