Acessibilidade / Reportar erro

Amphibians and reptiles from a protected area in western Brazilian Amazonia (Reserva Extrativista do Baixo Juruá)

Abstract

Sampling gaps across the logistically challenging and extremely biodiverse Amazonia largely hamper our understanding of broad-scale amphibian and reptile diversity patterns in this ecosystem. The Juruá River basin, a southwestern tributary of the Amazon River, is one of these undersampled areas, with only punctual information documented for these vertebrates that are spatially or temporally biased. This is especially the case for the lower-middle courses of the Juruá River, which also has comparatively less protected areas than its upper course. In order to fill some biodiversity knowledge gaps associated with amphibians and reptiles in this river basin, we combined results of our field expeditions carried out in 1992, 2005-2007, and 2018 to the Reserva Extrativista (Extractive Reserve) do Baixo Juruá, a Brazilian protected area in the right bank of the lower Juruá River. Amphibians and reptiles were sampled using four complementary methods: active surveys, pitfall traps, funnel traps, and trammel nets. We identified species or updated their taxonomic status with a reanalysis of the external morphology of the preserved material in the light of novel taxonomic literature (more than 1,500 specimens) and employment of DNA barcoding analyses for some newly collected specimens with contentious taxonomic status. Our combined sampling evidenced 149 species of amphibians and reptiles occurring in this protected area (72 amphibians, 68 squamates, six chelonians, and three crocodilians). Recorded species highlight the value of the lower Juruá River region as harboring quite diverse assemblages for these vertebrates, with species typical of the western and southwestern Amazonia sub-regions. Remarkable species records are presented, as well as accounts on species with lower taxonomic resolution. Furthermore, we discuss the biogeographic affinities of recorded assemblages based on the species geographic range and preferred habitats, and the value of this protected area to preserve the regional biological diversity.

Keywords:
Assemblages; Biological collection; Forest types; Herpetofauna, Juruá River

INTRODUCTION

Amphibians and reptiles are among the most taxonomically and ecologically diverse vertebrates of the South American biota (Duellman, 1979Duellman, W.E. 1979. The South American herpetofauna: its origin, evolution, and dispersal. Kansas, Museum of Natural History, Lawrence, University of Kansas. 485p. (Monograph of the Museum of Natural History, the University of Kansas no. 7). https://doi.org/10.5962/bhl.title.3207.
https://doi.org/10.5962/bhl.title.3207...
). In the lowland tropical rainforest of South America (Amazonia), the largest and most diverse tropical forest in the world, more than 350 and 370 nominal species of amphibians and reptiles are respectively known (Prudente, 2017Prudente, A.L.C. 2017. Censo da Biodiversidade da Amazônia Brasileira - MPEG: Serpentes. Available: Available: http://censo.museu-goeldi.br . Access: 25/05/2022.
http://censo.museu-goeldi.br...
; Ávila-Pires, 2018Ávila-Pires, T.C.S. 2018. Censo da Biodiversidade da Amazônia Brasileira - MPEG: Quelônios e Jacarés. Available: Available: http://censo.museu-goeldi.br . Access: 25/05/2022.
http://censo.museu-goeldi.br...
, 2020Ávila-Pires, T.C.S. 2020. Censo da Biodiversidade da Amazônia Brasileira - MPEG: Lagartos. Available: Available: http://censo.museu-goeldi.br . Access: 25/05/2022.
http://censo.museu-goeldi.br...
; Hoogmoed, 2019Hoogmoed, M.S. 2019. Censo da Biodiversidade da Amazônia Brasileira - MPEG: Anfíbios. Available: Available: http://censo.museu-goeldi.br . Access: 25/05/2022.
http://censo.museu-goeldi.br...
). Despite that, our understanding of the Amazonian amphibian and reptile diversity goes through a transition period. The relatively recent implementation of molecular data in integrative approaches has significantly increased our understanding regarding how these vertebrates have diversified in this ecosystem (e.g.,Réjaud et al., 2020Réjaud, A.; Rodrigues, M.T.; Crawford, A.J.; Castroviejo-Fisher, S.; Jaramillo, A.F.; Chaparro, J.C.; Glaw, F.; Gagliardi-Urrutia, G.; Moravec, J.; De la Riva, I.J.; Perez, P.; Lima, A.P.; Werneck, F.P.; Hrbek, T.; Ron, S.R.; Ernst, R.; Kok, P.J.R.; Driskell, A.; Chave, J. & Fouquet, A. 2020. Historical biogeography identifies a possible role of the Pebas system in the diversification of the Amazonian rocket frogs (Aromobatidae: Allobates). Journal of Biogeography , 47(11): 2472-2482. https://doi.org/10.1111/jbi.13937.
https://doi.org/10.1111/jbi.13937...
; Carvalho et al., 2021Carvalho, T.R.; Moraes, L.C.J.L.; Lima, A.P.; Fouquet, A.; Peloso, P.L.V.; Pavan, D.; Drummond, L.O.; Rodrigues, M.T.; Giaretta, A.A.; Gordo, M.; Neckel-Oliveira, S. & Haddad, C.F.B. 2021. Systematics and historical biogeography of neotropical foam-nesting frogs of the Adenomera heyeri clade (Leptodactylidae), with the description of six new Amazonian species. Zoological Journal of the Linnean Society , 191(2): 395-433. https://doi.org/10.1093/zoolinnean/zlaa051.
https://doi.org/10.1093/zoolinnean/zlaa0...
), and in their taxonomic boundaries and geographic distributions (e.g.,Ferrão et al., 2016Ferrão, M.; Colatreli, O.; Fraga, R.; Kaefer, I.L.; Moravec, J. & Lima, A.P. 2016. High species richness of Scinax treefrogs (Hylidae) in a threatened Amazonian landscape revealed by an integrative approach. PloS ONE, 11: e0165679. https://doi.org/10.1371/journal.pone.0165679.
https://doi.org/10.1371/journal.pone.016...
; Peloso et al., 2016Peloso, P.L.V.; Orrico, V.G.D.; Haddad, C.F.B.; Lima-Filho, G.R. & Sturaro, M.J. 2016. A new species of clown tree frog, Dendropsophus leucophyllatus species group, from Amazonia (Anura, Hylidae). South American Journal of Herpetology , 11: 66-80. https://doi.org/10.2994/SAJH-D-16-00003.1.
https://doi.org/10.2994/SAJH-D-16-00003....
; Ribeiro-Júnior et al., 2021Ribeiro-Júnior, M.A.; Sánchez-Martínez, P.; Moraes, L.J.C.L.; Suendel, U.; Carvalho, V.T.C.; Pavan, D.; Choueri, E.; Werneck, F.P. & Meiri, S. 2021. Uncovering hidden species diversity of alopoglossid lizards in Amazonia, with the description of three new species of Alopoglossus (Squamata: Gymnophthalmoidae). Journal of Zoological Systematics and Evolutionary Research, 59(6): 1322-1356. https://doi.org/10.1111/jzs.12481.
https://doi.org/10.1111/jzs.12481...
; Vacher et al., 2020Vacher, J.-P.; Chave, J.; Ficetola, F.; Sommeria-Klein, G.; Tao, S.; Thébaud, C.; Blanc, M.; Camacho, A.; Cassimiro, J.; Colston, T.J.; Dewynter, M.; Ernst, R.; Gaucher, P.; Gomes, J.O.; Jairam, R.; Kok, P.J.R.; Dias Lima, J.; Martinez, Q.; Marty, C.; Noonan, B.P.; Nunes, P.M.S.; Ouboter, P.; Recoder, R.; Rodrigues, M.T.; Snyder, A.; de Souza, S.M. & Fouquet, A. 2020. Large scale DNA-based survey of Amazonian frogs suggest a vast underestimation of species richness and endemism. Journal of Biogeography , 47(8): 1781-1791. https://doi.org/10.1111/jbi.13847.
https://doi.org/10.1111/jbi.13847...
). At the same time, molecular elucidation also highlighted how much we still do not know about this diversity, at different scales of knowledge (Jaramillo et al., 2020Jaramillo, A.F.; De La Riva, I.; Guayasamin, J.M.; Chaparro, J.C.; Gagliardi-Urrutia, G.; Gutiérrez, R.C.; Brcko, I.; Vilà, C. & Castroviejo-Fisher, S. 2020. Vastly underestimated species richness of Amazonian salamanders (Plethodontidae: Bolitoglossa) and implications about plethodontid diversification. Molecular Phylogenetics and Evolution, 149: 106841. https://doi.org/10.1016/j.ympev.2020.106841.
https://doi.org/10.1016/j.ympev.2020.106...
; Vacher et al., 2020Vacher, J.-P.; Chave, J.; Ficetola, F.; Sommeria-Klein, G.; Tao, S.; Thébaud, C.; Blanc, M.; Camacho, A.; Cassimiro, J.; Colston, T.J.; Dewynter, M.; Ernst, R.; Gaucher, P.; Gomes, J.O.; Jairam, R.; Kok, P.J.R.; Dias Lima, J.; Martinez, Q.; Marty, C.; Noonan, B.P.; Nunes, P.M.S.; Ouboter, P.; Recoder, R.; Rodrigues, M.T.; Snyder, A.; de Souza, S.M. & Fouquet, A. 2020. Large scale DNA-based survey of Amazonian frogs suggest a vast underestimation of species richness and endemism. Journal of Biogeography , 47(8): 1781-1791. https://doi.org/10.1111/jbi.13847.
https://doi.org/10.1111/jbi.13847...
). This lack of knowledge is largely influenced by the fact that Amazonia harbors historically undersampled localities (Fraga et al., 2017Fraga, R.; Almeida, A.P.; Moraes, L.J.C.L.; Gordo, M.; Pirani, R.; Zamora, R.R.; Carvalho, V.T.; Passos, P. & Werneck, F. 2017. Narrow endemism or insufficient sampling? Geographical range extension and morphological variation of the poorly known Atractus riveroi Roze, 1961 (Serpentes: Dipsadidae). Herpetological Review , 48(2): 281-284.), and our increased diversity resolution is restricted to more accessible areas, such as the margins of large rivers and highways (Oliveira et al., 2016Oliveira, U.; Paglia, A.P.; Brescovit, A.D.; Carvalho, C.J.B.; Silva, D.P.; Rezende, D.T.; Leite, F.S.F.; Batista, J.A.N.; Barbosa, J.P.P.P.; Stehmann, J.R.; Ascher, J.S.; Vasconcelos, M.R.; Marco-Jr.; P.; Löwenberg-Neto, P.; Dias, P.G.; Ferro, V.G. & Santos, A.J. 2016. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Diversity and Distributions, 22(12): 1232-1244. https://doi.org/10.1111/ddi.12489.
https://doi.org/10.1111/ddi.12489...
). As the biological diversity in some regions can be quite substantial, scientific novelties resulting from each new sampling event are common even at historically best explored localities (e.g.,Fonseca et al., 2019Fonseca, W.L.; Silva, J.D.; Abegg, A.D.; Rosa, C.M. & Bernarde, P.S. 2019. Herpetofauna of Porto Walter and surrounding areas, Southwest Amazonia, Brazil. Herpetology Notes , 12: 91-107., Jorge et al., 2020Jorge, R.F.; Ferrão, M. & Lima, A.P. 2020. Out of bound: A new threatened Harlequin Toad (Bufonidae, Atelopus) from the outer borders of the Guiana Shield in central Amazonia described through integrative taxonomy. Diversity, 12: 1-25. https://doi.org/10.3390/d12080310.
https://doi.org/10.3390/d12080310...
).

Western Amazonia is one of its sub-regions with the lowest resolution in terms of amphibian and reptile taxonomy and geographic distributions, mainly due to inaccessibility (França & Venâncio, 2010França, F.G.R. & Venâncio, N.M. 2010. Reptiles and amphibians of a poorly known region in southwest Amazonia. Biotemas, 23: 71-84. https://doi.org/10.5007/2175-7925.2010v23n3p71.
https://doi.org/10.5007/2175-7925.2010v2...
; Pantoja & Fraga, 2012Pantoja, D.L. & Fraga, R. 2012. Herpetofauna of the Reserva Extrativista do Rio Gregório. Check List, 8: 360-374. https://doi.org/10.15560/8.3.360.
https://doi.org/10.15560/8.3.360...
). Knowledge associated with the westernmost tributaries of the Amazon River often results from few long-term inventories that remained as the principal data source over decades (e.g.,Heyer, 1976Heyer, W.R. 1976. Notes on the frog fauna of the Amazon Basin. Acta Amazonica, 6(3): 369-378. https://doi.org/10.1590/1809-43921976063369.
https://doi.org/10.1590/1809-43921976063...
; Gascon, 1996Gascon, C. 1996. Amphibian litter fauna and river barriers in flooded and non-flooded Amazonian rainforests. Biotropica, 28: 136-140. https://doi.org/10.2307/2388779.
https://doi.org/10.2307/2388779...
; Ávila-Pires et al., 2009Ávila-Pires, T.C.S.; Vitt, L.J.; Sartorius, S.S. & Zani, P.A. 2009. Squamata (Reptilia) from four sites in southern Amazonia, with a biogeographic analysis of Amazonian lizards. Boletim do Museu Paraense Emílio Goeldi de Ciências Naturais, 4: 99-118.). One of the most representative examples is the river basin of the southern tributary Juruá River. While the upper course of this river has historically been better explored and is well known for harboring a high species richness of amphibians and reptiles (e.g., seeÁvila-Pires et al., 2009Ávila-Pires, T.C.S.; Vitt, L.J.; Sartorius, S.S. & Zani, P.A. 2009. Squamata (Reptilia) from four sites in southern Amazonia, with a biogeographic analysis of Amazonian lizards. Boletim do Museu Paraense Emílio Goeldi de Ciências Naturais, 4: 99-118.; Souza, 2009Souza, M.B. 2009. Anfíbios: Reserva Extrativista do Alto Juruá e Parque Nacional da Serra do Divisor, Acre. Campinas, IFCH.; França & Venâncio, 2010França, F.G.R. & Venâncio, N.M. 2010. Reptiles and amphibians of a poorly known region in southwest Amazonia. Biotemas, 23: 71-84. https://doi.org/10.5007/2175-7925.2010v23n3p71.
https://doi.org/10.5007/2175-7925.2010v2...
; Bernarde et al., 2013Bernarde, P.S.; Albuquerque, S.; Miranda, D.B. & Turci, L.C.B. 2013. Herpetofauna da floresta do baixo rio Moa em Cruzeiro do Sul, Acre - Brasil. Biota Neotropica, 13: 220-244. https://doi.org/10.1590/S1676-06032013000100023.
https://doi.org/10.1590/S1676-0603201300...
; Fonseca et al., 2019Fonseca, W.L.; Silva, J.D.; Abegg, A.D.; Rosa, C.M. & Bernarde, P.S. 2019. Herpetofauna of Porto Walter and surrounding areas, Southwest Amazonia, Brazil. Herpetology Notes , 12: 91-107.), its middle and lower courses have largely contrasting less associated information (Pantoja & Fraga, 2012Pantoja, D.L. & Fraga, R. 2012. Herpetofauna of the Reserva Extrativista do Rio Gregório. Check List, 8: 360-374. https://doi.org/10.15560/8.3.360.
https://doi.org/10.15560/8.3.360...
). Despite such undersampling, these river sections are frequently highlighted as having rarely recorded amphibian and reptile species (e.g.,Carvalho et al., 2017Carvalho, V.T.; Fraga, R.; Bonora, L. & Vogt, R.C. 2017. First record of the resplendent Frog Allophryne resplendens Castroviejo-Fisher et al., 2012 in Brazil (Anura: Allophrynidae). Herpetology Notes, 10: 561-562., 2020Carvalho, T.R.; Moraes, L.J.C.L.; Angulo, A.; Werneck, F.P.; Icochea, J. & Lima, A.P. 2020. New acoustic and molecular data shed light on the poorly known Amazonian frog Adenomera simonstuarti (Leptodactylidae): implications for distribution and conservation. European Journal of Taxonomy, 682: 1-18. https://doi.org/10.5852/ejt.2020.682.
https://doi.org/10.5852/ejt.2020.682...
). However, knowledge advance in this case is still highly restricted to punctual observations, and we lack studies summarizing the information on their assemblages.

Extensive geographic areas closer to the western limits of the Brazilian Amazonia are mainly protected by indigenous territories, though there are relatively fewer federal or state protected areas when compared to the eastern Amazonia (Silva-Jr. & Sites-Jr., 1995Silva-Jr., N.J. & Sites-Jr., J.W. 1995. Patterns of diversity of neotropical squamate reptile species with emphasis on the Brazilian Amazon and the conservation potential of indigenous reserves. Conservation Biology, 9(4): 873-901. https://doi.org/10.1046/j.1523-1739.1995.09040873.x.
https://doi.org/10.1046/j.1523-1739.1995...
). The effective conservation of this region considerably benefits from its inaccessibility and unfavorable agroclimatic conditions, when compared to the highly threatened eastern Amazonia (Fearnside, 2008Fearnside, P.M. 2008. The roles and movements of actors in the deforestation of Brazilian Amazonia. Ecology and Society, 13: 23. https://doi.org/10.5751/ES-02451-130123.
https://doi.org/10.5751/ES-02451-130123...
; Sombroek, 2001Sombroek, W. 2001. Spatial and Temporal Patterns of Amazon Rainfall: Consequences for the Planning of Agricultural Occupation and the Protection of Primary Forests. Ambio, 30: 388-396. https://doi.org/10.1579/0044-7447-30.7.388.
https://doi.org/10.1579/0044-7447-30.7.3...
; Chomitz & Thomas, 2003Chomitz, K.M. & Thomas, T.S. 2003. Determinants of land use in Amazonia: A fine-scale Spatial Analysis. American Journal of Agricultural Economics, 85(4): 1016-1028. https://doi.org/10.1111/1467-8276.00504.
https://doi.org/10.1111/1467-8276.00504...
). However, anthropogenic changes such as deforestation are surprisingly rapidly advancing across the entire Amazonia (Silva-Jr. et al., 2021Silva-Jr., C.H.L.; Pessôa, A.C.M.; Carvalho, N.S; Reis, J.B.B.; Anderson, L.O. & Aragão, E.O.C. 2021. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nature Ecology and Evolution, 5: 144-145. https://doi.org/10.1038/s41559-020-01368-x.
https://doi.org/10.1038/s41559-020-01368...
), and Brazilian government has been recently marked by anti-environmental policies (Ferrante & Fearnside, 2019Ferrante, L. & Fearnside, P. 2019. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environmental Conservation, 46(4): 261-263. https://doi.org/10.1017/S0376892919000213.
https://doi.org/10.1017/S037689291900021...
). Under this scenario, establishing baselines on biotic diversity across western Amazonia is urgent not only so we can better characterize large scale biodiversity patterns and trends within the Amazonia, but also so that the potential anthropic impact in this region can be assessed to establish effective conservation strategies (Laurance et al., 2011Laurance, W.F.; Camargo, J.L.C.; Luizão, R.C.C.; Laurance, S.G.; Pimm, S.L.; Bruna, E.M.; Stouffer, P.C.; Willianson, G.B.; Benítez-Malvido, J.; Vasconcelos, H.L.; Van Houtan, K.S.; Zartman, C.E.; Boyle, S.A.; Didham, R.K.; Andrade, A. & Lovejoy, T.E. 2011. The fate of Amazonian forest fragments: a 32-year investigation. Biological Conservation , 144: 56-67. https://doi.org/10.1016/j.biocon.2010.09.021.
https://doi.org/10.1016/j.biocon.2010.09...
). In the Juruá River basin, a higher number of protected areas are currently delimited in its upper course (9 areas) and progressively decreases towards its middle (3 areas) and lower course (2 areas) (ICMBio, 2009Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2009. Plano de Manejo: Reserva Extrativista do Baixo Juruá. Juruá. Brasília, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério de Meio Ambiente.). Only one of the protected areas at the lower Juruá River region reaches the margin of the Juruá River: the Reserva Extrativista do Baixo Juruá (Extractive Reserve of the lower Juruá, hereafter RBJ), focus of our study. As is common for Amazonian protected areas (Correia et al., 2016Correia, R.A.; Malhado, A.C.M.; Lins, L.; Gamarra, N.C.; Bonfim, W.A.G.; Valencia-Aguilar, A.; Bragagnolo, C.; Jepson, P. & Ladle, R.J. 2016. The scientific value of Amazonian protected areas. Biodiversity Conservation, 25(8): 1503-1513. https://doi.org/10.1007/s10531-016-1122-x.
https://doi.org/10.1007/s10531-016-1122-...
), scientific knowledge associated with RBJ is still scarce.

Considering that the effective conservation of protected areas is highly dependent on our knowledge of their native biological diversity, here, we present and discuss the diversity of amphibian and reptile assemblages of the RBJ. Our study is based on a robust approach combining data collected in three distinct field expeditions to this protected area across three decades, allied with reanalyses of museum specimens from the region. We identified the recorded species combining morphological and molecular evidence, and discussed some remarkable records, biogeographic affinities of the assemblages, and conservation implications.

MATERIAL AND METHODS

Study area

The RBJ is a federal protected area created in 2001 and located on the right bank of the lower course of the Juruá River, state of Amazonas, northwestern Brazil (Fig. 1). This sustainable use protected area (i.e., permit the direct use of natural resources) is contained within the limits of the municipalities of Juruá and Uarini and has 188,000 hectares (ICMBio, 2009Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2009. Plano de Manejo: Reserva Extrativista do Baixo Juruá. Juruá. Brasília, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério de Meio Ambiente.). It is limited to the west by the Juruá River, to the south by the Andirá River and Igarapé do Branco (tributaries of the Juruá River), to the north by the Igarapé São Benedito (tributary of the Juruá River), and to the east by the Copacá River (tributary of the Uarini River) (ICMBio, 2009Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2009. Plano de Manejo: Reserva Extrativista do Baixo Juruá. Juruá. Brasília, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério de Meio Ambiente.). The Juruá River flows to the north, also limiting the indigenous territory Kumaru do Lago Ualá (ICMBio, 2009Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2009. Plano de Manejo: Reserva Extrativista do Baixo Juruá. Juruá. Brasília, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério de Meio Ambiente.), and the southern limits of the RBJ adjoin another protected area, the Floresta Nacional de Tefé (ICMBio, 2009Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2009. Plano de Manejo: Reserva Extrativista do Baixo Juruá. Juruá. Brasília, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério de Meio Ambiente.) (Fig. 1).

Figure 1
Geographic location of the Reserva Extrativista (RESEX) do Baixo Juruá in relation to South America (A) and the Juruá River basin, in Brazilian Western Amazonia (B); upon an elevation background). In (B), protected areas and indigenous territories that cover this river basin are delimited in white and pink, respectively. The focal area is zoomed at (C), showing the eleven localities sampled for amphibians and reptiles (numbered white symbols; seeTable 1), and the Juruá municipality. Background in (C) is from Google Earth (Map data ©2015 Google/Landsat/Copernicus).

Table 1
Data on the eleven localities sampled for amphibians and reptiles at the Reserva Extrativista do Baixo Juruá (RBJ), western Brazilian Amazonia. For each locality are presented reference names and geographic coordinates, main habitats, sampling periods and traps sampling effort (when applicable). Habitats: (AQU) Aquatic; (FLH) Seasonally flooded habitats - margin of large rivers; (NFF) Non-flooded forests.

This RBJ is home to ca. 16 traditional communities, but their areas correspond to low percentages of this terrain (ICMBio, 2009Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2009. Plano de Manejo: Reserva Extrativista do Baixo Juruá. Juruá. Brasília, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério de Meio Ambiente.). The reserve is dominated by extensive and preserved landscapes of dense or open ombrophilous forests (Fig. 2), most of which are not subject to periodic flooding by the annual flood pulse of large rivers (ICMBio, 2009Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2009. Plano de Manejo: Reserva Extrativista do Baixo Juruá. Juruá. Brasília, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério de Meio Ambiente.). As this non-flooded terrain is part of an Amazonian region that was only recently (Late Pleistocene; < 45,000 years ago) exposed to this flooding pulse regime (Pupim et al., 2019Pupim, F.N.; Sawakuchi, A.O.; Almeida, R.P.; Ribas, C.C.; Kern, A.K.; Hartmann, G.A.; Chiessi, C.M.; Tamura, L.N.; Mineli, T.D.; Savian, J.F.; Grohmann, C.H.; Bertassoli-Jr., D.J.; Stern, A.G.; Cruz, F.W. & Cracraft, J. 2019. Chronology of Terra Firme formation in Amazonian lowlands reveals a dynamic Quaternary landscape. Quaternary Science Reviews, 210: 154-163. https://doi.org/10.1016/j.quascirev.2019.03.008.
https://doi.org/10.1016/j.quascirev.2019...
), they can be considered as paleovárzea. On the margins of the large rivers, the seasonal flood pulse creates many distinct environments, including diverse várzea forests, pioneer species monodominant forests, grasslands, patches of aquatic macrophytes, and mud or sandy exposed banks (ICMBio, 2009Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2009. Plano de Manejo: Reserva Extrativista do Baixo Juruá. Juruá. Brasília, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério de Meio Ambiente.) (Fig. 2). As is common in Amazonia, such environmental heterogeneity created by the flooding gradient largely influences the faunistic spatial occupation and diversity patterns (Moraes et al., 2016Moraes, L.J.C.L.; Pavan, D.; Barros, M.C. & Ribas, C.C. 2016. The combined influence of riverine barriers and flooding gradients on biogeographical patterns for amphibian and squamates in south-eastern Amazonia. Journal of Biogeography , 43(11): 2113-2124. https://doi.org/10.1111/jbi.12756.
https://doi.org/10.1111/jbi.12756...
, 2022aMoraes, L.J.C.L.; Gordo, M.; Pirani, R.M.; Rainha, R.N.; Almeida, A.P.; Oliveira, A.F.S.; Oliveira, M.E.; Silva, A.A.A. & Werneck, F.P. 2022a. Amphibians and squamates in Amazonian flooded habitats, with a study on the variation of amphibian assemblages along the Solimões River. In: Dalu, T. & Wasserman, R.J. (Eds.). Fundamentals of tropical freshwater Wetlands: from ecology to conservation management. Elsevier. Cap. 13, p. 381-384. https://doi.org/10.1016/B978-0-12-822362-8.00032-3.
https://doi.org/10.1016/B978-0-12-822362...
; Ramalho et al., 2018Ramalho, W.P.; Machado, I.F. & Vieira, L.J.S. 2018. Do flood pulses structure amphibian communities in floodplain environments? Biotropica, 50(2): 338-345. https://doi.org/10.1111/btp.12523.
https://doi.org/10.1111/btp.12523...
).

Figure 2
Panoramic view of the white-water Juruá River at its lower course (A); some habitats recently sampled for amphibians and reptiles at the Reserva Extrativista do Baixo Juruá, state of Amazonas, Brazil: (B) seasonally flooded habitats at the confluence of the tributary Andirá River, and (C) non-flooded forest (paleovárzea); as well as different trap methods and setups used during sampling: (D, E) linear pitfall trap stations, with drift fences, (F) funnel traps, installed between the buckets of pitfall traps, (G) bucket part of a pitfall trap station in “Y” without drift fences. Photographs by LJCLM (A-C) and VTC (D-G).

The Juruá River is one of the major southern tributaries of the Amazon River. Their headwaters are in the Andean region and the river crosses the historically dynamic sedimentary basin of Western Amazonia (Sioli, 1968Sioli, H. 1968. Hydrochemistry and geology in the Brazilian Amazon region. Amazoniana, 1: 267-277.). As a consequence, this river carries high levels of suspended sediments (a white-water river; Sioli, 1984Sioli, H. 1984. The Amazon and its main affluents: Hydrography, morphology of the rivers courses, and rivers types. In: Sioli, H. The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin. Junk Publishers, Dordrecht, Netherlands. https://doi.org/10.1007/978-94-009-6542-3.
https://doi.org/10.1007/978-94-009-6542-...
), and the low slope promotes a meandering morphology with highly dynamic margins subject to recent erosion and deposition processes (Kalliola et al., 1991Kalliola, R.; Salo, J.; Puhaka, M. & Rajasilta, M. 1991. New site formation and colonizing vegetation in primary succession on the western Amazon floodplains. Journal of Ecology, 79(4): 877-901. https://doi.org/10.2307/2261087.
https://doi.org/10.2307/2261087...
). Considering the lower course of the Juruá River, a dissimilar geomorphological influence is clearly noticed between its margins. At the region of the confluence with the Andirá River, the Juruá River acquires an uncentralized position in relation to its alluvial plain by following geological breaks (Fernandes et al., 1977Fernandes, P.E.C.A.; Pinheiro, S.S.; Montalvão, R.M.G.; Issler, R.S.; Abreu, A.S. & Tassinari, C.C.G. 1977. Geologia. In: RADAMBRASIL. Folha SA.19 Juruá. Brasília, Projeto Radambrasil. p. 19-123.). As a result, the lower Juruá River has a higher proportion of higher terrains part of the Formação Solimões (Pleistocene deposition) on its right bank, where the RBJ is located, while the left bank has a broad and asymmetric extension of more recent alluvial plains (Holocene deposition) (Fernandes et al., 1977Fernandes, P.E.C.A.; Pinheiro, S.S.; Montalvão, R.M.G.; Issler, R.S.; Abreu, A.S. & Tassinari, C.C.G. 1977. Geologia. In: RADAMBRASIL. Folha SA.19 Juruá. Brasília, Projeto Radambrasil. p. 19-123.). Such a dissimilarity directly influences the proportions of vegetation types found in each bank (prevalence of várzea in lower terrains and paleovárzea in higher terrains), as well as in human occupation in this region, which is higher on the right bank (ICMBio, 2009Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2009. Plano de Manejo: Reserva Extrativista do Baixo Juruá. Juruá. Brasília, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério de Meio Ambiente.). Altitudes within the RBJ range from 40 to 100 m above sea level, and the region’s climate is characterized as tropical (Af), being hot (mean annual temperature of 25℃) and humid (total annual rainfall of ca. 3,000 mm) (Alvares et al., 2013Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M. & Sparovek, G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6): 711-728. https://doi.org/10.1127/0941-2948/2013/0507.
https://doi.org/10.1127/0941-2948/2013/0...
).

