Acessibilidade / Reportar erro

Searching for new antifungals for the treatment of cryptococcosis

ABSTRACT

There is a consensus that the antifungal repertoire for the treatment of cryptococcal infections is limited. Standard treatment involves the administration of an antifungal drug derived from natural sources (i.e., amphotericin B) and two other drugs developed synthetically (i.e., flucytosine and fluconazole). Despite treatment, the mortality rates associated with fungal cryptococcosis are high. Amphotericin B and flucytosine are toxic, require intravenous administration, and are usually unavailable in low-income countries because of their high cost. However, fluconazole is cost-effective, widely available, and harmless with regard to its side effects. However, fluconazole is a fungistatic agent that has contributed considerably to the increase in fungal resistance and frequent relapses in patients with cryptococcal meningitis. Therefore, there is an unquestionable need to identify new alternatives or adjuvants to conventional drugs for the treatment of cryptococcosis. A potential antifungal agent should be able to kill cryptococci and “bypass” the virulence mechanism of the yeast. Furthermore, it should have fungicidal action, low toxicity, high selectivity, easily penetrate the central nervous system, and widely available. In this review, we describe cryptococcosis, its conventional therapy, and failures arising from the use of drugs traditionally considered to be the reference standard. Additionally, we present the approaches used for the discovery of new drugs to counteract cryptococcosis, ranging from the conventional screening of natural products to the inclusion of structural modifications to optimize anticryptococcal activity, as well as drug repositioning and combined therapies.

Keywords:
Cryptococcosis; Therapeutic failures; Anticryptococcal drug development

INTRODUCTION

Cryptococcosis, a potentially fatal fungal infection in immunosuppressed patients, especially in those infected with human immunodeficiency virus (HIV), is caused by the inhalation of encapsulated yeasts belonging to the Cryptococcus neoformans and Cryptococcus gattii species complex11. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The Case for Adopting the “Species Complex” Nomenclature for the Etiologic Agents of Cryptococcosis. Msphere. 2017;2(1):1-7.. It is associated with high mortality in low- and middle-income countries, and causes approximately 181,000 deaths annually22. Iyer KR, Revie NM, Fu C, Robbins N, Cowen LE. Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat Rev Microbiol. 2021;19(7):454-66.-33. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Physiol Behav. 2017;176(10):139-48.. Sub-Saharan Africa reports the highest number of cases, with approximately 720,000 cases per year, followed by Southeast Asia and Latin America, which are the second and third regions most affected by cryptococcal meningitis33. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Physiol Behav. 2017;176(10):139-48.-44. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. Aids. 2009;23(4):525-30..

Results of antifungal therapies for cryptococcosis are limited. Depending on an individual’s immune status, disease severity, and availability of antifungals, the standard treatment is based only on amphotericin B, fluconazole, and flucytosine55. Soares EA, Lazera MS, Wanke B, Faria M De, Soares EA, Coutinho ZF. Mortality by cryptococcosis in Brazil from 2000 to 2012 : A descriptive epidemiological study. PLoS Negl Trop Dis. 2019;13(7):1-17.-66. Zavala S, Baddley JW. Cryptococcosis. Semin Respir Crit Care. 2020;41(1):69-79.. Owing to its relatively low cost, high oral bioavailability, and low toxicity profile, fluconazole is often used to replace amphotericin B and flucytosine in resource-limited settings. However, resistant fungi and persistent therapeutic failure have been observed in patients with cryptococcosis undergoing prolonged therapy with fluconazole77. Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence. 2019;10(1):490-501.. In addition, the limited antifungal arsenal, serious adverse effects of amphotericin B and flucytosine, and intrinsic resistance of C. neoformans to echinocandins, the only new broadly available class of tantifungal drugs developed in decades, have stimulated new studies in search of better antifungal agents to treat cryptococcosis88. Bermas A, Geddes-McAlister J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol Microbiol. 2020;114(5):721-34.

9. Spadari C de C, Wirth F, Lopes LB, Ishida K. New approaches for cryptococcosis treatment. Microorganisms. 2020;8(4):1-15.
-1010. Kong Q, Cao Z, Lv N, Zhang H, Liu Y, Hu L, et al. Minocycline and fluconazole have a synergistic effect Against Cryptococcus neoformans Both in vitro and in vivo. Front Microbiol. 2020;11(05):1-11..

Drugs can be discovered in natural products that, since antiquity, have been an important source of attractive bioactive compounds for drug development or can be produced through full or partial synthesis1111. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2-3):155-76.. However, despite advances in molecular techniques and medicinal chemistry, the development of new drugs remains slow and expensive. In addition, several drug candidates are barred during the transition from the preclinical to the clinical stage, with 89% failing due to toxicity1212. Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach?. JACC Basic to Transl Sci. 2019;4(7):845-54.. Thus, the reuse of drugs, that is, the definition of new therapeutic indications for substances already approved by the Food and Drug Administration, has attracted considerable attention. Another used approach is combining antifungal agents with other drugs, thus improving the activity of traditional antifungals due to their associated action on more than one target1010. Kong Q, Cao Z, Lv N, Zhang H, Liu Y, Hu L, et al. Minocycline and fluconazole have a synergistic effect Against Cryptococcus neoformans Both in vitro and in vivo. Front Microbiol. 2020;11(05):1-11..

This review aims to provide an overview of the scientific evidence available for cryptococcosis in general, current treatment options, therapeutic failures, and methodologies for obtaining new anticryptococcal drugs, for example, by bioprospecting natural products and structural modifications. In addition, it aims to address potential drugs, or drug combinations, which are undergoing preclinical and clinical investigations for drug repurposing and combined therapy.

CRYPTOCOCCOSIS

Cryptococcosis or cryptococcal infection is a life-threatening fungal disease caused by the inhalation of encapsulated yeasts (Figure 1) belonging to the C. neoformans and C. gattii species complex11. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The Case for Adopting the “Species Complex” Nomenclature for the Etiologic Agents of Cryptococcosis. Msphere. 2017;2(1):1-7.

2. Iyer KR, Revie NM, Fu C, Robbins N, Cowen LE. Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat Rev Microbiol. 2021;19(7):454-66.

3. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Physiol Behav. 2017;176(10):139-48.

4. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. Aids. 2009;23(4):525-30.

5. Soares EA, Lazera MS, Wanke B, Faria M De, Soares EA, Coutinho ZF. Mortality by cryptococcosis in Brazil from 2000 to 2012 : A descriptive epidemiological study. PLoS Negl Trop Dis. 2019;13(7):1-17.

6. Zavala S, Baddley JW. Cryptococcosis. Semin Respir Crit Care. 2020;41(1):69-79.

7. Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence. 2019;10(1):490-501.

8. Bermas A, Geddes-McAlister J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol Microbiol. 2020;114(5):721-34.

9. Spadari C de C, Wirth F, Lopes LB, Ishida K. New approaches for cryptococcosis treatment. Microorganisms. 2020;8(4):1-15.

10. Kong Q, Cao Z, Lv N, Zhang H, Liu Y, Hu L, et al. Minocycline and fluconazole have a synergistic effect Against Cryptococcus neoformans Both in vitro and in vivo. Front Microbiol. 2020;11(05):1-11.

11. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2-3):155-76.

12. Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach?. JACC Basic to Transl Sci. 2019;4(7):845-54.
-1313. Chen YC, Chang TY, Liu JW, Chen FJ, Chien CC, Lee CH, et al. Increasing trend of fluconazole-non-susceptible Cryptococcus neoformans in patients with invasive cryptococcosis: A 12-year longitudinal study. BMC Infect Dis. 2015;15(1):1-7.. With the evolution of molecular biology techniques and the use of different genotyping methods, it has become possible to assign these species to eight main genotypes: VNI, VNII, VNIII, and VNIV for C. neoformans and VGI, VGII, VGIII, and VGIV for C. gatti1414. Firacative C, Lizarazo J, Illnait-Zaragozí MT, Castañeda E, Arechavala A, Córdoba S, et al. The status of cryptococcosis in latin America. Mem Inst Oswaldo Cruz. 2018;113(7):1-23.

15. Meyer W, Trilles L. Genotyping of the Cryptococcus neoformans/C. gattii species complex. Australian Biochemist. 2010;41(1):12-16.

16. Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol. 2009;47(6):561-70.
-1717. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The case for adopting the “Species Complex” nomenclature for the etiologic agents of Cryptococcosis. Msphere. 2017;2(1):1-7.. Recently, a fifth genotype (VGV) has been described in the C. gattii species complex1818. Farrer RA, Chang M, Davis MJ, Dorp L Van, Yang D, Shea T, et al. A New Lineage of Cryptococcus gattii (VGV) discovered in the Central Zambezian Miombo Woodlands. Ecol Evol Sci. 2019;10(6):e02306-19..

FIGURE 1:
Micromorphological characteristic of Cryptococcus spp. Direct exam, prepared with Indian ink (400×).

The causative agent is widely distributed in the natural environment, commonly in feces and birds nest, but mainly in pigeons, dead organic matter, bark, leaves, and fruit trees1717. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The case for adopting the “Species Complex” nomenclature for the etiologic agents of Cryptococcosis. Msphere. 2017;2(1):1-7.. Cryptococcus spp. are globally distributed, and until 1955, prior to the availability of antifungals especially amphotericin, cryptococcosis was inevitably fatal1919. Negroni R. Cryptococcosis. Clin Dermatol. 2012;30(6):599-609.. Today, mortality remains high, particularly in the endemic regions of sub-Saharan Africa, a setting where access to healthcare is limited and the number of HIV infected individuals is high2020. Reis-Filho JB dos, Neves AC, Zymberg ST, Oliveira R de MC de. O líquido cefalorraquiano inicial nas meningencefalites por Cryptococcus neoformans. Rev Inst Med Trop S Paulo. 1985;27(4):173-8.-2121. Siddiqi OK, Ghebremichael M, Dang X, Atadzhanov M, Kaonga P, Khoury MN, et al. Molecular diagnosis of central nervous system opportunistic infections in HIV-infected zambian adults. Clin Infect Dis. 2014;58(12):1771-7.. In developed countries, the observed drop in mortality rate can be explained by early diagnosis and wide availability of antiretroviral therapy2222. Hurtado JC, Castillo P, Fernandes F, Navarro M, Lovane L, Casas I, et al. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep. 2019;9(1):1-10..

Cryptococcosis occurs predominantly in immunocompromised patients and is a major cause of morbidity and mortality in these individuals, especially in those infected with HIV2121. Siddiqi OK, Ghebremichael M, Dang X, Atadzhanov M, Kaonga P, Khoury MN, et al. Molecular diagnosis of central nervous system opportunistic infections in HIV-infected zambian adults. Clin Infect Dis. 2014;58(12):1771-7.

22. Hurtado JC, Castillo P, Fernandes F, Navarro M, Lovane L, Casas I, et al. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep. 2019;9(1):1-10.
-2323. Miot J, Leong T, Takuva S, Parrish A, Dawood H. Cost-effectiveness analysis of flucytosine as induction therapy in the treatment of cryptococcal meningitis in HIV-infected adults in South Africa. BMC Health Serv Res. 2021;21(1):1-11.. Individuals with diabetes and lupus erythematosus, transplant recipients, patients using immunosuppressive therapies, and patients with malignant neoplasms are also frequently affected with cryptococcosis, thus becoming a worldwide concern55. Soares EA, Lazera MS, Wanke B, Faria M De, Soares EA, Coutinho ZF. Mortality by cryptococcosis in Brazil from 2000 to 2012 : A descriptive epidemiological study. PLoS Negl Trop Dis. 2019;13(7):1-17.

