Acessibilidade / Reportar erro

Natural regeneration in Atlantic Forest Fragments: using ants (Hymenoptera: Formicidae) for monitoring a conservation unit

Abstract

The Brazilian Atlantic Forest is considered one of the most threatened tropical forests in the world due to the extensive environmental impact it has endured throughout history. Only 12.4% of its original vegetation is estimated to remain. Even though reduced and highly fragmented, it houses enormous biodiversity, and its preservation is paramount to the maintenance of the country’s fauna, flora, funga and microbiota. One of the most efficient measures adopted by public agencies aimed at protecting biodiversity has been the creation of conservation units. To evaluate the preservation state of protected areas, several environmental studies have been performed; species inventories are one among them. Ants are excellent bioindicators, for they are not only sensitive to environmental changes, but they also have a history of being used in impact assessment (i.e., fragmentation). In this study we assessed the ant communities inhabiting the leaf litter in areas with different regeneration states at the RPPN Botujuru - Serra do Itapety (Mogi das Cruzes, São Paulo - Brazil). Mini-Winkler traps were used in the ant survey, and diversity analyses were performed. In total, we recorded 86 species of ants, with a highlight to Camponotus cillae Forel, 1912, a species that remained unrecorded for the state of São Paulo for over 100 years, and a possible new species of Octostruma Forel, 1912. Overall, the species found show that the areas are in the process of natural regeneration. Our data on RPPN Botujuru is unprecedented, and our species list has the potential of being used as an effective monitoring tool for this conservation unit.

Keywords:
Species inventory; Biological Conservation; Richness, Environmental Reserve; Biodiversity.

INTRODUCTION

The Atlantic Forest is one of the most diverse biomes in Brazil, with records of over 20,000 species, around 6,000 of which are endemic to it (Marques & Grelle, 2021Marques, M.C.M. & Grelle, C.E.V. 2021. The Atlantic Forest: History, Biodiversity, Threats and Opportunities of the Mega-diverse Forest. Cham, Springer Nature.); it is considered one of the world hotspots of biodiversity (Rezende et al., 2018Rezende, C.L.; Scarano, F.R.; Assad, E.D.; Joly, C.A.; Metzfer, J.P.; Strassuburg, B.B.N.; Tabarelli, M.; Fonseca, G.A. & Mittermeier, R.A. 2018. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation, 16(4): 208-2014. https://doi.org/10.1016/j.pecon.2018.10.002.
https://doi.org/10.1016/j.pecon.2018.10....
; Hu et al., 2021Hu, X.; Huang, B.; Verones, F.; Cavalett, O. & Cherubinil, F. 2021. Overview of recent land-cover changes in biodiversity hotspots. Frontiers in Ecology and the Environment, 19(2): 91-97. https://doi.org/10.1002/fee.2276.
https://doi.org/10.1002/fee.2276...
). Originally, it encompassed about 15% of the Brazilian territory, of which only 12.4% is now in existence (MMA, 2022Ministério do Meio Ambiente (MMA). 2022. Mata Atlântica. Available: Available: https://antigo.mma.gov.br/biomas/mata-atl%C3%A2ntica_emdesenvolvimento.html . Access: 13/03/2022.
https://antigo.mma.gov.br/biomas/mata-at...
). This biome is now severely fragmented and interspersed with urban areas (Baklanov et al., 2018Baklanov, A.; Grimmond, C.S.B.; Carlson, D.; Terblanche, D.; Tang, X.; Bouchet, V.; Lee, B.; Langendijk, G.; Kolli, R.K. & Hovsepyan, A. 2018. From urban meteorology, climate and environment research to integrated city services. Urban Climate, 23: 330-341. https://doi.org/10.1016/j.uclim.2017.05.004.
https://doi.org/10.1016/j.uclim.2017.05....
) and farmlands (Melo et al., 2013Melo, F.P.; Arroyo-Rodríguez, V.; Fahrig, L.; Martínez-Ramos, M. & Tabarelli, M. 2013. On the hope for biodiversity-friendly tropical landscapes. Trends in Ecology & Evolution, 28(8): 462-468. https://doi.org/10.1016/j.tree.2013.01.001.
https://doi.org/10.1016/j.tree.2013.01.0...
), where Eucalyptus sp. and Pinus sp. (MacDicken, 2015MacDicken, K.G. 2015. Global forest resources assessment 2015: what, why and how? Forest Ecology and Management, 352: 3-8. https://doi.org/10.1016/j.foreco.2015.02.006.
https://doi.org/10.1016/j.foreco.2015.02...
), for instance, are cultivated. In face of the high endemism, and because it is under constant threat, this biome is considered an extreme priority in terms of conservation (Myers et al., 2000Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Fonseca, G.A.B. & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403(6772): 853-858. https://doi.org/10.1038/35002501.
https://doi.org/10.1038/35002501...
; Carlucci et al., 2021Carlucci, M.B.; Marcilio-Silva, V. & Torezan, J.M. 2021. The southern Atlantic Forest: use, degradation, and perspectives for conservation. In: Marcia, C.M.; Carlos, E. & Grelle, V. The Atlantic Forest. Cham, Springer. p. 91-111.).

The creation of conservation units is an efficient practice to protect biodiversity and restore forest remnants of the Atlantic Forest biome (Sobral-Souza et al., 2018Sobral-Souza, T.; Vancine, M.H.; Ribeiro, M.C. & Lima-Ribeiro, M.S. 2018. Efficiency of protected areas in Amazon and Atlantic Forest conservation: A spatio-temporal view. Acta Oecologica, 87: 1-7. https://doi.org/10.1016/j.actao.2018.01.001.
https://doi.org/10.1016/j.actao.2018.01....
; Lewis et al., 2019Lewis, E.; MacSharry, B.; Juffe-Bignoli, D.; Harris, N.; Burrows, G.; Kingston, N. & Burgess, N.D. 2019. Dynamics in the global protected-area estate since 2004. Conservation Biology, 33(3): 570-579. https://doi.org/10.1111/cobi.13056.
https://doi.org/10.1111/cobi.13056...
). In Brazil, conservation units are ruled by the National System of Conservation Units (SNUC - Law 9.985/2000), and they have the conservation of species, habitats, and ecosystems as their main pillars (Brito, 2012Brito, F. 2012. Corredores ecológicos: uma estratégia integradora na gestão de ecossistemas. Florianópolis, Editora UFSC.; Medeiros et al., 2011Medeiros, R.; Young, C.E.F.; Pavese, H.B. & Araújo, F.F.S. 2011. Contribuição das unidades de Conservação Brasileiras para a economia Nacional. Brasília, UNEP-WCMC.; Morini & Miranda, 2012Morini, M.S.C. & Miranda, V.F.O. 2012. Serra do Itapety: Aspectos históricos, sociais e naturalísticos. Bauru, Canal 6.). Several types of studies can be developed in conservation units (e.g., biological inventories), which, in turn, are useful to evaluate the effectiveness of biodiversity protection (Le Saout et al., 2013Le Saout, S.; Hoffmann, M.; Shi, Y.; Hughes, A.; Bernard, C.; Brooks, T. M.; Bertzky, B.; Butchart, S.H.M.; Stuart, S.N.; Badman, T. & Rodrigues, A.S.L. 2013. Protected areas and effective biodiversity conservation. Science, 342(6160): 803-805. https://doi.org/10.1126/science.1239268.
https://doi.org/10.1126/science.1239268...
). Thus, they provide biological knowledge for several groups, especially of invertebrates, which are often neglected in biological inventories (Pinto et al., 2017Pinto, L.P.; Hirota, M.; Guimarães, E.; Fonseca, M.; Martinez, D.I. & Takahashi, C.K. 2017. Unidades de Conservação Municipais da Mata Atlântica. São Paulo, SOSMA.).

In Brazil, conservation units are organized into two categories: full protection units and sustainable use units (Brasil, 2000Brasil. 2000. Lei Federal № 9.985, de 18 de julho de 2000. Institui o Sistema Nacional de Unidades de Conservação e dá outras providências. Available: Available: http://www.planalto.gov.br/ccivil_03/leis/L9985.htm . Access: 21/08/2020.
http://www.planalto.gov.br/ccivil_03/lei...
). Private Natural Heritage Reserves (RPPNs) belong to this last group, and they are conservation units that are private and perpetual. Brazil has around 1,500 RPPNs throughout its territory (Instituto Terra, 2020Instituto Terra. 2022. Dia Nacional das RPPNs: o que é isso? Available: Available: https://institutoterra.org/dia-nacional-das-rppns-o-que-e-isso . Access: 25/10/2022.
https://institutoterra.org/dia-nacional-...
); the state of São Paulo counts with 99 of them (Secretaria de Infraestrutura e Meio Ambiente, 2019), most of which are located in the Atlantic Forest (Lima & Franco, 2014Lima, P.C.A. & Franco, J.L.A. 2014. As RPPNs como estratégia para a conservação da biodiversidade: o caso da Chapada dos Veadeiros. Sociedade & Natureza, 26: 113-125.). Because they are private, RPPNS may be created by NGOs, companies, and mainly by large landowners (Wiedmann, 2001Wiedmann, S.M. 2001. Reserva do patrimônio natural - RPPN - na Lei № 9.985/2000, que instituiu o sistema nacional de unidades de conservação - SNUC. Direito ambiental das áreas protegidas: o regime jurídico das unidades de conservação. Rio de Janeiro, Forense.) who own fragments of native vegetation or potentially restorable areas (Bensusan, 2006Bensusan, N. 2006. Conservação da biodiversidade em áreas protegidas. Rio de Janeiro, FGV Editora.), primarily rural. About 80% of the Atlantic Forest biome is located on private land (Ayala, 2010Ayala, L. 2010. RPPN Mata Atlântica: Empresas aliadas da natureza RPPN Mata Atlântica as reservas particulares como estratégia ambiental corporativa. São Paulo, SOS Mata Atlântica,.), which means the creation of RPPNs may play a key role in the conservation of biodiversity (Wilson et al., 2010Wilson, K.A.; Meijaard, E.R.I.K.; Drummond, S.; Grantham, H.S.; Boitani, L.; Catullo, G.; Christie, L.; Dennis, R.; Dutton, I.; Falcucci, A.; Maiorano, L.; Possingham, H.P.; Rondinni, C.; Turner, W.R.; Venter, O. & Watts, M. 2010. Conserving biodiversity in production landscapes. Ecological Applications, 20(6): 1721-1732. https://doi.org/10.1890/09-1051.1.
https://doi.org/10.1890/09-1051.1...
).