Data collection and sampling effort

We generated a database based on data collected in our field expeditions and reanalyses of museum specimens deposited at the Collection of Amphibians and Reptiles (INPA-H) of the Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, state of Amazonas, Brazil. Three main field expeditions conducted by the authors (hereafter indicated with the initials of their names) formed the baseline of our data set. This periodic sampling covered the entire hydrological cycle of the flooding pulse in a timeframe of 31 years, resulting in the total sampling effort of 95 days. The first expedition was led by CG in 1991-1992 (i.e., before the creation of the RBJ) through the entire Juruá River course and focused on amphibian sampling (see results in Gascon, 1996Gascon, C. 1996. Amphibian litter fauna and river barriers in flooded and non-flooded Amazonian rainforests. Biotropica, 28: 136-140. https://doi.org/10.2307/2388779.
https://doi.org/10.2307/2388779...
; Lougheed et al., 1999Lougheed, S.C.; Gascon, C.; Jones D.A.; Bogart, J.P. & Boag, P.T. 1999. Ridges and rivers: a test of competing hypotheses of Amazonian diversification using a dart-poison frog (Epipedobates femoralis). Proceedings of the Royal Society of London, Series B, 266(1431): 1829-1835. https://doi.org/10.1098/rspb.1999.0853.
https://doi.org/10.1098/rspb.1999.0853...
; Gascon et al., 2000Gascon, C.; Malcolm, J.R.; Patton, J.L.; Silva, M.N.F.; Bogart, J.P.; Lougheed, S.C.; Peres, C.A.; Neckel, S. & Boag, P.T. 2000. Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academyof Science, 97: 13672-13677. https://doi.org/10.1073/pnas.230136397.
https://doi.org/10.1073/pnas.230136397...
). The study area was sampled in these expeditions from 02-19 May 1992 (18 sampling days) in a single locality (Table 1; see detailed information of this sampling in Patton et al., 2000Patton, J.L.; Da Silva, M.N.F. & Malcolm, J.R. 2000. Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia. Bulletin of the American Museum of Natural History, 244: 1-307. https://doi.org/10.1206/0003-0090(2000)244%3C0001:MOTRJA%3E2.0.CO;2.
https://doi.org/10.1206/0003-0090(2000)2...
). The second inventory in this region was led by VTC thirteen years later (2005-2007), as part of the actions to generate a management plan for the recently created RBJ (ICMBio, 2009Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2009. Plano de Manejo: Reserva Extrativista do Baixo Juruá. Juruá. Brasília, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério de Meio Ambiente.). During these years, both amphibians and reptiles were sampled using standardized efforts in eight distinct localities in the RBJ from 17 November-02 December 2005, 19 January-02 February 2006, 12 May-01 June 2006, and 04-13 May 2007 (62 sampling days). Lastly, eleven years later, remaining authors (LJCLM, RNR, FPW and AFSO) conducted a third amphibian and reptile inventory at the RBJ, sampling three distinct localities from 14-28 July 2018 (15 sampling days). In 2018, we also sampled through active surveys a locality of flooded habitats at the left margin of the Juruá River, i.e., outside the limits of the RBJ (Appendix 1 APPENDIX 1 Morphologically examined specimens. BRAZIL: Amazonas: Juruá: Reserva Extrativista do Baixo Juruá. AMPHIBIA: ANURA: ALLOPHRYNIDAE: Allophryne resplendens: INPA-H 023098; AROMOBATIDAE: Allobates femoralis: INPA-H 004784, 004921 004980, 005432, 028487, 028488, 028510, 028511, 028547-028549, 028551-028553, 039924, 039925; Allobates vanzolinius: INPA-H 004896 (holotype), 004903-004905, 004912 (paratypes); Allobates sp.: INPA-H 004787, 004798, 004799, 004803, 004863, 004869, 004870, 004875-004877, 004880, 004881, 004883, 004886-004888, 004889 (paratype of A. gasconi), 004891, 004901, 004906, 004910, 004911, 004913, 004914, 005274, 005275, 005347, 005348, 005366, 005416, 005418, 005431, 005502, 005580, 028475, 029864; BUFONIDAE: Amazophrynella sp.: INPA-H 004884, 004907, 004908, 004960, 005381, 005382; Rhinella castaneotica: INPA-H 004796, 004916, 004964, 015913, 015914, 015916-015920, 018817, 018823, 018827-018829, 019649, 019651-019653, 019655-019657, 019661, 019663, 019668-019675, 019678-019684, 019686-019690, 040058, 040061, 040063, 040064, 040065, 040068, 040069; Rhinella exostosica: INPA-H 005296, 005420, 015915, 015921, 018812, 018821, 018824, 040044, 040055, 040056, 040066, 040070; Rhinella aff. margaritifera: INPA-H 004890, 004892, 004895, 004918, 004922, 004947, 004954-004956, 004961, 004967, 004968, 004974, 005286, 005342, 005367, 015910-015912, 018818-018820, 018822, 019633-019648, 019650, 019654, 019658-019660, 019662, 019664-019667, 019676, 040045, 040047, 040048, 040050, 040051, 040053, 040054,040060, 040071; Rhinella gr. margaritifera: INPA-H 004840, 004879, 004894, 004897, 004942, 004950, 004953, 004958, 004966, 004969, 004970, 005272, 005276, 005292-005295, 005300, 005336, 005349, 005350, 005409, 005413, 005460, 005471, 015922, 018813-018816; 018825; 018826, 018830, 018831, 019677, 019685, 019691, 019692, 040059, 040062; Rhinella marina: INPA-H 002222-002228, 005345, 015886-015890, 016246-016278, 017204, 017205, 017207, 017209, 017210, 040075, 040083, 040087, 040088, 040093; CERATOPHRYIDAE: Ceratophrys cornuta: INPA-H 004986, 004991, 016220, 040046, 040049, 040052, 040057; DENDROBATIDAE: Ameerega hahneli: INPA-H 004783, 004786, 004795, 004797, 004810, 004813, 004815, 004816, 004819, 004823, 004824, 004825, 004827, 004829, 004830, 004832-4851, 004856, 004858-004860, 004864-004867, 004871-004874, 004878, 004909, 004915, 004929-004931, 004933-004936, 004938-004941, 004943, 004944, 004948, 004962, 004996-004999, 005236-005255, 005257-005260, 005266, 005267-005271, 005303-005333, 005338, 005351-005353, 005355-005365, 005375-005380, 005384-005408, 005436-005453, 005455, 005457-005459, 005474, 005476-005480, 005482-005483, 005485-005500, 017300-017313, 028499, 028500, 028550, 028554; Ameerega trivittata: INPA-H 004800, 004811, 005334, 015863-015872, 017199-017203, 018779-018788, 029844, 039888, 039939-039950, 040072-040074; ELEUTHERODACTYLIDAE: Phyzelaphryne nimio: INPA-H 039787, 039791, 039794, 039801, 039816, 039817; HYLIDAE: Boana appendiculata: INPA-H 039855, 039856, 039860; Boana boans: INPA-H 017136, 017137, 018796, 040090; Boana calcarata: INPA-H 015940, 039865; Boana cinerascens: INPA-H 039835; Boana geographica: INPA-H 017248, 017249, 039850-039852; Boana lanciformis: INPA-H 015928, 017165, 017166, 017326, 017327, 040094, 040095, 040099; Boana punctata: INPA-H 002202-002210, 002214-002220, 028533-028540; Boana raniceps: INPA-H 002201, 016312-016318, 017138-017143, 017246, 017247, 039837; Boana steinbachi: INPA-H 039902, 039912, 039916; Boana aff. steinbachi: INPA-H 039858, 039901, 039903, 039905-039908, 039910, 039914, 039915, 039918, 039919, 039921, 039922; Boana steinbachi species complex: INPA-H 004808, 004927, 005374, 005425, 005426, 005429, 015948-015950; Dendropsophus kamagarini: INPA-H 004985, 039833; Dendropsophus mapinguari: INPA-H 004952; Dendropsophus miyatai: INPA-H 005464, 005466, 005468; Dendropsophus reticulatus: INPA-H 002221, 017126, 017168-017176, 017251, 017252, 039839; Dendropsophus rossalleni: INPA-H 005461-005463, 005465, 005467, 005469, 017250; Osteocephalus castaneicola: INPA-H 015943, 028512, 028514, 040015, 040033; Osteocephalus helenae: INPA-H 040031; Osteocephalus aff. leprieurii: INPA-H 040012, 040021, 040027, 040029, 040030, 040032, 040034, 040036-040040, 040042; Osteocephalus taurinus: INPA-H 004820, 004925, 004926, 004928, 004983, 005335, 005340, 005341, 005412, 005427, 005507, 005513, 040016, 040017, 040019, 040023, 040025, 040026, 040028, 040035, 040041, 040079, 040080; Scarthyla goinorum: INPA-H 017332; Scinax cruentomma: INPA-H 004788, 004792, 004793, 004801, 004802, 004804, 004807, 004812, 004818, 005368; Scinax garbei: INPA-H 004951, 017328, 017329, 028556; Scinax nebulosus: INPA-H 028556; Scinax ruber: INPA-H 002230-002233, 015923-015925, 015947, 017314-017317, 017331, 028480, 028481, 039857, 039861, 039863, 039867, 039911, 039913; Sphaenorhynchus dorisae: INPA-H 017704, 028468-028472, 039836; Sphaenorhynchus lacteus: INPA-H 028489, 028490, 028492-028497; Trachycephalus cunauaru: INPA-H 039917; Trachycephalus typhonius: INPA-H 028476, 028482; LEPTODACTYLIDAE: Adenomera andreae: INPA-H 004785, 004805, 004854, 004893, 004920, 004963, 004971-004973, 004977, 004979, 005284, 005289, 005414, 005421, 005470, 005472, 005473, 005475, 018801-018810, 019572-019599, 029871, 029873, 029875, 039786, 039788-039790, 039793, 039797-039800, 039803-039805, 039807-039809, 039812, 039818, 039819, 039909; Adenomera simonstuarti: INPA-H 005337, 029866-029870, 029872, 029874, 029876, 039792, 039796, 039813, 039814; Edalorhina perezi: INPA-H 005291, 016209-016214, 039810; Engystomops petersi: INPA-H 004789, 004809, 004853, 004861, 004862, 004917, 004923, 004924, 004959, 004965, 004976, 004988, 005287, 005288, 005346, 005369, 005410, 005411, 005415, 005417, 005503-005505, 015873-015884, 016279-16306, 017019-017114, 028491, 028498, 039996, 040001; Leptodactylus discodactylus: INPA-H 029865, 039880, 039881, 039893, 039894, 039896-039898; Leptodactylus fuscus: INPA-H 016319-016324; Leptodactylus macrosternum: INPA-H 017128, 039890, 039891, 039895, 039899; Leptodactylus cf. mystaceus: INPA-H 005290, 005428, 015908, 015909, 016215-016217, 017164, 018793; Leptodactylus pentadactylus: INPA-H 004794, 004806, 004814, 004898, 004899, 005343, 005344, 005419, 015927, 016225, 016226, 016227, 016228, 017127, 017215, 017244, 040077, 040091, 040097; Leptodactylus petersii: INPA-H 002211, 004957, 004975, 004978, 004992, 004993, 004994, 004995, 005297, 005301, 005302, 005434, 005501, 028559, 028560, 028561, 028562, 028563, 039795, 039811, 039884, 039892; Leptodactylus rhodomystax: INPA-H 005383, 016325, 017167, 018811; Leptodactylus stenodema: INPA-H 015904, 015905, 016331, 016332, 018790, 018791, 018792; Lithodytes lineatus: INPA-H 016221, 039882, 039883; MICROHYLIDAE: Chiasmocleis avilapiresae: INPA-H 017258, 017259 (paratypes); Chiasmocleis bassleri: INPA-H 005285, 039900, 039997, 040003, 040006, 040008-040010, 040014, 040022; Chiasmocleis hudsoni: INPA-H 040005, 040013, Chiasmocleis ventrimaculata: INPA-H 040000, 040002, 040004, 040007, 040011; Ctenophryne geayi: INPA-H 016234-016245, 039993-039995, 039998, 039999; PHYLLOMEDUSIDAE: Phyllomedusa vaillantii: INPA-H 005423, 039859; PIPIDAE: Pipa pipa: INPA-H 017245; RANIDAE: Lithobates palmipes: INPA-H 018794; STRABOMANTIDAE: Oreobates quixensis: INPA-H 004822, 004946, 004982, 004987, 004990, 005273, 005299, 016334, 016335, 017177-017183, 039868-039877, 039879; Pristimantis reichlei: INPA-H 005435, 028474; Pristimantis aff. ockendeni: INPA-H 004791, 004821, Pristimantis cf. diadematus: INPA-H 004984, 005339, 005424, 005506, 0017330; Strabomantis sulcatus: INPA-H 029919; CAUDATA: PLETHODONTIDAE: Bolitoglossa sp.: INPA-H 004981, 004989, 005422, 005430, 005433; GYMNOPHIONA: CAECILIIDAE: Caecilia tentaculata: INPA-H 016208, TYPHLONECTIDAE: Potamotyphlops kaupii: INPA-H 015931. REPTILIA: SQUAMATA: ALOPOGLOSSIDAE: Alopoglossus atriventris: INPA-H 015891-015894, 015936, 016354-016364, 017196-17198, 019600-019603, 039951, 39955, 039959, 039960, 039966, 039969, 039973, 039976; Alopoglossus brevifrontalis: INPA-H 015938, 015939, 016224, 039956, 039964, 039965, 039967, 039982; Alopoglossus indigenorum: INPA-H 039953 (paratype); ANILIIDAE: Anilius scytale: INPA-H 016201; BOIDAE: Corallus hortulana: INPA-H 017239, 040102; Epicrates cenchria: INPA-H 017231, 017232; COLUBRIDAE: Chironius fuscus: INPA-H 017293-017297; Drymoluber dichrous: INPA-H 018776; Leptophis ahaetulla: INPA-H 016205, 016206; Oxybelis aeneus: INPA-H 015859-015861; Spilotes sulphureus: INPA-H 017220; DACTYLOIDAE: Anolis fuscoauratus: INPA-H 015937, 017125, 017323-017325, 028557, 039828, 039840, 039846, 039847; Anolis ortonii: INPA-H 028558; Anolis punctatus: INPA-H 039844; Anolis tandai: INPA-H 015933-015935, 017124, 017318-017322, 039820, 039821, 039822, 039823, 039824, 039825, 039826, 039827, 039829, 039841, 039843, 039845, 039848, 039887; Anolis transversalis: INPA-H 017152-017154, 039842, 039889; DIPSADIDAE: Atractus major: INPA-H 015885, 018769, 018770; Atractus poeppigi: INPA-H 015862, 016204, 039736; Atractus snethlageae: INPA-H 039986, 039989; Atractus aff. snethlageae: INPA-H 039987, 039988; Atractus torquatus: INPA-H 017299, 039886, 039990; Dipsas catesbyi: INPA-H 015932, 017256; Drepanoides anomalus: INPA-H 016049, 018774; Erythrolamprus aesculapii: INPA-H 01620; Erythrolamprus pygmaeus: INPA-H 017160-017162; Erythrolamprus reginae: INPA-H 015930, 017155, 017156; Erythrolamprus typhlus: INPA-H 018775; Helicops angulatus: INPA-H 016470, 017157, 017158, 017235, 018771, Helicops hagmanni: INPA-H 015951; Helicops polylepis: INPA-H 039992; Imantodes cenchoa: INPA-H 017134, 040098; Leptodeira annulata: INPA-H 016202, 039991; Oxyrhopus melanogenys: INPA-H 016471, 017224, 018772; Oxyrhopus occipitalis: INPA-H 018773; Pseudoeryx plicatilis: INPA-H 013193, 017233, 017234; Siphlophis cervinus: INPA-H 017159; Thamnodynastes pallidus: INPA-H 017236, 017237; Xenodon rabdocephalus: INPA-H 018765; Xenoxybelis boulengeri: INPA-H 017163; ELAPIDAE: Micrurus hemprichii ortonii: INPA-H 016203, 017123; Micrurus langsdorffi: INPA-H 017253, 018766, 018767; Micrurus lemniscatus: INPA-H 018768; GEKKONIDAE: Hemidactylus mabouia: INPA-H 039931; GYMNOPHTHALMIDAE: Arthrosaura reticulata: INPA-H 015929, 016307-016311, 017260, 017261, 017267, 039952, 039954; Cercosaura argulus: INPA-H 017268; Cercosaura bassleri: INPA-H 016222, 016223; Iphisa elegans elegans: INPA-H 015897-015899, 015944, 016338, 018797-018799, 039962, 039963, 039968, 039971, 039972, 039980, 039983; Loxopholis percarinatum: INPA-H 039974, 039978, 039979; Loxopholis snethlageae: INPA-H 015945, 015946, 016339, 022953-022957, 028467, 039957, 039958, 039961, 039970, 039975, 039977, 039981, 039984, 039985; IGUANIDAE: Iguana iguana: INPA-H 015856, 016478, 016479, 017257; PHYLLODACTYLIDAE: Thecadactylus solimoensis: INPA-H 040101; SCINCIDAE: Copeoglossum nigropunctatum: INPA-H 015900-015902, 039938; SPHAERODACTYLIDAE: Chatogekko amazonicus: INPA-H 017255, 030344-030346; Gonatodes humeralis: INPA-H 015941, 015942, 028531, 028532, 039926, 039928, 039930, 039932, 039934, 039935; Lepidoblepharis heyerorum: INPA-H 017254; TEIIDAE: Ameiva ameiva: INPA-H 017117-017119, 017130, 017131, 017225-017227, 040078, 040085, 040086, 040092, 040100; Crocodilurus amazonicus: INPA-H 015857, 015858, 017228, 040089; Kentropyx altamazonica: INPA-H 016229-016231, 016336, 016337, 017121, 017122, 017132, 017133, 017229, 017230, 017241; Kentropyx pelviceps: INPA-H 015895, 015896, 016218-017120, 018795, 039927, 039929, 040096; Tupinambis teguixin: INPA-H 017240, 040076; TROPIDURIDAE: Plica plica: INPA-H 017115, 017116, 017243; Plica umbra ochrocollaris: INPA-H 015903, 017184-017194; Uranoscodon superciliosus: INPA-H 015853-015855, 017144-017151, 017242, 018800, 040082, 040084; VIPERIDAE: Bothrocophias hyoprora: INPA-H 017135; Bothrops atrox: INPA-H 015906, 017217, 017218, 017238, 017262-017264, 039885; Bothrops brazili: INPA-H 015907; Lachesis muta muta: INPA-H 018777. BRAZIL: Amazonas: Juruá: left margin of the lower Juruá River, opposed to the Andirá River confluence. AMPHIBIA: ANURA: BUFONIDAE: Rhinella gr. margaritifera: INPA-H 040067; Rhinella marina: INPA-H 039802, 039806; HYLIDAE: Boana appendiculata: INPA-H 039832, 39866; Boana geographica: INPA-H 039853, 39854; Boana punctata: INPA-H 039834; Boana raniceps: INPA-H 039838; Boana aff. steinbachi: INPA-H 039904, 039920, 039923; Osteocephalus helenae: INPA-H 040043; Osteocephalus aff. leprieurii; INPA-H 040018; Osteocephalus taurinus: INPA-H 040020, 040024; Scinax garbei: INPA-H 039862; Scinax ruber: INPA-H 039830, 039831, 039864; LEPTODACTYLIDAE: Adenomera hylaedactyla: INPA-H 039815; Leptodactylus petersii: INPA-H 039795; STRABOMANTIDAE: Pristimantis fenestratus: INPA-H 039878. REPTILIA: SQUAMATA: DACTYLOIDAE: Anolis fuscoauratus: INPA-H 039849; SCINCIDAE: Copeoglossum nigropunctatum: INPA-H 039936, 039937; SPHAERODACTYLIDAE: Gonatodes humeralis: INPA-H 039933; TROPIDURIDAE: Uranoscodon superciliosus: INPA-H 040081. ). However, in order to maximize the assessment of diversity, we aggregate these few records in this study as part of the locality 8, which also represents flooded habitats but is within the limits of the RBJ (Fig. 1).

Individuals were recorded in those inventories using complementary sampling methods established for herpetofauna in Amazonia: (1) diurnal and nocturnal active surveys (Heyer et al., 1994Heyer, W.R.; Donnelly, M.A.; McDiarmid, R.W.; Hayek, L.C. & Foster, M.S. 1994. Measuring and monitoring biological diversity: Standard methods for amphibians. Washington, Smithsonian Institution Press.), where the individuals are detected in all the microhabitats visually accessible or, in the case of anurans, through their vocalizations (all the inventories; total sampling effort of 245 person-days); (2) pitfall traps (Heyer et al., 1994Heyer, W.R.; Donnelly, M.A.; McDiarmid, R.W.; Hayek, L.C. & Foster, M.S. 1994. Measuring and monitoring biological diversity: Standard methods for amphibians. Washington, Smithsonian Institution Press.) (Fig. 2), composed by stations of 7-12 100-liter buckets buried linearly with drift fences that were installed only in non-flooded forests (2005-2007 and 2018 inventories; 886 trap-days; details of sampling effort at Table 1). During sampling at locality 11 in 2007, due to logistical issues, only buckets were buried (i.e., without drift fences) in a “Y” setup (Fig. 2); (3) funnel traps (Enge, 2001Enge, K.M. 2001. The pitfalls of pitfall traps. Journal of Herpetology, 35(3): 467-478. https://doi.org/10.2307/1565965.
https://doi.org/10.2307/1565965...
), installed in pairs between the buckets of pitfall traps, ranging from 12-22 funnel traps per pitfall station (2005-2007 inventories; 1,184 trap-days) (Fig. 2). During sampling at the locality 9 in 2006, only funnel traps were installed in a drift fence station; and (4) trammel nets with distinct opening sizes to sample aquatic animals (2005-2007 inventories; non-standardized). Specimens were also recorded through non-standardized occasional encounters made by us or by members of local communities and other teams in the multidisciplinary expeditions.

We performed rarefaction (interpolation) and extrapolation curves with 95% confidence intervals (Chao et al., 2014Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K. & Ellison, A.M. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84: 45-67. https://doi.org/10.1890/13-0133.1.
https://doi.org/10.1890/13-0133.1...
) to compare the observed and expected species richness of amphibians and reptiles in the RBJ, as well as to investigate the effectiveness of our sampling effort in assessing the local diversity of those groups. The extrapolated rarefaction curves were generated using the R statistical software package “iNEXT” (Chao et al., 2014Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K. & Ellison, A.M. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84: 45-67. https://doi.org/10.1890/13-0133.1.
https://doi.org/10.1890/13-0133.1...
). We also estimated species richness for amphibians and reptiles in the RBJ based on our sampling using the Chao and Jackknife estimation indices implemented in the “specpool” function of the R package “vegan” (Oksanen et al., 2022Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; Wagner, H.; Barbour, M.; Bedward, M.; Bolker, B.; Borcard, D.; Carvalho, G.; Chirico, M.; Caceres, M.; Durand, S.; Evangelista, H.B.A.; FitzJohn, R.; Friendly, M.; Furneaux, B.; Hannigan, G.; Hill, M.O.; Lahti, L.; McGlinn, D.; Ouellette, M-H.; Cunha, E.R.; Smith, T.; Stier, A.; Ter Braak, C.J.F. & Weedon, J. 2022. vegan: Community Ecology Package. R package Version 2.6-2. 2020. Available: Available: https://CRAN.R-project.org/package=vegan . Access: 25/05/2022.
https://CRAN.R-project.org/package=vegan...
). Due to the lack of standardization among our sampling events and the uncertainties associated with historical data, we only consider data associated with voucher specimens for these estimation analyses.

We collected specimens and/or tissue samples following appropriate ethical and legal guidelines, under the permits 67798-1 and 02005.001056/06-05 provided by the Brazilian Federal Agencies Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) and Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA). Voucher specimens and tissue samples were respectively deposited in the INPA-H and the Genetic Resources Collection (INPA-HT) of the same institute (INPA). During 2018-2020, we reanalyzed all the voucher specimens from the target region deposited at INPA-H (1,560 specimens, seeAppendix 1 APPENDIX 1 Morphologically examined specimens. BRAZIL: Amazonas: Juruá: Reserva Extrativista do Baixo Juruá. AMPHIBIA: ANURA: ALLOPHRYNIDAE: Allophryne resplendens: INPA-H 023098; AROMOBATIDAE: Allobates femoralis: INPA-H 004784, 004921 004980, 005432, 028487, 028488, 028510, 028511, 028547-028549, 028551-028553, 039924, 039925; Allobates vanzolinius: INPA-H 004896 (holotype), 004903-004905, 004912 (paratypes); Allobates sp.: INPA-H 004787, 004798, 004799, 004803, 004863, 004869, 004870, 004875-004877, 004880, 004881, 004883, 004886-004888, 004889 (paratype of A. gasconi), 004891, 004901, 004906, 004910, 004911, 004913, 004914, 005274, 005275, 005347, 005348, 005366, 005416, 005418, 005431, 005502, 005580, 028475, 029864; BUFONIDAE: Amazophrynella sp.: INPA-H 004884, 004907, 004908, 004960, 005381, 005382; Rhinella castaneotica: INPA-H 004796, 004916, 004964, 015913, 015914, 015916-015920, 018817, 018823, 018827-018829, 019649, 019651-019653, 019655-019657, 019661, 019663, 019668-019675, 019678-019684, 019686-019690, 040058, 040061, 040063, 040064, 040065, 040068, 040069; Rhinella exostosica: INPA-H 005296, 005420, 015915, 015921, 018812, 018821, 018824, 040044, 040055, 040056, 040066, 040070; Rhinella aff. margaritifera: INPA-H 004890, 004892, 004895, 004918, 004922, 004947, 004954-004956, 004961, 004967, 004968, 004974, 005286, 005342, 005367, 015910-015912, 018818-018820, 018822, 019633-019648, 019650, 019654, 019658-019660, 019662, 019664-019667, 019676, 040045, 040047, 040048, 040050, 040051, 040053, 040054,040060, 040071; Rhinella gr. margaritifera: INPA-H 004840, 004879, 004894, 004897, 004942, 004950, 004953, 004958, 004966, 004969, 004970, 005272, 005276, 005292-005295, 005300, 005336, 005349, 005350, 005409, 005413, 005460, 005471, 015922, 018813-018816; 018825; 018826, 018830, 018831, 019677, 019685, 019691, 019692, 040059, 040062; Rhinella marina: INPA-H 002222-002228, 005345, 015886-015890, 016246-016278, 017204, 017205, 017207, 017209, 017210, 040075, 040083, 040087, 040088, 040093; CERATOPHRYIDAE: Ceratophrys cornuta: INPA-H 004986, 004991, 016220, 040046, 040049, 040052, 040057; DENDROBATIDAE: Ameerega hahneli: INPA-H 004783, 004786, 004795, 004797, 004810, 004813, 004815, 004816, 004819, 004823, 004824, 004825, 004827, 004829, 004830, 004832-4851, 004856, 004858-004860, 004864-004867, 004871-004874, 004878, 004909, 004915, 004929-004931, 004933-004936, 004938-004941, 004943, 004944, 004948, 004962, 004996-004999, 005236-005255, 005257-005260, 005266, 005267-005271, 005303-005333, 005338, 005351-005353, 005355-005365, 005375-005380, 005384-005408, 005436-005453, 005455, 005457-005459, 005474, 005476-005480, 005482-005483, 005485-005500, 017300-017313, 028499, 028500, 028550, 028554; Ameerega trivittata: INPA-H 004800, 004811, 005334, 015863-015872, 017199-017203, 018779-018788, 029844, 039888, 039939-039950, 040072-040074; ELEUTHERODACTYLIDAE: Phyzelaphryne nimio: INPA-H 039787, 039791, 039794, 039801, 039816, 039817; HYLIDAE: Boana appendiculata: INPA-H 039855, 039856, 039860; Boana boans: INPA-H 017136, 017137, 018796, 040090; Boana calcarata: INPA-H 015940, 039865; Boana cinerascens: INPA-H 039835; Boana geographica: INPA-H 017248, 017249, 039850-039852; Boana lanciformis: INPA-H 015928, 017165, 017166, 017326, 017327, 040094, 040095, 040099; Boana punctata: INPA-H 002202-002210, 002214-002220, 028533-028540; Boana raniceps: INPA-H 002201, 016312-016318, 017138-017143, 017246, 017247, 039837; Boana steinbachi: INPA-H 039902, 039912, 039916; Boana aff. steinbachi: INPA-H 039858, 039901, 039903, 039905-039908, 039910, 039914, 039915, 039918, 039919, 039921, 039922; Boana steinbachi species complex: INPA-H 004808, 004927, 005374, 005425, 005426, 005429, 015948-015950; Dendropsophus kamagarini: INPA-H 004985, 039833; Dendropsophus mapinguari: INPA-H 004952; Dendropsophus miyatai: INPA-H 005464, 005466, 005468; Dendropsophus reticulatus: INPA-H 002221, 017126, 017168-017176, 017251, 017252, 039839; Dendropsophus rossalleni: INPA-H 005461-005463, 005465, 005467, 005469, 017250; Osteocephalus castaneicola: INPA-H 015943, 028512, 028514, 040015, 040033; Osteocephalus helenae: INPA-H 040031; Osteocephalus aff. leprieurii: INPA-H 040012, 040021, 040027, 040029, 040030, 040032, 040034, 040036-040040, 040042; Osteocephalus taurinus: INPA-H 004820, 004925, 004926, 004928, 004983, 005335, 005340, 005341, 005412, 005427, 005507, 005513, 040016, 040017, 040019, 040023, 040025, 040026, 040028, 040035, 040041, 040079, 040080; Scarthyla goinorum: INPA-H 017332; Scinax cruentomma: INPA-H 004788, 004792, 004793, 004801, 004802, 004804, 004807, 004812, 004818, 005368; Scinax garbei: INPA-H 004951, 017328, 017329, 028556; Scinax nebulosus: INPA-H 028556; Scinax ruber: INPA-H 002230-002233, 015923-015925, 015947, 017314-017317, 017331, 028480, 028481, 039857, 039861, 039863, 039867, 039911, 039913; Sphaenorhynchus dorisae: INPA-H 017704, 028468-028472, 039836; Sphaenorhynchus lacteus: INPA-H 028489, 028490, 028492-028497; Trachycephalus cunauaru: INPA-H 039917; Trachycephalus typhonius: INPA-H 028476, 028482; LEPTODACTYLIDAE: Adenomera andreae: INPA-H 004785, 004805, 004854, 004893, 004920, 004963, 004971-004973, 004977, 004979, 005284, 005289, 005414, 005421, 005470, 005472, 005473, 005475, 018801-018810, 019572-019599, 029871, 029873, 029875, 039786, 039788-039790, 039793, 039797-039800, 039803-039805, 039807-039809, 039812, 039818, 039819, 039909; Adenomera simonstuarti: INPA-H 005337, 029866-029870, 029872, 029874, 029876, 039792, 039796, 039813, 039814; Edalorhina perezi: INPA-H 005291, 016209-016214, 039810; Engystomops petersi: INPA-H 004789, 004809, 004853, 004861, 004862, 004917, 004923, 004924, 004959, 004965, 004976, 004988, 005287, 005288, 005346, 005369, 005410, 005411, 005415, 005417, 005503-005505, 015873-015884, 016279-16306, 017019-017114, 028491, 028498, 039996, 040001; Leptodactylus discodactylus: INPA-H 029865, 039880, 039881, 039893, 039894, 039896-039898; Leptodactylus fuscus: INPA-H 016319-016324; Leptodactylus macrosternum: INPA-H 017128, 039890, 039891, 039895, 039899; Leptodactylus cf. mystaceus: INPA-H 005290, 005428, 015908, 015909, 016215-016217, 017164, 018793; Leptodactylus pentadactylus: INPA-H 004794, 004806, 004814, 004898, 004899, 005343, 005344, 005419, 015927, 016225, 016226, 016227, 016228, 017127, 017215, 017244, 040077, 040091, 040097; Leptodactylus petersii: INPA-H 002211, 004957, 004975, 004978, 004992, 004993, 004994, 004995, 005297, 005301, 005302, 005434, 005501, 028559, 028560, 028561, 028562, 028563, 039795, 039811, 039884, 039892; Leptodactylus rhodomystax: INPA-H 005383, 016325, 017167, 018811; Leptodactylus stenodema: INPA-H 015904, 015905, 016331, 016332, 018790, 018791, 018792; Lithodytes lineatus: INPA-H 016221, 039882, 039883; MICROHYLIDAE: Chiasmocleis avilapiresae: INPA-H 017258, 017259 (paratypes); Chiasmocleis bassleri: INPA-H 005285, 039900, 039997, 040003, 040006, 040008-040010, 040014, 040022; Chiasmocleis hudsoni: INPA-H 040005, 040013, Chiasmocleis ventrimaculata: INPA-H 040000, 040002, 040004, 040007, 040011; Ctenophryne geayi: INPA-H 016234-016245, 039993-039995, 039998, 039999; PHYLLOMEDUSIDAE: Phyllomedusa vaillantii: INPA-H 005423, 039859; PIPIDAE: Pipa pipa: INPA-H 017245; RANIDAE: Lithobates palmipes: INPA-H 018794; STRABOMANTIDAE: Oreobates quixensis: INPA-H 004822, 004946, 004982, 004987, 004990, 005273, 005299, 016334, 016335, 017177-017183, 039868-039877, 039879; Pristimantis reichlei: INPA-H 005435, 028474; Pristimantis aff. ockendeni: INPA-H 004791, 004821, Pristimantis cf. diadematus: INPA-H 004984, 005339, 005424, 005506, 0017330; Strabomantis sulcatus: INPA-H 029919; CAUDATA: PLETHODONTIDAE: Bolitoglossa sp.: INPA-H 004981, 004989, 005422, 005430, 005433; GYMNOPHIONA: CAECILIIDAE: Caecilia tentaculata: INPA-H 016208, TYPHLONECTIDAE: Potamotyphlops kaupii: INPA-H 015931. REPTILIA: SQUAMATA: ALOPOGLOSSIDAE: Alopoglossus atriventris: INPA-H 015891-015894, 015936, 016354-016364, 017196-17198, 019600-019603, 039951, 39955, 039959, 039960, 039966, 039969, 039973, 039976; Alopoglossus brevifrontalis: INPA-H 015938, 015939, 016224, 039956, 039964, 039965, 039967, 039982; Alopoglossus indigenorum: INPA-H 039953 (paratype); ANILIIDAE: Anilius scytale: INPA-H 016201; BOIDAE: Corallus hortulana: INPA-H 017239, 040102; Epicrates cenchria: INPA-H 017231, 017232; COLUBRIDAE: Chironius fuscus: INPA-H 017293-017297; Drymoluber dichrous: INPA-H 018776; Leptophis ahaetulla: INPA-H 016205, 016206; Oxybelis aeneus: INPA-H 015859-015861; Spilotes sulphureus: INPA-H 017220; DACTYLOIDAE: Anolis fuscoauratus: INPA-H 015937, 017125, 017323-017325, 028557, 039828, 039840, 039846, 039847; Anolis ortonii: INPA-H 028558; Anolis punctatus: INPA-H 039844; Anolis tandai: INPA-H 015933-015935, 017124, 017318-017322, 039820, 039821, 039822, 039823, 039824, 039825, 039826, 039827, 039829, 039841, 039843, 039845, 039848, 039887; Anolis transversalis: INPA-H 017152-017154, 039842, 039889; DIPSADIDAE: Atractus major: INPA-H 015885, 018769, 018770; Atractus poeppigi: INPA-H 015862, 016204, 039736; Atractus snethlageae: INPA-H 039986, 039989; Atractus aff. snethlageae: INPA-H 039987, 039988; Atractus torquatus: INPA-H 017299, 039886, 039990; Dipsas catesbyi: INPA-H 015932, 017256; Drepanoides anomalus: INPA-H 016049, 018774; Erythrolamprus aesculapii: INPA-H 01620; Erythrolamprus pygmaeus: INPA-H 017160-017162; Erythrolamprus reginae: INPA-H 015930, 017155, 017156; Erythrolamprus typhlus: INPA-H 018775; Helicops angulatus: INPA-H 016470, 017157, 017158, 017235, 018771, Helicops hagmanni: INPA-H 015951; Helicops polylepis: INPA-H 039992; Imantodes cenchoa: INPA-H 017134, 040098; Leptodeira annulata: INPA-H 016202, 039991; Oxyrhopus melanogenys: INPA-H 016471, 017224, 018772; Oxyrhopus occipitalis: INPA-H 018773; Pseudoeryx plicatilis: INPA-H 013193, 017233, 017234; Siphlophis cervinus: INPA-H 017159; Thamnodynastes pallidus: INPA-H 017236, 017237; Xenodon rabdocephalus: INPA-H 018765; Xenoxybelis boulengeri: INPA-H 017163; ELAPIDAE: Micrurus hemprichii ortonii: INPA-H 016203, 017123; Micrurus langsdorffi: INPA-H 017253, 018766, 018767; Micrurus lemniscatus: INPA-H 018768; GEKKONIDAE: Hemidactylus mabouia: INPA-H 039931; GYMNOPHTHALMIDAE: Arthrosaura reticulata: INPA-H 015929, 016307-016311, 017260, 017261, 017267, 039952, 039954; Cercosaura argulus: INPA-H 017268; Cercosaura bassleri: INPA-H 016222, 016223; Iphisa elegans elegans: INPA-H 015897-015899, 015944, 016338, 018797-018799, 039962, 039963, 039968, 039971, 039972, 039980, 039983; Loxopholis percarinatum: INPA-H 039974, 039978, 039979; Loxopholis snethlageae: INPA-H 015945, 015946, 016339, 022953-022957, 028467, 039957, 039958, 039961, 039970, 039975, 039977, 039981, 039984, 039985; IGUANIDAE: Iguana iguana: INPA-H 015856, 016478, 016479, 017257; PHYLLODACTYLIDAE: Thecadactylus solimoensis: INPA-H 040101; SCINCIDAE: Copeoglossum nigropunctatum: INPA-H 015900-015902, 039938; SPHAERODACTYLIDAE: Chatogekko amazonicus: INPA-H 017255, 030344-030346; Gonatodes humeralis: INPA-H 015941, 015942, 028531, 028532, 039926, 039928, 039930, 039932, 039934, 039935; Lepidoblepharis heyerorum: INPA-H 017254; TEIIDAE: Ameiva ameiva: INPA-H 017117-017119, 017130, 017131, 017225-017227, 040078, 040085, 040086, 040092, 040100; Crocodilurus amazonicus: INPA-H 015857, 015858, 017228, 040089; Kentropyx altamazonica: INPA-H 016229-016231, 016336, 016337, 017121, 017122, 017132, 017133, 017229, 017230, 017241; Kentropyx pelviceps: INPA-H 015895, 015896, 016218-017120, 018795, 039927, 039929, 040096; Tupinambis teguixin: INPA-H 017240, 040076; TROPIDURIDAE: Plica plica: INPA-H 017115, 017116, 017243; Plica umbra ochrocollaris: INPA-H 015903, 017184-017194; Uranoscodon superciliosus: INPA-H 015853-015855, 017144-017151, 017242, 018800, 040082, 040084; VIPERIDAE: Bothrocophias hyoprora: INPA-H 017135; Bothrops atrox: INPA-H 015906, 017217, 017218, 017238, 017262-017264, 039885; Bothrops brazili: INPA-H 015907; Lachesis muta muta: INPA-H 018777. BRAZIL: Amazonas: Juruá: left margin of the lower Juruá River, opposed to the Andirá River confluence. AMPHIBIA: ANURA: BUFONIDAE: Rhinella gr. margaritifera: INPA-H 040067; Rhinella marina: INPA-H 039802, 039806; HYLIDAE: Boana appendiculata: INPA-H 039832, 39866; Boana geographica: INPA-H 039853, 39854; Boana punctata: INPA-H 039834; Boana raniceps: INPA-H 039838; Boana aff. steinbachi: INPA-H 039904, 039920, 039923; Osteocephalus helenae: INPA-H 040043; Osteocephalus aff. leprieurii; INPA-H 040018; Osteocephalus taurinus: INPA-H 040020, 040024; Scinax garbei: INPA-H 039862; Scinax ruber: INPA-H 039830, 039831, 039864; LEPTODACTYLIDAE: Adenomera hylaedactyla: INPA-H 039815; Leptodactylus petersii: INPA-H 039795; STRABOMANTIDAE: Pristimantis fenestratus: INPA-H 039878. REPTILIA: SQUAMATA: DACTYLOIDAE: Anolis fuscoauratus: INPA-H 039849; SCINCIDAE: Copeoglossum nigropunctatum: INPA-H 039936, 039937; SPHAERODACTYLIDAE: Gonatodes humeralis: INPA-H 039933; TROPIDURIDAE: Uranoscodon superciliosus: INPA-H 040081. ), providing support for the species list of amphibians and reptiles inhabiting the study area. Taxonomic identifications were performed under combined approaches of external morphology analyses (for newly collected and historical material) and DNA barcoding (only for some specimens collected in 2018). We followed the taxonomic arrangements of Frost (2022Frost, D.R. 2022. Amphibian Species of the World: an online reference. Version 6.0. Available: Available: http://research.amnh.org/herpetology/amphibia/index.html . Access: 25/05/2022.
http://research.amnh.org/herpetology/amp...
) for amphibians and Uetz et al. (2022Uetz, P.; Freed, P. & Hošek, J. 2022. The Reptile Database. Available: Available: http://www.reptile-database.org . Access: 25/05/2022.
http://www.reptile-database.org...
) for reptiles.