6. Zavala S, Baddley JW. Cryptococcosis. Semin Respir Crit Care. 2020;41(1):69-79.
-77. Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence. 2019;10(1):490-501.. Cryptococcal infection also manifests in immunocompetent patients, and the signs and symptoms of infection are often nonspecific. This lack of specificity often leads to a delay in diagnosis and initiation of appropriate treatment, which in turn may lead to a severe clinical course and rapid death, even in patients without HIV2424. Pinheiro SB, Sousa ES, Cortez ACA, da Silva Rocha DF, Menescal LSF, Chagas VS, et al. Cryptococcal meningitis in non-HIV patients in the State of Amazonas, Northern Brazil. Brazilian J Microbiol. 2020;52(1):279-88.. In addition, delayed diagnosis can lead to additional morbidities such as stroke, blindness, deafness, neurological impairment, and cognitive dysfunction2525. Brizendine KD, Baddley JW, Pappas PG. Predictors of mortality and differences in clinical features among patients with cryptococcosis according to immune status. PLoS One. 2013;8(3):e60431.

The primary manifestation, pulmonary cryptococcosis, can range from mild colonization of the lungs to severe lung infection55. Soares EA, Lazera MS, Wanke B, Faria M De, Soares EA, Coutinho ZF. Mortality by cryptococcosis in Brazil from 2000 to 2012 : A descriptive epidemiological study. PLoS Negl Trop Dis. 2019;13(7):1-17.-66. Zavala S, Baddley JW. Cryptococcosis. Semin Respir Crit Care. 2020;41(1):69-79.. At this stage, yeast can be spontaneously eliminated or remain in a non-replicative state for months or even years in immunocompetent hosts2626. Bielska E, May RC. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res. 2016;16(1):1-12.-2727. Hommel B, Sturny-Leclère A, Volant S, Veluppillai N, Duchateau M, Yu CH, et al. Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. Plos Pathog. 2019;15(9):e1008070.. However, in cases of impaired immunity, yeasts are reactivated and disseminated via the blood to various organs, especially the brain and meninges, leading to cryptococcal meningitis. The latter is the most common and severe clinical manifestation of cryptococcosis, primarily affecting immunosuppressed patients, particularly those with depleted or defective CD4+ T cells55. Soares EA, Lazera MS, Wanke B, Faria M De, Soares EA, Coutinho ZF. Mortality by cryptococcosis in Brazil from 2000 to 2012 : A descriptive epidemiological study. PLoS Negl Trop Dis. 2019;13(7):1-17.

6. Zavala S, Baddley JW. Cryptococcosis. Semin Respir Crit Care. 2020;41(1):69-79.

7. Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence. 2019;10(1):490-501.

8. Bermas A, Geddes-McAlister J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol Microbiol. 2020;114(5):721-34.

9. Spadari C de C, Wirth F, Lopes LB, Ishida K. New approaches for cryptococcosis treatment. Microorganisms. 2020;8(4):1-15.

10. Kong Q, Cao Z, Lv N, Zhang H, Liu Y, Hu L, et al. Minocycline and fluconazole have a synergistic effect Against Cryptococcus neoformans Both in vitro and in vivo. Front Microbiol. 2020;11(05):1-11.

11. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2-3):155-76.

12. Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach?. JACC Basic to Transl Sci. 2019;4(7):845-54.

13. Chen YC, Chang TY, Liu JW, Chen FJ, Chien CC, Lee CH, et al. Increasing trend of fluconazole-non-susceptible Cryptococcus neoformans in patients with invasive cryptococcosis: A 12-year longitudinal study. BMC Infect Dis. 2015;15(1):1-7.

14. Firacative C, Lizarazo J, Illnait-Zaragozí MT, Castañeda E, Arechavala A, Córdoba S, et al. The status of cryptococcosis in latin America. Mem Inst Oswaldo Cruz. 2018;113(7):1-23.

15. Meyer W, Trilles L. Genotyping of the Cryptococcus neoformans/C. gattii species complex. Australian Biochemist. 2010;41(1):12-16.

16. Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol. 2009;47(6):561-70.

17. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The case for adopting the “Species Complex” nomenclature for the etiologic agents of Cryptococcosis. Msphere. 2017;2(1):1-7.

18. Farrer RA, Chang M, Davis MJ, Dorp L Van, Yang D, Shea T, et al. A New Lineage of Cryptococcus gattii (VGV) discovered in the Central Zambezian Miombo Woodlands. Ecol Evol Sci. 2019;10(6):e02306-19.

19. Negroni R. Cryptococcosis. Clin Dermatol. 2012;30(6):599-609.

20. Reis-Filho JB dos, Neves AC, Zymberg ST, Oliveira R de MC de. O líquido cefalorraquiano inicial nas meningencefalites por Cryptococcus neoformans. Rev Inst Med Trop S Paulo. 1985;27(4):173-8.

21. Siddiqi OK, Ghebremichael M, Dang X, Atadzhanov M, Kaonga P, Khoury MN, et al. Molecular diagnosis of central nervous system opportunistic infections in HIV-infected zambian adults. Clin Infect Dis. 2014;58(12):1771-7.

22. Hurtado JC, Castillo P, Fernandes F, Navarro M, Lovane L, Casas I, et al. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep. 2019;9(1):1-10.

23. Miot J, Leong T, Takuva S, Parrish A, Dawood H. Cost-effectiveness analysis of flucytosine as induction therapy in the treatment of cryptococcal meningitis in HIV-infected adults in South Africa. BMC Health Serv Res. 2021;21(1):1-11.

24. Pinheiro SB, Sousa ES, Cortez ACA, da Silva Rocha DF, Menescal LSF, Chagas VS, et al. Cryptococcal meningitis in non-HIV patients in the State of Amazonas, Northern Brazil. Brazilian J Microbiol. 2020;52(1):279-88.
-2525. Brizendine KD, Baddley JW, Pappas PG. Predictors of mortality and differences in clinical features among patients with cryptococcosis according to immune status. PLoS One. 2013;8(3):e60431

26. Bielska E, May RC. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res. 2016;16(1):1-12.

27. Hommel B, Sturny-Leclère A, Volant S, Veluppillai N, Duchateau M, Yu CH, et al. Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. Plos Pathog. 2019;15(9):e1008070.
-2828. World Health Organization (WHO). Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. Geneva: WHO; 2022.64p.. The infection also involves other sites such as the skin, skeletal system, digestive tract, and prostate; though uncommon this is well-documented in the literature 1818. Farrer RA, Chang M, Davis MJ, Dorp L Van, Yang D, Shea T, et al. A New Lineage of Cryptococcus gattii (VGV) discovered in the Central Zambezian Miombo Woodlands. Ecol Evol Sci. 2019;10(6):e02306-19.

19. Negroni R. Cryptococcosis. Clin Dermatol. 2012;30(6):599-609.

20. Reis-Filho JB dos, Neves AC, Zymberg ST, Oliveira R de MC de. O líquido cefalorraquiano inicial nas meningencefalites por Cryptococcus neoformans. Rev Inst Med Trop S Paulo. 1985;27(4):173-8.

21. Siddiqi OK, Ghebremichael M, Dang X, Atadzhanov M, Kaonga P, Khoury MN, et al. Molecular diagnosis of central nervous system opportunistic infections in HIV-infected zambian adults. Clin Infect Dis. 2014;58(12):1771-7.

22. Hurtado JC, Castillo P, Fernandes F, Navarro M, Lovane L, Casas I, et al. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep. 2019;9(1):1-10.

23. Miot J, Leong T, Takuva S, Parrish A, Dawood H. Cost-effectiveness analysis of flucytosine as induction therapy in the treatment of cryptococcal meningitis in HIV-infected adults in South Africa. BMC Health Serv Res. 2021;21(1):1-11.

24. Pinheiro SB, Sousa ES, Cortez ACA, da Silva Rocha DF, Menescal LSF, Chagas VS, et al. Cryptococcal meningitis in non-HIV patients in the State of Amazonas, Northern Brazil. Brazilian J Microbiol. 2020;52(1):279-88.

25. Brizendine KD, Baddley JW, Pappas PG. Predictors of mortality and differences in clinical features among patients with cryptococcosis according to immune status. PLoS One. 2013;8(3):e60431

26. Bielska E, May RC. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res. 2016;16(1):1-12.

27. Hommel B, Sturny-Leclère A, Volant S, Veluppillai N, Duchateau M, Yu CH, et al. Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. Plos Pathog. 2019;15(9):e1008070.

28. World Health Organization (WHO). Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. Geneva: WHO; 2022.64p.
-2929. Alvarez M, Chipana CT, Suarez F. Proctocolitis by cryptococcus in an immunocompetent patient: first report in Peru. Rev Gastroenterol Peru. 2019;39(3):288-91.-3030. Tan GSE, Singh R, Chong TYR, Su PQ, Lee JSS, Wong KJH, et al. Severe primary cutaneous Cryptococcus gattii causing ulcerative cellulitis in an immunocompetent patient. Lancet Infect Dis. 2019;19(10):1148-49..

CONVENTIONAL THERAPY

Depending on the individual’s immune status, site of infection, disease severity and drug availability, several therapeutic regimens can be considered for the treatment of cryptococcosis55. Soares EA, Lazera MS, Wanke B, Faria M De, Soares EA, Coutinho ZF. Mortality by cryptococcosis in Brazil from 2000 to 2012 : A descriptive epidemiological study. PLoS Negl Trop Dis. 2019;13(7):1-17.

6. Zavala S, Baddley JW. Cryptococcosis. Semin Respir Crit Care. 2020;41(1):69-79.

7. Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence. 2019;10(1):490-501.

8. Bermas A, Geddes-McAlister J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol Microbiol. 2020;114(5):721-34.

9. Spadari C de C, Wirth F, Lopes LB, Ishida K. New approaches for cryptococcosis treatment. Microorganisms. 2020;8(4):1-15.

10. Kong Q, Cao Z, Lv N, Zhang H, Liu Y, Hu L, et al. Minocycline and fluconazole have a synergistic effect Against Cryptococcus neoformans Both in vitro and in vivo. Front Microbiol. 2020;11(05):1-11.

11. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2-3):155-76.

12. Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach?. JACC Basic to Transl Sci. 2019;4(7):845-54.

13. Chen YC, Chang TY, Liu JW, Chen FJ, Chien CC, Lee CH, et al. Increasing trend of fluconazole-non-susceptible Cryptococcus neoformans in patients with invasive cryptococcosis: A 12-year longitudinal study. BMC Infect Dis. 2015;15(1):1-7.

14. Firacative C, Lizarazo J, Illnait-Zaragozí MT, Castañeda E, Arechavala A, Córdoba S, et al. The status of cryptococcosis in latin America. Mem Inst Oswaldo Cruz. 2018;113(7):1-23.

15. Meyer W, Trilles L. Genotyping of the Cryptococcus neoformans/C. gattii species complex. Australian Biochemist. 2010;41(1):12-16.

16. Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol. 2009;47(6):561-70.

17. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The case for adopting the “Species Complex” nomenclature for the etiologic agents of Cryptococcosis. Msphere. 2017;2(1):1-7.

18. Farrer RA, Chang M, Davis MJ, Dorp L Van, Yang D, Shea T, et al. A New Lineage of Cryptococcus gattii (VGV) discovered in the Central Zambezian Miombo Woodlands. Ecol Evol Sci. 2019;10(6):e02306-19.

19. Negroni R. Cryptococcosis. Clin Dermatol. 2012;30(6):599-609.

20. Reis-Filho JB dos, Neves AC, Zymberg ST, Oliveira R de MC de. O líquido cefalorraquiano inicial nas meningencefalites por Cryptococcus neoformans. Rev Inst Med Trop S Paulo. 1985;27(4):173-8.

21. Siddiqi OK, Ghebremichael M, Dang X, Atadzhanov M, Kaonga P, Khoury MN, et al. Molecular diagnosis of central nervous system opportunistic infections in HIV-infected zambian adults. Clin Infect Dis. 2014;58(12):1771-7.

22. Hurtado JC, Castillo P, Fernandes F, Navarro M, Lovane L, Casas I, et al. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep. 2019;9(1):1-10.

23. Miot J, Leong T, Takuva S, Parrish A, Dawood H. Cost-effectiveness analysis of flucytosine as induction therapy in the treatment of cryptococcal meningitis in HIV-infected adults in South Africa. BMC Health Serv Res. 2021;21(1):1-11.