The need to identify and quantify the disturbances caused by human activities in varied types of environments has attracted the attention of researchers to the search for organisms that could interfere with the levels of integrity of the ecosystems (Couto et al., 2010Couto, P.H.M.; Araújo, M.S.; Rodrigues, O.S.; Lucia, T.M.C.D.; Oliveira, M.A. & Bacci, L. 2010. Formigas como bioindicadores da qualidade ambiental em diferentes sistemas de cultivo da soja. Revista Agrotecnologia, 1(1): 11-20. https://doi.org/10.12971/2179-5959.v01n01a01.
https://doi.org/10.12971/2179-5959.v01n0...
). One of the possible ways to monitor biodiversity change patterns is to employ species that are known bioindicators of environmental degradation (Gerhardt, 2002Gerhardt, A. 2002. Bioindicator species and their use in biomonitoring. Environmental Monitoring, 1: 77-123.). In this sense, insects are considered excellent bioindicators, as they are widely distributed around the world, play key roles in ecosystems and are sensitive to environmental changes (Forister et al., 2019Forister, M.L.; Pelton, E.M. & Black, S.H. 2019. Declines in insect abundance and diversity: We know enough to act now. Conservation Science and Practice, 1-8. https://doi.org/10.1111/csp2.80.
https://doi.org/10.1111/csp2.80...
).

Ants, in turn, reflect this diversity, representing 80% of animal biomass in some tropical ecosystems (Fittkau & Klinge, 1973Fittkau, E.J. & Klinge, H. 1973. On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica, 5(1): 2-14. https://doi.org/10.2307/2989676.
https://doi.org/10.2307/2989676...
). This group has approximately 16,000 valid species and subspecies, of which 1,748 occur in Brazil (Bolton, 2022Bolton, B. 2022. An online catalog of the ants of the world. Available: Available: http://antcat.org . Access: 27/09/2022.
http://antcat.org...
); they possess highly variable lifestyles, diets, and behavior (Rosumek, 2017Rosumek, F.B. 2017. Natural history of ants: what we (do not) know about trophic and temporal niches of neotropical species. Sociobiology, 64(3): 244-255. https://doi.org/10.13102/sociobiology.v64i3.1623.
https://doi.org/10.13102/sociobiology.v6...
). Regarding ecological aspects, ants are considered great contributors to the maintenance of biodiversity, having an influence on the presence of other invertebrates (Vasconcelos et al., 2000Vasconcelos, H.L.; Vilhena, J.M.S. & Caliri, G.J.A. 2000. Responses of ants to selective logging of a central Amazonian Forest. Journal of Applied Ecology, 37(3): 508-514. https://doi.org/10.1046/j.1365-2664.2000.00512.x.
https://doi.org/10.1046/j.1365-2664.2000...
) and performing important ecosystem services (Viles et al., 2021Viles, H.A.; Goudie, A.S.; & Goudie, A.M. 2021. Ants as geomorphological agents: A global assessment. Earth-Science Reviews, 213: 1-17, 103469. https://doi.org/10.1016/j.earscirev.2020.103469.
https://doi.org/10.1016/j.earscirev.2020...
). Moreover, they are considered excellent witnesses to the environmental change due to their high sensitivity to disturbance. In addition, they are widespread, easy to sample, and are considerably abundant (Ribas et al., 2012Ribas, C.R.; Campos, R.B.; Schmidt, F.A. & Solar, R.R. 2012. Ants as indicators in Brazil: a review with suggestions to improve the use of ants in environmental monitoring programs. Psyche: A Journal of Entomology, 4(6): 1-23. https://doi.org/10.1155/2012/636749.
https://doi.org/10.1155/2012/636749...
).

In this study, we assessed the composition of the ant fauna in a recently implemented RPPN, which consists almost entirely of Eucalyptus with the understory displaying varying levels of complexity. We intend to show the record of species and the trophic guilds, as the natural regeneration process of the native vegetation occurs. Furthermore, we intend to provide the first taxonomic inventory of the ant fauna of this conservation unit, so it can be used in future monitoring projects.

MATERIAL AND METHODS

Study site

The study was performed at RPPN Botujuru, situated in the municipality of Mogi das Cruzes (SP, Brazil). Established in 2015, RPPN Botujuru was created to protect one of the most important Atlantic Forest fragments in the state of São Paulo (Fig. 1), Serra do Itapety (Ecofuturo, 2016Ecofuturo. 2016. Instituto Ecofuturo. Reserva Botujuru Serra do Itapety: Um breve resumo do plano de manejo. São Paulo.), being part of a buffer zone of a recently created ecological corridor known as Corredor Ecológico Mogiano (Mogi das Cruzes, 2020Mogi das Cruzes. 2020. Plano municipal de conservação e recuperação da Mata Atlântica. Prefeitura de Mogi das Cruzes. Available: Available: https://www.mogidascruzes.sp.gov.br/pagina/secretaria-do-verde-e-meio-ambiente/plano-municipal-da-mata-atlantica . Access: 26/09/2022.
https://www.mogidascruzes.sp.gov.br/pagi...
). The RPPN was kept for a long time as a Eucalyptus sp. and Pinus sp. management area, but it was inactivated, and now it has areas that have not been managed in over 20 years. Eucalyptus plantations correspond to 75% of the total area of the RPPN (Ecofuturo, 2016Ecofuturo. 2016. Instituto Ecofuturo. Reserva Botujuru Serra do Itapety: Um breve resumo do plano de manejo. São Paulo.), which means approximately 328 ha.

Figure 1
Botujuru Private Natural Heritage Preserve location and the respective collecting sites.

The phytophysiognomy is classified as Dense Ombrophilous Forest (Colombo & Joly, 2010Colombo, A.F. & Joly C.A. 2010. Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Brazilian Journal of Biology, 70(3): 697-708. https://doi.org/10.1590/S1519-69842010000400002.
https://doi.org/10.1590/S1519-6984201000...
), with altitudes varying from 600 m to 850 m above sea level. The climate is defined as a Humid Tropical Forest, with the annual precipitation being higher than 2,000 mm, and there is no distinctive seasonality. The rainy season occurs from late September to late March, and the dry season occurs from late June to late September (CPTEC/INPE, 2022Centro de Previsão de Tempo e Estudos Climáticos (CPTEC)/Instituto Nacional de Pesquisas Espaciais (INPE). 2022. Available: Available: http://clima.cptec.inpe.br . Access: 15/02/2022.
http://clima.cptec.inpe.br...
).

Eucalyptus plantations with different ages and understory regeneration were selected for the sampling; the areas in which they occurred have the following ages: 1-4 years (no understory), located in the buffer zone of RPPN Botujuru - Serra do Itapety; 7-12 years (with an understory composed of shrubby vegetation), and 14 years (with an understory displaying both shrubby and arboreal vegetation). For each type of plantation, we collected in two different areas. The geographic coordinates of the sampled areas are located in Table 1.

Table 1
Geographic coordinates for the areas collected.

Ant survey

The collections were conducted in March and April 2018. In each area (n = 6), we delimited two linear transects of 200 m each, where eight parcels of 1 m² were distributed, each 10 m apart from the other. The leaf litter present in these parcels was then collected, sieved, and put into mini-Winkler extractors (Agosti et al., 2000Agosti, D.; Majer, J.D.; Alonso, L.E. & Schultz, T.R. 2000. Ants: standard methods for measuring and monitoring biodiversity. Washington, Smithsonian Institution Press.), where they remained for 48 hours. A total of 96 samples were collected, being 16 per area.