Species identification: morphology

We compared the external morphology (morphometric and meristic characteristics, and coloration patterns) of specimens with original species’ descriptions, dichotomous keys, geographically related inventories, and field guides (e.g.,Peters & Donoso-Barros, 1986Peters, J.A. & Donoso-Barros, R. 1986. Catalogue of the Neotropical Squamata. Washington, Smithsonian Institution Press .; Dixon et al., 1993Dixon, J.R.; Wiest, J.A. & Cei, J.M. 1993. Revision of the Neotropical snake genus Chironius Fitzinger (Serpentes, Colubridae). Museo Regionale Di Scienze Naturali Monografie, 13: 1-280.; Ávila-Pires, 1995Ávila-Pires, T.C.S. 1995. Lizards of Brazilian Amazonia (Reptilia: Squamata). Zoologische Verhandelingen, 299: 1-706.; Gascon, 1996Gascon, C. 1996. Amphibian litter fauna and river barriers in flooded and non-flooded Amazonian rainforests. Biotropica, 28: 136-140. https://doi.org/10.2307/2388779.
https://doi.org/10.2307/2388779...
, Lougheed et al., 1999Lougheed, S.C.; Gascon, C.; Jones D.A.; Bogart, J.P. & Boag, P.T. 1999. Ridges and rivers: a test of competing hypotheses of Amazonian diversification using a dart-poison frog (Epipedobates femoralis). Proceedings of the Royal Society of London, Series B, 266(1431): 1829-1835. https://doi.org/10.1098/rspb.1999.0853.
https://doi.org/10.1098/rspb.1999.0853...
, Gascon et al., 2000Gascon, C.; Malcolm, J.R.; Patton, J.L.; Silva, M.N.F.; Bogart, J.P.; Lougheed, S.C.; Peres, C.A.; Neckel, S. & Boag, P.T. 2000. Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academyof Science, 97: 13672-13677. https://doi.org/10.1073/pnas.230136397.
https://doi.org/10.1073/pnas.230136397...
; Morales, 2002Morales, V.R. 2002. Sistematica y biogeografía del grupo trilineatus (Amphibia, Anura, Dendrobatidae, Colostethus), con descripción de once nuevas especies. Publicaciones de la Asociación de Amigos de Doñana, 13: 1-59.; Peloso & Sturaro, 2008Peloso, P.L.V. & Sturaro M.J. 2008. A new species of narrowzmouthed frog of the genus Chiasmocleis Méhelÿ 1904 (Anura, Microhylidae) from the Amazonian rainforest of Brazil. Zootaxa, 1947: 39-52. https://doi.org/10.11646/zootaxa.1947.1.2.
https://doi.org/10.11646/zootaxa.1947.1....
; Moravec et al., 2009Moravec, J.; Aparicio, J.; Guerrero-Reinhard, M.; Calderón, G.; Jungfer, K.-H. & Gvoždík, V. 2009. A new species of Osteocephalus (Anura: Hylidae) from Amazonian Bolivia: first evidence of tree frog breeding in fruit capsules of the Brazil nut tree. Zootaxa, 2215: 37-54. https://doi.org/10.11646/zootaxa.2215.1.3.
https://doi.org/10.11646/zootaxa.2215.1....
; Souza, 2009Souza, M.B. 2009. Anfíbios: Reserva Extrativista do Alto Juruá e Parque Nacional da Serra do Divisor, Acre. Campinas, IFCH.; Angulo & Icochea, 2010Angulo, A. & Icochea, J. 2010. Cryptic species complexes, widespread species and conservation: lessons from Amazonian frogs of the Leptodactylus marmoratus group (Anura: Leptodactylidae). Systematics and Biodiversity, 8(3): 357-370. https://doi.org/10.1080/14772000.2010.507264.
https://doi.org/10.1080/14772000.2010.50...
; Maciel & Hoogmoed, 2011Maciel, A.O. & Hoogmoed, M.S. 2011. Taxonomy and distribution of caecilian amphibians (Gymnophiona) of Brazilian Amazonia, with a key to their identification. Zootaxa, 2984: 1-53. https://doi.org/10.11646/zootaxa.2984.1.1.
https://doi.org/10.11646/zootaxa.2984.1....
; Gordo et al., 2013Gordo, M.; Toledo, L.F.; Suárez, P.; Kawashita-Ribeiro, R.A.; Ávila, R.W.; Morais, D.H. & Nunes, I. 2013. A new species of Milk Frog of the genus Trachycephalus Tschudi (Anura, Hylidae) from the Amazonian rainforest. Herpetologica, 69(4): 466-479. https://doi.org/10.1655/HERPETOLOGICA-D-11-00086.
https://doi.org/10.1655/HERPETOLOGICA-D-...
; Brcko et al., 2013Brcko, I.C.; Hoogmoed, M.S. & Neckel-Oliveira, S. 2013. Taxonomy and distribution of the salamander genus Bolitoglossa Duméril, Bibron & Duméril, 1854 (Amphibia, Caudata, Plethodontidae) in Brazilian Amazonia. Zootaxa, 3686: 401-431. https://doi.org/10.11646/zootaxa.3686.4.1.
https://doi.org/10.11646/zootaxa.3686.4....
; Fouquet et al., 2014Fouquet, A.; Cassini, C.S.; Baptista, C.F.; Pech, N. & Rodrigues, M.T. 2014. Species delimitation, patterns of diversification and historical biogeography of the Neotropical frog genus Adenomera (Anura, Leptodactylidae). Journal of Biogeography , 41(5): 855-870. https://doi.org/10.1111/jbi.12250.
https://doi.org/10.1111/jbi.12250...
, 2021; Peloso et al., 2014Peloso, P.L.V.; Sturaro, M.J.; Forlani, M.C.; Gaucher, P.; Motta, A.P. & Wheeler W.C. 2014. Phylogeny, taxonomic revision, and character evolution of the genera Chiasmocleis and Syncope (Anura, Microhylidae) in Amazonia, with descriptions of three new species. Bulletin of the American Museum of Natural History , 386: 1-96. https://doi.org/10.1206/834.1.
https://doi.org/10.1206/834.1...
, 2016Peloso, P.L.V.; Orrico, V.G.D.; Haddad, C.F.B.; Lima-Filho, G.R. & Sturaro, M.J. 2016. A new species of clown tree frog, Dendropsophus leucophyllatus species group, from Amazonia (Anura, Hylidae). South American Journal of Herpetology , 11: 66-80. https://doi.org/10.2994/SAJH-D-16-00003.1.
https://doi.org/10.2994/SAJH-D-16-00003....
; Caminer & Ron, 2014Caminer, M.A. & Ron, S.R. 2014. Systematics of treefrogs of the Hypsiboas calcaratus and Hypsiboas fasciatus species complex (Anura, Hylidae) with the description of four new species. ZooKeys, 370: 1-68. https://doi.org/10.3897/zookeys.370.6291.
https://doi.org/10.3897/zookeys.370.6291...
, 2020Caminer, M.A. & Ron, S.R. 2020. Systematics of the Boana semilineata species group (Anura: Hylidae), with a description of two new species from Amazonian Ecuador. Zoological Journal of the Linnean Society , 190: 149-180. https://doi.org/10.1093/zoolinnean/zlaa002.
https://doi.org/10.1093/zoolinnean/zlaa0...
; Caminer et al., 2017Caminer, M.A.; Milá, B.; Jansen, M.; Fouquet, A.; Venegas, P.J.; Chávez, G.; Lougheed, S.C. & Ron, S.R. 2017. Systematics of the Dendropsophus leucophyllatus species complex (Anura: Hylidae): Cryptic diversity and the description of two new species. PLoS ONE, 12: 1-42. https://doi.org/10.1371/journal.pone.0171785.
https://doi.org/10.1371/journal.pone.017...
; Rivadeneira et al., 2018Rivadeneira, C.D.; Venegas, P.J. & Ron, S.R. 2018. Species limits within the widespread Amazonian treefrog Dendropsophus parviceps with descriptions of two new species (Anura, Hylidae). ZooKeys , 726: 25-77. https://doi.org/10.3897/zookeys.726.13864.
https://doi.org/10.3897/zookeys.726.1386...
; Simões et al., 2018Simões, P.I.; Costa, J.C.L.; Rojas-Runjaic, F.J.M.; Gagliardi-Urrutia, G.; Sturaro, M.J.; Peloso, P.L.V. & Castroviejo-Fisher, S. 2018. A new species of Phyzelaphryne Heyer, 1977 (Anura: Eleutherodactylidae) from the Japurá River basin, with a discussion of the diversity and distribution of the genus. Zootaxa, 4532: 203-230. https://doi.org/10.11646/zootaxa.4532.2.2.
https://doi.org/10.11646/zootaxa.4532.2....
; Cunha et al., 2019Cunha, F.A.G.; Fernandes, T.; Franco, J. & Vogt, R.C. 2019. Reproductive biology and hatchling morphology of the Amazon toad-headed turtle (Mesoclemmys raniceps) (Testudines: Chelidae), with notes on species morphology and taxonomy of the Mesoclemmys Group. Chelonian Conservation and Bioogy, 18(2): 195-209. https://doi.org/10.2744/CCB-1271.1.
https://doi.org/10.2744/CCB-1271.1...
; Ferrão et al., 2020Ferrão, M.; Lima, A.P.; Ron, S.R.; Santos, S.P.L. & Hanken, J. 2020. New species of leaf-litter toad of the Rhinella margaritifera species group (Anura: Bufonidae) from Amazonia. Copeia, 108(4): 967-986. https://doi.org/10.1643/CH2020043.
https://doi.org/10.1643/CH2020043...
, 2022Ferrão, M.; de Souza, R.A.; Colatreli, O.P.; Hanken, J. & Lima, A.P. 2022. Hidden in the litter: cryptic diversity of the leaf-litter toad Rhinella castaneotica-proboscidea complex revealed through integrative taxonomy, with description of a new species from south-western Amazonia. Systematics and Biodiversity , 20: 1-24. https://doi.org/10.1080/14772000.2022.2039317.
https://doi.org/10.1080/14772000.2022.20...
; Sturaro et al., 2020Sturaro, M.J.; Costa, J.C.L.; Maciel, A.O.; Lima-Filho, G.R.; Rojas-Runjaic, F.J.M.; Mejia, D.P.; Ron, S.R. & Peloso, P.L.V. 2020. Resolving the taxonomic puzzle of Boana cinerascens (Spix, 1824), with resurrection of Hyla granosa gracilis Melin, 1941 (Anura: Hylidae). Zootaxa, 4750: 1-30. https://doi.org/10.11646/zootaxa.4750.1.1.
https://doi.org/10.11646/zootaxa.4750.1....
; Magalhães et al., 2020Magalhães, F.M.; Lyra, M.L.; Carvalho, T.R.; Baldo, D.; Brusquetti, F.; Burella, P.; Colli, G.R.; Gehara, M.C.; Giaretta, A.A.; Haddad, C.F.B.; Langone, J.A.; López, J.A.; Napoli, M.F.; Santana, D.J.; Sá, RO. & Garda, A.A. 2020. Taxonomic review of South American Butter Frogs: Phylogeny, geographic patterns, and species delimitation in the Leptodactylus latrans species group (Anura: Leptodactylidae). Herpetological Monographs, 34: 131-177. https://doi.org/10.1655/0733-1347-31.4.131.
https://doi.org/10.1655/0733-1347-31.4.1...
; Rainha et al., 2021Rainha, R.N.; Martinez, P.A.; Moraes, L.J.C.L.; Castro, K.M.S.A.; Réjaud, A.; Fouquet, A.; Leite, R.N.; Rodrigues, M.T. & Werneck, F.P. 2021. Subtle environmental variation affects phenotypic differentiation of shallow divergent treefrog lineages in Amazonia. Biological Journal of the Linnean Society , 134: 177-197. https://doi.org/10.1093/biolinnean/blab056.
https://doi.org/10.1093/biolinnean/blab0...
; Ribeiro-Júnior et al., 2021Ribeiro-Júnior, M.A.; Sánchez-Martínez, P.; Moraes, L.J.C.L.; Suendel, U.; Carvalho, V.T.C.; Pavan, D.; Choueri, E.; Werneck, F.P. & Meiri, S. 2021. Uncovering hidden species diversity of alopoglossid lizards in Amazonia, with the description of three new species of Alopoglossus (Squamata: Gymnophthalmoidae). Journal of Zoological Systematics and Evolutionary Research, 59(6): 1322-1356. https://doi.org/10.1111/jzs.12481.
https://doi.org/10.1111/jzs.12481...
), as well as through direct comparisons with other voucher specimens deposited at INPA-H. Evidence for color in life were based on photographs taken during the expeditions of 2005-2007 and 2018.

In some cases of the reappraisal of museum specimens, we rely on their external morphology data to determine their updated taxonomic status. Under this approach, we are able to identify divergent taxa, but preserved specimens lose relevant diagnostic characters and historical taxonomic uncertainties are pervasive for some of the analyzed specimens. Based on this, we opt to be conservative in assigning taxonomic status in these cases, while pending the acquisition of additional data (e.g., vocalizations, color in life, behavior, or molecular information). However, to ease future attribution of their taxonomic status, we provide brief morphological descriptions for uncertain taxa.

Species identification: DNA barcoding

In order to expand the investigation of taxonomic status, we applied a DNA-based identification approach for some recently collected specimens, mainly focused on recognized species complexes where further resolution is needed. We focused on genetic markers widely recognized in barcoding studies with these groups and sequenced fragments of mitochondrial DNA (mtDNA) loci: the RNA 16S subunit ribosomal RNA (16S) and the protein-coding gene (CDS) cytochrome oxidase I (COI) for amphibians, and the CDS cytochrome b (CYTB) and NADH dehydrogenase subunit 4 (ND4) for squamates. Genomic DNA was extracted from liver tissue samples using standard protocols of a commercial kit (Wizard® Genomic DNA Purification Kit, Promega, Wisconsin, USA), and the target loci were amplified via Polymerase Chain Reaction (PCR), using the primers and following the protocols described in Palumbi et al. (1991Palumbi, S.R.; Martin, A.; Romano, S.; Mcmillan, W.O.; Stice, L. & Grabowski, G. 1991. The Simple Fool’s Guide to PCR. Honolulu, University of Hawaii.) (16S), Che et al. (2012Che, J.; Chen, H.M.; Yang, J.X.; Jin, J.Q.; Jiang, K.E.; Yuan, Z.Y.; Murphy, R.W. & Zhang, Y.P. 2012. Universal COI primers for DNA barcoding amphibians. Molecular Ecology Resources, 12(2): 247-258. https://doi.org/10.1111/j.1755-0998.2011.03090.x.
https://doi.org/10.1111/j.1755-0998.2011...
) (COI), Bickham et al. (1995Bickham, J.W.; Wood, C.C. & Patton, J.C. 1995. Biogeographic implications of cytochrome b sequences and allozymes in sockeye (Oncorhynchus nerka). Journal of Heredity, 86: 140-144. https://doi.org/10.1093/oxfordjournals.jhered.a111544.
https://doi.org/10.1093/oxfordjournals.j...
) (CYTB), and Arévalo et al. (1994Arévalo, E.; Davis, S.K. & Sites-Jr., J.W. 1994. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in Central Mexico. Systematic Biology, 43(3): 387-418. https://doi.org/10.1093/sysbio/43.3.387.
https://doi.org/10.1093/sysbio/43.3.387...
) (ND4). PCR products were purified with PEG (polyethyleneglycol) 8000 and submitted to a sequencing reaction under standard protocols of the Big Dye Terminator Kit (Applied Biosystems, Waltham, USA). Sequences were generated in an ABI 3130 XL automated sequencer (Applied Biosystems, Waltham, USA) at the Laboratório Temático de Biologia Molecular (LTBM) of INPA.

After editing the sequences using Geneious, version 8 (Kearse et al., 2012Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; Thierer, T.; Ashton, B.; Mentjies, P. & Drummond, A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12): 1647-1649. https://doi.org/10.1093/bioinformatics/bts199.
https://doi.org/10.1093/bioinformatics/b...
), we submit them to a BLAST® search under the Standard Nucleotide BLAST function (blastn) (Johnson et al., 2008Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S. & Madden, T.L. 2008. NCBI BLAST: a better web interface. Nucleic Acids Research , 36 (suppl. 2): W5-W9. https://doi.org/10.1093/nar/gkn201.
https://doi.org/10.1093/nar/gkn201...
). For each analyzed sample, we downloaded the 100 most similar sequences from the GenBank online repository (GB; Clark et al., 2016Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J. & Sayers, E.W. 2016. GenBank. Nucleic Acids Research, 44: D67-D72. https://doi.org/10.1093/nar/gkv1276.
https://doi.org/10.1093/nar/gkv1276...
), and aligned each dataset using the MAFFT online server with default parameters, except by the use of the E-INS-i strategy for the RNA and G-INS-i strategy for the CDS (Katoh & Standley, 2013Katoh, K. & Standley, D.M. 2013. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4): 772-780. https://doi.org/10.1093/molbev/mst010.
https://doi.org/10.1093/molbev/mst010...
). Uncorrected pairwise genetic distances were estimated for each alignment and we inferred the taxonomic status of samples considering the minimum distance among sequences. We consider the possibility of candidate unnamed species when genetic divergence was above 3% (16S), 5% (COI), 23% (Gekkota CYTB), and 10% (ND4), based on thresholds recognized in the literature for these loci and taxonomic groups (Fouquet et al., 2007Fouquet, A.; Gilles, A.; Vences, M.; Marty, C.; Blanc, M. & Gemmell, N.J. 2007. Underestimation of Species Richness in Neotropical Frogs Revealed by mtDNA Analyses. PLoS ONE , 2: e1109. https://doi.org/10.1371/journal.pone.0001109.
https://doi.org/10.1371/journal.pone.000...
; Bergmann & Russel, 2007Bergmann, P.J. & Russel, A.P. 2007. Systematics and biogeography of the widespread Neotropical gekkonid genus Thecadactylus (Squamata), with the description of a new cryptic species. Zoological Journal of the Linnean Society, 149(3): 339-370. https://doi.org/10.1111/j.1096-3642.2007.00251.x.
https://doi.org/10.1111/j.1096-3642.2007...
; Kok et al., 2018Kok, P.J.; Bittenbinder, M.A.; van den Berg, J.K.; Marques-Souza, S.; Nunes, P.M.S.; Laking, A.E.; Teixeira-Jr., M.; Fouquet, A.; Means, D.B.; MacCulloch, R.D. & Rodrigues, M.T. 2018. Integrative taxonomy of the gymnophthalmid lizard Neusticurus rudis Boulenger, 1900 identifies a new species in the eastern Pantepui region, north-eastern South America. Journal of Natural History, 52(13-16): 1029-1066. https://doi.org/10.1080/00222933.2018.1439541.
https://doi.org/10.1080/00222933.2018.14...
; Carvalho et al., 2021Carvalho, T.R.; Moraes, L.C.J.L.; Lima, A.P.; Fouquet, A.; Peloso, P.L.V.; Pavan, D.; Drummond, L.O.; Rodrigues, M.T.; Giaretta, A.A.; Gordo, M.; Neckel-Oliveira, S. & Haddad, C.F.B. 2021. Systematics and historical biogeography of neotropical foam-nesting frogs of the Adenomera heyeri clade (Leptodactylidae), with the description of six new Amazonian species. Zoological Journal of the Linnean Society , 191(2): 395-433. https://doi.org/10.1093/zoolinnean/zlaa051.
https://doi.org/10.1093/zoolinnean/zlaa0...
). Newly generated sequences were deposited on GB under the accession numbers MT472181-MT472182 (Carvalho et al., 2020Carvalho, T.R.; Moraes, L.J.C.L.; Angulo, A.; Werneck, F.P.; Icochea, J. & Lima, A.P. 2020. New acoustic and molecular data shed light on the poorly known Amazonian frog Adenomera simonstuarti (Leptodactylidae): implications for distribution and conservation. European Journal of Taxonomy, 682: 1-18. https://doi.org/10.5852/ejt.2020.682.
https://doi.org/10.5852/ejt.2020.682...
), MZ018807-MZ018827 (Rainha et al., 2021Rainha, R.N.; Martinez, P.A.; Moraes, L.J.C.L.; Castro, K.M.S.A.; Réjaud, A.; Fouquet, A.; Leite, R.N.; Rodrigues, M.T. & Werneck, F.P. 2021. Subtle environmental variation affects phenotypic differentiation of shallow divergent treefrog lineages in Amazonia. Biological Journal of the Linnean Society , 134: 177-197. https://doi.org/10.1093/biolinnean/blab056.
https://doi.org/10.1093/biolinnean/blab0...
), MW916091 (Ribeiro-Júnior et al., 2021Ribeiro-Júnior, M.A.; Sánchez-Martínez, P.; Moraes, L.J.C.L.; Suendel, U.; Carvalho, V.T.C.; Pavan, D.; Choueri, E.; Werneck, F.P. & Meiri, S. 2021. Uncovering hidden species diversity of alopoglossid lizards in Amazonia, with the description of three new species of Alopoglossus (Squamata: Gymnophthalmoidae). Journal of Zoological Systematics and Evolutionary Research, 59(6): 1322-1356. https://doi.org/10.1111/jzs.12481.
https://doi.org/10.1111/jzs.12481...
), and OP296595-OP296615, OP314270-OP314276 and OP277918 (this study).

Biogeographic affinities

To investigate the relative biogeographic influence on the assemblages composition of amphibians and reptiles in the focal area, we firstly classified the recorded species according to the main habitats of occurrence, based on our sampling evidence: non-flooded forests (NFF), seasonally flooded habitats - margin of large rivers (FLH), anthropic (ANT), and aquatic (AQU). Aquatic interface was subdivided in lakes (AQU-L) and streams (AQU-S). Additionally, we also classified the species according to their known geographic distributions verified in literature, using as categories some subdivisions of Amazonia based on the limits of its main geological compartments and major rivers (Gibbs & Barron, 1993Gibbs, A.K. & Barron, C.N. 1993. The geology of the Guiana shield. New York, Oxford University Press.; Aleixo & Rossetti, 2007Aleixo, A. & Rossetti, D.F. 2007. Avian gene trees, landscape evolution, and geology: towards a modern synthesis of Amazonian historical biogeography? Journal of Ornithology, 148 (suppl. 2): 443-453. https://doi.org/10.1007/s10336-007-0168-7.
https://doi.org/10.1007/s10336-007-0168-...
; Hoorn et al., 2010Hoorn, C.; Wesselingh, F.P.; Ter Steege, H.; Bermudez, M.A.; Mora, A.; Sevink, J.; Sannmartín, I.; Sanchez-Meseguer, A.; Anderson, C.L.; Figueiredo, J.P.; Jaramillo, C.; Riff, D.; Negri, F.R.; Hooghiemstra, H.; Lundberg, J.; Stadler, T.; Sarkinen, T. & Antonelli, A. 2010. Amazonia through time: andean uplift, climate change, landscape evolution, and biodiversity. Science, 330(6006): 927-931. https://doi.org/10.1126/science.1194585.
https://doi.org/10.1126/science.1194585...
). Such Amazonian geographic subdivisions were selected because they are widely known as sharing biotic similarities (Ávila-Pires, 1995Ávila-Pires, T.C.S. 1995. Lizards of Brazilian Amazonia (Reptilia: Squamata). Zoologische Verhandelingen, 299: 1-706.; Silva-Jr. & Sites-Jr., 1995Silva-Jr., N.J. & Sites-Jr., J.W. 1995. Patterns of diversity of neotropical squamate reptile species with emphasis on the Brazilian Amazon and the conservation potential of indigenous reserves. Conservation Biology, 9(4): 873-901. https://doi.org/10.1046/j.1523-1739.1995.09040873.x.
https://doi.org/10.1046/j.1523-1739.1995...
; Réjaud et al., 2020Réjaud, A.; Rodrigues, M.T.; Crawford, A.J.; Castroviejo-Fisher, S.; Jaramillo, A.F.; Chaparro, J.C.; Glaw, F.; Gagliardi-Urrutia, G.; Moravec, J.; De la Riva, I.J.; Perez, P.; Lima, A.P.; Werneck, F.P.; Hrbek, T.; Ron, S.R.; Ernst, R.; Kok, P.J.R.; Driskell, A.; Chave, J. & Fouquet, A. 2020. Historical biogeography identifies a possible role of the Pebas system in the diversification of the Amazonian rocket frogs (Aromobatidae: Allobates). Journal of Biogeography , 47(11): 2472-2482. https://doi.org/10.1111/jbi.13937.
https://doi.org/10.1111/jbi.13937...
). Therefore, species were classified in the following categories: widely distributed in Amazonia (WD), for species with geographic ranges encompassing various of the major subdivisions delimited; western Amazonia (WA) and eastern Amazonia (EA), for species typical of these macro-regions, influenced by the sedimentary basin of the Amazon River and crystalline shields, respectively; central Amazonia (CA) for species with distribution encompassing the internal boundary between WA and EA, but not their extremes; central southern Amazonia (SA) and southwestern Amazonia (SW), for species typical of the southern bank of the Amazon River, and restricted to the westernmost portion of this river bank, respectively. Finally, we also considered species that are potentially endemic to the study area (PE) or occur at punctual restricted localities (PR) within major subdivisions delimited. We calculated relative percentages by dividing the number of species and specimens from each category by the total recorded for both amphibians and reptiles.

RESULTS

Combining the results of our three inventories, we recorded 149 species of amphibians and reptiles occurring at the RBJ (Table 2). Regarding amphibians, after the taxonomic update, we found that 37 species were recorded in the first inventory (1992). This number increased to 60 in the 2005-2007 inventories, and finally to 72 after the 2018 inventory. Amphibians were represented by a single species of the Order Caudata, two of the Order Gymnophiona, and 69 of the Order Anura (13 families). Among the anurans, the most species-rich family was Hylidae (28 species), followed by Leptodactylidae (14 species), Strabomantidae (six species), Microhylidae and Bufonidae (five species each), Aromobatidae (three species), and Dendrobatidae (two species). The remaining anuran families recorded were represented by single species: Allophrynidae, Ceratophryidae, Eleutherodactylidae, Phyllomedusidae, Pipidae, and Ranidae.