24. Pinheiro SB, Sousa ES, Cortez ACA, da Silva Rocha DF, Menescal LSF, Chagas VS, et al. Cryptococcal meningitis in non-HIV patients in the State of Amazonas, Northern Brazil. Brazilian J Microbiol. 2020;52(1):279-88.

25. Brizendine KD, Baddley JW, Pappas PG. Predictors of mortality and differences in clinical features among patients with cryptococcosis according to immune status. PLoS One. 2013;8(3):e60431

26. Bielska E, May RC. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res. 2016;16(1):1-12.

27. Hommel B, Sturny-Leclère A, Volant S, Veluppillai N, Duchateau M, Yu CH, et al. Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. Plos Pathog. 2019;15(9):e1008070.
-2828. World Health Organization (WHO). Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. Geneva: WHO; 2022.64p.

29. Alvarez M, Chipana CT, Suarez F. Proctocolitis by cryptococcus in an immunocompetent patient: first report in Peru. Rev Gastroenterol Peru. 2019;39(3):288-91.

30. Tan GSE, Singh R, Chong TYR, Su PQ, Lee JSS, Wong KJH, et al. Severe primary cutaneous Cryptococcus gattii causing ulcerative cellulitis in an immunocompetent patient. Lancet Infect Dis. 2019;19(10):1148-49.
-3131. Jarvis JN, Lawrence DS, Meya DB, Kagimu E, Kasibante J, Mpoza E, Rutakingirwa MK, et al. Single-dose lipossomal amphotericin B treatment for cryptococcal meningitis. N Engl J Med. 2022;386(12):1109-20.. Although adapted to the infection severity and state of the host’s immunity, the World Health Organization (WHO) recommends the treatment of cryptococcal infections using a three-stage therapeutic strategy: induction, consolidation, and maintenance. The standard therapy is limited to the use of the following drugs: amphotericin B, flucytosine, and fluconazole2828. World Health Organization (WHO). Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. Geneva: WHO; 2022.64p.. In summary, amphotericin B, alone or in combination with flucytosine, is employed as an initial induction therapy, and fluconazole is suggested for the consolidation and maintenance therapy2828. World Health Organization (WHO). Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. Geneva: WHO; 2022.64p.

29. Alvarez M, Chipana CT, Suarez F. Proctocolitis by cryptococcus in an immunocompetent patient: first report in Peru. Rev Gastroenterol Peru. 2019;39(3):288-91.

30. Tan GSE, Singh R, Chong TYR, Su PQ, Lee JSS, Wong KJH, et al. Severe primary cutaneous Cryptococcus gattii causing ulcerative cellulitis in an immunocompetent patient. Lancet Infect Dis. 2019;19(10):1148-49.

31. Jarvis JN, Lawrence DS, Meya DB, Kagimu E, Kasibante J, Mpoza E, Rutakingirwa MK, et al. Single-dose lipossomal amphotericin B treatment for cryptococcal meningitis. N Engl J Med. 2022;386(12):1109-20.
-3232. Eileen K, Maziarz MD, John R Perfect M. Cryptococcosis. Intraocular Inflamm. 2016;30(1):1277-83.-3333. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clin Infect Dis . 2010;50(3):291-322..

Among the three drugs available, amphotericin B is the oldest antifungal drug for systemic use. It acts by binding to ergosterol in fungal cell membranes, forming pores that allow the leakage of cell contents, such as K+, Na+, H+, and Cl ions, which consecutively leads to apoptosis3434. Ellis D. Amphotericin B: Spectrum and resistance. J Antimicrob Chemother. 2002;49(SUPL. S1):7-10.-3535. Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci USA. 2012;109(7):2234-9.. Despite being considered as one of the systemic antifungals with the broadest fungicidal activity, the use of amphotericin B has some limitations that are mainly associated with its nephrotoxicity3636. Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223-7.. Lipid formulations of amphotericin B with reduced toxicity have been developed; however, although liposomal amphotericin B has an improved safety profile and greater efficacy than conventional amphotericin B77. Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence. 2019;10(1):490-501., the cost of these lipid formulations continues to be a barrier for the treatment of cryptococcosis in resource-limited countries3737. Rossi SA, De Oliveira HC, Agreda-Mellon D, Lucio J, Soares Mendes-Giannini MJ, García-Cambero JP, et al. Identification of off-patent drugs that show synergism with amphotericin B or that present antifungal action against Cryptococcus neoformans and Candida spp. Antimicrob Agents Chemother. 2020;64(4):1-16..

The synthetic drug flucytosine, which was first evaluated as an antitumor agent3838. Montgomery JA, Hewson K. Synthesis of potential anticancer agents. X. 2-Fluoroadenosine. J Am Chem Soc. 1957;79(16):4559-60., is recommended by WHO; however, it is mainly available in resource-rich countries. The drug is efficient for the treatment of cryptococcosis when combined with amphotericin B 3939. Bennett JE, Dismukes WE, Duma RJ, Medoff G, Sande MA, Gallis H, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N Engl J Med . 1979:301(3):126-31.-4040. Dromer F, Bernede-Bauduin C, Guillemot D, Lortholary O. Major role for amphotericin B-flucytosine combination in severe cryptococcosis. PLoS One . 2008;3(8):e2870.. However, its use as a single antifungal agent is discouraged owing to its significant adverse effects, in particular, hepatotoxicity, myelotoxicity, and resistance when used in monotherapy, thereby compromising therapeutic success88. Bermas A, Geddes-McAlister J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol Microbiol. 2020;114(5):721-34.

9. Spadari C de C, Wirth F, Lopes LB, Ishida K. New approaches for cryptococcosis treatment. Microorganisms. 2020;8(4):1-15.

10. Kong Q, Cao Z, Lv N, Zhang H, Liu Y, Hu L, et al. Minocycline and fluconazole have a synergistic effect Against Cryptococcus neoformans Both in vitro and in vivo. Front Microbiol. 2020;11(05):1-11.

11. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2-3):155-76.

12. Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach?. JACC Basic to Transl Sci. 2019;4(7):845-54.

13. Chen YC, Chang TY, Liu JW, Chen FJ, Chien CC, Lee CH, et al. Increasing trend of fluconazole-non-susceptible Cryptococcus neoformans in patients with invasive cryptococcosis: A 12-year longitudinal study. BMC Infect Dis. 2015;15(1):1-7.

14. Firacative C, Lizarazo J, Illnait-Zaragozí MT, Castañeda E, Arechavala A, Córdoba S, et al. The status of cryptococcosis in latin America. Mem Inst Oswaldo Cruz. 2018;113(7):1-23.

15. Meyer W, Trilles L. Genotyping of the Cryptococcus neoformans/C. gattii species complex. Australian Biochemist. 2010;41(1):12-16.

16. Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol. 2009;47(6):561-70.

17. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The case for adopting the “Species Complex” nomenclature for the etiologic agents of Cryptococcosis. Msphere. 2017;2(1):1-7.

18. Farrer RA, Chang M, Davis MJ, Dorp L Van, Yang D, Shea T, et al. A New Lineage of Cryptococcus gattii (VGV) discovered in the Central Zambezian Miombo Woodlands. Ecol Evol Sci. 2019;10(6):e02306-19.

19. Negroni R. Cryptococcosis. Clin Dermatol. 2012;30(6):599-609.

20. Reis-Filho JB dos, Neves AC, Zymberg ST, Oliveira R de MC de. O líquido cefalorraquiano inicial nas meningencefalites por Cryptococcus neoformans. Rev Inst Med Trop S Paulo. 1985;27(4):173-8.

21. Siddiqi OK, Ghebremichael M, Dang X, Atadzhanov M, Kaonga P, Khoury MN, et al. Molecular diagnosis of central nervous system opportunistic infections in HIV-infected zambian adults. Clin Infect Dis. 2014;58(12):1771-7.

22. Hurtado JC, Castillo P, Fernandes F, Navarro M, Lovane L, Casas I, et al. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep. 2019;9(1):1-10.

23. Miot J, Leong T, Takuva S, Parrish A, Dawood H. Cost-effectiveness analysis of flucytosine as induction therapy in the treatment of cryptococcal meningitis in HIV-infected adults in South Africa. BMC Health Serv Res. 2021;21(1):1-11.

24. Pinheiro SB, Sousa ES, Cortez ACA, da Silva Rocha DF, Menescal LSF, Chagas VS, et al. Cryptococcal meningitis in non-HIV patients in the State of Amazonas, Northern Brazil. Brazilian J Microbiol. 2020;52(1):279-88.

25. Brizendine KD, Baddley JW, Pappas PG. Predictors of mortality and differences in clinical features among patients with cryptococcosis according to immune status. PLoS One. 2013;8(3):e60431

26. Bielska E, May RC. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res. 2016;16(1):1-12.

27. Hommel B, Sturny-Leclère A, Volant S, Veluppillai N, Duchateau M, Yu CH, et al. Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. Plos Pathog. 2019;15(9):e1008070.

28. World Health Organization (WHO). Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. Geneva: WHO; 2022.64p.

29. Alvarez M, Chipana CT, Suarez F. Proctocolitis by cryptococcus in an immunocompetent patient: first report in Peru. Rev Gastroenterol Peru. 2019;39(3):288-91.

30. Tan GSE, Singh R, Chong TYR, Su PQ, Lee JSS, Wong KJH, et al. Severe primary cutaneous Cryptococcus gattii causing ulcerative cellulitis in an immunocompetent patient. Lancet Infect Dis. 2019;19(10):1148-49.

31. Jarvis JN, Lawrence DS, Meya DB, Kagimu E, Kasibante J, Mpoza E, Rutakingirwa MK, et al. Single-dose lipossomal amphotericin B treatment for cryptococcal meningitis. N Engl J Med. 2022;386(12):1109-20.

32. Eileen K, Maziarz MD, John R Perfect M. Cryptococcosis. Intraocular Inflamm. 2016;30(1):1277-83.

33. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clin Infect Dis . 2010;50(3):291-322.

34. Ellis D. Amphotericin B: Spectrum and resistance. J Antimicrob Chemother. 2002;49(SUPL. S1):7-10.

35. Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci USA. 2012;109(7):2234-9.

36. Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223-7.

37. Rossi SA, De Oliveira HC, Agreda-Mellon D, Lucio J, Soares Mendes-Giannini MJ, García-Cambero JP, et al. Identification of off-patent drugs that show synergism with amphotericin B or that present antifungal action against Cryptococcus neoformans and Candida spp. Antimicrob Agents Chemother. 2020;64(4):1-16.

38. Montgomery JA, Hewson K. Synthesis of potential anticancer agents. X. 2-Fluoroadenosine. J Am Chem Soc. 1957;79(16):4559-60.

39. Bennett JE, Dismukes WE, Duma RJ, Medoff G, Sande MA, Gallis H, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N Engl J Med . 1979:301(3):126-31.

40. Dromer F, Bernede-Bauduin C, Guillemot D, Lortholary O. Major role for amphotericin B-flucytosine combination in severe cryptococcosis. PLoS One . 2008;3(8):e2870.
-4141. Hope WW, Tabernero L, Denning DW, Anderson MJ. Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents Chemother . 2004;48(11):4377-86.

42. Billmyre RB, Applen Clancey S, Li LX, Doering TL, Heitman J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis inCryptococcus. Nat Commun. 2020;11(1):1-9.
-4343. Vidal JE, de Albuquerque Moraes C, de Siqueira REB, Miranda NFB, Marcusso R, Boulware DR, et al. HIV-associated cryptococcal meningitis patients treated with Amphotericin B deoxycholate plus flucytosine under routine care conditions in a referral center in São Paulo, Brazil. Mycopathologia. 2021;186(1):93-102..