The ant species were initially classified and identified into subfamilies and genera (Baccaro et al., 2015Baccaro, F.B.; Feitosa, R.M.; Fernández, F.; Fernandes, I.O.; Izzo, T.J.; Souza, J.L.P. & Solar, R. 2015. Guia para os gêneros de formigas do Brasil. Manaus, Editora INPA,.; Camacho et al., 2022Camacho, G.P.; Franco, W.; Branstetter, M.G.; Pie, M.R.; Longino, J.T.; Schultz, T.R. & Feitosa, R.M. 2022. UCE phylogenomics resolves major relationships among ectaheteromorph ants (Hymenoptera: Formicidae: Ectatomminae, Heteroponerinae): a new classification for the subfamilies and the description of a new genus. Insect Systematics and Diversity, 6(1): 1-20. https://doi.org/10.1093/isd/ixab026.
https://doi.org/10.1093/isd/ixab026...
), and in morphospecies/species through the comparison with the specimens from the reference collection of the Alto Tietê Myrmecology Laboratory (LAMAT-UMC) (Suguituru et al., 2015Suguituru, S.S.; Morini, M.S.C.; Feitosa, R.M. & Silva, R.R. 2015. Formigas do Alto Tietê. Bauru, Canal 6.; Souza-Campana et al., 2020Souza-Campana, D.R.; Wazema, C.T.; Magalhães, F.S.; Silva, N.S.; Nagatani, V.H.; Suguituru, S.S.; Goto, M.A. & Morini, M.S.C. 2020. Coleção de referência do Laboratório de Mirmecologia do Alto Tietê, São Paulo, Brasil: status atual e perspectivas. Boletim do Museu Paraense Emílio Goeldi-Ciências Naturais, 15(1): 317-336. https://doi.org/10.46357/bcnaturais.v15i1.274.
https://doi.org/10.46357/bcnaturais.v15i...
) and with identification keys (Fernández, 2003Fernández, F. 2003. Subfamília Formicinae. In: Fernández, F. (Ed.). Introduccion a las hormigas de la región Neotropical. Bogotá, Instituto de Investigación de Recursos Biológicos Alexander Von Humbolt, p. 299-306.; Wilson, 2003Wilson, E.O. 2003. Pheidole in the New World: a dominant, hyperdiverse ant genus. Cambridge, Harvard University Press. 794p.; Ortiz-Sepulveda et al., 2019Ortiz-Sepulveda, C.M.; Bocxlaer, B.V; Meneses, A.D. & Fernández, F. 2019. Molecular and morphological recognition of species boundaries in the neglected ant genus Brachymyrmex (Hymenoptera: Formicidae): toward a taxonomic revision. Organisms Diversity & Evolution, 19(3): 447-542. https://doi.org/10.1007/s13127-019-00406-2.
https://doi.org/10.1007/s13127-019-00406...
; Camacho et al., 2020Camacho, G.P.; Franco, W. & Feitosa, R.M. 2020. Additions to the taxonomy of Gnamptogenys Roger (Hymenoptera: Formicidae: Ectatomminae) with an updated key to the New World species. Zootaxa, 4747(3): 450-476. https://doi.org/10.11646/zootaxa.4747.3.2.
https://doi.org/10.11646/zootaxa.4747.3....
). The vouchers were deposited at the regional ant reference collection of Alto Tietê (Universidade de Mogi das Cruzes). The collections were approved by the Environment Ministry/System of Authorization and Information on Biodiversity - MMA/SISBIO) under the license 34037-1.

Data analysis

To assess the regeneration in the areas, the relative frequency was calculated based on the number of occurrences of each species (presence and absence) (Gotelli & Colwell, 2001Gotelli, N. & Colwell, R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4): 379-391. https://doi.org/10.1046/j.1461-0248.2001.00230.x.
https://doi.org/10.1046/j.1461-0248.2001...
). The ant communities were evaluated using the Shannon-Wiener (H’) diversity and Pielou equitability indices, as well as the similarity test (ANOSIM) adopting the significance index p < 0.05. Similarity was represented using the non-metric multidimensional scale (NMDS) test (Past software version 3.14, Hammer et al., 2001Hammer, O.; Harper, D.A.T. & Ryan P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. Paletontologia Eletronica, 4(1): 1-9.) using the Bray-Curtis Similarity Index of species occurrence values. Trophic guilds were classified according to Delabie et al. (2000Delabie, J.H.; Agosti, D. & Nascimento, I.D. 2000. Litter ant communities of the Brazilian Atlantic rain forest region. In: Agosti, D.; Majer, J.; Alonso, L.; Schultz, T. Sampling Ground-dwelling Ants: case studies from the world’s rain forests. Perth, Curtin University of Technology School of Environmental Biology.).

RESULTS

In total, we collected eight families distributed in 38 genera and 86 species and morphospecies (Table 2). The Shannon diversity index varied between H’ = 3,40 (no understory) and H’ = 3,57 (with understory) (Table 2). Myrmicinae was the most frequent subfamily in all sampled areas (68.5%), followed by Ponerinae (11.4%) and Formicinae (10.8%). Among the Myrmicinae genera, Pheidole Westwood, 1839 and Solenopsis Westwood, 1840 were the richest and most frequent, being present in all of the sampled areas in great abundance. For the species, Pheidole sospes Forel, 1908 (7,6%) was the most frequent, followed by Strumigenys denticulata Mayr, 1887 (5.7%). Ponerinae was widely represented by species of Hypoponera Santschi, 1938, such as Hypoponera sp.4 (5.3%), Hypoponera sp.6 (2.3%) and H. foreli (Mayr, 1887) (0.3%), and Odontomachus Latreille, 1804, with O. affinis Guérin-Méneville, 1844 (0.2%) and O. chelifer (Latreille, 1802) (0.1%). Among the Formicinae, the genus Brachymyrmex Mayr, 1868 was recorded in all of the areas sampled with high occurrence levels, being represented chiefly by B. admotus Mayr, 1887 (5.15%) and B. heeri Forel, 1874 (2.11%). Dolichoderinae, Dorylinae, Ectatomminae, Procerattinae, and Pseudomyrmecinae were represented by three or fewer species.

Table 2
Frequency of occurrence (%) of the species recorded according to the age of the area.

Thirteen species (15.11%) were found only in areas whose ages are estimated at 1-4 years, for example, three species of Camponotus Mayr, 1861 and five species of Pheidole Westwood, 1839. For the areas between 7-12 years, 11 species (12.79%) were exclusive; examples are Anochetus altisquamis Mayr, 1887, O. chelifer, and O. meinerti Forel, 1905. The oldest areas (14 years) recorded nine exclusive species (10.46%) such as Acanthognathus ocellatus Mayr, 1887, Brachymyrmex patagonicus Mayr, 1868, and Mycetophylax strigatus (Mayr, 1887). Twenty-six species (30.23%) were present in all areas.

In total, nine trophic guilds were recorded (Fig. 2). The litter omnivore and scavenger guild dominated in every one of the areas studied, with 279 records, being widely represented by species of the genera Pheidole and Solenopsis. This guild was followed by omnivore (161) and specialist litter predator (157) guilds. The less common guilds were army ants (2) and generalist predators (4), represented by Labidus praedator (Smith, 1858) and species of the genus Odontomachus, respectively. None of the guilds were exclusive to any of the areas sampled.

Figure 2
The number of occurrences of trophic guilds along the regeneration gradient in areas of Eucalyptus sp.: 1-4 years (no understory), located in the buffer zone of RPPN Botujuru - Serra do Itapety; 7-12 years (with an understory composed of shrubby vegetation), and 14 years (with an understory displaying both shrubby and arboreal vegetation).

The ant communities of the areas with understory (7-12 years and 14 years) formed a different group (p < 0.05) from those of the younger areas (1-4 years) (Fig. 3).

Figure 3
Non-metric multidimensional scaling (NMDS) Bray-Curtis type for the areas with 1-4 years (grey), 7-12 years (light green), and 14 years (dark green). (Anosim = 0,0001).

DISCUSSION

In this work, we are reporting on the ant communities in an area of Atlantic Forest that is part of a RPPN, which is situated in a buffer zone of an important ecological corridor in the state of São Paulo, called Corredor Ecológico Mogiano. Our results show that the number of species is similar to those of Pacheco et al. (2009Pacheco, R.; Silva, R.R.; Morini, M.S.D.C. & Brandão, C.R. 2009. A comparison of the leaf-litter ant fauna in a secondary atlantic forest with an adjacent pine plantation in southeastern Brazil. Neotropical Entomology, 38(1): 55-65. https://doi.org/10.1590/S1519-566X2009000100005.
https://doi.org/10.1590/S1519-566X200900...
) and Suguituru et al. (2011Suguituru, S.S.; Silva, R.R.; Souza, D.R.D.; Munhae, C.D.B. & Morini, M.S.C. 2011. Ant community richness and composition across a gradient from Eucalyptus plantations to secondary Atlantic Forest. Biota Neotropica, 11(1): 369-376. https://doi.org/10.1590/S1676-06032011000100034.
https://doi.org/10.1590/S1676-0603201100...
) in a secondary forest, located in the same region of our study, and using the same sampling methods used here. On the other hand, when we compare it with the richness of ants of Parque Natural Municipal Francisco Affonso de Mello (108 species; Suguituru et al., 2013Suguituru, S.S.; Souza, D.R.D.; Munhae, C.D.B; Pacheco, R. & Morini, M.S.D.C. 2013. Diversidade e riqueza de formigas (Hymenoptera: Formicidae) em remanescentes de Mata Atlântica na Bacia Hidrográfica do Alto Tietê, SP. Biota Neotropica, 13: 141-152. https://doi.org/10.1590/S1676-06032013000200013.
https://doi.org/10.1590/S1676-0603201300...
), a conservation unit adjacent to the RPPN, the richness recorded by our study is lower, and the species are more generalists.

Forest loss tends to reduce the occurrence of environmentally specialized species, favoring the presence of those with more generalist habits (Martins et al., 2011Martins, L.; Almeida, F.S.; Mayhé-Nunes, A.J. & Vargas A.B. 2011. Efeito da complexidade estrutural do ambiente sobre as comunidades de formigas (Hymenoptera: Formicidae) no município de Resende, RJ, Brasil. Revista Brasileira de Biociências, 9(2): 174-179.). This pattern corroborated our results, given that areas without an understory showed a larger number of generalist guilds, while in those with a developed understory the specialist guilds were more numerous (Fig. 2). The older areas, those with understory, must have been positively influenced by the recovering native vegetation at RPPN Botujuru, specifically with the offer of more foraging and nesting resources (Aguiar et al., 2022Aguiar, J.J.M.; Anjos, D.V.; Carvalho, R.L.; Rejane de Almeida, W.; Santos; A.C.C. & Santos, J.C. 2022. Plant richness drives ant diversity in Eucalyptus-dominated landscape on Brazilian savanna. Austral Ecology, 47: 17-25. https://doi.org/10.1111/aec.13060.
https://doi.org/10.1111/aec.13060...
).