Table 2
List of amphibian and reptile species recorded at the Reserva Extrativista do Baixo Juruá (RBJ), western Brazilian Amazonia, with respective localities and main habitats of occurrence, sampling methods and geographic distributions. Habitats: (ANT) = Anthropic; (AQU-L) = Aquatic-lakes; (AQU-S) = Aquatic-streams; (FLH) = Seasonally flooded habitats at the margin of large rivers; (NFF) = Non-flooded forests. Sampling methods: (AS) = Active survey; (FT) = Funnel traps; (OE) = Occasional encounters; (PT) = Pitfall traps. Geographic distributions: (WD) = Widely distributed in Amazonia; (WA) = Western Amazonia; (SA) = Southern Amazonia; (SW) = Southwestern Amazonia; (CA) = Central Amazonia; (PE) = Potentially endemic to the RBJ; (PR) = Punctual restricted localities; (UN) = Unknown.

Regarding reptiles, the increase in species richness reported for the RBJ went from 69 in the 2005-2007 inventories to 77 after the 2018 inventory. Squamates were represented by 29 lizard species and 39 snake species. Gymnophthalmidae was the most species-rich lizard family (six species), followed by Dactyloidae and Teiidae (five species each), and Alopoglossidae, Sphaerodactylidae, and Tropiduridae (three species each). Among snakes, the most species-rich family was Dipsadidae (23 species), followed by Colubridae (six species), Viperidae (four species), Elapidae (three species), and Boidae (two species). The remaining squamate families recorded were represented by single species: Gekkonidae, Iguanidae, Phyllodactylidae, Scincidae (lizards), and Aniliidae (snakes). The order Testudines was represented by six species, with the family Podocnemididae evidenced as the most species-rich (three species), followed by Chelidae (two species) and Testudinidae (one species). In addition, three species of the Order Crocodylia were recorded, all members of the family Alligatoridae.

The species rarefaction curves showed that our sampling was well representative considering the expected amphibian and reptile richness for the RBJ, as for both groups the observed data almost reached the asymptotes of curves (Fig. 3). However, as expected, both rarefaction curves also indicate that the RBJ still has potential to harbor additional species not recorded in our samplings, notably for reptiles. According to the applied estimation indices, the expected amphibian richness in the RBJ ranges from 80-87 species based on our sampling (representing an increment of 11-21% in the observed richness), while for reptiles this estimate ranges from 78-94 species (representing an an increment of 16-40% in the observed richness).

Figure 3
Extrapolated rarefaction curves showing variation in amphibian (A) and reptile (B) species richness in the Reserva Extrativista do Baixo Juruá in relation to our sampling effort. Observed data are in full lines and extrapolated in dashed lines. Shaded areas represent 95% confidence intervals (bootstrap with 1,000 replications).

As for biogeographic affinities, disregarding the widely distributed species in the lowland Amazonia (53% of amphibians and 78% of reptiles), the recorded assemblage was mostly composed of typical species from western, southwestern, and southern lowland Amazonia (33% of amphibians and 22% of reptiles) (Table 2). We detected changes in species richness and composition among habitat types. Assemblages from non-flooded forests (paleovárzea) were the most species-rich, with 107 recorded species (73 unique species). Other 65 species compose the assemblages from the flooded habitats (várzea) (24 unique species) (Table 2). We also recorded 25 species using anthropic habitats, while seven species are typical from the aquatic interface (Table 2).

Changes in species richness and composition were also detected among sampling localities. None of the recorded species was homogeneously sampled in all sampling localities, indicating relevant assemblage turnovers across the RBJ. The most geographically widespread species were the amphibians Adenomera andreae (Müller, 1923) (9/11 localities), Rhinella castaneotica (Caldwell, 1991), Rhinella marina (Linnaeus, 1758), Scinax ruber (Laurenti, 1768), and Leptodactylus pentadactylus (Laurenti, 1768) (8/11 localities), and the lizards Alopoglossus atriventris Duellman, 1973 and Gonatodes humeralis (Guichenot, 1855) (6/10 localities). Conversely, 48 species were exclusively recorded in a single sampling locality (Table 2). Regarding the sampling methods for terrestrial animals, active surveys provided unique records for 28 species, pitfall traps for 17 species, and funnel traps for 4 species (Table 2). Other 21 species were exclusively recorded by occasional encounters (Table 2). Some examples of recorded amphibian and reptile species are depicted in Figs. 4-14.

Figure 4
Amphibians recorded at the Reserva Extrativista do Baixo Juruá. (A) Allobates femoralis; (B) Rhinella castaneotica; (C) Rhinella aff. margaritifera; (D) Rhinella exostosica; (E) Rhinella marina; (F) Ceratophrys cornuta; (G) Oreobates quixensis; (H) Pristimantis reichlei. Photographs by VTC (A, C, E, F, H) and LJCLM (B, D, G).

Figure 5
Amphibians recorded at the Reserva Extrativista do Baixo Juruá. (A) Strabomantis sulcatus; (B) Ameerega trivittata; (C) Phyzelaphryne nimio; (D) Boana boans; (E) Boana calcarata; (F) Boana cinerascens; (G) Boana geographica; (H) Boana lanciformis. Photographs by VTC (A, B, D, E, H) and LJCLM (C, F, G).

Figure 6
Amphibians recorded at the Reserva Extrativista do Baixo Juruá. (A) Boana raniceps; (B) Boana aff. steinbachi; (C) Dendropsophus kamagarini; (D) Dendropsophus reticulatus; (E) D. reticulatus (reticulated morph); (F) Dendropsophus rossaleni; (G) Osteocephalus castaneicola; (H) Osteocephalus helenae. Photographs by VTC (A, D-F) and LJCLM (B, C, G, H).

Figure 7
Amphibians recorded at the Reserva Extrativista do Baixo Juruá. (A) Osteocephalus aff. leprieurii; (B) Osteocephalus taurinus; (C) Scarthyla goinorum; (D) Scinax ruber; (E) Trachycephalus typhonius; (F) Adenomera andreae; (G) Adenomera simonstuarti; (H) Edalorhina perezi. Photographs by LJCLM (A, B, G) and VTC (C-F, H).

Figure 8
Amphibians recorded at the Reserva Extrativista do Baixo Juruá. (A) Engystomops petersi; (B) Leptodactylus discodactylus; (C) Leptodactylus cf. mystaceus; (D) Leptodactylus pentadactylus; (E) Leptodactylus petersii; (F) Leptodactylus rhodomystax; (G) Leptodactylus stenodema; (H) Lithodytes lineatus. Photographs by VTC (A-C, F-H) and LJCLM (D, E).

Figure 9
Amphibians recorded at the Reserva Extrativista do Baixo Juruá. (A) Chiasmocleis bassleri; (B) Chiasmocleis hudsoni; (C) Chiasmocleis ventrimaculata; (D) Ctenophryne geayi; (E) Phyllomedusa vaillantii; (F) Pipa pipa; (G) Lithobates palmipes (metamorph); (H) Caecilia tentaculata. Photographs by LJCLM (A-E) and VTC (F-H).

Figure 10
Lizards recorded at Reserva Extrativista do Baixo Juruá. (A) Alopoglossus atriventris; (B) Alopoglossus brevifrontalis; (C) Alopoglossus indigenorum; (D) Anolis punctatus; (E) Anolis transversalis; (F) Anolis tandai (male); (G) Anolis tandai (female); (H) Cercosaura argulus. Photographs by LJCLM (A, B, D) and VTC (C, E-H).

Figure 11
Lizards recorded at Reserva Extrativista do Baixo Juruá. (A) Loxopholis snethlageae; (B) Iguana iguana; (C) Copeoglossum nigropunctatum (juvenile); (D) Gonatodes humeralis; (E) Crocodilurus amazonicus; (F) Kentropyx pelviceps; (G) Plica umbra ochrocollaris; (H) Uranoscodon superciliosus. Photographs by LJCLM (A, D) and VTC (B, C, E-H).

Figure 12
Snakes recorded at Reserva Extrativista do Baixo Juruá. (A) Anilius scytale; (B) Epicrates cenchria; (C) Chironius fuscus; (D) Drymoluber dichrous; (E) Atractus major; (F) Atractus poeppigi; (G) Atractus torquatus; (H) Dipsas catesbyi. Photographs by VTC.

Figure 13
Snakes recorded at Reserva Extrativista do Baixo Juruá. (A) Drepanoides anomalus; (B) Erythrolamprus pygmaeus; (C) Erythrolamprus reginae; (D) Erythrolamprus typhlus; (E) Helicops angulatus; (F) Helicops polylepis; (G) Oxyrhopus melanogenys; (H) Oxyrhopus occipitalis. Photographs by VTC (A-E, G, H) and LJCLM (F).

Figure 14
Snakes and chelonians recorded at Reserva Extrativista do Baixo Juruá. (A) Thamnodynastes pallidus; (B) Xenodon rabdocephalus; (C) Micrurus hemprichii ortoni; (D) Micrurus lemniscatus; (E) Bothrops atrox; (F) Bothrocophias hyoprora; (G) Platemys platycephala; (H) Chelonoidis denticulata. Photographs by VTC.

Taxonomic status clarified with DNA barcoding

Newly generated DNA sequences were useful to assess the taxonomic status of some recorded species. Under this approach, we confirmed the occurrence of evolutionary units corresponding to the following 13 nominal species (GB accession numbers of most similar sequences and percentage of similarity in parenthesis): Allobates femoralis (Boulenger, 1884) (DQ502117, 99.8%) (Fig. 4A), Phyzelaphryne nimioSimões et al., 2018Simões, P.I.; Costa, J.C.L.; Rojas-Runjaic, F.J.M.; Gagliardi-Urrutia, G.; Sturaro, M.J.; Peloso, P.L.V. & Castroviejo-Fisher, S. 2018. A new species of Phyzelaphryne Heyer, 1977 (Anura: Eleutherodactylidae) from the Japurá River basin, with a discussion of the diversity and distribution of the genus. Zootaxa, 4532: 203-230. https://doi.org/10.11646/zootaxa.4532.2.2.
https://doi.org/10.11646/zootaxa.4532.2....
(MG572224-25, 98.7%) (Fig. 5C), Osteocephalus castaneicolaMoravec et al., 2009Moravec, J.; Aparicio, J.; Guerrero-Reinhard, M.; Calderón, G.; Jungfer, K.-H. & Gvoždík, V. 2009. A new species of Osteocephalus (Anura: Hylidae) from Amazonian Bolivia: first evidence of tree frog breeding in fruit capsules of the Brazil nut tree. Zootaxa, 2215: 37-54. https://doi.org/10.11646/zootaxa.2215.1.3.
https://doi.org/10.11646/zootaxa.2215.1....
(KF002035, 99.5%) (Fig. 6G), Osteocephalus helenae (Ruthven, 1919) (KF002051, KF002043-44, 99.0%) (Fig. 6H), Adenomera simonstuarti (Angulo & Icochea, 2010Angulo, A. & Icochea, J. 2010. Cryptic species complexes, widespread species and conservation: lessons from Amazonian frogs of the Leptodactylus marmoratus group (Anura: Leptodactylidae). Systematics and Biodiversity, 8(3): 357-370. https://doi.org/10.1080/14772000.2010.507264.
https://doi.org/10.1080/14772000.2010.50...
) (KF674577, 99.5%) (Fig. 7G), Engystomops petersi Jiménez de la Espada, 1872 (EF470279, 98.4%) (Fig. 8A), Pristimantis fenestratus (Steindachner, 1864) (KY712671-73, 99.4%), Boana calcarata (Troschel, 1848) (JN970631, 98.7%) (Fig. 5E), Trachycephalus cunauaruGordo et al., 2013Gordo, M.; Toledo, L.F.; Suárez, P.; Kawashita-Ribeiro, R.A.; Ávila, R.W.; Morais, D.H. & Nunes, I. 2013. A new species of Milk Frog of the genus Trachycephalus Tschudi (Anura, Hylidae) from the Amazonian rainforest. Herpetologica, 69(4): 466-479. https://doi.org/10.1655/HERPETOLOGICA-D-11-00086.
https://doi.org/10.1655/HERPETOLOGICA-D-...
(KU495603-04, 99.8%), Atractus poeppigi (Jan, 1862) (P.R. Melo-Sampaio, unpublished data) (Fig. 12F), Atractus torquatus Duméril et al., 1854 (P.R. Melo-Sampaio, unpublished data) (Fig. 12G), Atractus snethlageae Cunha & Nascimento, 1983 (P.R. Melo-Sampaio, unpublished data), and Thecadactylus solimoensis Bergamnn & Russell, 2007 (AY604486, 98.5%). The sample of Osteocephalus aff. leprieurii (Fig. 7A) matched to the related “candidate species 2” sensuJungfer et al. (2013Jungfer, K.-H.; Faivovich, J.; Padial, J.M.; Castroviejo-Fisher, S.; Lyra, M.L.; Berneck, B.V.M.; Iglesias, P.P.; Kok, P.J.R.; MacCulloch, R.D.; Rodrigues, M.T.; Verdade, V.K.; Torres Gastello, C.P.; Chaparro, J.C.; Valdujo, P.H.; Reichle, S.; Moravec, J.; Gvoždík, V.; Gagliardi-Urrutia, G.; Ernst, R.; de la Riva, I.; Means, D.B.; Lima, A.P.; Señaris, J.C.; Wheeler W.C. & Haddad, C.F.B. 2013. Systematics of spiny-backed treefrogs (Hylidae: Osteocephalus): an Amazonian puzzle. Zoologica Scripta, 42: 351-380. https://doi.org/10.1111/zsc.12015.
https://doi.org/10.1111/zsc.12015...
) (KF002070-71, 99.5%). Despite the above-threshold genetic distances of our samples of Dendropsophus reticulatus (Jiménez de la Espada, 1870) (KY406416 and KY406418, 95.8%) (Fig. 6D, E), Dendropsophus kamagariniRivadeneira et al., 2018Rivadeneira, C.D.; Venegas, P.J. & Ron, S.R. 2018. Species limits within the widespread Amazonian treefrog Dendropsophus parviceps with descriptions of two new species (Anura, Hylidae). ZooKeys , 726: 25-77. https://doi.org/10.3897/zookeys.726.13864.
https://doi.org/10.3897/zookeys.726.1386...
(MN172514, 96.6%) (Fig. 6C), Leptodactylus discodactylus Boulenger, 1884 (AY943239, 94.5%) (Fig. 8B), and Leptodactylus petersii (Steindachner, 1864) (JN691200, 95.6%) (Fig. 8E), we refrain to designate them as candidate new species because deep conspecific divergences are common events within these taxa (Caminer et al., 2017Caminer, M.A.; Milá, B.; Jansen, M.; Fouquet, A.; Venegas, P.J.; Chávez, G.; Lougheed, S.C. & Ron, S.R. 2017. Systematics of the Dendropsophus leucophyllatus species complex (Anura: Hylidae): Cryptic diversity and the description of two new species. PLoS ONE, 12: 1-42. https://doi.org/10.1371/journal.pone.0171785.
https://doi.org/10.1371/journal.pone.017...
; Vacher et al., 2020Vacher, J.-P.; Chave, J.; Ficetola, F.; Sommeria-Klein, G.; Tao, S.; Thébaud, C.; Blanc, M.; Camacho, A.; Cassimiro, J.; Colston, T.J.; Dewynter, M.; Ernst, R.; Gaucher, P.; Gomes, J.O.; Jairam, R.; Kok, P.J.R.; Dias Lima, J.; Martinez, Q.; Marty, C.; Noonan, B.P.; Nunes, P.M.S.; Ouboter, P.; Recoder, R.; Rodrigues, M.T.; Snyder, A.; de Souza, S.M. & Fouquet, A. 2020. Large scale DNA-based survey of Amazonian frogs suggest a vast underestimation of species richness and endemism. Journal of Biogeography , 47(8): 1781-1791. https://doi.org/10.1111/jbi.13847.
https://doi.org/10.1111/jbi.13847...
; Gazoni et al., 2021Gazoni, T.; Lyra, M.L.; Ron, S.R.; Strüssmann, C.; Baldo, D.; Narimatsu, H.; Pansonato, A.; Schneider R.G.; Giaretta, A.A.; Haddad, Parise-Maltempi, P.P. & Carvalho, T.R. 2021. Revisiting the systematics of the Leptodactylus melanonotus group (Anura: Leptodactylidae): redescription of L. petersii and revalidation of its junior synonyms. Zoologischer Anzeiger, 290: 117-134. https://doi.org/10.1016/j.jcz.2020.12.002.
https://doi.org/10.1016/j.jcz.2020.12.00...
, Carvalho et al., 2022Carvalho, T.R.; Fouquet, A.; Lyra, M.L.; Giaretta, A.A.; Costa-Campos, C.E.; Rodrigues, M.T.; Haddad, C.F.B. & Ron, S.R. 2022. Species diversity and systematics of the Leptodactylus melanonotus group (Anura, Leptodactylidae): review of diagnostic traits and a new species from the Eastern Guiana Shield. Systematics and Biodiversity , 20: 1-31. https://doi.org/10.1080/14772000.2022.2089269.
https://doi.org/10.1080/14772000.2022.20...
). Furthermore, our analyses of voucher specimens revealed that their morphology fitted in the reported variation for these nominal species (Heyer, 1997Heyer, W.R. 1997. Geographic variation in the frog genus Vanzolinius (Anura: Leptodactylidae). Proceedings of the Biological Society of Washington, 110(3): 338-365.; Caminer et al., 2017Caminer, M.A.; Milá, B.; Jansen, M.; Fouquet, A.; Venegas, P.J.; Chávez, G.; Lougheed, S.C. & Ron, S.R. 2017. Systematics of the Dendropsophus leucophyllatus species complex (Anura: Hylidae): Cryptic diversity and the description of two new species. PLoS ONE, 12: 1-42. https://doi.org/10.1371/journal.pone.0171785.
https://doi.org/10.1371/journal.pone.017...
; Rivadeneira et al., 2018Rivadeneira, C.D.; Venegas, P.J. & Ron, S.R. 2018. Species limits within the widespread Amazonian treefrog Dendropsophus parviceps with descriptions of two new species (Anura, Hylidae). ZooKeys , 726: 25-77. https://doi.org/10.3897/zookeys.726.13864.
https://doi.org/10.3897/zookeys.726.1386...
; Gazoni et al., 2021Gazoni, T.; Lyra, M.L.; Ron, S.R.; Strüssmann, C.; Baldo, D.; Narimatsu, H.; Pansonato, A.; Schneider R.G.; Giaretta, A.A.; Haddad, Parise-Maltempi, P.P. & Carvalho, T.R. 2021. Revisiting the systematics of the Leptodactylus melanonotus group (Anura: Leptodactylidae): redescription of L. petersii and revalidation of its junior synonyms. Zoologischer Anzeiger, 290: 117-134. https://doi.org/10.1016/j.jcz.2020.12.002.
https://doi.org/10.1016/j.jcz.2020.12.00...
).

Under the DNA barcoding approach, we also detected the occurrence of two divergent mtDNA lineages under the species complexes Rhinella margaritifera (Laurenti, 1768) (Fig. 4C, D), Boana steinbachi (Boulenger, 1905) (Fig. 6B), and Boana geographica (Spix, 1824) (Fig. 6G). With the genetic distances at the 16S fragment ranging to 4%, 3.2%, and 4.5%, respectively, those divergent lineages most likely correspond to distinct sympatric species. The first lineage of the R. margaritifera species complex (R. aff. margaritifera) matched to sequences from Atlantic Forest (AY680262 and KU495504, 99.2%), while the second one matched to sequences of the recently described Rhinella exostosicaFerrão et al., 2020Ferrão, M.; Lima, A.P.; Ron, S.R.; Santos, S.P.L. & Hanken, J. 2020. New species of leaf-litter toad of the Rhinella margaritifera species group (Anura: Bufonidae) from Amazonia. Copeia, 108(4): 967-986. https://doi.org/10.1643/CH2020043.
https://doi.org/10.1643/CH2020043...
(KF992145, 99.6%). These distinct lineages are indeed morphologically divergent, with R. aff. margaritifera corresponding to a candidate species with head longer than wide, absence of prominent bony knobs at the angle of jaws, and females possessing considerably extended supratympanic crests (Fig. 4C), whereas the specimens of R. exostosica have the head as wide as long, prominent bony knobs at the angle of jaws, and females with less extended supratympanic crests (Fig. 4D). Sequences of another bufonid from our sampling matched to R. castaneotica sensu stricto from eastern Amazonia (MF479716 and MF479717, 98.8%) (Fig. 4B), but given the overall low resolution in the taxonomy of this group (Santos et al., 2015Santos, S.P.; Ibáñez, R.; & Ron, S.R. 2015. Systematics of the Rhinella margaritifera complex (Anura, Bufonidae) from western Ecuador and Panama with insights in the biogeography of Rhinella alata. Zookeys, 501: 109-145. https://doi.org/10.3897/zookeys.501.8604.
https://doi.org/10.3897/zookeys.501.8604...
; Ferrão et al., 2022Ferrão, M.; de Souza, R.A.; Colatreli, O.P.; Hanken, J. & Lima, A.P. 2022. Hidden in the litter: cryptic diversity of the leaf-litter toad Rhinella castaneotica-proboscidea complex revealed through integrative taxonomy, with description of a new species from south-western Amazonia. Systematics and Biodiversity , 20: 1-24. https://doi.org/10.1080/14772000.2022.2039317.
https://doi.org/10.1080/14772000.2022.20...
), this status should be considered preliminary, and the chances of this population belong to a new species are high. Specimens of R. castaneotica from the RBJ share a small body size (mean snout-vent length; SVL = 46.7 mm) and lacks supratympanic crests in both sexes, therefore differing from the two sympatrically recorded larger species of the R. margaritifera species group (mean SVL = 57.9 and 54.3 mm; supratympanic crests present).

Within the Boana steinbachi species complex (Fig. 6B), the two divergent genetic lineages detected at the RBJ are not conspecific with the nominal Boana alfaroi (Caminer & Ron, 2014Caminer, M.A. & Ron, S.R. 2014. Systematics of treefrogs of the Hypsiboas calcaratus and Hypsiboas fasciatus species complex (Anura, Hylidae) with the description of four new species. ZooKeys, 370: 1-68. https://doi.org/10.3897/zookeys.370.6291.
https://doi.org/10.3897/zookeys.370.6291...
) or Boana tetete (Caminer & Ron, 2014Caminer, M.A. & Ron, S.R. 2014. Systematics of treefrogs of the Hypsiboas calcaratus and Hypsiboas fasciatus species complex (Anura, Hylidae) with the description of four new species. ZooKeys, 370: 1-68. https://doi.org/10.3897/zookeys.370.6291.
https://doi.org/10.3897/zookeys.370.6291...
). In fact, one of the lineages is more closely related to the Boana “clade J” sensuCaminer & Ron (2014Caminer, M.A. & Ron, S.R. 2014. Systematics of treefrogs of the Hypsiboas calcaratus and Hypsiboas fasciatus species complex (Anura, Hylidae) with the description of four new species. ZooKeys, 370: 1-68. https://doi.org/10.3897/zookeys.370.6291.
https://doi.org/10.3897/zookeys.370.6291...
) (JN790138, 96%), which corresponds to B. steinbachi (Fouquet et al., 2021Fouquet, A.; Marinho, P.; Réjaud, A.; de Carvalho, T.; Caminer, M.A, Jansen, M.; Rainha, R.; Rodrigues, M.T.; Werneck, F.; Lima, A.; Hrbek, T.; Giaretta, A.; Venegas, P.J.; Chávez, G. & Ron, S. 2021. Systematics and biogeography of the Boana albopunctata species group, with the description of two new species from Amazonia. Systematics & Biodiversity, 19(4): 375-399. https://doi.org/10.1080/14772000.2021.1873869.
https://doi.org/10.1080/14772000.2021.18...
; Rainha et al., 2021Rainha, R.N.; Martinez, P.A.; Moraes, L.J.C.L.; Castro, K.M.S.A.; Réjaud, A.; Fouquet, A.; Leite, R.N.; Rodrigues, M.T. & Werneck, F.P. 2021. Subtle environmental variation affects phenotypic differentiation of shallow divergent treefrog lineages in Amazonia. Biological Journal of the Linnean Society , 134: 177-197. https://doi.org/10.1093/biolinnean/blab056.
https://doi.org/10.1093/biolinnean/blab0...
). The other lineage is genetically divergent from any nominal or candidate species and most likely represents an undescribed species (Fig. 6B). Analyzing the external morphology of specimens, we are unable to detect any distinctly evident qualitative or quantitative character segregating these two evolutionary units, indicating a likely case of cryptic speciation, which is common in this species complex (Caminer & Ron, 2014Caminer, M.A. & Ron, S.R. 2014. Systematics of treefrogs of the Hypsiboas calcaratus and Hypsiboas fasciatus species complex (Anura, Hylidae) with the description of four new species. ZooKeys, 370: 1-68. https://doi.org/10.3897/zookeys.370.6291.
https://doi.org/10.3897/zookeys.370.6291...
; Fouquet et al., 2021Fouquet, A.; Marinho, P.; Réjaud, A.; de Carvalho, T.; Caminer, M.A, Jansen, M.; Rainha, R.; Rodrigues, M.T.; Werneck, F.; Lima, A.; Hrbek, T.; Giaretta, A.; Venegas, P.J.; Chávez, G. & Ron, S. 2021. Systematics and biogeography of the Boana albopunctata species group, with the description of two new species from Amazonia. Systematics & Biodiversity, 19(4): 375-399. https://doi.org/10.1080/14772000.2021.1873869.
https://doi.org/10.1080/14772000.2021.18...
). Considering the B. geographica species complex, we found that one lineage matched to the nominal B. geographica (KU168897-98, 100%) (Fig. 5G) and the second matched to the recently revalidated Boana appendiculata (Boulenger, 1882) (MG840867, 99.8%) (Caminer & Ron, 2020Caminer, M.A.; Milá, B.; Jansen, M.; Fouquet, A.; Venegas, P.J.; Chávez, G.; Lougheed, S.C. & Ron, S.R. 2017. Systematics of the Dendropsophus leucophyllatus species complex (Anura: Hylidae): Cryptic diversity and the description of two new species. PLoS ONE, 12: 1-42. https://doi.org/10.1371/journal.pone.0171785.
https://doi.org/10.1371/journal.pone.017...
). Morphological analysis of the preserved material referred to the nominal B. geographica fully agreed with the species diagnosis (reviewed by Fouquet et al., 2016Fouquet, A.; Martinez, Q.; Zeidler, L.; Courtois, E.A.; Gaucher, P.; Blanc, M.; Lima, J.D.; Souza, S.M.; Rodrigues, M.T. & Kok, P.J.R. 2016. Cryptic diversity in the Hypsiboas semilineatus species group (Amphibia, Anura) with the description of a new species from the eastern Guiana Shield. Zootaxa, 4084: 79-104. https://doi.org/10.11646/zootaxa.4084.1.3.
https://doi.org/10.11646/zootaxa.4084.1....
), differing from the B. appendiculata, for example, by having dark spots on belly (vs. immaculate belly in B. appendiculata), and orange-reddish hand and foot webbing (vs. cream colored in B. appendiculata). Lastly, two recorded specimens from the snake genus Atractus Wagler, 1828 represent a molecular lineage highly divergent from their congeners. However, this lineage is cryptic to the syntopic species A. snethlageae considering external morphology, and we opt to designate a conservative taxonomic status (Atractus aff. snethlageae) while pending the acquisition of additional data.

Uncertain taxonomic status

Allobates sp.

Allobates sp. is a species with smaller body size (maximum SVL = 17.8 mm) compared to the two sympatric large-sized Allobates Zimmermann & Zimmermann, 1988 (A. femoralis - Fig. 4A - and Allobates vanzolinius [Morales, 2002Morales, V.R. 2002. Sistematica y biogeografía del grupo trilineatus (Amphibia, Anura, Dendrobatidae, Colostethus), con descripción de once nuevas especies. Publicaciones de la Asociación de Amigos de Doñana, 13: 1-59.], with minimum SVL = 19.6 mm), also differing by its cryptic coloration (vs. brightly colored in A. femoralis), and cream-colored throat in males, in some specimens punctuated with small black dots (vs. uniformly dark throat in males of A. vanzolinius). Some of these specimens could correspond to Allobates gasconi (Morales, 2002Morales, V.R. 2002. Sistematica y biogeografía del grupo trilineatus (Amphibia, Anura, Dendrobatidae, Colostethus), con descripción de once nuevas especies. Publicaciones de la Asociación de Amigos de Doñana, 13: 1-59.), as INPA-H 004986 is a paratype of this species. However, we opt to maintain a conservative taxonomic status, due to the combination of overall uncertainty in attributing taxonomic status of cryptically colored Allobates, historical composite type series (Melo-Sampaio et al., 2018Melo-Sampaio, P.R.; Oliveira, R.M. & Prates, I. 2018. A new Nurse Frog from Brazil (Aromobatidae: Allobates), with data on the distribution and phenotypic variation of western Amazonian species. South American Journal of Herpetology , 13(2): 131-149. https://doi.org/10.2994/SAJH-D-17-00098.1.
https://doi.org/10.2994/SAJH-D-17-00098....
), and the fact that Juruá River basin harbor many morphologically similar small-bodied species. We also cannot safely discard the occurrence of more than one species contained under this taxon.

Amazophrynella sp.

Preserved specimens of Amazophrynella sp. have a cream-colored belly punctuated with small black dots, and males have mean SVL = 15.7 mm. Such characteristics are shared by some nominal species from western Amazonia (Rojas et al., 2018Rojas, R.R.; Fouquet, A.; Ron, S.R.; Hernández-Ruz, E.J.; Melo-Sampaio, P.R.; Chaparro, J.C.; Vogt, R.C.; Carvalho, V.T.; Pinheiro, L.; Ávila, R.W.; Farias, I.P.; Gordo, M. & Hrbek, T. 2018. A Pan-Amazonian species delimitation: high species diversity within the genus Amazophrynella (Anura: Bufonidae). PeerJ, 6: e4941. https://doi.org/10.7717/peerj.4941.
https://doi.org/10.7717/peerj.4941...
), leading to uncertainty on the identity of these populations. In fact, several populations of Amazophrynella Fouquet et al., 2012 across Amazonia remain uncertainly identified even after the latest taxonomic and biogeographic studies with the genus, which prove the occurrence of extensive morphological conservatism among species (Rojas et al., 2018Rojas, R.R.; Fouquet, A.; Ron, S.R.; Hernández-Ruz, E.J.; Melo-Sampaio, P.R.; Chaparro, J.C.; Vogt, R.C.; Carvalho, V.T.; Pinheiro, L.; Ávila, R.W.; Farias, I.P.; Gordo, M. & Hrbek, T. 2018. A Pan-Amazonian species delimitation: high species diversity within the genus Amazophrynella (Anura: Bufonidae). PeerJ, 6: e4941. https://doi.org/10.7717/peerj.4941.
https://doi.org/10.7717/peerj.4941...
; Moraes et al., 2022bMoraes, L.J.C.L.; Werneck, F.P.; Réjaud, R.; Rodrigues, M.T.; Prates, I.; Glaw, F.; Kok, P.J.R.; Ron, S.R.; Chaparro, J.C.; Osorno-Muñoz, M.; Vechio, F.D.; Recoder, R.; Marques-Souza, S.; Rojas, R.R.; Demay, L.; Hrbek, T. & Fouquet, A. 2022b. Diversification of tiny toads (Bufonidae: Amazophrynella) sheds light on ancient landscape dynamism in Amazonia. Biological Journal of the Linnean Society, 136: 75-91. https://doi.org/10.1093/biolinnean/blac006.
https://doi.org/10.1093/biolinnean/blac0...
).

Bolitoglossa sp.