Fluconazole is one of the best-known antifungal drugs for the systemic treatment of a broad spectrum of fungal infections. Azoles constitute a class of synthetic antifungals with fungistatic activity, and fluconazole, in particular, has been in clinical use since the 1980s4444. Richardson k, Copper K, Marriott MS, Tarbit MH, Troke PF, Whittle PJ. Discovery of Fluconazole, a Novel Antifungal Agent. Rev Infect Dis. 1990;12(3):267-71.. In cryptococcosis therapy, the main advantage of fluconazole is its lack of severe nephrotoxic effects. Furthermore, they are frequently used to replace amphotericin B or flucytosine when their availability is limited3333. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clin Infect Dis . 2010;50(3):291-322.. However, because the duration of therapy is long, significant resistance is often reported in this antifungal class77. Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence. 2019;10(1):490-501..

WHO has recently published new strategies and guidelines for the management of patients with cryptococcosis2828. World Health Organization (WHO). Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. Geneva: WHO; 2022.64p.. These protocols were established in association with a clinical trial carried out by Jarvis and colleagues3131. Jarvis JN, Lawrence DS, Meya DB, Kagimu E, Kasibante J, Mpoza E, Rutakingirwa MK, et al. Single-dose lipossomal amphotericin B treatment for cryptococcal meningitis. N Engl J Med. 2022;386(12):1109-20. that recommend the use of liposomal amphotericin B as a first-line treatment for cryptococcal meningitis. It was administered as a single dose on day one, followed by 14 days of flucytosine and fluconazole administration. The study revealed that this treatment scheme considerably improved survival rates, reduced neurological impairment, and decreased adverse events in patients with infection. The WHO stresses the importance of early diagnosis and treatment of cryptococcosis, together with recommendations of closely monitoring patients during and after treatment to avoid relapses.

In summary, access to only the antifungal drugs available for the standard treatment of cryptococcosis remains insufficient, especially in resource-poor countries, where a high incidence of cryptococcal meningitis is observed77. Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence. 2019;10(1):490-501.

8. Bermas A, Geddes-McAlister J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol Microbiol. 2020;114(5):721-34.

9. Spadari C de C, Wirth F, Lopes LB, Ishida K. New approaches for cryptococcosis treatment. Microorganisms. 2020;8(4):1-15.

10. Kong Q, Cao Z, Lv N, Zhang H, Liu Y, Hu L, et al. Minocycline and fluconazole have a synergistic effect Against Cryptococcus neoformans Both in vitro and in vivo. Front Microbiol. 2020;11(05):1-11.

11. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2-3):155-76.

12. Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach?. JACC Basic to Transl Sci. 2019;4(7):845-54.

13. Chen YC, Chang TY, Liu JW, Chen FJ, Chien CC, Lee CH, et al. Increasing trend of fluconazole-non-susceptible Cryptococcus neoformans in patients with invasive cryptococcosis: A 12-year longitudinal study. BMC Infect Dis. 2015;15(1):1-7.

14. Firacative C, Lizarazo J, Illnait-Zaragozí MT, Castañeda E, Arechavala A, Córdoba S, et al. The status of cryptococcosis in latin America. Mem Inst Oswaldo Cruz. 2018;113(7):1-23.

15. Meyer W, Trilles L. Genotyping of the Cryptococcus neoformans/C. gattii species complex. Australian Biochemist. 2010;41(1):12-16.

16. Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol. 2009;47(6):561-70.

17. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The case for adopting the “Species Complex” nomenclature for the etiologic agents of Cryptococcosis. Msphere. 2017;2(1):1-7.

18. Farrer RA, Chang M, Davis MJ, Dorp L Van, Yang D, Shea T, et al. A New Lineage of Cryptococcus gattii (VGV) discovered in the Central Zambezian Miombo Woodlands. Ecol Evol Sci. 2019;10(6):e02306-19.

19. Negroni R. Cryptococcosis. Clin Dermatol. 2012;30(6):599-609.

20. Reis-Filho JB dos, Neves AC, Zymberg ST, Oliveira R de MC de. O líquido cefalorraquiano inicial nas meningencefalites por Cryptococcus neoformans. Rev Inst Med Trop S Paulo. 1985;27(4):173-8.

21. Siddiqi OK, Ghebremichael M, Dang X, Atadzhanov M, Kaonga P, Khoury MN, et al. Molecular diagnosis of central nervous system opportunistic infections in HIV-infected zambian adults. Clin Infect Dis. 2014;58(12):1771-7.

22. Hurtado JC, Castillo P, Fernandes F, Navarro M, Lovane L, Casas I, et al. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep. 2019;9(1):1-10.
-2323. Miot J, Leong T, Takuva S, Parrish A, Dawood H. Cost-effectiveness analysis of flucytosine as induction therapy in the treatment of cryptococcal meningitis in HIV-infected adults in South Africa. BMC Health Serv Res. 2021;21(1):1-11.. In addition, increased fungal resistance to azoles, difficulty in administering and monitoring the adverse effects of amphotericin B and flucytosine, and their high costs remain important challenges in medical practice, even in resource-rich countries.

THERAPEUTIC FAILURES

This phenomenon of antimicrobial resistance results in serious restrictions on the available options for cryptococcosis clinical treatment. Common antifungal resistance mechanisms include a decrease in the effective drug concentration, alterations or overexpression of drug targets, and metabolic deviations4545. Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med. 2016;3:1-10.. Thus, therapeutic failure in cryptococcosis may be related to both host factors and the existence of strains of Cryptococcus spp. that develop resistance to antifungal drugs4646. Gulshan K, Moye-Rowley WS. Multidrug resistance in fungi. Eukaryot Cell. 2007;6(11):1933-42..

Extrapolations from previous studies on other fungal species may improve our understanding of the resistance mechanisms employed by C. neoformans77. Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence. 2019;10(1):490-501. for which research is scarce. Reports of Cryptococcus spp. being resistant to amphotericin B are relatively rare; however, this phenomenon is already a concern4747. Howard-Jones AR, Sparks R, Pham D, Halliday C, Beardsley J, Chen SC. Pulmonary cryptococcosis. J Fungi. 2022;8(11):1-19.. The mechanisms that confer resistance to polyenes are related to mutations in ergosterol biosynthesis pathway genes, resulting in reduced binding of amphotericin B and/or inactivation of the drug, leading to fungal resistance4848. Kelly SL, Lamb DC, Taylor M, Corran AJ, Baldwin BC, Powderly WG. Resistance to amphotericin B associated with defective sterol Δ8→7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett. 1994;122(1-2):39-42.-4949. Carolus H, Pierson S, Lagrou K, Van Dijck P. Amphotericin b and other polyenes-discovery, clinical use, mode of action and drug resistance. J Fungi. 2020;6(4):1-20.. The mechanisms of flucytosine resistance in Cryptococcus spp. remain unresolved and further investigation is needed to define them77. Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence. 2019;10(1):490-501.. Approximately 10% of fungal isolates, even in the absence of previous drug exposure, show primary resistance to flucytosine5050. Scorzoni L, de Paula e Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, et al. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front Microbiol. 2017;8(1):1-23.. In the case of infections with C. neoformans in particular, monotherapy with flucytosine is discouraged because of the rapid and frequent appearance of resistant isolates5151. Chang YC, Lamichhane AK, Cai H, Walter PJ, Bennett JE, Kwon-Chung KJ. Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in cryptococci. Nat Commun. 2021;12(1):1-13..

In the 1990s, especially in patients with HIV, the indiscriminate use of fluconazole resulted in the emergence of drug-resistant Cryptococcus spp. strains among susceptible populations5252. Venkateswarlu K, Taylor M, Manning NJ, Rinaldi MG. Fluconazole Tolerance in Clinical Isolates of Cryptococcus neoformans. Antimicrob Agents Chemother . 1997;41(4):748-51.

53. Peetermans W, Bobbaers H, Verhaegen J, Vandepitte J. Fluconazole-resistant Cryptococcus neoformans var gattii in an AIDS patient. Acta Clin Belg. 1993;48(6):405-9.
-5454. Bongomin F, Oladele RO, Gago S, Moore CB, Richardson MD. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus specie. Mycoses. 2018;61(5):290-7.. Azole resistance is a relatively common event in recurrent episodes of cryptococcal meningitis3333. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clin Infect Dis . 2010;50(3):291-322.

34. Ellis D. Amphotericin B: Spectrum and resistance. J Antimicrob Chemother. 2002;49(SUPL. S1):7-10.

35. Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci USA. 2012;109(7):2234-9.

36. Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223-7.

37. Rossi SA, De Oliveira HC, Agreda-Mellon D, Lucio J, Soares Mendes-Giannini MJ, García-Cambero JP, et al. Identification of off-patent drugs that show synergism with amphotericin B or that present antifungal action against Cryptococcus neoformans and Candida spp. Antimicrob Agents Chemother. 2020;64(4):1-16.

38. Montgomery JA, Hewson K. Synthesis of potential anticancer agents. X. 2-Fluoroadenosine. J Am Chem Soc. 1957;79(16):4559-60.

39. Bennett JE, Dismukes WE, Duma RJ, Medoff G, Sande MA, Gallis H, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N Engl J Med . 1979:301(3):126-31.

40. Dromer F, Bernede-Bauduin C, Guillemot D, Lortholary O. Major role for amphotericin B-flucytosine combination in severe cryptococcosis. PLoS One . 2008;3(8):e2870.

41. Hope WW, Tabernero L, Denning DW, Anderson MJ. Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents Chemother . 2004;48(11):4377-86.

42. Billmyre RB, Applen Clancey S, Li LX, Doering TL, Heitman J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis inCryptococcus. Nat Commun. 2020;11(1):1-9.

43. Vidal JE, de Albuquerque Moraes C, de Siqueira REB, Miranda NFB, Marcusso R, Boulware DR, et al. HIV-associated cryptococcal meningitis patients treated with Amphotericin B deoxycholate plus flucytosine under routine care conditions in a referral center in São Paulo, Brazil. Mycopathologia. 2021;186(1):93-102.

44. Richardson k, Copper K, Marriott MS, Tarbit MH, Troke PF, Whittle PJ. Discovery of Fluconazole, a Novel Antifungal Agent. Rev Infect Dis. 1990;12(3):267-71.

45. Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med. 2016;3:1-10.

46. Gulshan K, Moye-Rowley WS. Multidrug resistance in fungi. Eukaryot Cell. 2007;6(11):1933-42.

47. Howard-Jones AR, Sparks R, Pham D, Halliday C, Beardsley J, Chen SC. Pulmonary cryptococcosis. J Fungi. 2022;8(11):1-19.

48. Kelly SL, Lamb DC, Taylor M, Corran AJ, Baldwin BC, Powderly WG. Resistance to amphotericin B associated with defective sterol Δ8→7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett. 1994;122(1-2):39-42.

49. Carolus H, Pierson S, Lagrou K, Van Dijck P. Amphotericin b and other polyenes-discovery, clinical use, mode of action and drug resistance. J Fungi. 2020;6(4):1-20.

50. Scorzoni L, de Paula e Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, et al. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front Microbiol. 2017;8(1):1-23.

51. Chang YC, Lamichhane AK, Cai H, Walter PJ, Bennett JE, Kwon-Chung KJ. Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in cryptococci. Nat Commun. 2021;12(1):1-13.

52. Venkateswarlu K, Taylor M, Manning NJ, Rinaldi MG. Fluconazole Tolerance in Clinical Isolates of Cryptococcus neoformans. Antimicrob Agents Chemother . 1997;41(4):748-51.

53. Peetermans W, Bobbaers H, Verhaegen J, Vandepitte J. Fluconazole-resistant Cryptococcus neoformans var gattii in an AIDS patient. Acta Clin Belg. 1993;48(6):405-9.

54. Bongomin F, Oladele RO, Gago S, Moore CB, Richardson MD. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus specie. Mycoses. 2018;61(5):290-7.
-5555. Loyse A, Dromer F, Day J, Lortholary O, Harrison TS. Flucytosine and cryptococcosis: Time to urgently address the worldwide accessibility of a 50-year-old antifungal. J Antimicrob Chemother. 2013;68(11):2435-44.. The molecular basis of this resistance in Cryptococcus spp. is poorly resolved; however, overexpression of the AFR1 gene that codes for the azole efflux pump and point mutations in the ERG11 gene, that is, the gene encoding lanosterol 14α-demethylase as the target enzyme of azoles, have been associated with alterations in susceptibility to fluconazole in C. neoformans77. Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence. 2019;10(1):490-501.