Neocerapachys splendens (Borgmeier, 1957) and Discothyrea sexarticulata Borgmeier, 1954, specialist species, showed low frequency in the areas without an understory (0.43% and 0%, respectively), while those with regenerated understory have recorded a higher occurrence of both species (0.71% and 2.12% for areas with 7-12 years, and 0.42% and 2.09% for those with 14 years, respectively). The understory regeneration brings more complexity to the environment because it offers more food sources, foraging sites, and, mainly, microclimates that can contribute to a higher diversity of species (Kaspari, 1996Kaspari, M. 1996. Testing resource-based models of patchiness in four Neotropical litter ant assemblages. Oikos, 443-454. https://doi.org/10.2307/3546338.
https://doi.org/10.2307/3546338...
; Campos et al., 2003Campos, R.B.; Schoereder, J.H. & Sperber, C.F. 2003. Local determinants of species richness in litter ant communities (Hymenoptera: Formicidae). Sociobiology, 41(2): 357-368.; Cramer & Willig, 2005Cramer, M.J. & Willig, M.R. 2005. Habitat heterogeneity, species diversity and null models. Oikos, 108(2): 209-218. https://doi.org/10.1111/j.0030-1299.2005.12944.x.
https://doi.org/10.1111/j.0030-1299.2005...
; Laurance et al., 2006Laurance, W.F.; Nascimento, H.E.; Laurance, S.G.; Andrade, A.C.; Fearnside, P.M.; Ribeiro, J.E. & Capretz, R.L. 2006. Rain forest fragmentation and the proliferation of successional trees. Ecology, 87(2): 469-482. https://doi.org/10.1890/05-0064.
https://doi.org/10.1890/05-0064...
). Consequently, the regeneration influences positively the restructuring of ant communities, added to the high resilience observed in Atlantic Forest fragments (Cheung et al., 2010Cheung, K.C.; Liebsch, D. & Marques, M.C.M. 2010. Forest recovery in newly abandoned pastures in Southern Brazil: implications for the Atlantic Rain Forest resilience. Natureza & Conservação, 8(1): 66-70.), the area can become similar to areas of native vegetation in terms of species richness (Mentone et al., 2011Mentone, T.D.O.; Diniz, E.A.; Munhae, C.D.B.; Bueno, O.C. & Morini, M.S.C. 2011. Composição da fauna de formigas (Hymenoptera: Formicidae) de serapilheira em florestas semidecídua e de Eucalyptus spp., na região sudeste do Brasil. Biota Neotropica, 11: 237-246. https://doi.org/10.1590/S1676-06032011000200024.
https://doi.org/10.1590/S1676-0603201100...
; Martello et al., 2018Martello, F.B.; Morini, M.S.C.; Silva, R.R.; Souza-Campana, D.R.; Ribeiro, M.C. & Carmona, C.P. 2018. Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Scientific Reports, 8(1): 3266. https://doi.org/10.1038/s41598-018-20823-1.
https://doi.org/10.1038/s41598-018-20823...
). This type of regeneration is called passive, and allows the successional stages to occur naturally, and in this way, organisms such as ants can establish themselves in areas such as old Eucalyptus plantations, without the need to perform cuts (Benayas et al., 2008Benayas, J.M.R.; Bullock, J.M. & Newton, A.C. 2008. Creating woodland islets to reconcile ecological restoration, conservation, and agricultural land use. Frontiers in Ecology and the Environment, 6(6), 329-336. https://doi.org/10.1890/070057.
https://doi.org/10.1890/070057...
).

The species and guilds sampled are grouped mainly in Myrmicinae, which is bound to this subfamily’s high plasticity in terms of ecological niches they display (Hölldobler & Wilson, 1990Hölldobler, B. & Wilson, E.O. 1990. The ants. Cambridge, Belknap Press.). Examples of this are Pheidole and Solenopsis which occur in high frequency in Eucalyptus plantations (Barbosa & Fernandes, 2003Barbosa, L.P. & Fernandes, W.D. 2003. Bait removal by ants (Hymenoptera: Formicidae) in managed and unmanaged Eucalyptus urophylla ST Blake Fields. Brazilian Journal of Ecology, 8: 61-63.; Fonseca & Diehl, 2004Fonseca, R.C. & Diehl, E. 2004. Riqueza de formigas (Hymenoptera, Formicidae) epigéicas em povoamentos de Eucalyptus spp. (Myrtaceae) de diferentes idades no Rio Grande do Sul, Brasil. Revista Brasileira de Entomologia, 48(1): 95-100. https://doi.org/10.1590/S0085-56262004000100016.
https://doi.org/10.1590/S0085-5626200400...
) and are generalists, which confers them advantages when compared to other guilds. We highlight P. sospes, which is abundant in varied ecosystems (Pereira et al., 2007Pereira, M.P.S.; Queiroz, J.M.; Souza, G.O. & MayhéNunes, A.J. 2007. Influência da heterogeneidade da serapilheira sobre as formigas que nidificam em galhos mortos em floresta nativa e plantio de eucalipto. Neotropical Biology and Conservation, 2(3): 161-164. https://doi.org/10.4013/5939.
https://doi.org/10.4013/5939...
); Solenopsis spp. are dominant in the occupation of the leaf litter and soil in disturbed environments (Majer & Delabie, 1999Majer, J.D. & Delabie, J.H.C. 1999. Impact of tree isolation on arboreal and communities in cleared pasture in the Atlantic rain forest region of Bahia, Brazil. Insect Sociaux, 46: 281-290. https://doi.org/10.1007/s000400050147.
https://doi.org/10.1007/s000400050147...
).

Species of other subfamilies, such as Anochetus altisquamis, Odontomachus spp. and Hypoponera spp. are key constituents of the leaf litter regarding invertebrate predation (Brandão, 1999Brandão, C.R.F. 1999. Reino Animalia: Formicidae. In: Joly, C.A. & Cancello, E.M. Biodiversidade do Estado de São Paulo: síntese do conhecimento ao final do século XX: Invertebrados. São Paulo, FAPESP. p. 1-300.; Brandão et al., 2015Brandão, C.R.F.; Prado, L.P.; Ulysséa, M.A.; Probst, R.S. & Alarcon, V. 2015. Dieta das Poneromorfas Neotropicais. In: Delabie, J.H.C; Feitosa, R.M.; Serrão, J.E.; Mariano, C.S.F.; Majer, J.D. As formigas Poneromorfas do Brasil. Ilhéus, Editora da UESC. p. 145-161.; Fernandes et al., 2021Fernandes, I.O.; Larabee, F.J.; Oliveira, M.L.; Delabie, J.H. & Schultz, T.R. 2021. A global phylogenetic analysis of trap-jaw ants, Anochetus Mayr and Odontomachus Latreille (Hymenoptera: Formicidae: Ponerinae). Systematic Entomology, 46(3): 685-703. https://doi.org/10.1111/syen.12483.
https://doi.org/10.1111/syen.12483...
). We still emphasize B. admotus, an omnivorous species dependent on the stratum moisture (Brandão et al., 2009Brandão, C.R.F.; Silva, R.R. & Delabie, J.H.C. 2009. Formigas (Hymenoptera). In: Panizzi, A.R. & Parra, J.R.P. Bioecologia e nutrição de insetos: base para o manejo integrado de pragas. Brasília, Embrapa Tecnológica. 1163p.; Silva & Brandão, 2010Silva, R.R. & Brandão, C.R.F. 2010. Morphological patterns and community organization in leaf-litter ant assemblages. Ecological Monographs, 80: 107-124. https://doi.org/10.1890/08-1298.1.
https://doi.org/10.1890/08-1298.1...
), widely recorded in the three areas sampled.

Ectatomminae, Procerattinae, Pseudomyrmecinae, Dolichoderinae, and Dorylinae were undersampled in this study. Ectatomminae was especially represented by Holcoponera striatula (Mayr, 1884), a widespread species in the Neotropical region (Rosumek, 2017Rosumek, F.B. 2017. Natural history of ants: what we (do not) know about trophic and temporal niches of neotropical species. Sociobiology, 64(3): 244-255. https://doi.org/10.13102/sociobiology.v64i3.1623.
https://doi.org/10.13102/sociobiology.v6...
). Dorylinae was represented by L. praedator (Smith, 1858), characterized by seasonal nests with large numbers of workers, which are blind and predate on other social insects, such as other ants and termites (Borowiec, 2016Borowiec, M.L. 2016. Generic revision of the ant subfamily Dorylinae (Hymenoptera, Formicidae). ZooKeys, 608: 1-280. https://doi.org/10.3897/zookeys.608.9427.
https://doi.org/10.3897/zookeys.608.9427...
). Another important record is of N. splendens, species scarcely sampled in biodiversity studies (Franco et al., 2019Franco, W.; Ladino, N.; Delabie, J. H.; Dejean, A.; Orivel, J.; Fichaux, M.; Groc, S.; Leponce, M. & Feitosa, R.M. 2019. First checklist of the ants (Hymenoptera: Formicidae) of French Guiana. Zootaxa, 4674(5): 509-543. https://doi.org/10.11646/zootaxa.4674.5.2.
https://doi.org/10.11646/zootaxa.4674.5....
; Wazema et al., 2019Wazema, C.T.; Morini, M.S.C. & Souza-Campana, D.R. 2019. Diversidade de formigas (Hymenoptera: Formicidae) em um fragmento de Mata Atlântica no município de Mogi das Cruzes (SP). Revista Científica UMC, 4(2): 1-12.) and classified as specialist predators of other social insects (Palacio, 2019Palacio, E.E. 2019. Subfamilia Dorylinae. In: Fernández, F. & Guerrero, R.J.; Delsinne, T. Hormigas de Colombia. Bogotá, Universidad Nacional de Colombia. p. 571-630.).