The taxonomic status of the Bolitoglossa Duméril, Bibron & Duméril, 1854 populations from the lower Juruá River basin has been reviewed in a broader Amazonian context, but remains unresolved (Brcko et al., 2013Brcko, I.C.; Hoogmoed, M.S. & Neckel-Oliveira, S. 2013. Taxonomy and distribution of the salamander genus Bolitoglossa Duméril, Bibron & Duméril, 1854 (Amphibia, Caudata, Plethodontidae) in Brazilian Amazonia. Zootaxa, 3686: 401-431. https://doi.org/10.11646/zootaxa.3686.4.1.
https://doi.org/10.11646/zootaxa.3686.4....
). Given the high morphological similarity among the lowland Amazonian species of Bolitoglossa and the recent indication of at least four genetically distinct lineages occurring at the Juruá River basin (Jaramillo et al., 2020Jaramillo, A.F.; De La Riva, I.; Guayasamin, J.M.; Chaparro, J.C.; Gagliardi-Urrutia, G.; Gutiérrez, R.C.; Brcko, I.; Vilà, C. & Castroviejo-Fisher, S. 2020. Vastly underestimated species richness of Amazonian salamanders (Plethodontidae: Bolitoglossa) and implications about plethodontid diversification. Molecular Phylogenetics and Evolution, 149: 106841. https://doi.org/10.1016/j.ympev.2020.106841.
https://doi.org/10.1016/j.ympev.2020.106...
), we opt to designate a conservative taxonomic status for these specimens, only recorded in the 1992 expedition. We also cannot discard the occurrence of more than one species contained under this taxon.

Pristimantis sp.

A small-sized species of speciose genus Pristimantis Jiménez de la Espada, 1870, with external morphology overlapping with the known variation of many species (relatively short hind limbs, tuberculate dorsum with a “W” scapular pattern, and an immaculate areolate venter). Historically, populations sharing this general morphology have been attributed across Amazonia to the name Pristimantis ockendeni (Boulenger, 1912). However, it is already evidenced that many undescribed species are masqueraded under this name (Elmer & Cannatela, 2008Elmer, K.R. & Cannatella, D.C. 2008. Three new species of leaflitter frogs from the upper Amazon forests: cryptic diversity within Pristimantis “ockendeni” (Anura: Strabomantidae) in Ecuador. Zootaxa, 1784: 11-38. https://doi.org/10.11646/zootaxa.1784.1.2.
https://doi.org/10.11646/zootaxa.1784.1....
). In this case, assignments to any taxonomic status would be putative without additional data because of the same reasons for the case of Allobates sp. Therefore, we also cannot discard the presence of more than one species contained under this taxon.

Pristimantis cf. diadematus

A morphologically diagnosable subgroup within the Pristimantis unistrigatus (Günther, 1859) species group shares very large digital tips, relatively short hind limbs, tuberculate dorsum, a “W” scapular pattern, and prominent leg barring (Hedges & Schlüter, 1992Hedges, S.B. & Schlüter, A. 1992. Eleutherodactylus eurydactylus, a new species of frog from central Amazonian Perú (Anura: Leptodactylidae). Copeia, 1992(4): 1002-1006. https://doi.org/10.2307/1446629.
https://doi.org/10.2307/1446629...
). However, this subgroup (Pristimantis diadematus series) was evidenced to be non-monophyletic (Hedges et al., 2008Hedges, S.B.; Duellman, W.E. & Heinicke, M.P. 2008. New World direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation. Zootaxa, 1737: 1-182. https://doi.org/10.11646/zootaxa.1737.1.1.
https://doi.org/10.11646/zootaxa.1737.1....
). We recorded at the RBJ one species attributed to this morphological subgroup, with its characteristic mostly fitting in the diagnosis of Pristimantis eurydactylus Hedges & Schlüter, 1992, notably by possessing a visible tympanum and a smooth dorsum. However, P. eurydactylus is little known and much of its associated information comes only from its original description (Hedges & Schlüter, 1992Hedges, S.B. & Schlüter, A. 1992. Eleutherodactylus eurydactylus, a new species of frog from central Amazonian Perú (Anura: Leptodactylidae). Copeia, 1992(4): 1002-1006. https://doi.org/10.2307/1446629.
https://doi.org/10.2307/1446629...
). In addition, its diagnostic characteristics are quite subject to variation and is difficult to elucidate the taxonomic and geographic boundaries between P. eurydactylus and Pristimantis diadematusJiménez de la Espada, 1875Jiménez de la Espada, M. 1875. Vertebrados del viaje al Pacífico verificado de 1862 a 1865 por una Comisión de Naturalistas Enviada por el Gobierno Español. Batracios. Madrid, A. Miguel Ginesta. https://doi.org/10.5962/bhl.title.5769.
https://doi.org/10.5962/bhl.title.5769...
, which is more widely distributed in the Amazonian Andean foothills and adjacent lowlands (Jiménez de la Espada, 1875Jiménez de la Espada, M. 1875. Vertebrados del viaje al Pacífico verificado de 1862 a 1865 por una Comisión de Naturalistas Enviada por el Gobierno Español. Batracios. Madrid, A. Miguel Ginesta. https://doi.org/10.5962/bhl.title.5769.
https://doi.org/10.5962/bhl.title.5769...
; Frost, 2022Frost, D.R. 2022. Amphibian Species of the World: an online reference. Version 6.0. Available: Available: http://research.amnh.org/herpetology/amphibia/index.html . Access: 25/05/2022.
http://research.amnh.org/herpetology/amp...
). Without a finer taxonomic resolution and new field data, it is impossible to assign a more precise taxonomic status to this RBJ’s population. In addition to the aforementioned characters, P. cf. diadematus has a belly marked by contrasting small dark dots and greenish flanks in life.

Leptodactylus cf. mystaceus ( Fig. 8C )

The species-pair Leptodactylus mystaceus (Spix, 1824) and Leptodactylus didymusHeyer, García-Lopez, & Cardoso, 1996Heyer, W.R.; García-Lopez, J.M. & Cardoso, A.J. 1996. Advertisement call variation in the Leptodactylus mystaceus species complex (Amphibia: Leptodactylidae) with a description of a new sibling species. Amphibia-Reptilia, 17: 7-31. https://doi.org/10.1163/156853896X00252.
https://doi.org/10.1163/156853896X00252...
is totally cryptic with regard to external morphology, only being phenotypically distinguished by advertisement calls (pulsed in L. mystaceus and non-pulsed in L. didymus) (Heyer et al., 1996Heyer, W.R.; García-Lopez, J.M. & Cardoso, A.J. 1996. Advertisement call variation in the Leptodactylus mystaceus species complex (Amphibia: Leptodactylidae) with a description of a new sibling species. Amphibia-Reptilia, 17: 7-31. https://doi.org/10.1163/156853896X00252.
https://doi.org/10.1163/156853896X00252...
). Leptodactylus didymus is known to occur at southwestern Amazonia, with punctual records at the lower Juruá River region (Heyer et al., 1996Heyer, W.R.; García-Lopez, J.M. & Cardoso, A.J. 1996. Advertisement call variation in the Leptodactylus mystaceus species complex (Amphibia: Leptodactylidae) with a description of a new sibling species. Amphibia-Reptilia, 17: 7-31. https://doi.org/10.1163/156853896X00252.
https://doi.org/10.1163/156853896X00252...
), while L. mystaceus is more widely distributed in Amazonia (Heyer et al., 1996Heyer, W.R.; García-Lopez, J.M. & Cardoso, A.J. 1996. Advertisement call variation in the Leptodactylus mystaceus species complex (Amphibia: Leptodactylidae) with a description of a new sibling species. Amphibia-Reptilia, 17: 7-31. https://doi.org/10.1163/156853896X00252.
https://doi.org/10.1163/156853896X00252...
; Silva et al., 2020Silva, L.A.; Magalhães, F.M.; Thomassen, H.; Leite, F.S.; Garda, A.A.; Brandão, R.A.; Haddad, C.F.; Giaretta, A.A. & Carvalho, T.R. 2020. Unraveling the species diversity and relationships in the Leptodactylus mystaceus complex (Anura: Leptodactylidae), with the description of three new Brazilian species. Zootaxa, 4779: 151-189. https://doi.org/10.11646/zootaxa.4779.2.1.
https://doi.org/10.11646/zootaxa.4779.2....
). However, the widest knowledge gap on the distribution of this species pair is spatially congruent to where they are potentially sympatric, including our study area (Heyer et al., 1996Heyer, W.R.; García-Lopez, J.M. & Cardoso, A.J. 1996. Advertisement call variation in the Leptodactylus mystaceus species complex (Amphibia: Leptodactylidae) with a description of a new sibling species. Amphibia-Reptilia, 17: 7-31. https://doi.org/10.1163/156853896X00252.
https://doi.org/10.1163/156853896X00252...
; Silva et al., 2020Silva, L.A.; Magalhães, F.M.; Thomassen, H.; Leite, F.S.; Garda, A.A.; Brandão, R.A.; Haddad, C.F.; Giaretta, A.A. & Carvalho, T.R. 2020. Unraveling the species diversity and relationships in the Leptodactylus mystaceus complex (Anura: Leptodactylidae), with the description of three new Brazilian species. Zootaxa, 4779: 151-189. https://doi.org/10.11646/zootaxa.4779.2.1.
https://doi.org/10.11646/zootaxa.4779.2....
). As external morphology was the only available information for the assignment of taxonomic status in this case, we opt to be conservative until acoustic vouchers are obtained in the focal area.

Remarkable records

Strabomantis sulcatus (Cope, 1874) ( Fig. 5A )

This species is the most widespread in the genus Strabomantis Peters, 1863, which is more diverse in upland areas of the Andean mountain range (Lynch, 1997Lynch, J.D. 1997. Intrageneric relationships of mainland Eleutherodactylus II. A review of the Eleutherodactylus sulcatus group. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 21(80): 353-372.; Hedges et al., 2008Hedges, S.B.; Duellman, W.E. & Heinicke, M.P. 2008. New World direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation. Zootaxa, 1737: 1-182. https://doi.org/10.11646/zootaxa.1737.1.1.
https://doi.org/10.11646/zootaxa.1737.1....
). This record represents an extension of its distribution range, ca. 400 km east of the nearest known locality of occurrence (seeLynch, 1997Lynch, J.D. 1997. Intrageneric relationships of mainland Eleutherodactylus II. A review of the Eleutherodactylus sulcatus group. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 21(80): 353-372.). As S. sulcatus is the only species of the genus widely distributed in lowland Amazonia, this record also expands the known distribution for the genus Strabomantis (Hedges et al., 2008Hedges, S.B.; Duellman, W.E. & Heinicke, M.P. 2008. New World direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation. Zootaxa, 1737: 1-182. https://doi.org/10.11646/zootaxa.1737.1.1.
https://doi.org/10.11646/zootaxa.1737.1....
). Based on the fact that Strabomantis species are rarely reported for Brazilian Amazonia, are quite similar considering external morphology, and we still have little knowledge on the genetic variation within S. sulcatus, other species could likely be masqueraded under this name across lowland Amazonia.

Phyzelaphryne nimio Simões et al., 2018 Simões, P.I.; Costa, J.C.L.; Rojas-Runjaic, F.J.M.; Gagliardi-Urrutia, G.; Sturaro, M.J.; Peloso, P.L.V. & Castroviejo-Fisher, S. 2018. A new species of Phyzelaphryne Heyer, 1977 (Anura: Eleutherodactylidae) from the Japurá River basin, with a discussion of the diversity and distribution of the genus. Zootaxa, 4532: 203-230. https://doi.org/10.11646/zootaxa.4532.2.2.
https://doi.org/10.11646/zootaxa.4532.2....
( Fig. 5C )

Several populations of small eleutherodactylids in lowland Amazonia are historically attributed to a single taxon of the genus PhyzelaphryneHeyer, 1997Heyer, W.R. 1997. Geographic variation in the frog genus Vanzolinius (Anura: Leptodactylidae). Proceedings of the Biological Society of Washington, 110(3): 338-365. (Phyzelaphryne miriamae Heyer, 1977). Recently, the real diversity within the widespread P. miriamae has been clarified, indicating that at least two molecularly divergent lineages representing candidate new species were masqueraded under this name (Simões et al., 2018Simões, P.I.; Costa, J.C.L.; Rojas-Runjaic, F.J.M.; Gagliardi-Urrutia, G.; Sturaro, M.J.; Peloso, P.L.V. & Castroviejo-Fisher, S. 2018. A new species of Phyzelaphryne Heyer, 1977 (Anura: Eleutherodactylidae) from the Japurá River basin, with a discussion of the diversity and distribution of the genus. Zootaxa, 4532: 203-230. https://doi.org/10.11646/zootaxa.4532.2.2.
https://doi.org/10.11646/zootaxa.4532.2....
). Considering this taxonomic history, we initially thought that specimens from the RBJ could be conspecific with the “candidate new species 1” sensuSimões et al. (2018Simões, P.I.; Costa, J.C.L.; Rojas-Runjaic, F.J.M.; Gagliardi-Urrutia, G.; Sturaro, M.J.; Peloso, P.L.V. & Castroviejo-Fisher, S. 2018. A new species of Phyzelaphryne Heyer, 1977 (Anura: Eleutherodactylidae) from the Japurá River basin, with a discussion of the diversity and distribution of the genus. Zootaxa, 4532: 203-230. https://doi.org/10.11646/zootaxa.4532.2.2.
https://doi.org/10.11646/zootaxa.4532.2....
), which occur at the middle Juruá River basin, or representatives of a never sampled new species. Surprisingly, our molecular and morphological evidence supports the identity of this population as conspecific with the recently described P. nimio, known only from the Japurá River basin (Simões et al., 2018Simões, P.I.; Costa, J.C.L.; Rojas-Runjaic, F.J.M.; Gagliardi-Urrutia, G.; Sturaro, M.J.; Peloso, P.L.V. & Castroviejo-Fisher, S. 2018. A new species of Phyzelaphryne Heyer, 1977 (Anura: Eleutherodactylidae) from the Japurá River basin, with a discussion of the diversity and distribution of the genus. Zootaxa, 4532: 203-230. https://doi.org/10.11646/zootaxa.4532.2.2.
https://doi.org/10.11646/zootaxa.4532.2....
). This record represents a southeast extension of ca. 280 km for the distributional range of P. nimio, as well as the first evidence of its occurrence at the southern bank of the Amazon River.

Rhinella exostosica Ferrão et al., 2020 Ferrão, M.; Lima, A.P.; Ron, S.R.; Santos, S.P.L. & Hanken, J. 2020. New species of leaf-litter toad of the Rhinella margaritifera species group (Anura: Bufonidae) from Amazonia. Copeia, 108(4): 967-986. https://doi.org/10.1643/CH2020043.
https://doi.org/10.1643/CH2020043...
( Fig. 4D )

Recent descriptions of Amazonian species of the taxonomically challenging R. margaritifera species group (Santos et al., 2015Santos, S.P.; Ibáñez, R.; & Ron, S.R. 2015. Systematics of the Rhinella margaritifera complex (Anura, Bufonidae) from western Ecuador and Panama with insights in the biogeography of Rhinella alata. Zookeys, 501: 109-145. https://doi.org/10.3897/zookeys.501.8604.
https://doi.org/10.3897/zookeys.501.8604...
; Ávila et al., 2020Ávila, R.W.; Morais, D.H.; Perez, R.; Pansonato, A.; Carvalho, V.T.; Rojas, R.R.; Gordo, M. & Farias, I.P. 2020. A new species of the Rhinella margaritifera (Laurenti 1768) species group (Anura, Bufonidae) from southern Brazilian Amazonia. Zootaxa, 4868: 368-388. https://doi.org/10.11646/zootaxa.4868.3.3.
https://doi.org/10.11646/zootaxa.4868.3....
; Ferrão et al., 2020Ferrão, M.; Lima, A.P.; Ron, S.R.; Santos, S.P.L. & Hanken, J. 2020. New species of leaf-litter toad of the Rhinella margaritifera species group (Anura: Bufonidae) from Amazonia. Copeia, 108(4): 967-986. https://doi.org/10.1643/CH2020043.
https://doi.org/10.1643/CH2020043...
) significantly improved the taxonomic resolution of different populations across this ecosystem. Due to these advances, we were able to confirm the presence of R. exostosica in the RBJ. This species was recently described to the extreme southwestern Amazonia, and our record represents the first in the state of Amazonas, extending its distribution by ca. 650 km northeast. Such a finding rejects the hypothesis that R. exostosica distribution is limited to the west by the Madeira River (Ferrão et al., 2020Ferrão, M.; Lima, A.P.; Ron, S.R.; Santos, S.P.L. & Hanken, J. 2020. New species of leaf-litter toad of the Rhinella margaritifera species group (Anura: Bufonidae) from Amazonia. Copeia, 108(4): 967-986. https://doi.org/10.1643/CH2020043.
https://doi.org/10.1643/CH2020043...
), at least considering a broad spatial scale.

Dendropsophus kamagarini Rivadeneira et al., 2018 Rivadeneira, C.D.; Venegas, P.J. & Ron, S.R. 2018. Species limits within the widespread Amazonian treefrog Dendropsophus parviceps with descriptions of two new species (Anura, Hylidae). ZooKeys , 726: 25-77. https://doi.org/10.3897/zookeys.726.13864.
https://doi.org/10.3897/zookeys.726.1386...
( Fig. 6C )

The taxon Dendropsophus parviceps (Boulenger, 1882), formerly considered to be widespread in western Amazonia, was recently taxonomically revised under integrative approaches (Rivadeneira et al., 2018Rivadeneira, C.D.; Venegas, P.J. & Ron, S.R. 2018. Species limits within the widespread Amazonian treefrog Dendropsophus parviceps with descriptions of two new species (Anura, Hylidae). ZooKeys , 726: 25-77. https://doi.org/10.3897/zookeys.726.13864.
https://doi.org/10.3897/zookeys.726.1386...
). This revision revealed three molecularly and morphologically diagnosable lineages contained under this name (Rivadeneira et al., 2018Rivadeneira, C.D.; Venegas, P.J. & Ron, S.R. 2018. Species limits within the widespread Amazonian treefrog Dendropsophus parviceps with descriptions of two new species (Anura, Hylidae). ZooKeys , 726: 25-77. https://doi.org/10.3897/zookeys.726.13864.
https://doi.org/10.3897/zookeys.726.1386...
). However, due to the undersampling in this study, an overall low resolution on the identity of “D. parviceps” populations occurs in Brazilian Amazonia. Our molecular and morphological analyses support the presence in the RBJ of the “southwestern clade” of the former widespread D. parviceps, now named D. kamagarini (Rivadeneira et al., 2018Rivadeneira, C.D.; Venegas, P.J. & Ron, S.R. 2018. Species limits within the widespread Amazonian treefrog Dendropsophus parviceps with descriptions of two new species (Anura, Hylidae). ZooKeys , 726: 25-77. https://doi.org/10.3897/zookeys.726.13864.
https://doi.org/10.3897/zookeys.726.1386...
).

Dendropsophus mapinguari Peloso et al., 2016 Peloso, P.L.V.; Orrico, V.G.D.; Haddad, C.F.B.; Lima-Filho, G.R. & Sturaro, M.J. 2016. A new species of clown tree frog, Dendropsophus leucophyllatus species group, from Amazonia (Anura, Hylidae). South American Journal of Herpetology , 11: 66-80. https://doi.org/10.2994/SAJH-D-16-00003.1.
https://doi.org/10.2994/SAJH-D-16-00003....

A member of the Dendropsophus leucophyllatus (Beireis, 1783) group recently described, D. mapinguari is until now only known to three localities in central Amazonia, Brazil (Peloso et al., 2016Peloso, P.L.V.; Orrico, V.G.D.; Haddad, C.F.B.; Lima-Filho, G.R. & Sturaro, M.J. 2016. A new species of clown tree frog, Dendropsophus leucophyllatus species group, from Amazonia (Anura, Hylidae). South American Journal of Herpetology , 11: 66-80. https://doi.org/10.2994/SAJH-D-16-00003.1.
https://doi.org/10.2994/SAJH-D-16-00003....
). In the original description, authors suggest that this narrow distribution could be underestimated, as they are segregated by large rivers already recognized as geographic barriers for some Amazonian frogs (Fouquet et al., 2014Fouquet, A.; Cassini, C.S.; Baptista, C.F.; Pech, N. & Rodrigues, M.T. 2014. Species delimitation, patterns of diversification and historical biogeography of the Neotropical frog genus Adenomera (Anura, Leptodactylidae). Journal of Biogeography , 41(5): 855-870. https://doi.org/10.1111/jbi.12250.
https://doi.org/10.1111/jbi.12250...
), and D. mapinguari frequently exploit the flooded habitats, which favors individual dispersion and gene flow (Harvey et al., 2017Harvey, M.G.; Aleixo, A.; Ribas, C.C. & Brumfield, R.T. 2017. Habitat association predicts genetic diversity and population divergence in Amazonian birds. American Naturalist, 190(5): 631-648. https://doi.org/10.1086/693856.
https://doi.org/10.1086/693856...
). In fact, D. mapinguari was recently reported for a new locality in the Negro River basin (Igor Fernandes, pers. comm.), and this record extends the known distribution of this species ca. 600 km west of this (nearest) locality.

Dendropsophus miyatai (Vigle & Goberdhan-Vigle, 1990)

This small-sized and elusive species is originally described as distributed in Ecuadorian Amazonia (Cisneros-Heredia, 2005Cisneros-Heredia, D.F. 2005. On the distribution and natural history of Hyla miyatai Vigle & Goberdhan-Vigle, 1990, in Amazonian Ecuador. Herpetozoa, 18: 71-72.). Since then, populations within western lowland Amazonia in Peru, Colombia, and Brazil have been attributed to this name. However, these localities of occurrence are in some cases patchily distributed, and the full range of this species is overall irresolute (Cisneros-Heredia, 2005Cisneros-Heredia, D.F. 2005. On the distribution and natural history of Hyla miyatai Vigle & Goberdhan-Vigle, 1990, in Amazonian Ecuador. Herpetozoa, 18: 71-72.). This is partially explained by the fact that the species mostly exploit seasonally flooded habitats, which are historically neglected in standardized inventories (Moraes et al., 2022aMoraes, L.J.C.L.; Gordo, M.; Pirani, R.M.; Rainha, R.N.; Almeida, A.P.; Oliveira, A.F.S.; Oliveira, M.E.; Silva, A.A.A. & Werneck, F.P. 2022a. Amphibians and squamates in Amazonian flooded habitats, with a study on the variation of amphibian assemblages along the Solimões River. In: Dalu, T. & Wasserman, R.J. (Eds.). Fundamentals of tropical freshwater Wetlands: from ecology to conservation management. Elsevier. Cap. 13, p. 381-384. https://doi.org/10.1016/B978-0-12-822362-8.00032-3.
https://doi.org/10.1016/B978-0-12-822362...
), and by misidentification with other Dendropsophus Fitzinger, 1843. In the light of available evidence, D. miyatai is widely distributed in the margins of the main western Amazonian rivers, extending through the east following the course of the Amazon River.

Alopoglossus indigenorum Ribeiro-Júnior et al., 2021 Ribeiro-Júnior, M.A.; Sánchez-Martínez, P.; Moraes, L.J.C.L.; Suendel, U.; Carvalho, V.T.C.; Pavan, D.; Choueri, E.; Werneck, F.P. & Meiri, S. 2021. Uncovering hidden species diversity of alopoglossid lizards in Amazonia, with the description of three new species of Alopoglossus (Squamata: Gymnophthalmoidae). Journal of Zoological Systematics and Evolutionary Research, 59(6): 1322-1356. https://doi.org/10.1111/jzs.12481.
https://doi.org/10.1111/jzs.12481...
( Fig. 10C )

Both the analyses of molecular and morphological (meristic) variation of a recently collected specimen of the Alopoglossus angulatus (Linnaeus, 1758) species complex from the RBJ showed that it represented an undescribed taxon. This species was then recently described as A. indigenorum, containing the specimen from the RBJ as part of its type series (Ribeiro-Júnior et al., 2021Ribeiro-Júnior, M.A.; Sánchez-Martínez, P.; Moraes, L.J.C.L.; Suendel, U.; Carvalho, V.T.C.; Pavan, D.; Choueri, E.; Werneck, F.P. & Meiri, S. 2021. Uncovering hidden species diversity of alopoglossid lizards in Amazonia, with the description of three new species of Alopoglossus (Squamata: Gymnophthalmoidae). Journal of Zoological Systematics and Evolutionary Research, 59(6): 1322-1356. https://doi.org/10.1111/jzs.12481.
https://doi.org/10.1111/jzs.12481...
). The species is distributed in the extreme western Brazilian Amazonia, at south of the Amazon River.

Atractus poeppigi (Jan, 1862) ( Fig. 12F )

The combination of cryptozoic habits of species and shortfalls of biological knowledge on Amazonia usually provide challenging cases in defining distributional limits for the snake genus Atractus Wagler, 1928 (Fraga et al., 2017Fraga, R.; Almeida, A.P.; Moraes, L.J.C.L.; Gordo, M.; Pirani, R.; Zamora, R.R.; Carvalho, V.T.; Passos, P. & Werneck, F. 2017. Narrow endemism or insufficient sampling? Geographical range extension and morphological variation of the poorly known Atractus riveroi Roze, 1961 (Serpentes: Dipsadidae). Herpetological Review , 48(2): 281-284.). For instance, A. poeppigi (already considered a synonym of Atractus elaps Günther, 1858 [Dixon et al., 1976Dixon, J.R.; Thomas, R.A. & Greene, H.W. 1976. Status of the neotropical snake Rhabdosoma poeppigi JAN, with notes on variation in Atractus elaps (Günther). Herpetologica, 32: 221-227.]) is a representative of an Atractus species with an irresolute distribution, composed by patchily distributed localities of occurrence. With occurrence records ranging from the Andean foothills to the central lowland Amazonia (Nogueira et al., 2019Nogueira, C.C.; Gonzalez, R.C.; Guedes, T.; Hoogmoed, M.S.; Marques, O.A.V.; Montingelli, G.G.; Passos, P.; Prudente, A.L.C.; Rivas, G.A.; Sanchez, P.M.; Serrano, F.C.; Silva, N.J.; Strüssmann, C.; Vieira-Alencar, J.P.; Zaher, H.; Sawaya, R.J.; Martins, M.; Borges-Martins, M.; Brasil-Godinho, M.; Braz, H.; Buononato, M.A.; Cisneros-Heredia, D.F.; Colli, G.R.; Costa, H.C.; Franco, F.L; Giraudo, A.; Argôlo, A.J.S.; Arzamendia, V.; Barbo, F.E.; Azevedo, J.A.; Bérnils, R.S. & Bolochio, B.E. 2019. Atlas of Brazilian Snakes: verified point-locality maps to mitigate the wallacean shortfall in a megadiverse snake fauna. South American Journal of Herpetology , 4: 1-274. https://doi.org/10.2994/SAJH-D-19-00120.1.
https://doi.org/10.2994/SAJH-D-19-00120....
), A. poeppigi can be considered widely distributed, and records in the RBJ (three individuals) help to fill some of the knowledge gaps in its distribution.

DISCUSSION

Our study reinforces the importance of maintaining effective protected areas at the lower Juruá River and shows the value of the RBJ as a conservation unit in the context of the Amazonian amphibian and reptile diversity, also helping to promote relevant subsidies for its management. This assumption was exemplified by the presence of many species in the RBJ usually rarely recorded across Amazonia, typical of the western and southwestern Amazonia sub-regions, or potentially endemic to the study area.

Our first sampling at the RBJ (1992) provided initial insights regarding the local diversity of amphibians and reptiles, while most recent expeditions (2005-2007, 2018) complemented this knowledge and supported the creation, management and monitoring of this protected area. Even after the first two expeditions carried out to this region, 18 new species of amphibians and reptiles were reported for the RBJ in 2018. Therefore, an increase in the species richness of these vertebrates known for the RBJ as a result of new inventories and refinement in their taxonomic resolution in Amazonia is very likely. In fact, additional inventories on the RBJ are highly encouraged in order to bring taxonomic resolution to amphibian species with uncertain status in the genera Allobates, Pristimantis, Bolitoglossa, Leptodactylus, and Amazophrynella, as well as to investigate the presence and current population status of species that were only reported in the 1992 sampling, as A. vanzolinius, D. miyatai, D. mapinguari, and Scinax cruentomma (Duellman, 1972).

By sampling a western Amazonian locality over a long period through active surveys, Duellman (1978Duellman, W.E. 1978. The biology of an equatorial herpetofauna in Amazonian Equador. University of Kansas. Museum of Natural History, Miscellaneous Publications, 65: 1-352.) concluded that the vast majority of local species (75%) were recorded in the first 100 person-days of fieldwork. Based on this result and on our estimated rarefaction curves, we believe that the combination of our 245 person-days of active survey sampling plus other three sampling methods (including 2,070 trap-days) has sufficiently assessed the typical assemblages of amphibians and reptiles occuring in the RBJ. Rare species were found through active surveys in the locality sampled by Duellman (1978Duellman, W.E. 1978. The biology of an equatorial herpetofauna in Amazonian Equador. University of Kansas. Museum of Natural History, Miscellaneous Publications, 65: 1-352.) only after more than 1,000 person-days of fieldwork. Therefore, and as evidenced in our richness estimation analyses, the list of species presented here certainly should expand with the advancement of knowledge. This might be the case especially considering reptile diversity, which were standardized sampled only in two of our expeditions, and have many species barely detectable due to secretive habits and natural lower densities (Fraga et al., 2014Fraga, R.; Stow, A.J.; Magnusson, W.E. & Lima, A.P. 2014. The Costs of Evaluating Species Densities and Composition of Snakes to Assess Development Impacts in Amazonia. PLoS ONE , 9, e105453. https://doi.org/10.1371/journal.pone.0105453.
https://doi.org/10.1371/journal.pone.010...
). In this sense, many snake species inhabiting broad geographic ranges in Amazonia, such as Chironius scurrulus (Wagler, 1824), Atractus latifrons (Günther, 1868), Hydrops martii (Wagler, 1824), Hydrops triangularis (Wagler, 1824), Siphlophis compressus (Daudin, 1803), and Xenopholis scalaris (Wucherer, 1861), are highly expected to occur in the RBJ (seeNogueira et al., 2019Nogueira, C.C.; Gonzalez, R.C.; Guedes, T.; Hoogmoed, M.S.; Marques, O.A.V.; Montingelli, G.G.; Passos, P.; Prudente, A.L.C.; Rivas, G.A.; Sanchez, P.M.; Serrano, F.C.; Silva, N.J.; Strüssmann, C.; Vieira-Alencar, J.P.; Zaher, H.; Sawaya, R.J.; Martins, M.; Borges-Martins, M.; Brasil-Godinho, M.; Braz, H.; Buononato, M.A.; Cisneros-Heredia, D.F.; Colli, G.R.; Costa, H.C.; Franco, F.L; Giraudo, A.; Argôlo, A.J.S.; Arzamendia, V.; Barbo, F.E.; Azevedo, J.A.; Bérnils, R.S. & Bolochio, B.E. 2019. Atlas of Brazilian Snakes: verified point-locality maps to mitigate the wallacean shortfall in a megadiverse snake fauna. South American Journal of Herpetology , 4: 1-274. https://doi.org/10.2994/SAJH-D-19-00120.1.
https://doi.org/10.2994/SAJH-D-19-00120....
).