8. Bermas A, Geddes-McAlister J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol Microbiol. 2020;114(5):721-34.

9. Spadari C de C, Wirth F, Lopes LB, Ishida K. New approaches for cryptococcosis treatment. Microorganisms. 2020;8(4):1-15.

10. Kong Q, Cao Z, Lv N, Zhang H, Liu Y, Hu L, et al. Minocycline and fluconazole have a synergistic effect Against Cryptococcus neoformans Both in vitro and in vivo. Front Microbiol. 2020;11(05):1-11.

11. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2-3):155-76.

12. Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach?. JACC Basic to Transl Sci. 2019;4(7):845-54.

13. Chen YC, Chang TY, Liu JW, Chen FJ, Chien CC, Lee CH, et al. Increasing trend of fluconazole-non-susceptible Cryptococcus neoformans in patients with invasive cryptococcosis: A 12-year longitudinal study. BMC Infect Dis. 2015;15(1):1-7.

14. Firacative C, Lizarazo J, Illnait-Zaragozí MT, Castañeda E, Arechavala A, Córdoba S, et al. The status of cryptococcosis in latin America. Mem Inst Oswaldo Cruz. 2018;113(7):1-23.

15. Meyer W, Trilles L. Genotyping of the Cryptococcus neoformans/C. gattii species complex. Australian Biochemist. 2010;41(1):12-16.

16. Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol. 2009;47(6):561-70.

17. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The case for adopting the “Species Complex” nomenclature for the etiologic agents of Cryptococcosis. Msphere. 2017;2(1):1-7.

18. Farrer RA, Chang M, Davis MJ, Dorp L Van, Yang D, Shea T, et al. A New Lineage of Cryptococcus gattii (VGV) discovered in the Central Zambezian Miombo Woodlands. Ecol Evol Sci. 2019;10(6):e02306-19.

19. Negroni R. Cryptococcosis. Clin Dermatol. 2012;30(6):599-609.

20. Reis-Filho JB dos, Neves AC, Zymberg ST, Oliveira R de MC de. O líquido cefalorraquiano inicial nas meningencefalites por Cryptococcus neoformans. Rev Inst Med Trop S Paulo. 1985;27(4):173-8.

21. Siddiqi OK, Ghebremichael M, Dang X, Atadzhanov M, Kaonga P, Khoury MN, et al. Molecular diagnosis of central nervous system opportunistic infections in HIV-infected zambian adults. Clin Infect Dis. 2014;58(12):1771-7.

22. Hurtado JC, Castillo P, Fernandes F, Navarro M, Lovane L, Casas I, et al. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep. 2019;9(1):1-10.

23. Miot J, Leong T, Takuva S, Parrish A, Dawood H. Cost-effectiveness analysis of flucytosine as induction therapy in the treatment of cryptococcal meningitis in HIV-infected adults in South Africa. BMC Health Serv Res. 2021;21(1):1-11.

24. Pinheiro SB, Sousa ES, Cortez ACA, da Silva Rocha DF, Menescal LSF, Chagas VS, et al. Cryptococcal meningitis in non-HIV patients in the State of Amazonas, Northern Brazil. Brazilian J Microbiol. 2020;52(1):279-88.

25. Brizendine KD, Baddley JW, Pappas PG. Predictors of mortality and differences in clinical features among patients with cryptococcosis according to immune status. PLoS One. 2013;8(3):e60431

26. Bielska E, May RC. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res. 2016;16(1):1-12.

27. Hommel B, Sturny-Leclère A, Volant S, Veluppillai N, Duchateau M, Yu CH, et al. Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. Plos Pathog. 2019;15(9):e1008070.

28. World Health Organization (WHO). Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. Geneva: WHO; 2022.64p.

29. Alvarez M, Chipana CT, Suarez F. Proctocolitis by cryptococcus in an immunocompetent patient: first report in Peru. Rev Gastroenterol Peru. 2019;39(3):288-91.

30. Tan GSE, Singh R, Chong TYR, Su PQ, Lee JSS, Wong KJH, et al. Severe primary cutaneous Cryptococcus gattii causing ulcerative cellulitis in an immunocompetent patient. Lancet Infect Dis. 2019;19(10):1148-49.

31. Jarvis JN, Lawrence DS, Meya DB, Kagimu E, Kasibante J, Mpoza E, Rutakingirwa MK, et al. Single-dose lipossomal amphotericin B treatment for cryptococcal meningitis. N Engl J Med. 2022;386(12):1109-20.

32. Eileen K, Maziarz MD, John R Perfect M. Cryptococcosis. Intraocular Inflamm. 2016;30(1):1277-83.

33. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clin Infect Dis . 2010;50(3):291-322.

34. Ellis D. Amphotericin B: Spectrum and resistance. J Antimicrob Chemother. 2002;49(SUPL. S1):7-10.

35. Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci USA. 2012;109(7):2234-9.

36. Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223-7.

37. Rossi SA, De Oliveira HC, Agreda-Mellon D, Lucio J, Soares Mendes-Giannini MJ, García-Cambero JP, et al. Identification of off-patent drugs that show synergism with amphotericin B or that present antifungal action against Cryptococcus neoformans and Candida spp. Antimicrob Agents Chemother. 2020;64(4):1-16.

38. Montgomery JA, Hewson K. Synthesis of potential anticancer agents. X. 2-Fluoroadenosine. J Am Chem Soc. 1957;79(16):4559-60.

39. Bennett JE, Dismukes WE, Duma RJ, Medoff G, Sande MA, Gallis H, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N Engl J Med . 1979:301(3):126-31.

40. Dromer F, Bernede-Bauduin C, Guillemot D, Lortholary O. Major role for amphotericin B-flucytosine combination in severe cryptococcosis. PLoS One . 2008;3(8):e2870.

41. Hope WW, Tabernero L, Denning DW, Anderson MJ. Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents Chemother . 2004;48(11):4377-86.

42. Billmyre RB, Applen Clancey S, Li LX, Doering TL, Heitman J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis inCryptococcus. Nat Commun. 2020;11(1):1-9.

43. Vidal JE, de Albuquerque Moraes C, de Siqueira REB, Miranda NFB, Marcusso R, Boulware DR, et al. HIV-associated cryptococcal meningitis patients treated with Amphotericin B deoxycholate plus flucytosine under routine care conditions in a referral center in São Paulo, Brazil. Mycopathologia. 2021;186(1):93-102.

44. Richardson k, Copper K, Marriott MS, Tarbit MH, Troke PF, Whittle PJ. Discovery of Fluconazole, a Novel Antifungal Agent. Rev Infect Dis. 1990;12(3):267-71.

45. Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med. 2016;3:1-10.

46. Gulshan K, Moye-Rowley WS. Multidrug resistance in fungi. Eukaryot Cell. 2007;6(11):1933-42.

47. Howard-Jones AR, Sparks R, Pham D, Halliday C, Beardsley J, Chen SC. Pulmonary cryptococcosis. J Fungi. 2022;8(11):1-19.

48. Kelly SL, Lamb DC, Taylor M, Corran AJ, Baldwin BC, Powderly WG. Resistance to amphotericin B associated with defective sterol Δ8→7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett. 1994;122(1-2):39-42.

49. Carolus H, Pierson S, Lagrou K, Van Dijck P. Amphotericin b and other polyenes-discovery, clinical use, mode of action and drug resistance. J Fungi. 2020;6(4):1-20.

50. Scorzoni L, de Paula e Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, et al. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front Microbiol. 2017;8(1):1-23.

51. Chang YC, Lamichhane AK, Cai H, Walter PJ, Bennett JE, Kwon-Chung KJ. Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in cryptococci. Nat Commun. 2021;12(1):1-13.

52. Venkateswarlu K, Taylor M, Manning NJ, Rinaldi MG. Fluconazole Tolerance in Clinical Isolates of Cryptococcus neoformans. Antimicrob Agents Chemother . 1997;41(4):748-51.

53. Peetermans W, Bobbaers H, Verhaegen J, Vandepitte J. Fluconazole-resistant Cryptococcus neoformans var gattii in an AIDS patient. Acta Clin Belg. 1993;48(6):405-9.

54. Bongomin F, Oladele RO, Gago S, Moore CB, Richardson MD. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus specie. Mycoses. 2018;61(5):290-7.

55. Loyse A, Dromer F, Day J, Lortholary O, Harrison TS. Flucytosine and cryptococcosis: Time to urgently address the worldwide accessibility of a 50-year-old antifungal. J Antimicrob Chemother. 2013;68(11):2435-44.
-5656. Perfect JR, Dismukes WE, Dromer F, Goldman DL, John R, Hamill RJ, et al. Cryptococcosis. Proc Natl Acad Sci USA . 2012;30(1 SUPPL.):S3-13.

57. Rodero L, Mellado E, Rodriguez AC, Salve A, Guelfand L, Cahn P, et al. G484S Amino Acid Substitution in Lanosterol 14-α Demethylase (ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate. Antimicrob Agents Chemother . 2003;47(11):3653-6.

58. Sanguinetti M, Posteraro B, La Sorda M, Torelli R, Fiori B, Santangelo R, et al. Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans. Infect Immun. 2006;74(2):1352-9.
-5959. Chang M, Sionov E, Lamichhane AK, Kwon-chung KJ, Chang YC. Roles of Three Cryptococcus neoformans and Cryptococcus gattii efflux pump-coding genes in response to drug treatment. Antimicrob Agents Chemother . 2018;62(4):1-14..

Resistance to fluconazole in Cryptococcus spp. may also be associated with heteroresistance, an adaptive mode of resistance against azoles6060. Sionov E, Lee H, Chang YC, Kwon-Chung KJ. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 2010;6(4):1-13.. This phenomenon refers to the heterogeneous susceptibility of a microorganism population to fluconazole, meaning that some clones are resistant whereas others are susceptible6161. Ferreira GF, Santos DA. Heteroresistance and fungi. Mycoses. 2017;60(9):562-8.. Resistant subpopulations gradually adapt to increasing drug concentrations. However, this acquired resistance to high concentrations of fluconazole can be lost during repeated passages in drug-free media and the clones return to their original level of heteroresistance6060. Sionov E, Lee H, Chang YC, Kwon-Chung KJ. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 2010;6(4):1-13.

61. Ferreira GF, Santos DA. Heteroresistance and fungi. Mycoses. 2017;60(9):562-8.
-6262. Brukner I, Oughton M. A fundamental change in antibiotic susceptibility testing would better prevent therapeutic failure: from individual to population-based analysis. Front Microbiol. 2020;11:1-3..

The rise of heteroresistance in isolates of the C. neoformans species complex against fluconazole has been identified as one of the causes of cryptococcosis6363. Varma A, Kwon-Chung KJ. Heteroresistance of Cryptococcus gattii to fluconazole. Antimicrob Agents Chemother . 2010;54(6):2303-11.. Heteroresistance may explain treatment failure in some patients, even when they are treated with the appropriate choices and concentrations of antifungal drugs6161. Ferreira GF, Santos DA. Heteroresistance and fungi. Mycoses. 2017;60(9):562-8.. Furthermore, current antifungal susceptibility testing algorithms have not been designed to detect heteroresistance; accordingly, unreliable susceptibility testing results are expected in the case of infections with heteroresistant Cryptococcus spp. strains6262. Brukner I, Oughton M. A fundamental change in antibiotic susceptibility testing would better prevent therapeutic failure: from individual to population-based analysis. Front Microbiol. 2020;11:1-3.

63. Varma A, Kwon-Chung KJ. Heteroresistance of Cryptococcus gattii to fluconazole. Antimicrob Agents Chemother . 2010;54(6):2303-11.
-6464. Badali H, Wiederhold NP. Antifungal Resistance Testing and Implications for Management. Curr Fungal Infect Rep. 2019;13(4):274-83.