Discothyrea sexarticulata is not frequent in leaf litter samplings, probably because its colonies count with few individuals (Katayama, 2013Katayama, M. 2013. Predatory behaviours of Discothyrea kamiteta (Proceratiinae) on spider eggs. Asian Myrmecol, (5): 121-124.) and minute workers (Brandão et al., 2009Brandão, C.R.F.; Silva, R.R. & Delabie, J.H.C. 2009. Formigas (Hymenoptera). In: Panizzi, A.R. & Parra, J.R.P. Bioecologia e nutrição de insetos: base para o manejo integrado de pragas. Brasília, Embrapa Tecnológica. 1163p.). Moreover, it is a species associated with native vegetation (Wazema et al., 2020Wazema, C.T.; Nagatani, V.H.; Souza-Campana, D.R.; Magalhães, F.S.; Sartorello, R. & Morini, M.S.C. 2020. What do different landscapes of the Atlantic Forest reveal about the occurrence of Discothyrea Roger, 1863 (Formicidae: Proceratiinae)? Biota Neotropica, 20(4). https://doi.org/10.1590/1676-0611-BN-2020-1035.
https://doi.org/10.1590/1676-0611-BN-202...
) which has a highly specialized feeding habit (Brown, 1957Brown, W.L. 1957. Predation of arthropod eggs by the ant genera Proceratium and Discothyrea. Psyche: A Journal of Entomology, 64(3): 115-115. https://doi.org/10.1155/1957/45849.
https://doi.org/10.1155/1957/45849...
), for they depend on the eggs of small arthropods like spiders and millipedes (Dejean & Dejean, 1998Dejean, A. & Dejean, A. 1998. How a ponerine ant acquired the most evolved mode of colony foundation. Insectes Sociaux, 45(3): 343-346. https://doi.org/10.1007/s000400050093.
https://doi.org/10.1007/s000400050093...
). Thus, the presence of this species may be explained by the regeneration of the understory and the increase in resources it brings with it. Data on the occurrence of D. sexarticulata are still incipient in Eucalyptus plantations (see Suguituru et al., 2011Suguituru, S.S.; Silva, R.R.; Souza, D.R.D.; Munhae, C.D.B. & Morini, M.S.C. 2011. Ant community richness and composition across a gradient from Eucalyptus plantations to secondary Atlantic Forest. Biota Neotropica, 11(1): 369-376. https://doi.org/10.1590/S1676-06032011000100034.
https://doi.org/10.1590/S1676-0603201100...
and Mentone et al., 2011Mentone, T.D.O.; Diniz, E.A.; Munhae, C.D.B.; Bueno, O.C. & Morini, M.S.C. 2011. Composição da fauna de formigas (Hymenoptera: Formicidae) de serapilheira em florestas semidecídua e de Eucalyptus spp., na região sudeste do Brasil. Biota Neotropica, 11: 237-246. https://doi.org/10.1590/S1676-06032011000200024.
https://doi.org/10.1590/S1676-0603201100...
); thus, our work adds new records for Alto Tietê.

Our results show that the older areas were the most diverse, which again suggests the influence of the understory (Grimbacher & Hughes, 2002Grimbacher, P.S. & Hughes, L. 2002. Response of ant communities and ant-seed interactions to bush regeneration. Ecological Management & Restoration, 3(3): 188-199. https://doi.org/10.1046/j.1442-8903.2002.00112.x.
https://doi.org/10.1046/j.1442-8903.2002...
; Underwood & Fisher, 2006Underwood, E.C. & Fisher, B.L. 2006. The role of ants in conservation monitoring: if, when, and how. Biological conservation, 132(2): 166-182. https://doi.org/10.1016/j.biocon.2006.03.022.
https://doi.org/10.1016/j.biocon.2006.03...
; Chu et al., 2019Chu, S.; Ouyang, J.; Liao, D.; Zhou, Y.; Liu, S.; Shen, D.; Wei, X. & Zeng, S. 2019. Effects of enriched planting of native tree species on surface water flow, sediment, and nutrient losses in a Eucalyptus plantation forest in southern China. Science of the Total Environment, 675: 224-234. https://doi.org/10.1016/j.scitotenv.2019.04.214.
https://doi.org/10.1016/j.scitotenv.2019...
), especially in the records of specialist species. Areas with ages estimated to be between 1-4 years presented the lowest values for all indexes, which is because the underbrush, composed mainly of grasses, and the management of the soil do not allow the formation of leaf litter. These events cause disturbance in the edaphic fauna, leading to significant distress in the community (Martello et al., 2018Martello, F.B.; Morini, M.S.C.; Silva, R.R.; Souza-Campana, D.R.; Ribeiro, M.C. & Carmona, C.P. 2018. Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Scientific Reports, 8(1): 3266. https://doi.org/10.1038/s41598-018-20823-1.
https://doi.org/10.1038/s41598-018-20823...
). Thus, a less complex environmental structure with limited resources negatively influences the establishment of ant species (Martello et al., 2018Martello, F.B.; Morini, M.S.C.; Silva, R.R.; Souza-Campana, D.R.; Ribeiro, M.C. & Carmona, C.P. 2018. Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Scientific Reports, 8(1): 3266. https://doi.org/10.1038/s41598-018-20823-1.
https://doi.org/10.1038/s41598-018-20823...
). Species of Myrmicinae were the ones that occurred the most and, among the recorded guilds, litter omnivore and scavenger were present in all areas, for their genera encompass several species classified as dominant (Delabie et al., 2000Delabie, J.H.; Agosti, D. & Nascimento, I.D. 2000. Litter ant communities of the Brazilian Atlantic rain forest region. In: Agosti, D.; Majer, J.; Alonso, L.; Schultz, T. Sampling Ground-dwelling Ants: case studies from the world’s rain forests. Perth, Curtin University of Technology School of Environmental Biology.). The records of species like N. splendens e D. sexarticulata show that the regeneration of the older areas provides resources to those species with more specialized habits.

We underscore the presence of two species, a possible new species of OctostrumaForel, 1912Forel, A. 1912. Formicides néotropiques. Part VI. 5me sous-famille Camponotinae Forel. Mémoires de la Société Entomologique de Belgique, 20: 59-92., recorded in the areas with an understory, and Camponotus cillae Forel, 1912 (Fig. 4) recorded in Brazil only by the type series in the state of São Paulo (Botucatu) by Forel in 1912 (Forel, 1912Forel, A. 1912. Formicides néotropiques. Part VI. 5me sous-famille Camponotinae Forel. Mémoires de la Société Entomologique de Belgique, 20: 59-92.). Data on their biology is scarce in the literature. This new record highlights the importance of new studies on biodiversity to our comprehension of the distribution of species (Janicki et al., 2016Janicki, J.; Narula, N.; Ziegler, M.; Guénard, B. & Economo, E.P. 2016. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: The design and implementation of antmaps.org. Ecological Informatics, 32: 185-193. https://doi.org/10.1016/j.ecoinf.2016.02.006.
https://doi.org/10.1016/j.ecoinf.2016.02...
).

Figure 4
Camponotus cillae recorded for the RPPN Botujuru: (A) front view; (B) dorsal view; (C) side view.

In addition, our results show the potential of RPPN Botujuru; the occurrence of C. cillae and the possible species of Octostruma in the Botujuru RPPN emphasizes the importance of conservation units for threatened biomes. Fragments of Atlantic Forest found in conservation units are important for the preservation of biodiversity, acting as refuge areas for species that suffer from anthropogenic pressures such as deforestation and urban growth (Gardner et al., 2009Gardner, T.A.; Barlow, J.; Chazdon, R.; Ewers, R.M.; Harvey, C.A.; Peres, C.A. & Sodhi, N.S. 2009. Prospects for tropical forest biodiversity in a human-modified world. Ecology Letters, 12(6): 561-582.; Pardini et al., 2009Pardini, R.; Faria, D.; Accacio, G.M.; Laps, R.R.; Mariano-Neto, E.; Paciencia, M.L.B.; Dixo, M. & Baumgarten, J. 2009. The challenge of maintaining Atlantic Forest biodiversity: a multi-taxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biological Conservation, 142(6): 1178-1190. https://doi.org/10.1016/j.biocon.2009.02.010.
https://doi.org/10.1016/j.biocon.2009.02...
; Lima et al., 2020Lima, R.A.; Oliveira, A.A.; Pitta, G.R.; Gasper, A.L.; Vibrans, A.C.; Chave, J.; Steege, H.T. & Prado, P.I. 2020. The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nature Communications, 11(1): 1-16. https://doi.org/10.1038/s41467-020-20217-w.
https://doi.org/10.1038/s41467-020-20217...
), providing resources, even for those rarely collected. Another important factor is the potential of conservation units to discover new species, mainly invertebrates (Liu et al., 2022Liu, J.; Slik, F.; Zheng, S. & Lindenmayer, D.B. 2022. Undescribed species have higher extinction risk than known species. Conservation Letters, e12876. https://doi.org/10.1111/conl.12876.
https://doi.org/10.1111/conl.12876...
), a group that lacks inventory data.

They also emphasize the need to advance in the identification of recorded morphospecies, increase sampling efforts, use other collection techniques to better understand the diversity of ants and other faunal and floristic groups in the RPPN. Moreover, these results also underscore the need for the creation of measures aiming at preserving the area, given that the urbanization process has been intense in the vicinity of the conservation unit.

CONCLUSION

The diversity of ants evaluated in this first work, carried out with only one collection campaign, indicates that the natural regeneration process is having positive effects in abandoned areas. The fragments that compose the RPPN Botujuru may prove to be very representative of the Alto Tietê region regarding the conservation of the Atlantic Forest. The species list generated by our study and their classification in trophic guilds provide data that can contribute to the monitoring of the ant diversity of these conservation units in the long term.