Data obtained on our expeditions were relevant to improve the knowledge on the effects of the Juruá River as geographical barriers to amphibians (seeGascon, 1996Gascon, C. 1996. Amphibian litter fauna and river barriers in flooded and non-flooded Amazonian rainforests. Biotropica, 28: 136-140. https://doi.org/10.2307/2388779.
https://doi.org/10.2307/2388779...
; Lougheed et al., 1999Lougheed, S.C.; Gascon, C.; Jones D.A.; Bogart, J.P. & Boag, P.T. 1999. Ridges and rivers: a test of competing hypotheses of Amazonian diversification using a dart-poison frog (Epipedobates femoralis). Proceedings of the Royal Society of London, Series B, 266(1431): 1829-1835. https://doi.org/10.1098/rspb.1999.0853.
https://doi.org/10.1098/rspb.1999.0853...
; Gascon et al., 2000Gascon, C.; Malcolm, J.R.; Patton, J.L.; Silva, M.N.F.; Bogart, J.P.; Lougheed, S.C.; Peres, C.A.; Neckel, S. & Boag, P.T. 2000. Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academyof Science, 97: 13672-13677. https://doi.org/10.1073/pnas.230136397.
https://doi.org/10.1073/pnas.230136397...
), but also on the taxonomy of Amazonian amphibians and reptiles. For example, the microhylid Chiasmocleis avilapiresae (Peloso & Sturaro, 2008Peloso, P.L.V. & Sturaro M.J. 2008. A new species of narrowzmouthed frog of the genus Chiasmocleis Méhelÿ 1904 (Anura, Microhylidae) from the Amazonian rainforest of Brazil. Zootaxa, 1947: 39-52. https://doi.org/10.11646/zootaxa.1947.1.2.
https://doi.org/10.11646/zootaxa.1947.1....
), the aromobatids A. vanzolinius and A. gasconi (Morales, 2002Morales, V.R. 2002. Sistematica y biogeografía del grupo trilineatus (Amphibia, Anura, Dendrobatidae, Colostethus), con descripción de once nuevas especies. Publicaciones de la Asociación de Amigos de Doñana, 13: 1-59.), and the gymnophthalmid A. indigenorum (Ribeiro-Júnior et al., 2021Ribeiro-Júnior, M.A.; Sánchez-Martínez, P.; Moraes, L.J.C.L.; Suendel, U.; Carvalho, V.T.C.; Pavan, D.; Choueri, E.; Werneck, F.P. & Meiri, S. 2021. Uncovering hidden species diversity of alopoglossid lizards in Amazonia, with the description of three new species of Alopoglossus (Squamata: Gymnophthalmoidae). Journal of Zoological Systematics and Evolutionary Research, 59(6): 1322-1356. https://doi.org/10.1111/jzs.12481.
https://doi.org/10.1111/jzs.12481...
) were described using this material. Furthermore, specimens collected at the RBJ also provide relevant geographic novelties, supporting distribution extensions for the allophrynid Allophryne resplendens Castroviejo-Fisher et al., 2012 (Carvalho et al., 2017Carvalho, V.T.; Fraga, R.; Bonora, L. & Vogt, R.C. 2017. First record of the resplendent Frog Allophryne resplendens Castroviejo-Fisher et al., 2012 in Brazil (Anura: Allophrynidae). Herpetology Notes, 10: 561-562.), the leptodactylid A. simonstuarti (Carvalho et al., 2020Carvalho, T.R.; Moraes, L.J.C.L.; Angulo, A.; Werneck, F.P.; Icochea, J. & Lima, A.P. 2020. New acoustic and molecular data shed light on the poorly known Amazonian frog Adenomera simonstuarti (Leptodactylidae): implications for distribution and conservation. European Journal of Taxonomy, 682: 1-18. https://doi.org/10.5852/ejt.2020.682.
https://doi.org/10.5852/ejt.2020.682...
), the dipsadid Erythrolamprus pygmaeus (Cope, 1868) (Kawashita-Ribeiro et al., 2011Kawashita-Ribeiro, R.A.; Carvalho, V.T.; Lima, A.C.; Ávila, R.W. & Fraga, R. 2011. Morphology and geographical distribution of the poorly known snake Umbrivaga pygmaea (Serpentes: Dipsadidae) in Brazil. Phyllomedusa, 10(2): 177-182. https://doi.org/10.11606/issn.2316-9079.v10i2p177-182.
https://doi.org/10.11606/issn.2316-9079....
), and the viperid Botrocophias hyoprora (Amaral, 1935) (Carvalho et al., 2013Carvalho, V.T.; Fraga, R.; Eler, E.S.; Kawashita-Ribeiro, R.A.; Feldberg, E.; Vogt, R.; Carvalho, M.A.; Noronha, J.C.; Condrati, L.H. & Bittencourt, S. 2013. Toad-headed pitviper Bothrocophias hyoprora (Amaral, 1935) (Serpentes, Viperidae): New records of geographic range in Brazil, hemipenial morphology, and chromosomal characterization. Herpetological Review, 44: 410-414.). Conversely, some of the records reported to the RBJ in the literature are uncertain and noteworthy. In a revision dealing with Amazonian caecilians diversity, Maciel & Hoogmoed (2011Maciel, A.O. & Hoogmoed, M.S. 2011. Taxonomy and distribution of caecilian amphibians (Gymnophiona) of Brazilian Amazonia, with a key to their identification. Zootaxa, 2984: 1-53. https://doi.org/10.11646/zootaxa.2984.1.1.
https://doi.org/10.11646/zootaxa.2984.1....
) reported a specimen of the siphonopid Siphonops annulatus (Mikan, 1822) to the RBJ (INPA-H 004401). However, this specimen was actually collected in the upper Juruá River, and to our knowledge, no record of this species is unambiguously attributed to the RBJ. Similarly, the specimen INPA-H 002417, defined as a paratype of the hylid T. cunauaru (Gordo et al., 2013Gordo, M.; Toledo, L.F.; Suárez, P.; Kawashita-Ribeiro, R.A.; Ávila, R.W.; Morais, D.H. & Nunes, I. 2013. A new species of Milk Frog of the genus Trachycephalus Tschudi (Anura, Hylidae) from the Amazonian rainforest. Herpetologica, 69(4): 466-479. https://doi.org/10.1655/HERPETOLOGICA-D-11-00086.
https://doi.org/10.1655/HERPETOLOGICA-D-...
), was collected in the middle Juruá River, but mistakenly reported to the RBJ. We eventually confirmed the presence of T. cunauaru in the RBJ in our inventories, but S. annulatus’ presence remains uncertain. Such a pattern of geographic errors associated with the material collected in the 1991-1992 expedition across the Juruá River indicates that such mistakes may be occurring more widely in the literature using this material.

Although Amazonia represents a region of historical interest for inventories of amphibians and reptiles, the comparability across studies over time is hampered by the highly distinct sampling efforts caused by logistical challenges and pervasive biodiversity shortfalls, which introduce many biases in the reported results (Bush & Lovejoy, 2007Bush, M.B. & Lovejoy, T.E. 2007. Amazonian conservation: pushing the limits of biogeographical knowledge. Journal of Biogeography, 34(8): 1291-1293. https://doi.org/10.1111/j.1365-2699.2007.01758.x.
https://doi.org/10.1111/j.1365-2699.2007...
; Hortal et al., 2015Hortal, J.; Bello, F.; Diniz-Filho, J.A.F.; Lewinsohn, T.M.; Lobo, J.M. & Ladle, R.J. 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46: 523-549. https://doi.org/10.1146/annurev-ecolsys-112414-054400.
https://doi.org/10.1146/annurev-ecolsys-...
; Oliveira et al., 2016Oliveira, U.; Paglia, A.P.; Brescovit, A.D.; Carvalho, C.J.B.; Silva, D.P.; Rezende, D.T.; Leite, F.S.F.; Batista, J.A.N.; Barbosa, J.P.P.P.; Stehmann, J.R.; Ascher, J.S.; Vasconcelos, M.R.; Marco-Jr.; P.; Löwenberg-Neto, P.; Dias, P.G.; Ferro, V.G. & Santos, A.J. 2016. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Diversity and Distributions, 22(12): 1232-1244. https://doi.org/10.1111/ddi.12489.
https://doi.org/10.1111/ddi.12489...
). However, some biogeographic patterns are repeatedly recovered and appear to be robust. For instance, a west-east gradient of decrease in species richness is consistently reported considering broad taxonomic scales (e.g.,Rangel et al., 2018Rangel, T.F.; Edwards, N.R.; Holden, P.B.; Diniz-Filho, J.A.F.; Gosling, W.D.; Coelho, M.T.P. & Colwell, R.K. 2018. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science, 361: eaar5452. https://doi.org/10.1126/science.aar5452.
https://doi.org/10.1126/science.aar5452...
; Oberdorff et al., 2019Oberdorff, T.; Dias, M.S.; Jézéquel, C.; Albert, J.S.; Arantes, C.C.; Bigorne, R.; Carvajal-Valleros, F.M.; Wever, A.; Frederico, R.G.; Hidalgo, M.; Hugueny, B.; Leprieur, F.; Maldonado, M.; Maldonado-Ocampo, J.; Martens, K.; Ortega, H.; Sarmiento, J.; Tedesco, P.A.; Torrente-Vilara, G.; Winemiller, K.O. & Zuanon, J. 2019. Unexpected fish diversity gradients in the Amazon basin. Science Advances, 5: eaav868. https://doi.org/10.1126/sciadv.aav8681.
https://doi.org/10.1126/sciadv.aav8681...
; Ritter et al., 2019Ritter, C.D.; Faurby, S.; Bennett, D.J.; Naka, L.N.; Ter Steege, H.; Zizka, A.; Haenel, Q.; Nilsson, H. & Antonelli, A. 2019. The pitfalls of biodiversity proxies: Differences in richness patterns of birds, trees and understudied diversity across Amazonia. Scientific Reports , 9: 19205. https://doi.org/10.1038/s41598-019-55490-3.
https://doi.org/10.1038/s41598-019-55490...
). The west-east diversity gradient is also noticed on a regional scale in the Juruá River basin. In addition to the higher diversity reported in the upper Juruá River basin, there are several species substitutions reported along the course of this river (Gascon et al., 2000Gascon, C.; Malcolm, J.R.; Patton, J.L.; Silva, M.N.F.; Bogart, J.P.; Lougheed, S.C.; Peres, C.A.; Neckel, S. & Boag, P.T. 2000. Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academyof Science, 97: 13672-13677. https://doi.org/10.1073/pnas.230136397.
https://doi.org/10.1073/pnas.230136397...
; Azevedo-Ramos & Galatti, 2002Azevedo-Ramos, C. & Galatti, U. 2002. Patterns of amphibian diversity in Brazilian Amazonia: conservation implications. Biological Conservation, 103: 103-111. https://doi.org/10.1016/S0006-3207(01)00129-X.
https://doi.org/10.1016/S0006-3207(01)00...
). Such a spatial variation in species composition and richness along the course of the Juruá River was also noticed for plants (Tuomisto et al., 2016Tuomisto, H.; Moulatlet, G.M.; Balslev, H.; Emilio, T.; Figueiredo, F.O.G.; Pedersen, D. & Ruokolainen, K. 2016. A compositional turnover zone of biogeographical magnitude within lowland Amazonia. Journal of Biogeography , 43(12): 2400-2411. https://doi.org/10.1111/jbi.12864.
https://doi.org/10.1111/jbi.12864...
), and other vertebrates as small mammals (Patton et al., 2000Patton, J.L.; Da Silva, M.N.F. & Malcolm, J.R. 2000. Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia. Bulletin of the American Museum of Natural History, 244: 1-307. https://doi.org/10.1206/0003-0090(2000)244%3C0001:MOTRJA%3E2.0.CO;2.
https://doi.org/10.1206/0003-0090(2000)2...
). This diversity gradient is likely a result of the geological, geomorphological, and pluviometric gradients crossed by this river basin (Patton et al., 2000Patton, J.L.; Da Silva, M.N.F. & Malcolm, J.R. 2000. Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia. Bulletin of the American Museum of Natural History, 244: 1-307. https://doi.org/10.1206/0003-0090(2000)244%3C0001:MOTRJA%3E2.0.CO;2.
https://doi.org/10.1206/0003-0090(2000)2...
; Tuomisto et al., 2016Tuomisto, H.; Moulatlet, G.M.; Balslev, H.; Emilio, T.; Figueiredo, F.O.G.; Pedersen, D. & Ruokolainen, K. 2016. A compositional turnover zone of biogeographical magnitude within lowland Amazonia. Journal of Biogeography , 43(12): 2400-2411. https://doi.org/10.1111/jbi.12864.
https://doi.org/10.1111/jbi.12864...
; Pupim et al., 2019Pupim, F.N.; Sawakuchi, A.O.; Almeida, R.P.; Ribas, C.C.; Kern, A.K.; Hartmann, G.A.; Chiessi, C.M.; Tamura, L.N.; Mineli, T.D.; Savian, J.F.; Grohmann, C.H.; Bertassoli-Jr., D.J.; Stern, A.G.; Cruz, F.W. & Cracraft, J. 2019. Chronology of Terra Firme formation in Amazonian lowlands reveals a dynamic Quaternary landscape. Quaternary Science Reviews, 210: 154-163. https://doi.org/10.1016/j.quascirev.2019.03.008.
https://doi.org/10.1016/j.quascirev.2019...
). In fact, a considerable number of amphibian species are geographically constrained to the upper Juruá River basin (Gascon et al., 2000Gascon, C.; Malcolm, J.R.; Patton, J.L.; Silva, M.N.F.; Bogart, J.P.; Lougheed, S.C.; Peres, C.A.; Neckel, S. & Boag, P.T. 2000. Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academyof Science, 97: 13672-13677. https://doi.org/10.1073/pnas.230136397.
https://doi.org/10.1073/pnas.230136397...
; Fonseca et al., 2019Fonseca, W.L.; Silva, J.D.; Abegg, A.D.; Rosa, C.M. & Bernarde, P.S. 2019. Herpetofauna of Porto Walter and surrounding areas, Southwest Amazonia, Brazil. Herpetology Notes , 12: 91-107.), particularly in the montane region of the Serra do Divisor, which emerges as one of the most species-rich localities for these vertebrates in the entire Neotropics (Souza, 2009Souza, M.B. 2009. Anfíbios: Reserva Extrativista do Alto Juruá e Parque Nacional da Serra do Divisor, Acre. Campinas, IFCH.). Even so, our study reveals that much of the diversity previously reported in the Juruá River basin is underestimated by limited sampling effort, since the number of species found in the RBJ is among the highest reported for single Amazonian localities (see compilation by Freitas et al., 2020Freitas, M.A.; Venâncio, N.M.; Abegg, A.D.; Azevedo, W.S.; Pereira, V.O.; Zanotti, A.P.; Veloso, A.; Schwarzbach, L.; Souza, A.G.O.; Cruz-da-Silva, R.C.C.; Amorim, V.R.G. & Moura, G.J.B. 2020. Herpetofauna at the Rio Acre Ecological Station, Amazon Rainforest, Brazil. Herpetology Notes , 13: 33-48.).

Amphibian and reptile species substitutions across Amazonian assemblages are also especially evident considering: (1) the main geological compartments, i.e., sedimentary basin of western Amazonia vs. Quaternary crystalline shields of eastern Amazonia (e.g.,Ávila-Pires, 1995Ávila-Pires, T.C.S. 1995. Lizards of Brazilian Amazonia (Reptilia: Squamata). Zoologische Verhandelingen, 299: 1-706.; Silva-Jr. & Sites-Jr., 1995Silva-Jr., N.J. & Sites-Jr., J.W. 1995. Patterns of diversity of neotropical squamate reptile species with emphasis on the Brazilian Amazon and the conservation potential of indigenous reserves. Conservation Biology, 9(4): 873-901. https://doi.org/10.1046/j.1523-1739.1995.09040873.x.
https://doi.org/10.1046/j.1523-1739.1995...
; Rojas et al., 2018Rojas, R.R.; Fouquet, A.; Ron, S.R.; Hernández-Ruz, E.J.; Melo-Sampaio, P.R.; Chaparro, J.C.; Vogt, R.C.; Carvalho, V.T.; Pinheiro, L.; Ávila, R.W.; Farias, I.P.; Gordo, M. & Hrbek, T. 2018. A Pan-Amazonian species delimitation: high species diversity within the genus Amazophrynella (Anura: Bufonidae). PeerJ, 6: e4941. https://doi.org/10.7717/peerj.4941.
https://doi.org/10.7717/peerj.4941...
; Réjaud et al., 2020Réjaud, A.; Rodrigues, M.T.; Crawford, A.J.; Castroviejo-Fisher, S.; Jaramillo, A.F.; Chaparro, J.C.; Glaw, F.; Gagliardi-Urrutia, G.; Moravec, J.; De la Riva, I.J.; Perez, P.; Lima, A.P.; Werneck, F.P.; Hrbek, T.; Ron, S.R.; Ernst, R.; Kok, P.J.R.; Driskell, A.; Chave, J. & Fouquet, A. 2020. Historical biogeography identifies a possible role of the Pebas system in the diversification of the Amazonian rocket frogs (Aromobatidae: Allobates). Journal of Biogeography , 47(11): 2472-2482. https://doi.org/10.1111/jbi.13937.
https://doi.org/10.1111/jbi.13937...
; Ribeiro-Júnior et al., 2021Ribeiro-Júnior, M.A.; Sánchez-Martínez, P.; Moraes, L.J.C.L.; Suendel, U.; Carvalho, V.T.C.; Pavan, D.; Choueri, E.; Werneck, F.P. & Meiri, S. 2021. Uncovering hidden species diversity of alopoglossid lizards in Amazonia, with the description of three new species of Alopoglossus (Squamata: Gymnophthalmoidae). Journal of Zoological Systematics and Evolutionary Research, 59(6): 1322-1356. https://doi.org/10.1111/jzs.12481.
https://doi.org/10.1111/jzs.12481...
); and (2) the Amazon River as a geographic barrier, i.e., its northern vs. southern banks (e.g.,Silva-Jr. & Sites-Jr., 1995Silva-Jr., N.J. & Sites-Jr., J.W. 1995. Patterns of diversity of neotropical squamate reptile species with emphasis on the Brazilian Amazon and the conservation potential of indigenous reserves. Conservation Biology, 9(4): 873-901. https://doi.org/10.1046/j.1523-1739.1995.09040873.x.
https://doi.org/10.1046/j.1523-1739.1995...
; Godinho & da Silva, 2018Godinho, M.B.C. & da Silva, F.R. 2018. The influence of riverine barriers, climate, and topography on the biogeographic regionalization of Amazonian anurans. Scientific Reports, 8 (3427):1-11. https://doi.org/10.1038/s41598-018-21879-9.
https://doi.org/10.1038/s41598-018-21879...
; Rojas et al., 2018Rojas, R.R.; Fouquet, A.; Ron, S.R.; Hernández-Ruz, E.J.; Melo-Sampaio, P.R.; Chaparro, J.C.; Vogt, R.C.; Carvalho, V.T.; Pinheiro, L.; Ávila, R.W.; Farias, I.P.; Gordo, M. & Hrbek, T. 2018. A Pan-Amazonian species delimitation: high species diversity within the genus Amazophrynella (Anura: Bufonidae). PeerJ, 6: e4941. https://doi.org/10.7717/peerj.4941.
https://doi.org/10.7717/peerj.4941...
). Considering these main biogeographic units, the RBJ is inserted at western Amazonia sedimentary basin and at the southern bank of the Amazon River. This influence is particularly evident considering the high number of species recorded which are typical of these biogeographic units, while no species typical from the eastern Amazonia was recorded. Meanwhile, a degree of faunistic compositional homogeneity in the entire southwestern Amazonia sub-region is expected because of the high course dynamism of the Juruá River, and this pattern has already been evidenced for amphibians and small mammals (Gascon, 1996Gascon, C. 1996. Amphibian litter fauna and river barriers in flooded and non-flooded Amazonian rainforests. Biotropica, 28: 136-140. https://doi.org/10.2307/2388779.
https://doi.org/10.2307/2388779...
; Gascon et al., 2000Gascon, C.; Malcolm, J.R.; Patton, J.L.; Silva, M.N.F.; Bogart, J.P.; Lougheed, S.C.; Peres, C.A.; Neckel, S. & Boag, P.T. 2000. Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academyof Science, 97: 13672-13677. https://doi.org/10.1073/pnas.230136397.
https://doi.org/10.1073/pnas.230136397...
). However, some species typical of western Amazonia recorded in the RBJ should not be considered as homogeneously distributed in the eastern direction, i.e., limited by the Madeira River, historically attributed as a boundary of a southwestern Amazonia area of endemism for birds (Cracraft, 1985Cracraft, J. 1985. Historical biogeography and patterns of differentiation within the South American Avifauna: Areas of endemism. Ornithological Monographs, 36: 49-84. https://doi.org/10.2307/40168278.
https://doi.org/10.2307/40168278...
). In fact, some of the species recorded in the RBJ have their geographic distribution expanding towards the central Juruá-Purus interfluve (Prudente et al., 2010Prudente, A.L.C.; Maschio, G.F.; Santos-Costa, M.C. & Feitosa D.T. 2010. Serpentes da Bacia Petrolífera de Urucu, Município de Coari, Amazonas, Brasil. Acta Amazonica , 40(2): 567-570. https://doi.org/10.1590/S0044-59672010000200016.
https://doi.org/10.1590/S0044-5967201000...
, 2013Prudente, A.L.C.; Sturaro, M.J.; Travassos, A.E.M.; Maschio, G.F. & Santos-Costa, M.C. 2013. Anurans of the Urucu Petrol Basin, municipality of Coari, State of Amazonas, northern Brazil. Check List, 9: 601-606. https://doi.org/10.15560/9.3.601.
https://doi.org/10.15560/9.3.601...
), but apparently no longer occurring further East (e.g., the amphibians S. sulcatus, A. simonstuarti, A. resplendens, P. nimio, Edalorhina perezi Jiménez de la Espada, 1870, and the lizard A. indigenorum). This is supported by absence of these species reported so far in the Purus-Madeira interfluve, which has been historically well-sampled for both amphibians and reptiles (seeDias-Terceiro et al., 2015Dias-Terceiro, R.G.; Kaefer, I.L.; Fraga, R.; Araújo, M.C.; Simões, P.I. & Lima, A.P. 2015. A matter of scale: historical and environmental factors structure anuran assemblages from the upper Madeira River, Amazonia. Biotropica, 47: 259-266. https://doi.org/10.1111/btp.12197.
https://doi.org/10.1111/btp.12197...
; Ferrão et al., 2016Ferrão, M.; Colatreli, O.; Fraga, R.; Kaefer, I.L.; Moravec, J. & Lima, A.P. 2016. High species richness of Scinax treefrogs (Hylidae) in a threatened Amazonian landscape revealed by an integrative approach. PloS ONE, 11: e0165679. https://doi.org/10.1371/journal.pone.0165679.
https://doi.org/10.1371/journal.pone.016...
; Peixoto et al., 2019Peixoto, G.M.; Leitão, P.H.; Kaefer, I.L. & Lima, A.P. 2019. The lizards along the road BR-319 in the Purus-Madeira interfluve, Brazilian Amazonia (Squamata, Lacertilia). Herpetology Notes , 12: 689-697.; Nogueira et al., 2019Nogueira, C.C.; Gonzalez, R.C.; Guedes, T.; Hoogmoed, M.S.; Marques, O.A.V.; Montingelli, G.G.; Passos, P.; Prudente, A.L.C.; Rivas, G.A.; Sanchez, P.M.; Serrano, F.C.; Silva, N.J.; Strüssmann, C.; Vieira-Alencar, J.P.; Zaher, H.; Sawaya, R.J.; Martins, M.; Borges-Martins, M.; Brasil-Godinho, M.; Braz, H.; Buononato, M.A.; Cisneros-Heredia, D.F.; Colli, G.R.; Costa, H.C.; Franco, F.L; Giraudo, A.; Argôlo, A.J.S.; Arzamendia, V.; Barbo, F.E.; Azevedo, J.A.; Bérnils, R.S. & Bolochio, B.E. 2019. Atlas of Brazilian Snakes: verified point-locality maps to mitigate the wallacean shortfall in a megadiverse snake fauna. South American Journal of Herpetology , 4: 1-274. https://doi.org/10.2994/SAJH-D-19-00120.1.
https://doi.org/10.2994/SAJH-D-19-00120....
). This distributional pattern suggests that the RBJ’s longitudinal zone may represent the maximum limit for their geographic occurrence. This would explain their rarity in our samplings, and they may also constitute isolated populations (seeCarvalho et al., 2020Carvalho, T.R.; Moraes, L.J.C.L.; Angulo, A.; Werneck, F.P.; Icochea, J. & Lima, A.P. 2020. New acoustic and molecular data shed light on the poorly known Amazonian frog Adenomera simonstuarti (Leptodactylidae): implications for distribution and conservation. European Journal of Taxonomy, 682: 1-18. https://doi.org/10.5852/ejt.2020.682.
https://doi.org/10.5852/ejt.2020.682...
). In addition to the Purus River as a geographic barrier, the distribution and dispersal of these species typical from the western Amazonia may be controlled by subtle gradients of climate, soils and vegetation types (seeTuomisto et al., 2019Tuomisto, H.; Doninki, J. & Ruokolainen K. 2019. Discovering floristic and geoecological gradients across Amazonia. Journal of Biogeography , 46(8): 1734-1748. https://doi.org/10.1111/jbi.13627.
https://doi.org/10.1111/jbi.13627...
).

Regarding conservation status, according to the latest national list of threatened species (ICMBio, 2018Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2018. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Brasília, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério de Meio Ambiente.), the amphibian and reptile species reported here for the RBJ are mostly in the Least Concern category (LC; 79%), which is a common event for Amazonian species since many of them are attributed to large extents of occurrence (Neckel-Oliveira et al., 2013Neckel-Oliveira, S.; Galatti, U.; Faveri, S.B.; Albareli, L.P. & Nascimento, H.E.M. 2013. Ecological correlates in Brazilian Amazonian anurans: implications for conservation. Amphibia-Reptilia , 34: 217-232. https://doi.org/10.1163/15685381-00002890.
https://doi.org/10.1163/15685381-0000289...
). However, a considerable percentage of the recorded species has not yet been properly assessed as to its conservation status (NE; 12%); the strabomantid Pristimantis reichlei Padial & de la Riva, 2009 is considered as Data Deficient (DD); and the three podocnemidids Podocnemis expansa (Schweigger, 1812), Podocnemis sextuberculata (Cornalia, 1849), and Podocnemis unifilis Troschel 1848 are considered to be Near Threatened (NT) of extinction. It is noteworthy that the scenario of ongoing and future anthropic changes in Amazonia is quite worrying (e.g.,Latrubesse et al., 2017Latrubesse, E.M.; Arima, E.Y.; Dunne, T.; Park, E.; Baker, V.R.; Horta, F.M.; Wight, C.; Wittmann, F.; Zuanon, J.; Baker, P.A.; Ribas, C.C.; Norgaard, R.B. & Filizola, N. 2017. Damming the rivers of the Amazon basin. Nature, 546(7658): 363-369. https://doi.org/10.1038/nature22333.
https://doi.org/10.1038/nature22333...
) and can directly or indirectly affect the biological diversity even in localities that are difficult to access such as the case of the RBJ.

Many traditional communities live in the RBJ, surviving mostly from extractivism, and the effective conservation of these environments can only be achieved by following the sustainable use of natural resources (ICMBio, 2009Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2009. Plano de Manejo: Reserva Extrativista do Baixo Juruá. Juruá. Brasília, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério de Meio Ambiente.). In fact, even with a more permissive character, the value of sustainable use protected areas as the RBJ in preserving Amazonian habitats has been proven (Milien et al., 2021Milien, E.J.; Rocha, K.S.; Brown, I.F. & Perz, S.G. 2021. Roads, deforestation and the mitigating effect of the Chico Mendes extractive reserve in the southwestern Amazon. Trees, Forests and People, 3: 100056. https://doi.org/10.1016/j.tfp.2020.100056.
https://doi.org/10.1016/j.tfp.2020.10005...
). We also highlight the need to monitor the expansion of the Juruá municipality, the largest urban nucleus in this region. This municipality is completely surrounded by the boundaries of the RBJ (ICMBio, 2009Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2009. Plano de Manejo: Reserva Extrativista do Baixo Juruá. Juruá. Brasília, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério de Meio Ambiente.), and the permissive character of this conservation unit can lead to unsustainable advances that would irreversibly alter some of the RBJ habitats and associated biodiversity. It is also noteworthy the biased conservation caused by environmental differences between the banks of the lower Juruá River. While the non-flooded habitats are more protected on the right bank of the Juruá River by the RBJ and the indigenous territory Kumaru do Lago Ualá, an immense portion of seasonally flooded habitats on the left bank are less represented by protected areas. These habitats are essential contributors to the generation and maintenance of regional diversity, and we strongly suggest that this environmental difference should be taken into account in future assessments of biological conservation in this region.

ACKNOWLEDGEMENTS:

We thank J.V. Amaral, I. Junqueira, L.M. Melo, C.F.A.V. Neto, G.P. Lopes, M. Ferreira, E. Schultz, M.F.A. Maximiano, P.M. Nassar, T.C.M. Santos, W. Dutra, R.M. Rabelo, S.M.H. Novelle, L. Schneider, E.S. Brito, R.C. Vogt, O. Pereira, P. Narvaes, and the inhabitants of local communities for their help during fieldwork. We also thank V. Braga by kindly providing molecular data she collected for T. solimoensis, and P.R. Melo-Sampaio, M. Ferrão, O.M. Entiauspe-Neto, M.A. Ribeiro-Júnior and T.R. Carvalho for their help in species identification. The work at the INPA-H was supported by A.A.A. Silva and M. Santos.