65. de Sousa ESO, Cortez ACA, de Souza Carvalho Melhem M, Frickmann H, de Souza JVB. Factors influencing susceptibility testing of antifungal drugs: a critical review of document M27-A4 from the Clinical and Laboratory Standards Institute (CLSI). Brazilian J Microbiol . 2020;51(4):1791-800.
-6666. Moreira IDMB, Cortez ACA, De Souza ÉS, Pinheiro SB, De Souza Oliveira JG, Sadahiro A, et al. Investigation of fluconazole heteroresistance in clinical and environmental isolates of Cryptococcus neoformans complex and Cryptococcus gattii complex in the state of Amazonas, Brazil. Med Mycol. 2022;60(3):1-9..

BIOPROSPECTING OF NATURAL PRODUCTS WITH ANTIFUNGAL ACTIVITY

Historically, nature has been an important source of therapeutic molecules. Currently, secondary metabolites of natural products produced by plants, microorganisms, marine animals, and other aquatic systems comprise approximately half of all pharmaceutical products on the market6767. Pereira DG. Importância do metabolismo no planejamento de fármacos. Quim Nova. 2007;30(1):171-7.-6868. Wright GD. Unlocking the potential of natural products in drug discovery. Microb Biotechnol. 2019;12(1):55-7.. This reveals an immeasurable source of opportunities in the area of scientific and technological research on natural products, and prospecting new drugs from biodiversity remains one of the main choices for the identification of new drugs6969. Ramírez-Rendon D, Passari AK, Ruiz-Villafán B, Rodríguez-Sanoja R, Sánchez S, Demain AL. Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol. 2022;106(5-6):1855-78.-7070. Calixto JB. The role of natural products in modern drug discovery. Biological Sciences. 2019;91(Suppl 3):e20190105..

Bioprospecting of anticryptococcal drugs is commonly performed using classic or virtual (computational) cell screening. In the course of these screening approaches, bioproducts obtained from natural sources, such as plants, fungi, bacteria, insects, animals, and marine organisms7171. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770-803.-7272. El-Naggar HA, Bashar MAE, Rady I, El-Wetidy MS, Suleiman WB, Al-Otibi FO, et al. Two red sea sponge extracts (Negombata magnifica and Callyspongia siphonella) induced anticancer and antimicrobial activity. Appl Sci. 2022;12(3):1-23., were initially tested using bioassays that assess antifungal activity1010. Kong Q, Cao Z, Lv N, Zhang H, Liu Y, Hu L, et al. Minocycline and fluconazole have a synergistic effect Against Cryptococcus neoformans Both in vitro and in vivo. Front Microbiol. 2020;11(05):1-11.. The disk diffusion assay is the most commonly used qualitative method for initial screening of antifungal activity7373. CLSI. M44-A2: Method for antifungal disk diffusion susceptibility testing of yeasts. Clin Lab Stand Institute. 2009;29(17).. The second most common method is the broth microdilution method, which is described by the Clinical and Laboratory Standards Institute (CLSI; document M-27 A4) or the European Committee on Antimicrobial Susceptibility Testing (document EDef 7.3.1), and is used to quantitatively determine the minimum inhibitory concentration (MIC) of substances with antimicrobial effects against pathogenic yeasts7474. CLSI. M27-A4. Reference method for broth dilution antifungal susceptibility testing of yeasts. Clin Lab Stand Institute . 2017;4th ed.-7575. Def EE. Susceptibility testing of yeasts. Clin Microbiol Infect. 1997;3(1):14-6..

Once the antifungal potential is identified, the bioproducts are subjected to extraction, isolation, and identification steps, which include different techniques capable of detecting the presence of compounds and then characterizing them7676. Trivella DBB, Bruder MCP, Oliveira FCB, Porcaro R, Rustiguel JK, Ribeiro LB, et al. Descoberta de fármacos a partir de produtos naturais e a abordagem molecular power house (MPH). Rev Fitos. 2022;16(Supl. 2):176-92.. In summary, the discovery of natural products with antifungal activity generally comprises: 1) classic or virtual cell screening; 2) extraction, isolation of compounds and structural characterization by thin layer chromatography, variations of chromatography associated with mass spectrometry, analysis of carbon 13 nuclear magnetic resonance, and hydrogen nuclear magnetic resonance analysis; 3) pharmacological studies to determine the mode of action; 4) toxicological studies to delineate the substance’s safety; 5) preclinical trials and, if successful; 6) clinical and marketing studies (Figure 2).

FIGURE 2:
Bioprospecting steps for anticryptococcal drugs, their areas of knowledge, and the clinical trials phase. Created with BioRender.com.

Several new natural products from fungi, bacteria, insects, sponges, algae, and plants have proven to be effective alternatives with the potential to form new drugs that can be effectively used against strains of C. neoformans and gattii7676. Trivella DBB, Bruder MCP, Oliveira FCB, Porcaro R, Rustiguel JK, Ribeiro LB, et al. Descoberta de fármacos a partir de produtos naturais e a abordagem molecular power house (MPH). Rev Fitos. 2022;16(Supl. 2):176-92.-7777. Aldholmi M, Marchand P, Ourliac-Garnier I, Le Pape P, Ganesan A. A decade of antifungal leads from natural products: 2010-2019. Pharmaceuticals. 2019;12(4):2010-9.. In recent years, marine sponges and algae have emerged as important sources of new natural products with antifungal activity7878. Ribeiro R, Pinto E, Fernandes C, Sousa E. Marine cyclic peptides: antimicrobial activity and synthetic strategies. Mar Drugs. 2022;20(6):2-51.; however, plants and fungi are still the most productive sources of antifungal compounds with anticryptococcal activity, including phenols, flavonoids, terpenoids, alkaloids, and peptides, as the main chemical classes represented in these plants7777. Aldholmi M, Marchand P, Ourliac-Garnier I, Le Pape P, Ganesan A. A decade of antifungal leads from natural products: 2010-2019. Pharmaceuticals. 2019;12(4):2010-9..

Natural products are important sources of therapeutic drugs. However, it is generally accepted that the drug discovery and development processes are time- and resource-intensive. Thus, in recent years, both computational and experimental techniques have played important roles and represent complementary approaches7676. Trivella DBB, Bruder MCP, Oliveira FCB, Porcaro R, Rustiguel JK, Ribeiro LB, et al. Descoberta de fármacos a partir de produtos naturais e a abordagem molecular power house (MPH). Rev Fitos. 2022;16(Supl. 2):176-92.. For a complete review of computer-aided drug design and virtual screening for lead molecules in the discovery of new drugs against Cryptococcus spp., the comprehensive work by Manjunath and Skariyachan (2018) should be consulted7979. Manjunath M, Skariyachan S. Screening of natural lead molecules against putative molecular targets of drug-resistant cryptococcus spp: an insight from computer-aided molecular design. Curr Top Med Chem. 2019;18(31):2681-701.. Table 1 summarizes the lead molecules selected from natural sources with antifungal activity against Cryptococcus spp. that have been identified in recent years.

TABLE 1:
Lead molecules selected from natural sources with antifungal activity against Cryptococcus spp. that have been identified in recent years.

STRUCTURAL MODIFICATION

The first step in the design of new anticryptococcal drugs using structural modification is the use of a well-defined chemical substance with previously characterized biological activity102102. Beattie SR, Krysan DJ. Antifungal drug screening: thinking outside the box to identify novel antifungal scaffolds. Current Opinion in Microbiology. 2020;57(10):1-6.. The next step involves the techniques required to derive new analogs, homologues, or structural congeners with improved pharmacological properties. For this purpose, general processes of simplification and molecular association have been applied102102. Beattie SR, Krysan DJ. Antifungal drug screening: thinking outside the box to identify novel antifungal scaffolds. Current Opinion in Microbiology. 2020;57(10):1-6.

103. Jiang Z, Liu N, Hu D, Dong G, Miao Z, Yao J, et al. The discovery of novel antifungal scaffolds by structural simplification of the natural product sampangine. Chem Commun. 2015;51(78):14648-51.
-104104. Barreiro EJ, Fraga CAM. Química Medicinal: As Bases Moleculares da Ação dos fármacos. 3ª edição. São Paulo: Artmed; 2014. 608 p.. In summary, the final product was designed by the partial molecular modification of the prototype compound with the inclusion or exclusion of chemical structures that favor greater potency, stability, and safety characteristics than the original compound6868. Wright GD. Unlocking the potential of natural products in drug discovery. Microb Biotechnol. 2019;12(1):55-7..

Substituted derivatives of terpenoids, quinones, naphthoquinones and coumaric acid are among the compounds with antifungal properties whose derivatives have been extensively studied in recent years for their anticryptococcal activity105105. Oliveira MS, Chaves OS, Cordeiro LV, Gomes ANP, Fernandes DA, Telles YCF, et al. Indoquinoline alkaloids from Sida rhombifolia (L.) (Malvaceae) and antimicrobial evaluation of Cryptolepinone derivatives. J Braz Chem Soc. 2022;00(00):1-8.

106. Freire CPV, Ferreira SB, De Oliveira NSM, Matsuura ABJ, Gama IL, Da Silva FDC, et al. Synthesis and biological evaluation of substituted α- And β-2,3-dihydrofuran naphthoquinones as potent anticandidal agents. Medchemcomm. 2010;1(3):229-32.

107. Jiang Z, Liu N, Dong G, Jiang Y, Liu Y, He X, et al. Scaffold hopping of sampangine: Discovery of potent antifungal lead compound against Aspergillus fumigatus and Cryptococcus neoformans. Bioorganic Med Chem Lett. 2014;24(17):4090-4.

108. Cruz KS, Lima ES, Silva MDJA Da, Souza ES De, Montoia A, Pohlit AM, et al. Screening and antifungal activity of a β-carboline derivative against cryptococcus neoformans and C. gattii. Int J Microbiol. 2019;2019:7157845.

109. Ferreira M do PSBC, Cardoso MF do C, da Silva F de C, Ferreira VF, Lima ES, Souza JVB. Antifungal activity of synthetic naphthoquinones against dermatophytes and opportunistic fungi: Preliminary mechanism-of-action tests. Ann Clin Microbiol Antimicrob. 2014;13(1):1-6.
-110110. Li Z, Liu N, Tu J, Ji C, Han G, Wang Y, et al. Discovery of novel simplified isoxazole derivatives of sampangine as potent anti-cryptococcal agents. Bioorganic Med Chem. 2019;27(5):832-40.. Recently, derivatives of sampagin, an alkaloid extracted from the stem bark of Cananga odorata Lamarck, have been shown to mediate potent antifungal activity against C. neoformans and gattii species110110. Li Z, Liu N, Tu J, Ji C, Han G, Wang Y, et al. Discovery of novel simplified isoxazole derivatives of sampangine as potent anti-cryptococcal agents. Bioorganic Med Chem. 2019;27(5):832-40.. In this study, a series of tricyclic isoxazole derivatives with excellent anticryptococcal activities were identified by structural simplification and alteration of the sample skeleton. The derived compound (Table 2) showed a high degree of inhibitory activity against C. neoformans, with an MIC80 value of 0.031 μg/mL. This activity was more potent than that of substances such as fluconazole and voriconazole. Furthermore, the substance showed potent inhibitory effects against important virulence factors, such as biofilm activity, melanin production, and urease activity of yeasts110110. Li Z, Liu N, Tu J, Ji C, Han G, Wang Y, et al. Discovery of novel simplified isoxazole derivatives of sampangine as potent anti-cryptococcal agents. Bioorganic Med Chem. 2019;27(5):832-40..

TABLE 2:
Chemical structure of substituted derivatives with noteworthy activity against Cryptococcus neoformans and Cryptococcus gattii strains obtained by applying molecular modification.