ACKNOWLEDGMENTS

To the management staff of the RPPN Botujuru for the support. To Rodrigo M. Feitosa (Universidade Federal do Paraná) for confirming the identification of Camponotus cillae.

REFERENCES

  • Agosti, D.; Majer, J.D.; Alonso, L.E. & Schultz, T.R. 2000. Ants: standard methods for measuring and monitoring biodiversity. Washington, Smithsonian Institution Press.
  • Aguiar, J.J.M.; Anjos, D.V.; Carvalho, R.L.; Rejane de Almeida, W.; Santos; A.C.C. & Santos, J.C. 2022. Plant richness drives ant diversity in Eucalyptus-dominated landscape on Brazilian savanna. Austral Ecology, 47: 17-25. https://doi.org/10.1111/aec.13060
    » https://doi.org/10.1111/aec.13060
  • Ayala, L. 2010. RPPN Mata Atlântica: Empresas aliadas da natureza RPPN Mata Atlântica as reservas particulares como estratégia ambiental corporativa. São Paulo, SOS Mata Atlântica,.
  • Baccaro, F.B.; Feitosa, R.M.; Fernández, F.; Fernandes, I.O.; Izzo, T.J.; Souza, J.L.P. & Solar, R. 2015. Guia para os gêneros de formigas do Brasil. Manaus, Editora INPA,.
  • Baklanov, A.; Grimmond, C.S.B.; Carlson, D.; Terblanche, D.; Tang, X.; Bouchet, V.; Lee, B.; Langendijk, G.; Kolli, R.K. & Hovsepyan, A. 2018. From urban meteorology, climate and environment research to integrated city services. Urban Climate, 23: 330-341. https://doi.org/10.1016/j.uclim.2017.05.004
    » https://doi.org/10.1016/j.uclim.2017.05.004
  • Barbosa, L.P. & Fernandes, W.D. 2003. Bait removal by ants (Hymenoptera: Formicidae) in managed and unmanaged Eucalyptus urophylla ST Blake Fields. Brazilian Journal of Ecology, 8: 61-63.
  • Benayas, J.M.R.; Bullock, J.M. & Newton, A.C. 2008. Creating woodland islets to reconcile ecological restoration, conservation, and agricultural land use. Frontiers in Ecology and the Environment, 6(6), 329-336. https://doi.org/10.1890/070057
    » https://doi.org/10.1890/070057
  • Bensusan, N. 2006. Conservação da biodiversidade em áreas protegidas. Rio de Janeiro, FGV Editora.
  • Bolton, B. 2022. An online catalog of the ants of the world. Available: Available: http://antcat.org Access: 27/09/2022.
    » http://antcat.org
  • Borowiec, M.L. 2016. Generic revision of the ant subfamily Dorylinae (Hymenoptera, Formicidae). ZooKeys, 608: 1-280. https://doi.org/10.3897/zookeys.608.9427
    » https://doi.org/10.3897/zookeys.608.9427
  • Brandão, C.R.F. 1999. Reino Animalia: Formicidae. In: Joly, C.A. & Cancello, E.M. Biodiversidade do Estado de São Paulo: síntese do conhecimento ao final do século XX: Invertebrados. São Paulo, FAPESP. p. 1-300.
  • Brandão, C.R.F.; Prado, L.P.; Ulysséa, M.A.; Probst, R.S. & Alarcon, V. 2015. Dieta das Poneromorfas Neotropicais. In: Delabie, J.H.C; Feitosa, R.M.; Serrão, J.E.; Mariano, C.S.F.; Majer, J.D. As formigas Poneromorfas do Brasil. Ilhéus, Editora da UESC. p. 145-161.
  • Brandão, C.R.F.; Silva, R.R. & Delabie, J.H.C. 2009. Formigas (Hymenoptera). In: Panizzi, A.R. & Parra, J.R.P. Bioecologia e nutrição de insetos: base para o manejo integrado de pragas. Brasília, Embrapa Tecnológica. 1163p.
  • Brasil. 2000. Lei Federal № 9.985, de 18 de julho de 2000. Institui o Sistema Nacional de Unidades de Conservação e dá outras providências. Available: Available: http://www.planalto.gov.br/ccivil_03/leis/L9985.htm Access: 21/08/2020.
    » http://www.planalto.gov.br/ccivil_03/leis/L9985.htm
  • Instituto Terra. 2022. Dia Nacional das RPPNs: o que é isso? Available: Available: https://institutoterra.org/dia-nacional-das-rppns-o-que-e-isso Access: 25/10/2022.
    » https://institutoterra.org/dia-nacional-das-rppns-o-que-e-isso
  • Brito, F. 2012. Corredores ecológicos: uma estratégia integradora na gestão de ecossistemas. Florianópolis, Editora UFSC.
  • Brown, W.L. 1957. Predation of arthropod eggs by the ant genera Proceratium and Discothyrea. Psyche: A Journal of Entomology, 64(3): 115-115. https://doi.org/10.1155/1957/45849
    » https://doi.org/10.1155/1957/45849
  • Camacho, G.P.; Franco, W. & Feitosa, R.M. 2020. Additions to the taxonomy of Gnamptogenys Roger (Hymenoptera: Formicidae: Ectatomminae) with an updated key to the New World species. Zootaxa, 4747(3): 450-476. https://doi.org/10.11646/zootaxa.4747.3.2
    » https://doi.org/10.11646/zootaxa.4747.3.2
  • Camacho, G.P.; Franco, W.; Branstetter, M.G.; Pie, M.R.; Longino, J.T.; Schultz, T.R. & Feitosa, R.M. 2022. UCE phylogenomics resolves major relationships among ectaheteromorph ants (Hymenoptera: Formicidae: Ectatomminae, Heteroponerinae): a new classification for the subfamilies and the description of a new genus. Insect Systematics and Diversity, 6(1): 1-20. https://doi.org/10.1093/isd/ixab026
    » https://doi.org/10.1093/isd/ixab026
  • Campos, R.B.; Schoereder, J.H. & Sperber, C.F. 2003. Local determinants of species richness in litter ant communities (Hymenoptera: Formicidae). Sociobiology, 41(2): 357-368.
  • Carlucci, M.B.; Marcilio-Silva, V. & Torezan, J.M. 2021. The southern Atlantic Forest: use, degradation, and perspectives for conservation. In: Marcia, C.M.; Carlos, E. & Grelle, V. The Atlantic Forest. Cham, Springer. p. 91-111.
  • Centro de Previsão de Tempo e Estudos Climáticos (CPTEC)/Instituto Nacional de Pesquisas Espaciais (INPE). 2022. Available: Available: http://clima.cptec.inpe.br Access: 15/02/2022.
    » http://clima.cptec.inpe.br
  • Cheung, K.C.; Liebsch, D. & Marques, M.C.M. 2010. Forest recovery in newly abandoned pastures in Southern Brazil: implications for the Atlantic Rain Forest resilience. Natureza & Conservação, 8(1): 66-70.
  • Chu, S.; Ouyang, J.; Liao, D.; Zhou, Y.; Liu, S.; Shen, D.; Wei, X. & Zeng, S. 2019. Effects of enriched planting of native tree species on surface water flow, sediment, and nutrient losses in a Eucalyptus plantation forest in southern China. Science of the Total Environment, 675: 224-234. https://doi.org/10.1016/j.scitotenv.2019.04.214
    » https://doi.org/10.1016/j.scitotenv.2019.04.214
  • Colombo, A.F. & Joly C.A. 2010. Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Brazilian Journal of Biology, 70(3): 697-708. https://doi.org/10.1590/S1519-69842010000400002
    » https://doi.org/10.1590/S1519-69842010000400002
  • Couto, P.H.M.; Araújo, M.S.; Rodrigues, O.S.; Lucia, T.M.C.D.; Oliveira, M.A. & Bacci, L. 2010. Formigas como bioindicadores da qualidade ambiental em diferentes sistemas de cultivo da soja. Revista Agrotecnologia, 1(1): 11-20. https://doi.org/10.12971/2179-5959.v01n01a01
    » https://doi.org/10.12971/2179-5959.v01n01a01
  • Cramer, M.J. & Willig, M.R. 2005. Habitat heterogeneity, species diversity and null models. Oikos, 108(2): 209-218. https://doi.org/10.1111/j.0030-1299.2005.12944.x
    » https://doi.org/10.1111/j.0030-1299.2005.12944.x
  • Dejean, A. & Dejean, A. 1998. How a ponerine ant acquired the most evolved mode of colony foundation. Insectes Sociaux, 45(3): 343-346. https://doi.org/10.1007/s000400050093
    » https://doi.org/10.1007/s000400050093
  • Delabie, J.H.; Agosti, D. & Nascimento, I.D. 2000. Litter ant communities of the Brazilian Atlantic rain forest region. In: Agosti, D.; Majer, J.; Alonso, L.; Schultz, T. Sampling Ground-dwelling Ants: case studies from the world’s rain forests. Perth, Curtin University of Technology School of Environmental Biology.
  • Ecofuturo. 2016. Instituto Ecofuturo. Reserva Botujuru Serra do Itapety: Um breve resumo do plano de manejo. São Paulo.
  • Fernandes, I.O.; Larabee, F.J.; Oliveira, M.L.; Delabie, J.H. & Schultz, T.R. 2021. A global phylogenetic analysis of trap-jaw ants, Anochetus Mayr and Odontomachus Latreille (Hymenoptera: Formicidae: Ponerinae). Systematic Entomology, 46(3): 685-703. https://doi.org/10.1111/syen.12483
    » https://doi.org/10.1111/syen.12483
  • Fernández, F. 2003. Subfamília Formicinae. In: Fernández, F. (Ed.). Introduccion a las hormigas de la región Neotropical. Bogotá, Instituto de Investigación de Recursos Biológicos Alexander Von Humbolt, p. 299-306.