REFERENCES

  • Aleixo, A. & Rossetti, D.F. 2007. Avian gene trees, landscape evolution, and geology: towards a modern synthesis of Amazonian historical biogeography? Journal of Ornithology, 148 (suppl. 2): 443-453. https://doi.org/10.1007/s10336-007-0168-7
    » https://doi.org/10.1007/s10336-007-0168-7
  • Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M. & Sparovek, G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6): 711-728. https://doi.org/10.1127/0941-2948/2013/0507
    » https://doi.org/10.1127/0941-2948/2013/0507
  • Angulo, A. & Icochea, J. 2010. Cryptic species complexes, widespread species and conservation: lessons from Amazonian frogs of the Leptodactylus marmoratus group (Anura: Leptodactylidae). Systematics and Biodiversity, 8(3): 357-370. https://doi.org/10.1080/14772000.2010.507264
    » https://doi.org/10.1080/14772000.2010.507264
  • Arévalo, E.; Davis, S.K. & Sites-Jr., J.W. 1994. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in Central Mexico. Systematic Biology, 43(3): 387-418. https://doi.org/10.1093/sysbio/43.3.387
    » https://doi.org/10.1093/sysbio/43.3.387
  • Ávila, R.W.; Morais, D.H.; Perez, R.; Pansonato, A.; Carvalho, V.T.; Rojas, R.R.; Gordo, M. & Farias, I.P. 2020. A new species of the Rhinella margaritifera (Laurenti 1768) species group (Anura, Bufonidae) from southern Brazilian Amazonia. Zootaxa, 4868: 368-388. https://doi.org/10.11646/zootaxa.4868.3.3
    » https://doi.org/10.11646/zootaxa.4868.3.3
  • Ávila-Pires, T.C.S. 1995. Lizards of Brazilian Amazonia (Reptilia: Squamata). Zoologische Verhandelingen, 299: 1-706.
  • Ávila-Pires, T.C.S. 2018. Censo da Biodiversidade da Amazônia Brasileira - MPEG: Quelônios e Jacarés. Available: Available: http://censo.museu-goeldi.br Access: 25/05/2022.
    » http://censo.museu-goeldi.br
  • Ávila-Pires, T.C.S. 2020. Censo da Biodiversidade da Amazônia Brasileira - MPEG: Lagartos. Available: Available: http://censo.museu-goeldi.br Access: 25/05/2022.
    » http://censo.museu-goeldi.br
  • Ávila-Pires, T.C.S.; Vitt, L.J.; Sartorius, S.S. & Zani, P.A. 2009. Squamata (Reptilia) from four sites in southern Amazonia, with a biogeographic analysis of Amazonian lizards. Boletim do Museu Paraense Emílio Goeldi de Ciências Naturais, 4: 99-118.
  • Azevedo-Ramos, C. & Galatti, U. 2002. Patterns of amphibian diversity in Brazilian Amazonia: conservation implications. Biological Conservation, 103: 103-111. https://doi.org/10.1016/S0006-3207(01)00129-X
    » https://doi.org/10.1016/S0006-3207(01)00129-X
  • Bergmann, P.J. & Russel, A.P. 2007. Systematics and biogeography of the widespread Neotropical gekkonid genus Thecadactylus (Squamata), with the description of a new cryptic species. Zoological Journal of the Linnean Society, 149(3): 339-370. https://doi.org/10.1111/j.1096-3642.2007.00251.x
    » https://doi.org/10.1111/j.1096-3642.2007.00251.x
  • Bernarde, P.S.; Albuquerque, S.; Miranda, D.B. & Turci, L.C.B. 2013. Herpetofauna da floresta do baixo rio Moa em Cruzeiro do Sul, Acre - Brasil. Biota Neotropica, 13: 220-244. https://doi.org/10.1590/S1676-06032013000100023
    » https://doi.org/10.1590/S1676-06032013000100023
  • Bickham, J.W.; Wood, C.C. & Patton, J.C. 1995. Biogeographic implications of cytochrome b sequences and allozymes in sockeye (Oncorhynchus nerka). Journal of Heredity, 86: 140-144. https://doi.org/10.1093/oxfordjournals.jhered.a111544
    » https://doi.org/10.1093/oxfordjournals.jhered.a111544
  • Brcko, I.C.; Hoogmoed, M.S. & Neckel-Oliveira, S. 2013. Taxonomy and distribution of the salamander genus Bolitoglossa Duméril, Bibron & Duméril, 1854 (Amphibia, Caudata, Plethodontidae) in Brazilian Amazonia. Zootaxa, 3686: 401-431. https://doi.org/10.11646/zootaxa.3686.4.1
    » https://doi.org/10.11646/zootaxa.3686.4.1
  • Bush, M.B. & Lovejoy, T.E. 2007. Amazonian conservation: pushing the limits of biogeographical knowledge. Journal of Biogeography, 34(8): 1291-1293. https://doi.org/10.1111/j.1365-2699.2007.01758.x
    » https://doi.org/10.1111/j.1365-2699.2007.01758.x
  • Caminer, M.A. & Ron, S.R. 2014. Systematics of treefrogs of the Hypsiboas calcaratus and Hypsiboas fasciatus species complex (Anura, Hylidae) with the description of four new species. ZooKeys, 370: 1-68. https://doi.org/10.3897/zookeys.370.6291
    » https://doi.org/10.3897/zookeys.370.6291
  • Caminer, M.A. & Ron, S.R. 2020. Systematics of the Boana semilineata species group (Anura: Hylidae), with a description of two new species from Amazonian Ecuador. Zoological Journal of the Linnean Society , 190: 149-180. https://doi.org/10.1093/zoolinnean/zlaa002
    » https://doi.org/10.1093/zoolinnean/zlaa002
  • Caminer, M.A.; Milá, B.; Jansen, M.; Fouquet, A.; Venegas, P.J.; Chávez, G.; Lougheed, S.C. & Ron, S.R. 2017. Systematics of the Dendropsophus leucophyllatus species complex (Anura: Hylidae): Cryptic diversity and the description of two new species. PLoS ONE, 12: 1-42. https://doi.org/10.1371/journal.pone.0171785
    » https://doi.org/10.1371/journal.pone.0171785
  • Carvalho, T.R.; Fouquet, A.; Lyra, M.L.; Giaretta, A.A.; Costa-Campos, C.E.; Rodrigues, M.T.; Haddad, C.F.B. & Ron, S.R. 2022. Species diversity and systematics of the Leptodactylus melanonotus group (Anura, Leptodactylidae): review of diagnostic traits and a new species from the Eastern Guiana Shield. Systematics and Biodiversity , 20: 1-31. https://doi.org/10.1080/14772000.2022.2089269
    » https://doi.org/10.1080/14772000.2022.2089269
  • Carvalho, T.R.; Moraes, L.C.J.L.; Lima, A.P.; Fouquet, A.; Peloso, P.L.V.; Pavan, D.; Drummond, L.O.; Rodrigues, M.T.; Giaretta, A.A.; Gordo, M.; Neckel-Oliveira, S. & Haddad, C.F.B. 2021. Systematics and historical biogeography of neotropical foam-nesting frogs of the Adenomera heyeri clade (Leptodactylidae), with the description of six new Amazonian species. Zoological Journal of the Linnean Society , 191(2): 395-433. https://doi.org/10.1093/zoolinnean/zlaa051
    » https://doi.org/10.1093/zoolinnean/zlaa051
  • Carvalho, T.R.; Moraes, L.J.C.L.; Angulo, A.; Werneck, F.P.; Icochea, J. & Lima, A.P. 2020. New acoustic and molecular data shed light on the poorly known Amazonian frog Adenomera simonstuarti (Leptodactylidae): implications for distribution and conservation. European Journal of Taxonomy, 682: 1-18. https://doi.org/10.5852/ejt.2020.682
    » https://doi.org/10.5852/ejt.2020.682
  • Carvalho, V.T.; Fraga, R.; Bonora, L. & Vogt, R.C. 2017. First record of the resplendent Frog Allophryne resplendens Castroviejo-Fisher et al., 2012 in Brazil (Anura: Allophrynidae). Herpetology Notes, 10: 561-562.
  • Carvalho, V.T.; Fraga, R.; Eler, E.S.; Kawashita-Ribeiro, R.A.; Feldberg, E.; Vogt, R.; Carvalho, M.A.; Noronha, J.C.; Condrati, L.H. & Bittencourt, S. 2013. Toad-headed pitviper Bothrocophias hyoprora (Amaral, 1935) (Serpentes, Viperidae): New records of geographic range in Brazil, hemipenial morphology, and chromosomal characterization. Herpetological Review, 44: 410-414.
  • Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K. & Ellison, A.M. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84: 45-67. https://doi.org/10.1890/13-0133.1
    » https://doi.org/10.1890/13-0133.1
  • Che, J.; Chen, H.M.; Yang, J.X.; Jin, J.Q.; Jiang, K.E.; Yuan, Z.Y.; Murphy, R.W. & Zhang, Y.P. 2012. Universal COI primers for DNA barcoding amphibians. Molecular Ecology Resources, 12(2): 247-258. https://doi.org/10.1111/j.1755-0998.2011.03090.x
    » https://doi.org/10.1111/j.1755-0998.2011.03090.x
  • Chomitz, K.M. & Thomas, T.S. 2003. Determinants of land use in Amazonia: A fine-scale Spatial Analysis. American Journal of Agricultural Economics, 85(4): 1016-1028. https://doi.org/10.1111/1467-8276.00504
    » https://doi.org/10.1111/1467-8276.00504
  • Cisneros-Heredia, D.F. 2005. On the distribution and natural history of Hyla miyatai Vigle & Goberdhan-Vigle, 1990, in Amazonian Ecuador. Herpetozoa, 18: 71-72.
  • Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J. & Sayers, E.W. 2016. GenBank. Nucleic Acids Research, 44: D67-D72. https://doi.org/10.1093/nar/gkv1276
    » https://doi.org/10.1093/nar/gkv1276
  • Correia, R.A.; Malhado, A.C.M.; Lins, L.; Gamarra, N.C.; Bonfim, W.A.G.; Valencia-Aguilar, A.; Bragagnolo, C.; Jepson, P. & Ladle, R.J. 2016. The scientific value of Amazonian protected areas. Biodiversity Conservation, 25(8): 1503-1513. https://doi.org/10.1007/s10531-016-1122-x
    » https://doi.org/10.1007/s10531-016-1122-x
  • Cracraft, J. 1985. Historical biogeography and patterns of differentiation within the South American Avifauna: Areas of endemism. Ornithological Monographs, 36: 49-84. https://doi.org/10.2307/40168278
    » https://doi.org/10.2307/40168278
  • Cunha, F.A.G.; Fernandes, T.; Franco, J. & Vogt, R.C. 2019. Reproductive biology and hatchling morphology of the Amazon toad-headed turtle (Mesoclemmys raniceps) (Testudines: Chelidae), with notes on species morphology and taxonomy of the Mesoclemmys Group. Chelonian Conservation and Bioogy, 18(2): 195-209. https://doi.org/10.2744/CCB-1271.1
    » https://doi.org/10.2744/CCB-1271.1
  • Dias-Terceiro, R.G.; Kaefer, I.L.; Fraga, R.; Araújo, M.C.; Simões, P.I. & Lima, A.P. 2015. A matter of scale: historical and environmental factors structure anuran assemblages from the upper Madeira River, Amazonia. Biotropica, 47: 259-266. https://doi.org/10.1111/btp.12197
    » https://doi.org/10.1111/btp.12197
  • Dixon, J.R.; Thomas, R.A. & Greene, H.W. 1976. Status of the neotropical snake Rhabdosoma poeppigi JAN, with notes on variation in Atractus elaps (Günther). Herpetologica, 32: 221-227.
  • Dixon, J.R.; Wiest, J.A. & Cei, J.M. 1993. Revision of the Neotropical snake genus Chironius Fitzinger (Serpentes, Colubridae). Museo Regionale Di Scienze Naturali Monografie, 13: 1-280.
  • Duellman, W.E. 1978. The biology of an equatorial herpetofauna in Amazonian Equador. University of Kansas. Museum of Natural History, Miscellaneous Publications, 65: 1-352.
  • Duellman, W.E. 1979. The South American herpetofauna: its origin, evolution, and dispersal. Kansas, Museum of Natural History, Lawrence, University of Kansas. 485p. (Monograph of the Museum of Natural History, the University of Kansas no. 7). https://doi.org/10.5962/bhl.title.3207
    » https://doi.org/10.5962/bhl.title.3207
  • Elmer, K.R. & Cannatella, D.C. 2008. Three new species of leaflitter frogs from the upper Amazon forests: cryptic diversity within Pristimantis “ockendeni” (Anura: Strabomantidae) in Ecuador. Zootaxa, 1784: 11-38. https://doi.org/10.11646/zootaxa.1784.1.2
    » https://doi.org/10.11646/zootaxa.1784.1.2
  • Enge, K.M. 2001. The pitfalls of pitfall traps. Journal of Herpetology, 35(3): 467-478. https://doi.org/10.2307/1565965
    » https://doi.org/10.2307/1565965
  • Fearnside, P.M. 2008. The roles and movements of actors in the deforestation of Brazilian Amazonia. Ecology and Society, 13: 23. https://doi.org/10.5751/ES-02451-130123
    » https://doi.org/10.5751/ES-02451-130123
  • Fernandes, P.E.C.A.; Pinheiro, S.S.; Montalvão, R.M.G.; Issler, R.S.; Abreu, A.S. & Tassinari, C.C.G. 1977. Geologia. In: RADAMBRASIL. Folha SA.19 Juruá. Brasília, Projeto Radambrasil. p. 19-123.
  • Ferrante, L. & Fearnside, P. 2019. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environmental Conservation, 46(4): 261-263. https://doi.org/10.1017/S0376892919000213
    » https://doi.org/10.1017/S0376892919000213
  • Ferrão, M.; Colatreli, O.; Fraga, R.; Kaefer, I.L.; Moravec, J. & Lima, A.P. 2016. High species richness of Scinax treefrogs (Hylidae) in a threatened Amazonian landscape revealed by an integrative approach. PloS ONE, 11: e0165679. https://doi.org/10.1371/journal.pone.0165679
    » https://doi.org/10.1371/journal.pone.0165679
  • Ferrão, M.; de Souza, R.A.; Colatreli, O.P.; Hanken, J. & Lima, A.P. 2022. Hidden in the litter: cryptic diversity of the leaf-litter toad Rhinella castaneotica-proboscidea complex revealed through integrative taxonomy, with description of a new species from south-western Amazonia. Systematics and Biodiversity , 20: 1-24. https://doi.org/10.1080/14772000.2022.2039317
    » https://doi.org/10.1080/14772000.2022.2039317
  • Ferrão, M.; Lima, A.P.; Ron, S.R.; Santos, S.P.L. & Hanken, J. 2020. New species of leaf-litter toad of the Rhinella margaritifera species group (Anura: Bufonidae) from Amazonia. Copeia, 108(4): 967-986. https://doi.org/10.1643/CH2020043
    » https://doi.org/10.1643/CH2020043
  • Fonseca, W.L.; Silva, J.D.; Abegg, A.D.; Rosa, C.M. & Bernarde, P.S. 2019. Herpetofauna of Porto Walter and surrounding areas, Southwest Amazonia, Brazil. Herpetology Notes , 12: 91-107.
  • Fouquet, A.; Cassini, C.S.; Baptista, C.F.; Pech, N. & Rodrigues, M.T. 2014. Species delimitation, patterns of diversification and historical biogeography of the Neotropical frog genus Adenomera (Anura, Leptodactylidae). Journal of Biogeography , 41(5): 855-870. https://doi.org/10.1111/jbi.12250
    » https://doi.org/10.1111/jbi.12250
  • Fouquet, A.; Gilles, A.; Vences, M.; Marty, C.; Blanc, M. & Gemmell, N.J. 2007. Underestimation of Species Richness in Neotropical Frogs Revealed by mtDNA Analyses. PLoS ONE , 2: e1109. https://doi.org/10.1371/journal.pone.0001109
    » https://doi.org/10.1371/journal.pone.0001109
  • Fouquet, A.; Marinho, P.; Réjaud, A.; de Carvalho, T.; Caminer, M.A, Jansen, M.; Rainha, R.; Rodrigues, M.T.; Werneck, F.; Lima, A.; Hrbek, T.; Giaretta, A.; Venegas, P.J.; Chávez, G. & Ron, S. 2021. Systematics and biogeography of the Boana albopunctata species group, with the description of two new species from Amazonia. Systematics & Biodiversity, 19(4): 375-399. https://doi.org/10.1080/14772000.2021.1873869
    » https://doi.org/10.1080/14772000.2021.1873869
  • Fouquet, A.; Martinez, Q.; Zeidler, L.; Courtois, E.A.; Gaucher, P.; Blanc, M.; Lima, J.D.; Souza, S.M.; Rodrigues, M.T. & Kok, P.J.R. 2016. Cryptic diversity in the Hypsiboas semilineatus species group (Amphibia, Anura) with the description of a new species from the eastern Guiana Shield. Zootaxa, 4084: 79-104. https://doi.org/10.11646/zootaxa.4084.1.3
    » https://doi.org/10.11646/zootaxa.4084.1.3
  • Fraga, R.; Almeida, A.P.; Moraes, L.J.C.L.; Gordo, M.; Pirani, R.; Zamora, R.R.; Carvalho, V.T.; Passos, P. & Werneck, F. 2017. Narrow endemism or insufficient sampling? Geographical range extension and morphological variation of the poorly known Atractus riveroi Roze, 1961 (Serpentes: Dipsadidae). Herpetological Review , 48(2): 281-284.
  • Fraga, R.; Stow, A.J.; Magnusson, W.E. & Lima, A.P. 2014. The Costs of Evaluating Species Densities and Composition of Snakes to Assess Development Impacts in Amazonia. PLoS ONE , 9, e105453. https://doi.org/10.1371/journal.pone.0105453
    » https://doi.org/10.1371/journal.pone.0105453
  • França, F.G.R. & Venâncio, N.M. 2010. Reptiles and amphibians of a poorly known region in southwest Amazonia. Biotemas, 23: 71-84. https://doi.org/10.5007/2175-7925.2010v23n3p71
    » https://doi.org/10.5007/2175-7925.2010v23n3p71
  • Freitas, M.A.; Venâncio, N.M.; Abegg, A.D.; Azevedo, W.S.; Pereira, V.O.; Zanotti, A.P.; Veloso, A.; Schwarzbach, L.; Souza, A.G.O.; Cruz-da-Silva, R.C.C.; Amorim, V.R.G. & Moura, G.J.B. 2020. Herpetofauna at the Rio Acre Ecological Station, Amazon Rainforest, Brazil. Herpetology Notes , 13: 33-48.
  • Frost, D.R. 2022. Amphibian Species of the World: an online reference. Version 6.0. Available: Available: http://research.amnh.org/herpetology/amphibia/index.html Access: 25/05/2022.
    » http://research.amnh.org/herpetology/amphibia/index.html
  • Gascon, C. 1996. Amphibian litter fauna and river barriers in flooded and non-flooded Amazonian rainforests. Biotropica, 28: 136-140. https://doi.org/10.2307/2388779
    » https://doi.org/10.2307/2388779
  • Gascon, C.; Malcolm, J.R.; Patton, J.L.; Silva, M.N.F.; Bogart, J.P.; Lougheed, S.C.; Peres, C.A.; Neckel, S. & Boag, P.T. 2000. Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academyof Science, 97: 13672-13677. https://doi.org/10.1073/pnas.230136397
    » https://doi.org/10.1073/pnas.230136397
  • Gazoni, T.; Lyra, M.L.; Ron, S.R.; Strüssmann, C.; Baldo, D.; Narimatsu, H.; Pansonato, A.; Schneider R.G.; Giaretta, A.A.; Haddad, Parise-Maltempi, P.P. & Carvalho, T.R. 2021. Revisiting the systematics of the Leptodactylus melanonotus group (Anura: Leptodactylidae): redescription of L. petersii and revalidation of its junior synonyms. Zoologischer Anzeiger, 290: 117-134. https://doi.org/10.1016/j.jcz.2020.12.002
    » https://doi.org/10.1016/j.jcz.2020.12.002
  • Gibbs, A.K. & Barron, C.N. 1993. The geology of the Guiana shield. New York, Oxford University Press.
  • Godinho, M.B.C. & da Silva, F.R. 2018. The influence of riverine barriers, climate, and topography on the biogeographic regionalization of Amazonian anurans. Scientific Reports, 8 (3427):1-11. https://doi.org/10.1038/s41598-018-21879-9
    » https://doi.org/10.1038/s41598-018-21879-9
  • Gordo, M.; Toledo, L.F.; Suárez, P.; Kawashita-Ribeiro, R.A.; Ávila, R.W.; Morais, D.H. & Nunes, I. 2013. A new species of Milk Frog of the genus Trachycephalus Tschudi (Anura, Hylidae) from the Amazonian rainforest. Herpetologica, 69(4): 466-479. https://doi.org/10.1655/HERPETOLOGICA-D-11-00086
    » https://doi.org/10.1655/HERPETOLOGICA-D-11-00086
  • Harvey, M.G.; Aleixo, A.; Ribas, C.C. & Brumfield, R.T. 2017. Habitat association predicts genetic diversity and population divergence in Amazonian birds. American Naturalist, 190(5): 631-648. https://doi.org/10.1086/693856
    » https://doi.org/10.1086/693856
  • Hedges, S.B. & Schlüter, A. 1992. Eleutherodactylus eurydactylus, a new species of frog from central Amazonian Perú (Anura: Leptodactylidae). Copeia, 1992(4): 1002-1006. https://doi.org/10.2307/1446629
    » https://doi.org/10.2307/1446629
  • Hedges, S.B.; Duellman, W.E. & Heinicke, M.P. 2008. New World direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation. Zootaxa, 1737: 1-182. https://doi.org/10.11646/zootaxa.1737.1.1
    » https://doi.org/10.11646/zootaxa.1737.1.1
  • Heyer, W.R. 1976. Notes on the frog fauna of the Amazon Basin. Acta Amazonica, 6(3): 369-378. https://doi.org/10.1590/1809-43921976063369
    » https://doi.org/10.1590/1809-43921976063369
  • Heyer, W.R. 1997. Geographic variation in the frog genus Vanzolinius (Anura: Leptodactylidae). Proceedings of the Biological Society of Washington, 110(3): 338-365.
  • Heyer, W.R.; Donnelly, M.A.; McDiarmid, R.W.; Hayek, L.C. & Foster, M.S. 1994. Measuring and monitoring biological diversity: Standard methods for amphibians. Washington, Smithsonian Institution Press.
  • Heyer, W.R.; García-Lopez, J.M. & Cardoso, A.J. 1996. Advertisement call variation in the Leptodactylus mystaceus species complex (Amphibia: Leptodactylidae) with a description of a new sibling species. Amphibia-Reptilia, 17: 7-31. https://doi.org/10.1163/156853896X00252
    » https://doi.org/10.1163/156853896X00252
  • Hoogmoed, M.S. 2019. Censo da Biodiversidade da Amazônia Brasileira - MPEG: Anfíbios. Available: Available: http://censo.museu-goeldi.br Access: 25/05/2022.
    » http://censo.museu-goeldi.br
  • Hoorn, C.; Wesselingh, F.P.; Ter Steege, H.; Bermudez, M.A.; Mora, A.; Sevink, J.; Sannmartín, I.; Sanchez-Meseguer, A.; Anderson, C.L.; Figueiredo, J.P.; Jaramillo, C.; Riff, D.; Negri, F.R.; Hooghiemstra, H.; Lundberg, J.; Stadler, T.; Sarkinen, T. & Antonelli, A. 2010. Amazonia through time: andean uplift, climate change, landscape evolution, and biodiversity. Science, 330(6006): 927-931. https://doi.org/10.1126/science.1194585
    » https://doi.org/10.1126/science.1194585
  • Hortal, J.; Bello, F.; Diniz-Filho, J.A.F.; Lewinsohn, T.M.; Lobo, J.M. & Ladle, R.J. 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46: 523-549. https://doi.org/10.1146/annurev-ecolsys-112414-054400
    » https://doi.org/10.1146/annurev-ecolsys-112414-054400
  • Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2009. Plano de Manejo: Reserva Extrativista do Baixo Juruá. Juruá. Brasília, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério de Meio Ambiente.
  • Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2018. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Brasília, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério de Meio Ambiente.
  • Jaramillo, A.F.; De La Riva, I.; Guayasamin, J.M.; Chaparro, J.C.; Gagliardi-Urrutia, G.; Gutiérrez, R.C.; Brcko, I.; Vilà, C. & Castroviejo-Fisher, S. 2020. Vastly underestimated species richness of Amazonian salamanders (Plethodontidae: Bolitoglossa) and implications about plethodontid diversification. Molecular Phylogenetics and Evolution, 149: 106841. https://doi.org/10.1016/j.ympev.2020.106841
    » https://doi.org/10.1016/j.ympev.2020.106841
  • Jiménez de la Espada, M. 1875. Vertebrados del viaje al Pacífico verificado de 1862 a 1865 por una Comisión de Naturalistas Enviada por el Gobierno Español. Batracios. Madrid, A. Miguel Ginesta. https://doi.org/10.5962/bhl.title.5769
    » https://doi.org/10.5962/bhl.title.5769
  • Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S. & Madden, T.L. 2008. NCBI BLAST: a better web interface. Nucleic Acids Research , 36 (suppl. 2): W5-W9. https://doi.org/10.1093/nar/gkn201
    » https://doi.org/10.1093/nar/gkn201
  • Jorge, R.F.; Ferrão, M. & Lima, A.P. 2020. Out of bound: A new threatened Harlequin Toad (Bufonidae, Atelopus) from the outer borders of the Guiana Shield in central Amazonia described through integrative taxonomy. Diversity, 12: 1-25. https://doi.org/10.3390/d12080310
    » https://doi.org/10.3390/d12080310
  • Jungfer, K.-H.; Faivovich, J.; Padial, J.M.; Castroviejo-Fisher, S.; Lyra, M.L.; Berneck, B.V.M.; Iglesias, P.P.; Kok, P.J.R.; MacCulloch, R.D.; Rodrigues, M.T.; Verdade, V.K.; Torres Gastello, C.P.; Chaparro, J.C.; Valdujo, P.H.; Reichle, S.; Moravec, J.; Gvoždík, V.; Gagliardi-Urrutia, G.; Ernst, R.; de la Riva, I.; Means, D.B.; Lima, A.P.; Señaris, J.C.; Wheeler W.C. & Haddad, C.F.B. 2013. Systematics of spiny-backed treefrogs (Hylidae: Osteocephalus): an Amazonian puzzle. Zoologica Scripta, 42: 351-380. https://doi.org/10.1111/zsc.12015
    » https://doi.org/10.1111/zsc.12015
  • Kalliola, R.; Salo, J.; Puhaka, M. & Rajasilta, M. 1991. New site formation and colonizing vegetation in primary succession on the western Amazon floodplains. Journal of Ecology, 79(4): 877-901. https://doi.org/10.2307/2261087
    » https://doi.org/10.2307/2261087
  • Katoh, K. & Standley, D.M. 2013. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4): 772-780. https://doi.org/10.1093/molbev/mst010
    » https://doi.org/10.1093/molbev/mst010
  • Kawashita-Ribeiro, R.A.; Carvalho, V.T.; Lima, A.C.; Ávila, R.W. & Fraga, R. 2011. Morphology and geographical distribution of the poorly known snake Umbrivaga pygmaea (Serpentes: Dipsadidae) in Brazil. Phyllomedusa, 10(2): 177-182. https://doi.org/10.11606/issn.2316-9079.v10i2p177-182
    » https://doi.org/10.11606/issn.2316-9079.v10i2p177-182
  • Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; Thierer, T.; Ashton, B.; Mentjies, P. & Drummond, A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12): 1647-1649. https://doi.org/10.1093/bioinformatics/bts199
    » https://doi.org/10.1093/bioinformatics/bts199
  • Kok, P.J.; Bittenbinder, M.A.; van den Berg, J.K.; Marques-Souza, S.; Nunes, P.M.S.; Laking, A.E.; Teixeira-Jr., M.; Fouquet, A.; Means, D.B.; MacCulloch, R.D. & Rodrigues, M.T. 2018. Integrative taxonomy of the gymnophthalmid lizard Neusticurus rudis Boulenger, 1900 identifies a new species in the eastern Pantepui region, north-eastern South America. Journal of Natural History, 52(13-16): 1029-1066. https://doi.org/10.1080/00222933.2018.1439541
    » https://doi.org/10.1080/00222933.2018.1439541
  • Latrubesse, E.M.; Arima, E.Y.; Dunne, T.; Park, E.; Baker, V.R.; Horta, F.M.; Wight, C.; Wittmann, F.; Zuanon, J.; Baker, P.A.; Ribas, C.C.; Norgaard, R.B. & Filizola, N. 2017. Damming the rivers of the Amazon basin. Nature, 546(7658): 363-369. https://doi.org/10.1038/nature22333
    » https://doi.org/10.1038/nature22333
  • Laurance, W.F.; Camargo, J.L.C.; Luizão, R.C.C.; Laurance, S.G.; Pimm, S.L.; Bruna, E.M.; Stouffer, P.C.; Willianson, G.B.; Benítez-Malvido, J.; Vasconcelos, H.L.; Van Houtan, K.S.; Zartman, C.E.; Boyle, S.A.; Didham, R.K.; Andrade, A. & Lovejoy, T.E. 2011. The fate of Amazonian forest fragments: a 32-year investigation. Biological Conservation , 144: 56-67. https://doi.org/10.1016/j.biocon.2010.09.021
    » https://doi.org/10.1016/j.biocon.2010.09.021
  • Lougheed, S.C.; Gascon, C.; Jones D.A.; Bogart, J.P. & Boag, P.T. 1999. Ridges and rivers: a test of competing hypotheses of Amazonian diversification using a dart-poison frog (Epipedobates femoralis). Proceedings of the Royal Society of London, Series B, 266(1431): 1829-1835. https://doi.org/10.1098/rspb.1999.0853
    » https://doi.org/10.1098/rspb.1999.0853
  • Lynch, J.D. 1997. Intrageneric relationships of mainland Eleutherodactylus II. A review of the Eleutherodactylus sulcatus group. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 21(80): 353-372.
  • Maciel, A.O. & Hoogmoed, M.S. 2011. Taxonomy and distribution of caecilian amphibians (Gymnophiona) of Brazilian Amazonia, with a key to their identification. Zootaxa, 2984: 1-53. https://doi.org/10.11646/zootaxa.2984.1.1
    » https://doi.org/10.11646/zootaxa.2984.1.1
  • Magalhães, F.M.; Lyra, M.L.; Carvalho, T.R.; Baldo, D.; Brusquetti, F.; Burella, P.; Colli, G.R.; Gehara, M.C.; Giaretta, A.A.; Haddad, C.F.B.; Langone, J.A.; López, J.A.; Napoli, M.F.; Santana, D.J.; Sá, RO. & Garda, A.A. 2020. Taxonomic review of South American Butter Frogs: Phylogeny, geographic patterns, and species delimitation in the Leptodactylus latrans species group (Anura: Leptodactylidae). Herpetological Monographs, 34: 131-177. https://doi.org/10.1655/0733-1347-31.4.131
    » https://doi.org/10.1655/0733-1347-31.4.131
  • Melo-Sampaio, P.R.; Oliveira, R.M. & Prates, I. 2018. A new Nurse Frog from Brazil (Aromobatidae: Allobates), with data on the distribution and phenotypic variation of western Amazonian species. South American Journal of Herpetology , 13(2): 131-149. https://doi.org/10.2994/SAJH-D-17-00098.1
    » https://doi.org/10.2994/SAJH-D-17-00098.1
  • Milien, E.J.; Rocha, K.S.; Brown, I.F. & Perz, S.G. 2021. Roads, deforestation and the mitigating effect of the Chico Mendes extractive reserve in the southwestern Amazon. Trees, Forests and People, 3: 100056. https://doi.org/10.1016/j.tfp.2020.100056
    » https://doi.org/10.1016/j.tfp.2020.100056
  • Moraes, L.J.C.L.; Gordo, M.; Pirani, R.M.; Rainha, R.N.; Almeida, A.P.; Oliveira, A.F.S.; Oliveira, M.E.; Silva, A.A.A. & Werneck, F.P. 2022a. Amphibians and squamates in Amazonian flooded habitats, with a study on the variation of amphibian assemblages along the Solimões River. In: Dalu, T. & Wasserman, R.J. (Eds.). Fundamentals of tropical freshwater Wetlands: from ecology to conservation management. Elsevier. Cap. 13, p. 381-384. https://doi.org/10.1016/B978-0-12-822362-8.00032-3
    » https://doi.org/10.1016/B978-0-12-822362-8.00032-3
  • Moraes, L.J.C.L.; Werneck, F.P.; Réjaud, R.; Rodrigues, M.T.; Prates, I.; Glaw, F.; Kok, P.J.R.; Ron, S.R.; Chaparro, J.C.; Osorno-Muñoz, M.; Vechio, F.D.; Recoder, R.; Marques-Souza, S.; Rojas, R.R.; Demay, L.; Hrbek, T. & Fouquet, A. 2022b. Diversification of tiny toads (Bufonidae: Amazophrynella) sheds light on ancient landscape dynamism in Amazonia. Biological Journal of the Linnean Society, 136: 75-91. https://doi.org/10.1093/biolinnean/blac006
    » https://doi.org/10.1093/biolinnean/blac006
  • Moraes, L.J.C.L.; Pavan, D.; Barros, M.C. & Ribas, C.C. 2016. The combined influence of riverine barriers and flooding gradients on biogeographical patterns for amphibian and squamates in south-eastern Amazonia. Journal of Biogeography , 43(11): 2113-2124. https://doi.org/10.1111/jbi.12756
    » https://doi.org/10.1111/jbi.12756
  • Morales, V.R. 2002. Sistematica y biogeografía del grupo trilineatus (Amphibia, Anura, Dendrobatidae, Colostethus), con descripción de once nuevas especies. Publicaciones de la Asociación de Amigos de Doñana, 13: 1-59.
  • Moravec, J.; Aparicio, J.; Guerrero-Reinhard, M.; Calderón, G.; Jungfer, K.-H. & Gvoždík, V. 2009. A new species of Osteocephalus (Anura: Hylidae) from Amazonian Bolivia: first evidence of tree frog breeding in fruit capsules of the Brazil nut tree. Zootaxa, 2215: 37-54. https://doi.org/10.11646/zootaxa.2215.1.3
    » https://doi.org/10.11646/zootaxa.2215.1.3
  • Neckel-Oliveira, S.; Galatti, U.; Faveri, S.B.; Albareli, L.P. & Nascimento, H.E.M. 2013. Ecological correlates in Brazilian Amazonian anurans: implications for conservation. Amphibia-Reptilia , 34: 217-232. https://doi.org/10.1163/15685381-00002890
    » https://doi.org/10.1163/15685381-00002890
  • Nogueira, C.C.; Gonzalez, R.C.; Guedes, T.; Hoogmoed, M.S.; Marques, O.A.V.; Montingelli, G.G.; Passos, P.; Prudente, A.L.C.; Rivas, G.A.; Sanchez, P.M.; Serrano, F.C.; Silva, N.J.; Strüssmann, C.; Vieira-Alencar, J.P.; Zaher, H.; Sawaya, R.J.; Martins, M.; Borges-Martins, M.; Brasil-Godinho, M.; Braz, H.; Buononato, M.A.; Cisneros-Heredia, D.F.; Colli, G.R.; Costa, H.C.; Franco, F.L; Giraudo, A.; Argôlo, A.J.S.; Arzamendia, V.; Barbo, F.E.; Azevedo, J.A.; Bérnils, R.S. & Bolochio, B.E. 2019. Atlas of Brazilian Snakes: verified point-locality maps to mitigate the wallacean shortfall in a megadiverse snake fauna. South American Journal of Herpetology , 4: 1-274. https://doi.org/10.2994/SAJH-D-19-00120.1
    » https://doi.org/10.2994/SAJH-D-19-00120.1
  • Oberdorff, T.; Dias, M.S.; Jézéquel, C.; Albert, J.S.; Arantes, C.C.; Bigorne, R.; Carvajal-Valleros, F.M.; Wever, A.; Frederico, R.G.; Hidalgo, M.; Hugueny, B.; Leprieur, F.; Maldonado, M.; Maldonado-Ocampo, J.; Martens, K.; Ortega, H.; Sarmiento, J.; Tedesco, P.A.; Torrente-Vilara, G.; Winemiller, K.O. & Zuanon, J. 2019. Unexpected fish diversity gradients in the Amazon basin. Science Advances, 5: eaav868. https://doi.org/10.1126/sciadv.aav8681
    » https://doi.org/10.1126/sciadv.aav8681
  • Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; Wagner, H.; Barbour, M.; Bedward, M.; Bolker, B.; Borcard, D.; Carvalho, G.; Chirico, M.; Caceres, M.; Durand, S.; Evangelista, H.B.A.; FitzJohn, R.; Friendly, M.; Furneaux, B.; Hannigan, G.; Hill, M.O.; Lahti, L.; McGlinn, D.; Ouellette, M-H.; Cunha, E.R.; Smith, T.; Stier, A.; Ter Braak, C.J.F. & Weedon, J. 2022. vegan: Community Ecology Package. R package Version 2.6-2. 2020. Available: Available: https://CRAN.R-project.org/package=vegan Access: 25/05/2022.
    » https://CRAN.R-project.org/package=vegan
  • Oliveira, U.; Paglia, A.P.; Brescovit, A.D.; Carvalho, C.J.B.; Silva, D.P.; Rezende, D.T.; Leite, F.S.F.; Batista, J.A.N.; Barbosa, J.P.P.P.; Stehmann, J.R.; Ascher, J.S.; Vasconcelos, M.R.; Marco-Jr.; P.; Löwenberg-Neto, P.; Dias, P.G.; Ferro, V.G. & Santos, A.J. 2016. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Diversity and Distributions, 22(12): 1232-1244. https://doi.org/10.1111/ddi.12489
    » https://doi.org/10.1111/ddi.12489
  • Palumbi, S.R.; Martin, A.; Romano, S.; Mcmillan, W.O.; Stice, L. & Grabowski, G. 1991. The Simple Fool’s Guide to PCR. Honolulu, University of Hawaii.
  • Pantoja, D.L. & Fraga, R. 2012. Herpetofauna of the Reserva Extrativista do Rio Gregório. Check List, 8: 360-374. https://doi.org/10.15560/8.3.360
    » https://doi.org/10.15560/8.3.360
  • Patton, J.L.; Da Silva, M.N.F. & Malcolm, J.R. 2000. Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia. Bulletin of the American Museum of Natural History, 244: 1-307. https://doi.org/10.1206/0003-0090(2000)244%3C0001:MOTRJA%3E2.0.CO;2
    » https://doi.org/10.1206/0003-0090(2000)244%3C0001:MOTRJA%3E2.0.CO;2
  • Peixoto, G.M.; Leitão, P.H.; Kaefer, I.L. & Lima, A.P. 2019. The lizards along the road BR-319 in the Purus-Madeira interfluve, Brazilian Amazonia (Squamata, Lacertilia). Herpetology Notes , 12: 689-697.
  • Peloso, P.L.V. & Sturaro M.J. 2008. A new species of narrowzmouthed frog of the genus Chiasmocleis Méhelÿ 1904 (Anura, Microhylidae) from the Amazonian rainforest of Brazil. Zootaxa, 1947: 39-52. https://doi.org/10.11646/zootaxa.1947.1.2
    » https://doi.org/10.11646/zootaxa.1947.1.2
  • Peloso, P.L.V.; Orrico, V.G.D.; Haddad, C.F.B.; Lima-Filho, G.R. & Sturaro, M.J. 2016. A new species of clown tree frog, Dendropsophus leucophyllatus species group, from Amazonia (Anura, Hylidae). South American Journal of Herpetology , 11: 66-80. https://doi.org/10.2994/SAJH-D-16-00003.1
    » https://doi.org/10.2994/SAJH-D-16-00003.1
  • Peloso, P.L.V.; Sturaro, M.J.; Forlani, M.C.; Gaucher, P.; Motta, A.P. & Wheeler W.C. 2014. Phylogeny, taxonomic revision, and character evolution of the genera Chiasmocleis and Syncope (Anura, Microhylidae) in Amazonia, with descriptions of three new species. Bulletin of the American Museum of Natural History , 386: 1-96. https://doi.org/10.1206/834.1
    » https://doi.org/10.1206/834.1
  • Peters, J.A. & Donoso-Barros, R. 1986. Catalogue of the Neotropical Squamata. Washington, Smithsonian Institution Press .
  • Prudente, A.L.C. 2017. Censo da Biodiversidade da Amazônia Brasileira - MPEG: Serpentes. Available: Available: http://censo.museu-goeldi.br Access: 25/05/2022.
    » http://censo.museu-goeldi.br
  • Prudente, A.L.C.; Maschio, G.F.; Santos-Costa, M.C. & Feitosa D.T. 2010. Serpentes da Bacia Petrolífera de Urucu, Município de Coari, Amazonas, Brasil. Acta Amazonica , 40(2): 567-570. https://doi.org/10.1590/S0044-59672010000200016
    » https://doi.org/10.1590/S0044-59672010000200016
  • Prudente, A.L.C.; Sturaro, M.J.; Travassos, A.E.M.; Maschio, G.F. & Santos-Costa, M.C. 2013. Anurans of the Urucu Petrol Basin, municipality of Coari, State of Amazonas, northern Brazil. Check List, 9: 601-606. https://doi.org/10.15560/9.3.601
    » https://doi.org/10.15560/9.3.601
  • Pupim, F.N.; Sawakuchi, A.O.; Almeida, R.P.; Ribas, C.C.; Kern, A.K.; Hartmann, G.A.; Chiessi, C.M.; Tamura, L.N.; Mineli, T.D.; Savian, J.F.; Grohmann, C.H.; Bertassoli-Jr., D.J.; Stern, A.G.; Cruz, F.W. & Cracraft, J. 2019. Chronology of Terra Firme formation in Amazonian lowlands reveals a dynamic Quaternary landscape. Quaternary Science Reviews, 210: 154-163. https://doi.org/10.1016/j.quascirev.2019.03.008
    » https://doi.org/10.1016/j.quascirev.2019.03.008
  • Rainha, R.N.; Martinez, P.A.; Moraes, L.J.C.L.; Castro, K.M.S.A.; Réjaud, A.; Fouquet, A.; Leite, R.N.; Rodrigues, M.T. & Werneck, F.P. 2021. Subtle environmental variation affects phenotypic differentiation of shallow divergent treefrog lineages in Amazonia. Biological Journal of the Linnean Society , 134: 177-197. https://doi.org/10.1093/biolinnean/blab056
    » https://doi.org/10.1093/biolinnean/blab056
  • Ramalho, W.P.; Machado, I.F. & Vieira, L.J.S. 2018. Do flood pulses structure amphibian communities in floodplain environments? Biotropica, 50(2): 338-345. https://doi.org/10.1111/btp.12523
    » https://doi.org/10.1111/btp.12523
  • Rangel, T.F.; Edwards, N.R.; Holden, P.B.; Diniz-Filho, J.A.F.; Gosling, W.D.; Coelho, M.T.P. & Colwell, R.K. 2018. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science, 361: eaar5452. https://doi.org/10.1126/science.aar5452
    » https://doi.org/10.1126/science.aar5452
  • Réjaud, A.; Rodrigues, M.T.; Crawford, A.J.; Castroviejo-Fisher, S.; Jaramillo, A.F.; Chaparro, J.C.; Glaw, F.; Gagliardi-Urrutia, G.; Moravec, J.; De la Riva, I.J.; Perez, P.; Lima, A.P.; Werneck, F.P.; Hrbek, T.; Ron, S.R.; Ernst, R.; Kok, P.J.R.; Driskell, A.; Chave, J. & Fouquet, A. 2020. Historical biogeography identifies a possible role of the Pebas system in the diversification of the Amazonian rocket frogs (Aromobatidae: Allobates). Journal of Biogeography , 47(11): 2472-2482. https://doi.org/10.1111/jbi.13937
    » https://doi.org/10.1111/jbi.13937
  • Ribeiro-Júnior, M.A.; Sánchez-Martínez, P.; Moraes, L.J.C.L.; Suendel, U.; Carvalho, V.T.C.; Pavan, D.; Choueri, E.; Werneck, F.P. & Meiri, S. 2021. Uncovering hidden species diversity of alopoglossid lizards in Amazonia, with the description of three new species of Alopoglossus (Squamata: Gymnophthalmoidae). Journal of Zoological Systematics and Evolutionary Research, 59(6): 1322-1356. https://doi.org/10.1111/jzs.12481
    » https://doi.org/10.1111/jzs.12481
  • Ritter, C.D.; Faurby, S.; Bennett, D.J.; Naka, L.N.; Ter Steege, H.; Zizka, A.; Haenel, Q.; Nilsson, H. & Antonelli, A. 2019. The pitfalls of biodiversity proxies: Differences in richness patterns of birds, trees and understudied diversity across Amazonia. Scientific Reports , 9: 19205. https://doi.org/10.1038/s41598-019-55490-3
    » https://doi.org/10.1038/s41598-019-55490-3
  • Rivadeneira, C.D.; Venegas, P.J. & Ron, S.R. 2018. Species limits within the widespread Amazonian treefrog Dendropsophus parviceps with descriptions of two new species (Anura, Hylidae). ZooKeys , 726: 25-77. https://doi.org/10.3897/zookeys.726.13864
    » https://doi.org/10.3897/zookeys.726.13864
  • Rojas, R.R.; Fouquet, A.; Ron, S.R.; Hernández-Ruz, E.J.; Melo-Sampaio, P.R.; Chaparro, J.C.; Vogt, R.C.; Carvalho, V.T.; Pinheiro, L.; Ávila, R.W.; Farias, I.P.; Gordo, M. & Hrbek, T. 2018. A Pan-Amazonian species delimitation: high species diversity within the genus Amazophrynella (Anura: Bufonidae). PeerJ, 6: e4941. https://doi.org/10.7717/peerj.4941
    » https://doi.org/10.7717/peerj.4941
  • Santos, S.P.; Ibáñez, R.; & Ron, S.R. 2015. Systematics of the Rhinella margaritifera complex (Anura, Bufonidae) from western Ecuador and Panama with insights in the biogeography of Rhinella alata. Zookeys, 501: 109-145. https://doi.org/10.3897/zookeys.501.8604
    » https://doi.org/10.3897/zookeys.501.8604
  • Silva, L.A.; Magalhães, F.M.; Thomassen, H.; Leite, F.S.; Garda, A.A.; Brandão, R.A.; Haddad, C.F.; Giaretta, A.A. & Carvalho, T.R. 2020. Unraveling the species diversity and relationships in the Leptodactylus mystaceus complex (Anura: Leptodactylidae), with the description of three new Brazilian species. Zootaxa, 4779: 151-189. https://doi.org/10.11646/zootaxa.4779.2.1
    » https://doi.org/10.11646/zootaxa.4779.2.1
  • Silva-Jr., C.H.L.; Pessôa, A.C.M.; Carvalho, N.S; Reis, J.B.B.; Anderson, L.O. & Aragão, E.O.C. 2021. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nature Ecology and Evolution, 5: 144-145. https://doi.org/10.1038/s41559-020-01368-x
    » https://doi.org/10.1038/s41559-020-01368-x
  • Silva-Jr., N.J. & Sites-Jr., J.W. 1995. Patterns of diversity of neotropical squamate reptile species with emphasis on the Brazilian Amazon and the conservation potential of indigenous reserves. Conservation Biology, 9(4): 873-901. https://doi.org/10.1046/j.1523-1739.1995.09040873.x
    » https://doi.org/10.1046/j.1523-1739.1995.09040873.x
  • Simões, P.I.; Costa, J.C.L.; Rojas-Runjaic, F.J.M.; Gagliardi-Urrutia, G.; Sturaro, M.J.; Peloso, P.L.V. & Castroviejo-Fisher, S. 2018. A new species of Phyzelaphryne Heyer, 1977 (Anura: Eleutherodactylidae) from the Japurá River basin, with a discussion of the diversity and distribution of the genus. Zootaxa, 4532: 203-230. https://doi.org/10.11646/zootaxa.4532.2.2
    » https://doi.org/10.11646/zootaxa.4532.2.2
  • Sioli, H. 1968. Hydrochemistry and geology in the Brazilian Amazon region. Amazoniana, 1: 267-277.
  • Sioli, H. 1984. The Amazon and its main affluents: Hydrography, morphology of the rivers courses, and rivers types. In: Sioli, H. The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin. Junk Publishers, Dordrecht, Netherlands. https://doi.org/10.1007/978-94-009-6542-3
    » https://doi.org/10.1007/978-94-009-6542-3
  • Sombroek, W. 2001. Spatial and Temporal Patterns of Amazon Rainfall: Consequences for the Planning of Agricultural Occupation and the Protection of Primary Forests. Ambio, 30: 388-396. https://doi.org/10.1579/0044-7447-30.7.388
    » https://doi.org/10.1579/0044-7447-30.7.388
  • Souza, M.B. 2009. Anfíbios: Reserva Extrativista do Alto Juruá e Parque Nacional da Serra do Divisor, Acre. Campinas, IFCH.
  • Sturaro, M.J.; Costa, J.C.L.; Maciel, A.O.; Lima-Filho, G.R.; Rojas-Runjaic, F.J.M.; Mejia, D.P.; Ron, S.R. & Peloso, P.L.V. 2020. Resolving the taxonomic puzzle of Boana cinerascens (Spix, 1824), with resurrection of Hyla granosa gracilis Melin, 1941 (Anura: Hylidae). Zootaxa, 4750: 1-30. https://doi.org/10.11646/zootaxa.4750.1.1
    » https://doi.org/10.11646/zootaxa.4750.1.1
  • Tuomisto, H.; Doninki, J. & Ruokolainen K. 2019. Discovering floristic and geoecological gradients across Amazonia. Journal of Biogeography , 46(8): 1734-1748. https://doi.org/10.1111/jbi.13627
    » https://doi.org/10.1111/jbi.13627
  • Tuomisto, H.; Moulatlet, G.M.; Balslev, H.; Emilio, T.; Figueiredo, F.O.G.; Pedersen, D. & Ruokolainen, K. 2016. A compositional turnover zone of biogeographical magnitude within lowland Amazonia. Journal of Biogeography , 43(12): 2400-2411. https://doi.org/10.1111/jbi.12864
    » https://doi.org/10.1111/jbi.12864
  • Uetz, P.; Freed, P. & Hošek, J. 2022. The Reptile Database. Available: Available: http://www.reptile-database.org Access: 25/05/2022.
    » http://www.reptile-database.org
  • Vacher, J.-P.; Chave, J.; Ficetola, F.; Sommeria-Klein, G.; Tao, S.; Thébaud, C.; Blanc, M.; Camacho, A.; Cassimiro, J.; Colston, T.J.; Dewynter, M.; Ernst, R.; Gaucher, P.; Gomes, J.O.; Jairam, R.; Kok, P.J.R.; Dias Lima, J.; Martinez, Q.; Marty, C.; Noonan, B.P.; Nunes, P.M.S.; Ouboter, P.; Recoder, R.; Rodrigues, M.T.; Snyder, A.; de Souza, S.M. & Fouquet, A. 2020. Large scale DNA-based survey of Amazonian frogs suggest a vast underestimation of species richness and endemism. Journal of Biogeography , 47(8): 1781-1791. https://doi.org/10.1111/jbi.13847
    » https://doi.org/10.1111/jbi.13847
  • FUNDING INFORMATION:

    This study received financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), through a research and productivity fellowships (313055/2015-7 to LJCLM; 475559/2013-4, 425571/2018-1 and 305535/2017-0 to FPW), Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) through research grants (062.00665/2015, 062.01110/2017 and 062.00962/2018 to FPW), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) through scholarships (88887.630472/2021-00 and 2022/01213-7 to LJCLM), Partnerships for Enhanced Engagement in Research from the U.S. National Academy of Sciences and U.S. Agency of International Development (PEER NAS/USAID AID-OAA-A-11-00012, cycle 3 to FPW), and L’Oréal-Unesco For Women in Science Program (FPW Brazil/ABC 2016, IRT 2017). The 2018 field expedition to the RBJ was organized and undertaken by the Instituto de Desenvolvimento Sustentável Mamirauá and Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), with financial support from Gordon and Betty Moore Foundation.

APPENDIX 1

Morphologically examined specimens.

BRAZIL: Amazonas: Juruá: Reserva Extrativista do Baixo Juruá.

AMPHIBIA: ANURA: ALLOPHRYNIDAE: Allophryne resplendens: INPA-H 023098; AROMOBATIDAE: Allobates femoralis: INPA-H 004784, 004921 004980, 005432, 028487, 028488, 028510, 028511, 028547-028549, 028551-028553, 039924, 039925; Allobates vanzolinius: INPA-H 004896 (holotype), 004903-004905, 004912 (paratypes); Allobates sp.: INPA-H 004787, 004798, 004799, 004803, 004863, 004869, 004870, 004875-004877, 004880, 004881, 004883, 004886-004888, 004889 (paratype of A. gasconi), 004891, 004901, 004906, 004910, 004911, 004913, 004914, 005274, 005275, 005347, 005348, 005366, 005416, 005418, 005431, 005502, 005580, 028475, 029864; BUFONIDAE: Amazophrynella sp.: INPA-H 004884, 004907, 004908, 004960, 005381, 005382; Rhinella castaneotica: INPA-H 004796, 004916, 004964, 015913, 015914, 015916-015920, 018817, 018823, 018827-018829, 019649, 019651-019653, 019655-019657, 019661, 019663, 019668-019675, 019678-019684, 019686-019690, 040058, 040061, 040063, 040064, 040065, 040068, 040069; Rhinella exostosica: INPA-H 005296, 005420, 015915, 015921, 018812, 018821, 018824, 040044, 040055, 040056, 040066, 040070; Rhinella aff. margaritifera: INPA-H 004890, 004892, 004895, 004918, 004922, 004947, 004954-004956, 004961, 004967, 004968, 004974, 005286, 005342, 005367, 015910-015912, 018818-018820, 018822, 019633-019648, 019650, 019654, 019658-019660, 019662, 019664-019667, 019676, 040045, 040047, 040048, 040050, 040051, 040053, 040054,040060, 040071; Rhinella gr. margaritifera: INPA-H 004840, 004879, 004894, 004897, 004942, 004950, 004953, 004958, 004966, 004969, 004970, 005272, 005276, 005292-005295, 005300, 005336, 005349, 005350, 005409, 005413, 005460, 005471, 015922, 018813-018816; 018825; 018826, 018830, 018831, 019677, 019685, 019691, 019692, 040059, 040062; Rhinella marina: INPA-H 002222-002228, 005345, 015886-015890, 016246-016278, 017204, 017205, 017207, 017209, 017210, 040075, 040083, 040087, 040088, 040093; CERATOPHRYIDAE: Ceratophrys cornuta: INPA-H 004986, 004991, 016220, 040046, 040049, 040052, 040057; DENDROBATIDAE: Ameerega hahneli: INPA-H 004783, 004786, 004795, 004797, 004810, 004813, 004815, 004816, 004819, 004823, 004824, 004825, 004827, 004829, 004830, 004832-4851, 004856, 004858-004860, 004864-004867, 004871-004874, 004878, 004909, 004915, 004929-004931, 004933-004936, 004938-004941, 004943, 004944, 004948, 004962, 004996-004999, 005236-005255, 005257-005260, 005266, 005267-005271, 005303-005333, 005338, 005351-005353, 005355-005365, 005375-005380, 005384-005408, 005436-005453, 005455, 005457-005459, 005474, 005476-005480, 005482-005483, 005485-005500, 017300-017313, 028499, 028500, 028550, 028554; Ameerega trivittata: INPA-H 004800, 004811, 005334, 015863-015872, 017199-017203, 018779-018788, 029844, 039888, 039939-039950, 040072-040074; ELEUTHERODACTYLIDAE: Phyzelaphryne nimio: INPA-H 039787, 039791, 039794, 039801, 039816, 039817; HYLIDAE: Boana appendiculata: INPA-H 039855, 039856, 039860; Boana boans: INPA-H 017136, 017137, 018796, 040090; Boana calcarata: INPA-H 015940, 039865; Boana cinerascens: INPA-H 039835; Boana geographica: INPA-H 017248, 017249, 039850-039852; Boana lanciformis: INPA-H 015928, 017165, 017166, 017326, 017327, 040094, 040095, 040099; Boana punctata: INPA-H 002202-002210, 002214-002220, 028533-028540; Boana raniceps: INPA-H 002201, 016312-016318, 017138-017143, 017246, 017247, 039837; Boana steinbachi: INPA-H 039902, 039912, 039916; Boana aff. steinbachi: INPA-H 039858, 039901, 039903, 039905-039908, 039910, 039914, 039915, 039918, 039919, 039921, 039922; Boana steinbachi species complex: INPA-H 004808, 004927, 005374, 005425, 005426, 005429, 015948-015950; Dendropsophus kamagarini: INPA-H 004985, 039833; Dendropsophus mapinguari: INPA-H 004952; Dendropsophus miyatai: INPA-H 005464, 005466, 005468; Dendropsophus reticulatus: INPA-H 002221, 017126, 017168-017176, 017251, 017252, 039839; Dendropsophus rossalleni: INPA-H 005461-005463, 005465, 005467, 005469, 017250; Osteocephalus castaneicola: INPA-H 015943, 028512, 028514, 040015, 040033; Osteocephalus helenae: INPA-H 040031; Osteocephalus aff. leprieurii: INPA-H 040012, 040021, 040027, 040029, 040030, 040032, 040034, 040036-040040, 040042; Osteocephalus taurinus: INPA-H 004820, 004925, 004926, 004928, 004983, 005335, 005340, 005341, 005412, 005427, 005507, 005513, 040016, 040017, 040019, 040023, 040025, 040026, 040028, 040035, 040041, 040079, 040080; Scarthyla goinorum: INPA-H 017332; Scinax cruentomma: INPA-H 004788, 004792, 004793, 004801, 004802, 004804, 004807, 004812, 004818, 005368; Scinax garbei: INPA-H 004951, 017328, 017329, 028556; Scinax nebulosus: INPA-H 028556; Scinax ruber: INPA-H 002230-002233, 015923-015925, 015947, 017314-017317, 017331, 028480, 028481, 039857, 039861, 039863, 039867, 039911, 039913; Sphaenorhynchus dorisae: INPA-H 017704, 028468-028472, 039836; Sphaenorhynchus lacteus: INPA-H 028489, 028490, 028492-028497; Trachycephalus cunauaru: INPA-H 039917; Trachycephalus typhonius: INPA-H 028476, 028482; LEPTODACTYLIDAE: Adenomera andreae: INPA-H 004785, 004805, 004854, 004893, 004920, 004963, 004971-004973, 004977, 004979, 005284, 005289, 005414, 005421, 005470, 005472, 005473, 005475, 018801-018810, 019572-019599, 029871, 029873, 029875, 039786, 039788-039790, 039793, 039797-039800, 039803-039805, 039807-039809, 039812, 039818, 039819, 039909; Adenomera simonstuarti: INPA-H 005337, 029866-029870, 029872, 029874, 029876, 039792, 039796, 039813, 039814; Edalorhina perezi: INPA-H 005291, 016209-016214, 039810; Engystomops petersi: INPA-H 004789, 004809, 004853, 004861, 004862, 004917, 004923, 004924, 004959, 004965, 004976, 004988, 005287, 005288, 005346, 005369, 005410, 005411, 005415, 005417, 005503-005505, 015873-015884, 016279-16306, 017019-017114, 028491, 028498, 039996, 040001; Leptodactylus discodactylus: INPA-H 029865, 039880, 039881, 039893, 039894, 039896-039898; Leptodactylus fuscus: INPA-H 016319-016324; Leptodactylus macrosternum: INPA-H 017128, 039890, 039891, 039895, 039899; Leptodactylus cf. mystaceus: INPA-H 005290, 005428, 015908, 015909, 016215-016217, 017164, 018793; Leptodactylus pentadactylus: INPA-H 004794, 004806, 004814, 004898, 004899, 005343, 005344, 005419, 015927, 016225, 016226, 016227, 016228, 017127, 017215, 017244, 040077, 040091, 040097; Leptodactylus petersii: INPA-H 002211, 004957, 004975, 004978, 004992, 004993, 004994, 004995, 005297, 005301, 005302, 005434, 005501, 028559, 028560, 028561, 028562, 028563, 039795, 039811, 039884, 039892; Leptodactylus rhodomystax: INPA-H 005383, 016325, 017167, 018811; Leptodactylus stenodema: INPA-H 015904, 015905, 016331, 016332, 018790, 018791, 018792; Lithodytes lineatus: INPA-H 016221, 039882, 039883; MICROHYLIDAE: Chiasmocleis avilapiresae: INPA-H 017258, 017259 (paratypes); Chiasmocleis bassleri: INPA-H 005285, 039900, 039997, 040003, 040006, 040008-040010, 040014, 040022; Chiasmocleis hudsoni: INPA-H 040005, 040013, Chiasmocleis ventrimaculata: INPA-H 040000, 040002, 040004, 040007, 040011; Ctenophryne geayi: INPA-H 016234-016245, 039993-039995, 039998, 039999; PHYLLOMEDUSIDAE: Phyllomedusa vaillantii: INPA-H 005423, 039859; PIPIDAE: Pipa pipa: INPA-H 017245; RANIDAE: Lithobates palmipes: INPA-H 018794; STRABOMANTIDAE: Oreobates quixensis: INPA-H 004822, 004946, 004982, 004987, 004990, 005273, 005299, 016334, 016335, 017177-017183, 039868-039877, 039879; Pristimantis reichlei: INPA-H 005435, 028474; Pristimantis aff. ockendeni: INPA-H 004791, 004821, Pristimantis cf. diadematus: INPA-H 004984, 005339, 005424, 005506, 0017330; Strabomantis sulcatus: INPA-H 029919; CAUDATA: PLETHODONTIDAE: Bolitoglossa sp.: INPA-H 004981, 004989, 005422, 005430, 005433; GYMNOPHIONA: CAECILIIDAE: Caecilia tentaculata: INPA-H 016208, TYPHLONECTIDAE: Potamotyphlops kaupii: INPA-H 015931. REPTILIA: SQUAMATA: ALOPOGLOSSIDAE: Alopoglossus atriventris: INPA-H 015891-015894, 015936, 016354-016364, 017196-17198, 019600-019603, 039951, 39955, 039959, 039960, 039966, 039969, 039973, 039976; Alopoglossus brevifrontalis: INPA-H 015938, 015939, 016224, 039956, 039964, 039965, 039967, 039982; Alopoglossus indigenorum: INPA-H 039953 (paratype); ANILIIDAE: Anilius scytale: INPA-H 016201; BOIDAE: Corallus hortulana: INPA-H 017239, 040102; Epicrates cenchria: INPA-H 017231, 017232; COLUBRIDAE: Chironius fuscus: INPA-H 017293-017297; Drymoluber dichrous: INPA-H 018776; Leptophis ahaetulla: INPA-H 016205, 016206; Oxybelis aeneus: INPA-H 015859-015861; Spilotes sulphureus: INPA-H 017220; DACTYLOIDAE: Anolis fuscoauratus: INPA-H 015937, 017125, 017323-017325, 028557, 039828, 039840, 039846, 039847; Anolis ortonii: INPA-H 028558; Anolis punctatus: INPA-H 039844; Anolis tandai: INPA-H 015933-015935, 017124, 017318-017322, 039820, 039821, 039822, 039823, 039824, 039825, 039826, 039827, 039829, 039841, 039843, 039845, 039848, 039887; Anolis transversalis: INPA-H 017152-017154, 039842, 039889; DIPSADIDAE: Atractus major: INPA-H 015885, 018769, 018770; Atractus poeppigi: INPA-H 015862, 016204, 039736; Atractus snethlageae: INPA-H 039986, 039989; Atractus aff. snethlageae: INPA-H 039987, 039988; Atractus torquatus: INPA-H 017299, 039886, 039990; Dipsas catesbyi: INPA-H 015932, 017256; Drepanoides anomalus: INPA-H 016049, 018774; Erythrolamprus aesculapii: INPA-H 01620; Erythrolamprus pygmaeus: INPA-H 017160-017162; Erythrolamprus reginae: INPA-H 015930, 017155, 017156; Erythrolamprus typhlus: INPA-H 018775; Helicops angulatus: INPA-H 016470, 017157, 017158, 017235, 018771, Helicops hagmanni: INPA-H 015951; Helicops polylepis: INPA-H 039992; Imantodes cenchoa: INPA-H 017134, 040098; Leptodeira annulata: INPA-H 016202, 039991; Oxyrhopus melanogenys: INPA-H 016471, 017224, 018772; Oxyrhopus occipitalis: INPA-H 018773; Pseudoeryx plicatilis: INPA-H 013193, 017233, 017234; Siphlophis cervinus: INPA-H 017159; Thamnodynastes pallidus: INPA-H 017236, 017237; Xenodon rabdocephalus: INPA-H 018765; Xenoxybelis boulengeri: INPA-H 017163; ELAPIDAE: Micrurus hemprichii ortonii: INPA-H 016203, 017123; Micrurus langsdorffi: INPA-H 017253, 018766, 018767; Micrurus lemniscatus: INPA-H 018768; GEKKONIDAE: Hemidactylus mabouia: INPA-H 039931; GYMNOPHTHALMIDAE: Arthrosaura reticulata: INPA-H 015929, 016307-016311, 017260, 017261, 017267, 039952, 039954; Cercosaura argulus: INPA-H 017268; Cercosaura bassleri: INPA-H 016222, 016223; Iphisa elegans elegans: INPA-H 015897-015899, 015944, 016338, 018797-018799, 039962, 039963, 039968, 039971, 039972, 039980, 039983; Loxopholis percarinatum: INPA-H 039974, 039978, 039979; Loxopholis snethlageae: INPA-H 015945, 015946, 016339, 022953-022957, 028467, 039957, 039958, 039961, 039970, 039975, 039977, 039981, 039984, 039985; IGUANIDAE: Iguana iguana: INPA-H 015856, 016478, 016479, 017257; PHYLLODACTYLIDAE: Thecadactylus solimoensis: INPA-H 040101; SCINCIDAE: Copeoglossum nigropunctatum: INPA-H 015900-015902, 039938; SPHAERODACTYLIDAE: Chatogekko amazonicus: INPA-H 017255, 030344-030346; Gonatodes humeralis: INPA-H 015941, 015942, 028531, 028532, 039926, 039928, 039930, 039932, 039934, 039935; Lepidoblepharis heyerorum: INPA-H 017254; TEIIDAE: Ameiva ameiva: INPA-H 017117-017119, 017130, 017131, 017225-017227, 040078, 040085, 040086, 040092, 040100; Crocodilurus amazonicus: INPA-H 015857, 015858, 017228, 040089; Kentropyx altamazonica: INPA-H 016229-016231, 016336, 016337, 017121, 017122, 017132, 017133, 017229, 017230, 017241; Kentropyx pelviceps: INPA-H 015895, 015896, 016218-017120, 018795, 039927, 039929, 040096; Tupinambis teguixin: INPA-H 017240, 040076; TROPIDURIDAE: Plica plica: INPA-H 017115, 017116, 017243; Plica umbra ochrocollaris: INPA-H 015903, 017184-017194; Uranoscodon superciliosus: INPA-H 015853-015855, 017144-017151, 017242, 018800, 040082, 040084; VIPERIDAE: Bothrocophias hyoprora: INPA-H 017135; Bothrops atrox: INPA-H 015906, 017217, 017218, 017238, 017262-017264, 039885; Bothrops brazili: INPA-H 015907; Lachesis muta muta: INPA-H 018777.

BRAZIL: Amazonas: Juruá: left margin of the lower Juruá River, opposed to the Andirá River confluence.

AMPHIBIA: ANURA: BUFONIDAE: Rhinella gr. margaritifera: INPA-H 040067; Rhinella marina: INPA-H 039802, 039806; HYLIDAE: Boana appendiculata: INPA-H 039832, 39866; Boana geographica: INPA-H 039853, 39854; Boana punctata: INPA-H 039834; Boana raniceps: INPA-H 039838; Boana aff. steinbachi: INPA-H 039904, 039920, 039923; Osteocephalus helenae: INPA-H 040043; Osteocephalus aff. leprieurii; INPA-H 040018; Osteocephalus taurinus: INPA-H 040020, 040024; Scinax garbei: INPA-H 039862; Scinax ruber: INPA-H 039830, 039831, 039864; LEPTODACTYLIDAE: Adenomera hylaedactyla: INPA-H 039815; Leptodactylus petersii: INPA-H 039795; STRABOMANTIDAE: Pristimantis fenestratus: INPA-H 039878. REPTILIA: SQUAMATA: DACTYLOIDAE: Anolis fuscoauratus: INPA-H 039849; SCINCIDAE: Copeoglossum nigropunctatum: INPA-H 039936, 039937; SPHAERODACTYLIDAE: Gonatodes humeralis: INPA-H 039933; TROPIDURIDAE: Uranoscodon superciliosus: INPA-H 040081.

Edited by

Edited by:

Pedro Murilo Sales Nunes

Publication Dates

  • Publication in this collection
    07 Nov 2022
  • Date of issue
    2022

History

  • Received
    22 Aug 2021
  • Accepted
    12 Aug 2022
  • Published
    04 Oct 2022
Museu de Zoologia da Universidade de São Paulo Av. Nazaré, 481, Ipiranga, 04263-000 São Paulo SP Brasil, Tel.: (55 11) 2065-8133 - São Paulo - SP - Brazil
E-mail: einicker@usp.br