Despite the considerable efforts invested in the search for antifungals, several new compounds that were screened or obtained by structural modification and demonstrated antifungal activity against Cryptococcus spp. remain poorly investigated7777. Aldholmi M, Marchand P, Ourliac-Garnier I, Le Pape P, Ganesan A. A decade of antifungal leads from natural products: 2010-2019. Pharmaceuticals. 2019;12(4):2010-9.. However, there is hope that some will progress into useful antifungal agents owing to molecular modifications. Moreover, in the next step, such new drugs with anticryptococcal activity will hopefully advance to clinical trials.

DRUG REPURPOSING

To accelerate the development of new antifungal agents, drugs developed for other therapeutic purposes can be repurposed if they also show antifungal activity22. Iyer KR, Revie NM, Fu C, Robbins N, Cowen LE. Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat Rev Microbiol. 2021;19(7):454-66.. Wemuth was an early advocate of screening approved drugs for new therapeutic indications and coined the term systematic optimization of side-activities (SOSA), which has become well known as a drug repositioning strategy115115. Wermuth CG. Selective optimization of side activities: The SOSA approach. Drug Discov Today. 2006;11(3/4):160-4..

The repositioning of drugs has few advantages, namely: 1) pharmacological, pharmacokinetic and safety data in humans have already been previously established in preclinical and human trials, 2) the clinical use of a drug already available on the market is immediate, and 3) reduction in research costs associated with the expansion of the therapeutic indication88. Bermas A, Geddes-McAlister J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol Microbiol. 2020;114(5):721-34.

9. Spadari C de C, Wirth F, Lopes LB, Ishida K. New approaches for cryptococcosis treatment. Microorganisms. 2020;8(4):1-15.

10. Kong Q, Cao Z, Lv N, Zhang H, Liu Y, Hu L, et al. Minocycline and fluconazole have a synergistic effect Against Cryptococcus neoformans Both in vitro and in vivo. Front Microbiol. 2020;11(05):1-11.

11. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2-3):155-76.

12. Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach?. JACC Basic to Transl Sci. 2019;4(7):845-54.

13. Chen YC, Chang TY, Liu JW, Chen FJ, Chien CC, Lee CH, et al. Increasing trend of fluconazole-non-susceptible Cryptococcus neoformans in patients with invasive cryptococcosis: A 12-year longitudinal study. BMC Infect Dis. 2015;15(1):1-7.

14. Firacative C, Lizarazo J, Illnait-Zaragozí MT, Castañeda E, Arechavala A, Córdoba S, et al. The status of cryptococcosis in latin America. Mem Inst Oswaldo Cruz. 2018;113(7):1-23.

15. Meyer W, Trilles L. Genotyping of the Cryptococcus neoformans/C. gattii species complex. Australian Biochemist. 2010;41(1):12-16.

16. Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol. 2009;47(6):561-70.

17. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The case for adopting the “Species Complex” nomenclature for the etiologic agents of Cryptococcosis. Msphere. 2017;2(1):1-7.

18. Farrer RA, Chang M, Davis MJ, Dorp L Van, Yang D, Shea T, et al. A New Lineage of Cryptococcus gattii (VGV) discovered in the Central Zambezian Miombo Woodlands. Ecol Evol Sci. 2019;10(6):e02306-19.

19. Negroni R. Cryptococcosis. Clin Dermatol. 2012;30(6):599-609.

20. Reis-Filho JB dos, Neves AC, Zymberg ST, Oliveira R de MC de. O líquido cefalorraquiano inicial nas meningencefalites por Cryptococcus neoformans. Rev Inst Med Trop S Paulo. 1985;27(4):173-8.

21. Siddiqi OK, Ghebremichael M, Dang X, Atadzhanov M, Kaonga P, Khoury MN, et al. Molecular diagnosis of central nervous system opportunistic infections in HIV-infected zambian adults. Clin Infect Dis. 2014;58(12):1771-7.

22. Hurtado JC, Castillo P, Fernandes F, Navarro M, Lovane L, Casas I, et al. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep. 2019;9(1):1-10.

23. Miot J, Leong T, Takuva S, Parrish A, Dawood H. Cost-effectiveness analysis of flucytosine as induction therapy in the treatment of cryptococcal meningitis in HIV-infected adults in South Africa. BMC Health Serv Res. 2021;21(1):1-11.

24. Pinheiro SB, Sousa ES, Cortez ACA, da Silva Rocha DF, Menescal LSF, Chagas VS, et al. Cryptococcal meningitis in non-HIV patients in the State of Amazonas, Northern Brazil. Brazilian J Microbiol. 2020;52(1):279-88.

25. Brizendine KD, Baddley JW, Pappas PG. Predictors of mortality and differences in clinical features among patients with cryptococcosis according to immune status. PLoS One. 2013;8(3):e60431

26. Bielska E, May RC. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res. 2016;16(1):1-12.

27. Hommel B, Sturny-Leclère A, Volant S, Veluppillai N, Duchateau M, Yu CH, et al. Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. Plos Pathog. 2019;15(9):e1008070.

28. World Health Organization (WHO). Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. Geneva: WHO; 2022.64p.

29. Alvarez M, Chipana CT, Suarez F. Proctocolitis by cryptococcus in an immunocompetent patient: first report in Peru. Rev Gastroenterol Peru. 2019;39(3):288-91.

30. Tan GSE, Singh R, Chong TYR, Su PQ, Lee JSS, Wong KJH, et al. Severe primary cutaneous Cryptococcus gattii causing ulcerative cellulitis in an immunocompetent patient. Lancet Infect Dis. 2019;19(10):1148-49.

31. Jarvis JN, Lawrence DS, Meya DB, Kagimu E, Kasibante J, Mpoza E, Rutakingirwa MK, et al. Single-dose lipossomal amphotericin B treatment for cryptococcal meningitis. N Engl J Med. 2022;386(12):1109-20.

32. Eileen K, Maziarz MD, John R Perfect M. Cryptococcosis. Intraocular Inflamm. 2016;30(1):1277-83.

33. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clin Infect Dis . 2010;50(3):291-322.

34. Ellis D. Amphotericin B: Spectrum and resistance. J Antimicrob Chemother. 2002;49(SUPL. S1):7-10.

35. Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci USA. 2012;109(7):2234-9.

36. Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223-7.

37. Rossi SA, De Oliveira HC, Agreda-Mellon D, Lucio J, Soares Mendes-Giannini MJ, García-Cambero JP, et al. Identification of off-patent drugs that show synergism with amphotericin B or that present antifungal action against Cryptococcus neoformans and Candida spp. Antimicrob Agents Chemother. 2020;64(4):1-16.

38. Montgomery JA, Hewson K. Synthesis of potential anticancer agents. X. 2-Fluoroadenosine. J Am Chem Soc. 1957;79(16):4559-60.

39. Bennett JE, Dismukes WE, Duma RJ, Medoff G, Sande MA, Gallis H, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N Engl J Med . 1979:301(3):126-31.

40. Dromer F, Bernede-Bauduin C, Guillemot D, Lortholary O. Major role for amphotericin B-flucytosine combination in severe cryptococcosis. PLoS One . 2008;3(8):e2870.

41. Hope WW, Tabernero L, Denning DW, Anderson MJ. Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents Chemother . 2004;48(11):4377-86.

42. Billmyre RB, Applen Clancey S, Li LX, Doering TL, Heitman J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis inCryptococcus. Nat Commun. 2020;11(1):1-9.

43. Vidal JE, de Albuquerque Moraes C, de Siqueira REB, Miranda NFB, Marcusso R, Boulware DR, et al. HIV-associated cryptococcal meningitis patients treated with Amphotericin B deoxycholate plus flucytosine under routine care conditions in a referral center in São Paulo, Brazil. Mycopathologia. 2021;186(1):93-102.

44. Richardson k, Copper K, Marriott MS, Tarbit MH, Troke PF, Whittle PJ. Discovery of Fluconazole, a Novel Antifungal Agent. Rev Infect Dis. 1990;12(3):267-71.

45. Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med. 2016;3:1-10.

46. Gulshan K, Moye-Rowley WS. Multidrug resistance in fungi. Eukaryot Cell. 2007;6(11):1933-42.

47. Howard-Jones AR, Sparks R, Pham D, Halliday C, Beardsley J, Chen SC. Pulmonary cryptococcosis. J Fungi. 2022;8(11):1-19.

48. Kelly SL, Lamb DC, Taylor M, Corran AJ, Baldwin BC, Powderly WG. Resistance to amphotericin B associated with defective sterol Δ8→7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett. 1994;122(1-2):39-42.

49. Carolus H, Pierson S, Lagrou K, Van Dijck P. Amphotericin b and other polyenes-discovery, clinical use, mode of action and drug resistance. J Fungi. 2020;6(4):1-20.

50. Scorzoni L, de Paula e Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, et al. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front Microbiol. 2017;8(1):1-23.

51. Chang YC, Lamichhane AK, Cai H, Walter PJ, Bennett JE, Kwon-Chung KJ. Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in cryptococci. Nat Commun. 2021;12(1):1-13.

52. Venkateswarlu K, Taylor M, Manning NJ, Rinaldi MG. Fluconazole Tolerance in Clinical Isolates of Cryptococcus neoformans. Antimicrob Agents Chemother . 1997;41(4):748-51.

53. Peetermans W, Bobbaers H, Verhaegen J, Vandepitte J. Fluconazole-resistant Cryptococcus neoformans var gattii in an AIDS patient. Acta Clin Belg. 1993;48(6):405-9.

54. Bongomin F, Oladele RO, Gago S, Moore CB, Richardson MD. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus specie. Mycoses. 2018;61(5):290-7.

55. Loyse A, Dromer F, Day J, Lortholary O, Harrison TS. Flucytosine and cryptococcosis: Time to urgently address the worldwide accessibility of a 50-year-old antifungal. J Antimicrob Chemother. 2013;68(11):2435-44.

56. Perfect JR, Dismukes WE, Dromer F, Goldman DL, John R, Hamill RJ, et al. Cryptococcosis. Proc Natl Acad Sci USA . 2012;30(1 SUPPL.):S3-13.

57. Rodero L, Mellado E, Rodriguez AC, Salve A, Guelfand L, Cahn P, et al. G484S Amino Acid Substitution in Lanosterol 14-α Demethylase (ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate. Antimicrob Agents Chemother . 2003;47(11):3653-6.

58. Sanguinetti M, Posteraro B, La Sorda M, Torelli R, Fiori B, Santangelo R, et al. Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans. Infect Immun. 2006;74(2):1352-9.

59. Chang M, Sionov E, Lamichhane AK, Kwon-chung KJ, Chang YC. Roles of Three Cryptococcus neoformans and Cryptococcus gattii efflux pump-coding genes in response to drug treatment. Antimicrob Agents Chemother . 2018;62(4):1-14.

60. Sionov E, Lee H, Chang YC, Kwon-Chung KJ. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 2010;6(4):1-13.

61. Ferreira GF, Santos DA. Heteroresistance and fungi. Mycoses. 2017;60(9):562-8.

62. Brukner I, Oughton M. A fundamental change in antibiotic susceptibility testing would better prevent therapeutic failure: from individual to population-based analysis. Front Microbiol. 2020;11:1-3.

63. Varma A, Kwon-Chung KJ. Heteroresistance of Cryptococcus gattii to fluconazole. Antimicrob Agents Chemother . 2010;54(6):2303-11.

64. Badali H, Wiederhold NP. Antifungal Resistance Testing and Implications for Management. Curr Fungal Infect Rep. 2019;13(4):274-83.

65. de Sousa ESO, Cortez ACA, de Souza Carvalho Melhem M, Frickmann H, de Souza JVB. Factors influencing susceptibility testing of antifungal drugs: a critical review of document M27-A4 from the Clinical and Laboratory Standards Institute (CLSI). Brazilian J Microbiol . 2020;51(4):1791-800.

66. Moreira IDMB, Cortez ACA, De Souza ÉS, Pinheiro SB, De Souza Oliveira JG, Sadahiro A, et al. Investigation of fluconazole heteroresistance in clinical and environmental isolates of Cryptococcus neoformans complex and Cryptococcus gattii complex in the state of Amazonas, Brazil. Med Mycol. 2022;60(3):1-9.