  • Fonseca, R.C. & Diehl, E. 2004. Riqueza de formigas (Hymenoptera, Formicidae) epigéicas em povoamentos de Eucalyptus spp. (Myrtaceae) de diferentes idades no Rio Grande do Sul, Brasil. Revista Brasileira de Entomologia, 48(1): 95-100. https://doi.org/10.1590/S0085-56262004000100016
    » https://doi.org/10.1590/S0085-56262004000100016
  • Forel, A. 1912. Formicides néotropiques. Part VI. 5me sous-famille Camponotinae Forel. Mémoires de la Société Entomologique de Belgique, 20: 59-92.
  • Forister, M.L.; Pelton, E.M. & Black, S.H. 2019. Declines in insect abundance and diversity: We know enough to act now. Conservation Science and Practice, 1-8. https://doi.org/10.1111/csp2.80
    » https://doi.org/10.1111/csp2.80
  • Franco, W.; Ladino, N.; Delabie, J. H.; Dejean, A.; Orivel, J.; Fichaux, M.; Groc, S.; Leponce, M. & Feitosa, R.M. 2019. First checklist of the ants (Hymenoptera: Formicidae) of French Guiana. Zootaxa, 4674(5): 509-543. https://doi.org/10.11646/zootaxa.4674.5.2
    » https://doi.org/10.11646/zootaxa.4674.5.2
  • Fittkau, E.J. & Klinge, H. 1973. On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica, 5(1): 2-14. https://doi.org/10.2307/2989676
    » https://doi.org/10.2307/2989676
  • Gardner, T.A.; Barlow, J.; Chazdon, R.; Ewers, R.M.; Harvey, C.A.; Peres, C.A. & Sodhi, N.S. 2009. Prospects for tropical forest biodiversity in a human-modified world. Ecology Letters, 12(6): 561-582.
  • Gerhardt, A. 2002. Bioindicator species and their use in biomonitoring. Environmental Monitoring, 1: 77-123.
  • Gotelli, N. & Colwell, R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4): 379-391. https://doi.org/10.1046/j.1461-0248.2001.00230.x
    » https://doi.org/10.1046/j.1461-0248.2001.00230.x
  • Grimbacher, P.S. & Hughes, L. 2002. Response of ant communities and ant-seed interactions to bush regeneration. Ecological Management & Restoration, 3(3): 188-199. https://doi.org/10.1046/j.1442-8903.2002.00112.x
    » https://doi.org/10.1046/j.1442-8903.2002.00112.x
  • Hammer, O.; Harper, D.A.T. & Ryan P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. Paletontologia Eletronica, 4(1): 1-9.
  • Hölldobler, B. & Wilson, E.O. 1990. The ants. Cambridge, Belknap Press.
  • Hu, X.; Huang, B.; Verones, F.; Cavalett, O. & Cherubinil, F. 2021. Overview of recent land-cover changes in biodiversity hotspots. Frontiers in Ecology and the Environment, 19(2): 91-97. https://doi.org/10.1002/fee.2276
    » https://doi.org/10.1002/fee.2276
  • Janicki, J.; Narula, N.; Ziegler, M.; Guénard, B. & Economo, E.P. 2016. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: The design and implementation of antmaps.org. Ecological Informatics, 32: 185-193. https://doi.org/10.1016/j.ecoinf.2016.02.006
    » https://doi.org/10.1016/j.ecoinf.2016.02.006
  • Kaspari, M. 1996. Testing resource-based models of patchiness in four Neotropical litter ant assemblages. Oikos, 443-454. https://doi.org/10.2307/3546338
    » https://doi.org/10.2307/3546338
  • Katayama, M. 2013. Predatory behaviours of Discothyrea kamiteta (Proceratiinae) on spider eggs. Asian Myrmecol, (5): 121-124.
  • Laurance, W.F.; Nascimento, H.E.; Laurance, S.G.; Andrade, A.C.; Fearnside, P.M.; Ribeiro, J.E. & Capretz, R.L. 2006. Rain forest fragmentation and the proliferation of successional trees. Ecology, 87(2): 469-482. https://doi.org/10.1890/05-0064
    » https://doi.org/10.1890/05-0064
  • Le Saout, S.; Hoffmann, M.; Shi, Y.; Hughes, A.; Bernard, C.; Brooks, T. M.; Bertzky, B.; Butchart, S.H.M.; Stuart, S.N.; Badman, T. & Rodrigues, A.S.L. 2013. Protected areas and effective biodiversity conservation. Science, 342(6160): 803-805. https://doi.org/10.1126/science.1239268
    » https://doi.org/10.1126/science.1239268
  • Lewis, E.; MacSharry, B.; Juffe-Bignoli, D.; Harris, N.; Burrows, G.; Kingston, N. & Burgess, N.D. 2019. Dynamics in the global protected-area estate since 2004. Conservation Biology, 33(3): 570-579. https://doi.org/10.1111/cobi.13056
    » https://doi.org/10.1111/cobi.13056
  • Lima, R.A.; Oliveira, A.A.; Pitta, G.R.; Gasper, A.L.; Vibrans, A.C.; Chave, J.; Steege, H.T. & Prado, P.I. 2020. The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nature Communications, 11(1): 1-16. https://doi.org/10.1038/s41467-020-20217-w
    » https://doi.org/10.1038/s41467-020-20217-w
  • Lima, P.C.A. & Franco, J.L.A. 2014. As RPPNs como estratégia para a conservação da biodiversidade: o caso da Chapada dos Veadeiros. Sociedade & Natureza, 26: 113-125.
  • Liu, J.; Slik, F.; Zheng, S. & Lindenmayer, D.B. 2022. Undescribed species have higher extinction risk than known species. Conservation Letters, e12876. https://doi.org/10.1111/conl.12876
    » https://doi.org/10.1111/conl.12876
  • MacDicken, K.G. 2015. Global forest resources assessment 2015: what, why and how? Forest Ecology and Management, 352: 3-8. https://doi.org/10.1016/j.foreco.2015.02.006
    » https://doi.org/10.1016/j.foreco.2015.02.006
  • Majer, J.D. & Delabie, J.H.C. 1999. Impact of tree isolation on arboreal and communities in cleared pasture in the Atlantic rain forest region of Bahia, Brazil. Insect Sociaux, 46: 281-290. https://doi.org/10.1007/s000400050147
    » https://doi.org/10.1007/s000400050147
  • Marques, M.C.M. & Grelle, C.E.V. 2021. The Atlantic Forest: History, Biodiversity, Threats and Opportunities of the Mega-diverse Forest. Cham, Springer Nature.
  • Martello, F.B.; Morini, M.S.C.; Silva, R.R.; Souza-Campana, D.R.; Ribeiro, M.C. & Carmona, C.P. 2018. Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Scientific Reports, 8(1): 3266. https://doi.org/10.1038/s41598-018-20823-1
    » https://doi.org/10.1038/s41598-018-20823-1
  • Martins, L.; Almeida, F.S.; Mayhé-Nunes, A.J. & Vargas A.B. 2011. Efeito da complexidade estrutural do ambiente sobre as comunidades de formigas (Hymenoptera: Formicidae) no município de Resende, RJ, Brasil. Revista Brasileira de Biociências, 9(2): 174-179.
  • Medeiros, R.; Young, C.E.F.; Pavese, H.B. & Araújo, F.F.S. 2011. Contribuição das unidades de Conservação Brasileiras para a economia Nacional. Brasília, UNEP-WCMC.
  • Melo, F.P.; Arroyo-Rodríguez, V.; Fahrig, L.; Martínez-Ramos, M. & Tabarelli, M. 2013. On the hope for biodiversity-friendly tropical landscapes. Trends in Ecology & Evolution, 28(8): 462-468. https://doi.org/10.1016/j.tree.2013.01.001
    » https://doi.org/10.1016/j.tree.2013.01.001
  • Mentone, T.D.O.; Diniz, E.A.; Munhae, C.D.B.; Bueno, O.C. & Morini, M.S.C. 2011. Composição da fauna de formigas (Hymenoptera: Formicidae) de serapilheira em florestas semidecídua e de Eucalyptus spp., na região sudeste do Brasil. Biota Neotropica, 11: 237-246. https://doi.org/10.1590/S1676-06032011000200024
    » https://doi.org/10.1590/S1676-06032011000200024
  • Ministério do Meio Ambiente (MMA). 2022. Mata Atlântica. Available: Available: https://antigo.mma.gov.br/biomas/mata-atl%C3%A2ntica_emdesenvolvimento.html Access: 13/03/2022.
    » https://antigo.mma.gov.br/biomas/mata-atl%C3%A2ntica_emdesenvolvimento.html
  • Mogi das Cruzes. 2020. Plano municipal de conservação e recuperação da Mata Atlântica. Prefeitura de Mogi das Cruzes. Available: Available: https://www.mogidascruzes.sp.gov.br/pagina/secretaria-do-verde-e-meio-ambiente/plano-municipal-da-mata-atlantica Access: 26/09/2022.
    » https://www.mogidascruzes.sp.gov.br/pagina/secretaria-do-verde-e-meio-ambiente/plano-municipal-da-mata-atlantica
  • Morini, M.S.C. & Miranda, V.F.O. 2012. Serra do Itapety: Aspectos históricos, sociais e naturalísticos. Bauru, Canal 6.
  • Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Fonseca, G.A.B. & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403(6772): 853-858. https://doi.org/10.1038/35002501
    » https://doi.org/10.1038/35002501
  • Ortiz-Sepulveda, C.M.; Bocxlaer, B.V; Meneses, A.D. & Fernández, F. 2019. Molecular and morphological recognition of species boundaries in the neglected ant genus Brachymyrmex (Hymenoptera: Formicidae): toward a taxonomic revision. Organisms Diversity & Evolution, 19(3): 447-542. https://doi.org/10.1007/s13127-019-00406-2
    » https://doi.org/10.1007/s13127-019-00406-2
  • Pacheco, R.; Silva, R.R.; Morini, M.S.D.C. & Brandão, C.R. 2009. A comparison of the leaf-litter ant fauna in a secondary atlantic forest with an adjacent pine plantation in southeastern Brazil. Neotropical Entomology, 38(1): 55-65. https://doi.org/10.1590/S1519-566X2009000100005
    » https://doi.org/10.1590/S1519-566X2009000100005
  • Palacio, E.E. 2019. Subfamilia Dorylinae. In: Fernández, F. & Guerrero, R.J.; Delsinne, T. Hormigas de Colombia. Bogotá, Universidad Nacional de Colombia. p. 571-630.
  • Pardini, R.; Faria, D.; Accacio, G.M.; Laps, R.R.; Mariano-Neto, E.; Paciencia, M.L.B.; Dixo, M. & Baumgarten, J. 2009. The challenge of maintaining Atlantic Forest biodiversity: a multi-taxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biological Conservation, 142(6): 1178-1190. https://doi.org/10.1016/j.biocon.2009.02.010
    » https://doi.org/10.1016/j.biocon.2009.02.010
  • Pereira, M.P.S.; Queiroz, J.M.; Souza, G.O. & MayhéNunes, A.J. 2007. Influência da heterogeneidade da serapilheira sobre as formigas que nidificam em galhos mortos em floresta nativa e plantio de eucalipto. Neotropical Biology and Conservation, 2(3): 161-164. https://doi.org/10.4013/5939
    » https://doi.org/10.4013/5939
  • Pinto, L.P.; Hirota, M.; Guimarães, E.; Fonseca, M.; Martinez, D.I. & Takahashi, C.K. 2017. Unidades de Conservação Municipais da Mata Atlântica. São Paulo, SOSMA.
  • Rezende, C.L.; Scarano, F.R.; Assad, E.D.; Joly, C.A.; Metzfer, J.P.; Strassuburg, B.B.N.; Tabarelli, M.; Fonseca, G.A. & Mittermeier, R.A. 2018. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation, 16(4): 208-2014. https://doi.org/10.1016/j.pecon.2018.10.002
    » https://doi.org/10.1016/j.pecon.2018.10.002
  • Ribas, C.R.; Campos, R.B.; Schmidt, F.A. & Solar, R.R. 2012. Ants as indicators in Brazil: a review with suggestions to improve the use of ants in environmental monitoring programs. Psyche: A Journal of Entomology, 4(6): 1-23. https://doi.org/10.1155/2012/636749
    » https://doi.org/10.1155/2012/636749
  • Rosumek, F.B. 2017. Natural history of ants: what we (do not) know about trophic and temporal niches of neotropical species. Sociobiology, 64(3): 244-255. https://doi.org/10.13102/sociobiology.v64i3.1623
    » https://doi.org/10.13102/sociobiology.v64i3.1623
  • Secretaria de Infraestrutura e Meio Ambiente do Estado de São Paulo (SIMA/SP). 2019. Estado de São Paulo ganha quatro novas reservas particulares de patrimônio natural. Available: Available: https://www.infraestruturameioambiente.sp.gov.br/2019/01/estado-de-sao-paulo-ganha-quatro-novas-reservas-particulares-de-patrimonio-natural Access: 25/10/2022.
    » https://www.infraestruturameioambiente.sp.gov.br/2019/01/estado-de-sao-paulo-ganha-quatro-novas-reservas-particulares-de-patrimonio-natural
  • Silva, R.R. & Brandão, C.R.F. 2010. Morphological patterns and community organization in leaf-litter ant assemblages. Ecological Monographs, 80: 107-124. https://doi.org/10.1890/08-1298.1
    » https://doi.org/10.1890/08-1298.1
  • Sobral-Souza, T.; Vancine, M.H.; Ribeiro, M.C. & Lima-Ribeiro, M.S. 2018. Efficiency of protected areas in Amazon and Atlantic Forest conservation: A spatio-temporal view. Acta Oecologica, 87: 1-7. https://doi.org/10.1016/j.actao.2018.01.001
    » https://doi.org/10.1016/j.actao.2018.01.001
  • Souza-Campana, D.R.; Wazema, C.T.; Magalhães, F.S.; Silva, N.S.; Nagatani, V.H.; Suguituru, S.S.; Goto, M.A. & Morini, M.S.C. 2020. Coleção de referência do Laboratório de Mirmecologia do Alto Tietê, São Paulo, Brasil: status atual e perspectivas. Boletim do Museu Paraense Emílio Goeldi-Ciências Naturais, 15(1): 317-336. https://doi.org/10.46357/bcnaturais.v15i1.274
    » https://doi.org/10.46357/bcnaturais.v15i1.274
  • Suguituru, S.S.; Morini, M.S.C.; Feitosa, R.M. & Silva, R.R. 2015. Formigas do Alto Tietê. Bauru, Canal 6.
  • Suguituru, S.S.; Silva, R.R.; Souza, D.R.D.; Munhae, C.D.B. & Morini, M.S.C. 2011. Ant community richness and composition across a gradient from Eucalyptus plantations to secondary Atlantic Forest. Biota Neotropica, 11(1): 369-376. https://doi.org/10.1590/S1676-06032011000100034
    » https://doi.org/10.1590/S1676-06032011000100034
  • Suguituru, S.S.; Souza, D.R.D.; Munhae, C.D.B; Pacheco, R. & Morini, M.S.D.C. 2013. Diversidade e riqueza de formigas (Hymenoptera: Formicidae) em remanescentes de Mata Atlântica na Bacia Hidrográfica do Alto Tietê, SP. Biota Neotropica, 13: 141-152. https://doi.org/10.1590/S1676-06032013000200013
    » https://doi.org/10.1590/S1676-06032013000200013
  • Underwood, E.C. & Fisher, B.L. 2006. The role of ants in conservation monitoring: if, when, and how. Biological conservation, 132(2): 166-182. https://doi.org/10.1016/j.biocon.2006.03.022
    » https://doi.org/10.1016/j.biocon.2006.03.022
  • Vasconcelos, H.L.; Vilhena, J.M.S. & Caliri, G.J.A. 2000. Responses of ants to selective logging of a central Amazonian Forest. Journal of Applied Ecology, 37(3): 508-514. https://doi.org/10.1046/j.1365-2664.2000.00512.x
    » https://doi.org/10.1046/j.1365-2664.2000.00512.x
  • Viles, H.A.; Goudie, A.S.; & Goudie, A.M. 2021. Ants as geomorphological agents: A global assessment. Earth-Science Reviews, 213: 1-17, 103469. https://doi.org/10.1016/j.earscirev.2020.103469
    » https://doi.org/10.1016/j.earscirev.2020.103469
  • Wazema, C.T.; Morini, M.S.C. & Souza-Campana, D.R. 2019. Diversidade de formigas (Hymenoptera: Formicidae) em um fragmento de Mata Atlântica no município de Mogi das Cruzes (SP). Revista Científica UMC, 4(2): 1-12.
  • Wazema, C.T.; Nagatani, V.H.; Souza-Campana, D.R.; Magalhães, F.S.; Sartorello, R. & Morini, M.S.C. 2020. What do different landscapes of the Atlantic Forest reveal about the occurrence of Discothyrea Roger, 1863 (Formicidae: Proceratiinae)? Biota Neotropica, 20(4). https://doi.org/10.1590/1676-0611-BN-2020-1035
    » https://doi.org/10.1590/1676-0611-BN-2020-1035
  • Wiedmann, S.M. 2001. Reserva do patrimônio natural - RPPN - na Lei № 9.985/2000, que instituiu o sistema nacional de unidades de conservação - SNUC. Direito ambiental das áreas protegidas: o regime jurídico das unidades de conservação. Rio de Janeiro, Forense.
  • Wilson, E.O. 2003. Pheidole in the New World: a dominant, hyperdiverse ant genus. Cambridge, Harvard University Press. 794p.
  • Wilson, K.A.; Meijaard, E.R.I.K.; Drummond, S.; Grantham, H.S.; Boitani, L.; Catullo, G.; Christie, L.; Dennis, R.; Dutton, I.; Falcucci, A.; Maiorano, L.; Possingham, H.P.; Rondinni, C.; Turner, W.R.; Venter, O. & Watts, M. 2010. Conserving biodiversity in production landscapes. Ecological Applications, 20(6): 1721-1732. https://doi.org/10.1890/09-1051.1
    » https://doi.org/10.1890/09-1051.1
  • FUNDING INFORMATION:

    The first author is grateful to Ecofuturo Institute (project coordinated by MSCM through the agreement FAEP/UMC/Instituto Ecofuturo), to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) for the Undergraduate Research Fellowship granted (process 115780/2018-1). LPP was funded by São Paulo Research Foundation (FAPESP) grant #2022/01974-8
  • Published with the financial support of the "Programa de Apoio às Publicações Cientícas Periódicas da USP"

Edited by

Edited by: Helena Carolina Onody

Publication Dates

  • Publication in this collection
    09 Dec 2022
  • Date of issue
    2022

History

  • Received
    27 June 2022
  • Accepted
    17 Oct 2022
  • Published
    04 Nov 2022
Museu de Zoologia da Universidade de São Paulo Av. Nazaré, 481, Ipiranga, 04263-000 São Paulo SP Brasil, Tel.: (55 11) 2065-8133 - São Paulo - SP - Brazil
E-mail: einicker@usp.br