67. Pereira DG. Importância do metabolismo no planejamento de fármacos. Quim Nova. 2007;30(1):171-7.

68. Wright GD. Unlocking the potential of natural products in drug discovery. Microb Biotechnol. 2019;12(1):55-7.

69. Ramírez-Rendon D, Passari AK, Ruiz-Villafán B, Rodríguez-Sanoja R, Sánchez S, Demain AL. Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol. 2022;106(5-6):1855-78.

70. Calixto JB. The role of natural products in modern drug discovery. Biological Sciences. 2019;91(Suppl 3):e20190105.

71. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770-803.

72. El-Naggar HA, Bashar MAE, Rady I, El-Wetidy MS, Suleiman WB, Al-Otibi FO, et al. Two red sea sponge extracts (Negombata magnifica and Callyspongia siphonella) induced anticancer and antimicrobial activity. Appl Sci. 2022;12(3):1-23.

73. CLSI. M44-A2: Method for antifungal disk diffusion susceptibility testing of yeasts. Clin Lab Stand Institute. 2009;29(17).

74. CLSI. M27-A4. Reference method for broth dilution antifungal susceptibility testing of yeasts. Clin Lab Stand Institute . 2017;4th ed.

75. Def EE. Susceptibility testing of yeasts. Clin Microbiol Infect. 1997;3(1):14-6.

76. Trivella DBB, Bruder MCP, Oliveira FCB, Porcaro R, Rustiguel JK, Ribeiro LB, et al. Descoberta de fármacos a partir de produtos naturais e a abordagem molecular power house (MPH). Rev Fitos. 2022;16(Supl. 2):176-92.

77. Aldholmi M, Marchand P, Ourliac-Garnier I, Le Pape P, Ganesan A. A decade of antifungal leads from natural products: 2010-2019. Pharmaceuticals. 2019;12(4):2010-9.

78. Ribeiro R, Pinto E, Fernandes C, Sousa E. Marine cyclic peptides: antimicrobial activity and synthetic strategies. Mar Drugs. 2022;20(6):2-51.

79. Manjunath M, Skariyachan S. Screening of natural lead molecules against putative molecular targets of drug-resistant cryptococcus spp: an insight from computer-aided molecular design. Curr Top Med Chem. 2019;18(31):2681-701.

80. Cardoso NNR, Alviano CS, Blank AF, Arrigoni-Blank M de F, Romanos MT V, Cunha MML, et al. Anti-cryptococcal activity of ethanol crude extract and hexane fraction from Ocimum basilicum var. Maria bonita: Mechanisms of action and synergism with amphotericin B and Ocimum basilicum essential oil. Pharm Biol. 2017;55(1):1380-8.

81. Silva TC, de Ávila RI, Zara ALSA, Santos AS, Ataídes F, Freitas VAQ, et al. Punicalagin triggers ergosterol biosynthesis disruption and cell cycle arrest in Cryptococcus gattii and Candida albicans: Action mechanisms of punicalagin against yeasts. Brazilian J Microbiol . 2020;51(4):1719-27.

82. Teixeira AP de C, Nóbrega R de O, Lima E de O, Araújo W de O, Lima I de O. Antifungal activity study of the monoterpene thymol against Cryptococcus neoformans. Nat Prod Res. 2018;34(18):2630-3.

83. Folly MLC, Ferreira GF, Salvador MR, Sathler AA, da Silva GF, Santos JCB, et al. Evaluation of in vitro antifungal activity of Xylosma prockia (Turcz.) Turcz. (Salicaceae) leaves against Cryptococcus spp. Front Microbiol. 2020;10(2)1-13.

84. Kayo MT, Simo MK, Tagatsing Fotsing M, Talla E, Laurent S, Elst L Vander, et al. Antifungal potential of extracts, fractions and compounds from Uvaria comperei (Annonaceae) and Oxyanthus unilocularis (Rubiaceae). Nat Prod Res . 2020;35(24):5732-6.

85. Ren S, Deng K, Qiu S, Wang M, Avula B, Tripathi SK, et al. Identification of antifungal bisphosphocholines from medicinal Gentiana species. J Nat Prod . 2020;83(10):3207-11.

86. Omokhua-Uyi AG, Abdalla MA, Leonard CM, Aro A, Uyi OO, Van Staden J, et al. Flavonoids isolated from the South African weed Chromolaena odorata (Asteraceae) have pharmacological activity against uropathogens. BMC Complement Med Ther. 2020;20(1):1-15.

87. El Karkouri J, Bouhrim M, Al Kamaly OM, Mechchate H, Kchibale A, Adadi I, et al. Chemical composition, antibacterial and antifungal activity of the essential oil from Cistus ladanifer L. Plants. 2021;10(10):1-16.

88. Zulfiqar F, Pandey P, Tripathi SK, Ali Z, Chittiboyina AG, Khan IA. Benzoylcyclopropane derivatives from Hypoxis hemerocallidea corms. Planta Med. 2021:685-92.

89. Levorato-Vinche AD, Melhem M de SC, Bonfietti LX, de-la-Cruz-Chacón I, Boaro CSF, Fabro AT, et al. Antifungal activity of liriodenine on clinical strains of Cryptococcus neoformans and Cryptococcus gattii species complexes. J Venom Anim Toxins Incl Trop Dis. 2022;28(9):1-11.

90. Powers CN, Mayo JA, Moriarity DM, Vogler B, Setzer WN, McFeeters RL. Identification of Anticryptococcal bornyl compounds from Verbesina turbacensis and their structure-activity relationships. Planta Med. 2022;88:1341-47.

91. Beattie KD, Ellwood N, Kumar R, Yang X, Healy PC, Choomuenwai V, et al. Antibacterial and antifungal screening of natural products sourced from Australian fungi and characterisation of pestalactams D-F. Phytochemistry. 2016;124:79-85.

92. Li Y, Yue Q, Jayanetti DR, Swenson DC, Bartholomeusz GA, An Z, et al. Anti-Cryptococcus Phenalenones and cyclic tetrapeptides from Auxarthron pseudauxarthron. J Nat Prod . 2017;80(7):2101-9.

93. Perlatti B, Nichols CB, Lan N, Wiemann P, Harvey CJB, Alspaugh JA, et al. Identification of the Antifungal Metabolite chaetoglobosin p from Discosia rubi using a cryptococcus neoformans inhibition assay: insights into mode of action and biosynthesis. Front Microbiol. 2020;11:1766.

94. Perlatti B, Lan N, Xiang M, Earp CE, Spraker JE, Harvey CJB, et al. Anti-cryptococcal activity of preussolides A and B, phosphoethanolamine-substituted 24-membered macrolides, and leptosin C from coprophilous isolates of Preussia typharum. J Ind Microbiol Biotechnol . 2021;48(9-10).

95. Cadelis M, Grey A, van de Pas S, Geese S, Weir BS, Copp B, et al. Terrien, a metabolite made by Aspergillus terreus, has activity against Cryptococcus neoformans. PeerJ. 2022;10:e14239.

96. Kuvarina AE, Rogozhin EA, Sykonnikov MA, Timofeeva AV, Serebryakova MV, Fedorova NV, et al. Isolation and characterization of a novel hydrophobin, Sa-HFB1, with antifungal activity from an alkaliphilic fungus, Sodiomyces alkalinus. J Fungi. 2022;8(7):659.

97. Kumar R, Subramani R, Aalbersberg W. Three bioactive sesquiterpene quinones from the Fijian marine sponge of the genus Hippospongia. Nat Prod Res . 2013;27(16):1488-91.

98. Jamison MT, Dalisay DS, Molinski TF. Peroxide Natural Products from Plakortis zyggompha and the Sponge Association Plakortis halichondrioides-Xestospongia deweerdtae: Antifungal Activity against Cryptococcus gattii. J Nat Prod . 2016;79(3):555-63.

99. Thammasit P, Iadnut A, Mamoon K, Khacha-ananda S, Chupradit K, Tayapiwatana C, et al. A potential of propolis on major virulence factors of Cryptococcus neoformans. Microb Pathog. 2018;123:296-303.

100. Menezes-Silva L, da Silva CJ, de Faria LC, Pizzolante BC, Andrade-Silva LE, da Silva MV, et al. Hemolymph of triatomines presents fungistatic activity against Cryptococcus neoformans and improves macrophage function through MCP-I/TNF-α increase. J Venom Anim Toxins Incl Trop Dis . 2022;28:e20210124.

101. Robbins N, Spitzer M, Wang W, Waglechner N, Patel DJ, O’Brien JS, et al. Discovery of ibomycin, a complex macrolactone that exerts antifungal activity by impeding endocytic trafficking and membrane function. Cell Chem Biol. 2016;23(11):1383-94.

102. Beattie SR, Krysan DJ. Antifungal drug screening: thinking outside the box to identify novel antifungal scaffolds. Current Opinion in Microbiology. 2020;57(10):1-6.

103. Jiang Z, Liu N, Hu D, Dong G, Miao Z, Yao J, et al. The discovery of novel antifungal scaffolds by structural simplification of the natural product sampangine. Chem Commun. 2015;51(78):14648-51.

104. Barreiro EJ, Fraga CAM. Química Medicinal: As Bases Moleculares da Ação dos fármacos. 3ª edição. São Paulo: Artmed; 2014. 608 p.

105. Oliveira MS, Chaves OS, Cordeiro LV, Gomes ANP, Fernandes DA, Telles YCF, et al. Indoquinoline alkaloids from Sida rhombifolia (L.) (Malvaceae) and antimicrobial evaluation of Cryptolepinone derivatives. J Braz Chem Soc. 2022;00(00):1-8.

106. Freire CPV, Ferreira SB, De Oliveira NSM, Matsuura ABJ, Gama IL, Da Silva FDC, et al. Synthesis and biological evaluation of substituted α- And β-2,3-dihydrofuran naphthoquinones as potent anticandidal agents. Medchemcomm. 2010;1(3):229-32.

107. Jiang Z, Liu N, Dong G, Jiang Y, Liu Y, He X, et al. Scaffold hopping of sampangine: Discovery of potent antifungal lead compound against Aspergillus fumigatus and Cryptococcus neoformans. Bioorganic Med Chem Lett. 2014;24(17):4090-4.

108. Cruz KS, Lima ES, Silva MDJA Da, Souza ES De, Montoia A, Pohlit AM, et al. Screening and antifungal activity of a β-carboline derivative against cryptococcus neoformans and C. gattii. Int J Microbiol. 2019;2019:7157845.

109. Ferreira M do PSBC, Cardoso MF do C, da Silva F de C, Ferreira VF, Lima ES, Souza JVB. Antifungal activity of synthetic naphthoquinones against dermatophytes and opportunistic fungi: Preliminary mechanism-of-action tests. Ann Clin Microbiol Antimicrob. 2014;13(1):1-6.

110. Li Z, Liu N, Tu J, Ji C, Han G, Wang Y, et al. Discovery of novel simplified isoxazole derivatives of sampangine as potent anti-cryptococcal agents. Bioorganic Med Chem. 2019;27(5):832-40.

111. Krummenauer ME, Lopes W, Garcia AWA, Schrank A, Gnoatto SCB, Kawano DF, et al. A highly active triterpene derivative capable | of biofilm damage to control cryptococcus spp. Biomolecules. 2019;9(12):1-13.

112. Malefo MS, Ramadwa TE, Famuyide IM, McGaw LJ, Eloff JN, Sonopo MS, et al. Synthesis and antifungal activity of chromones and benzoxepines from the leaves of Ptaeroxylon obliquum. J Nat Prod . 2020;83(8):2508-17.

113. Masila VM, Ndakala AJ, Byamukama R, Midiwo JO, Kamau RW, Wang M, et al. Synthesis, structural assignments and antiinfective activities of 3-O-benzyl-carvotacetone and 3-hydroxy-2-isopropyl-5-methyl-p-benzoquinone. Nat Prod Res . 2021;35(21):3599-607.

114. Oliveira L, Ferrarini M, dos Santos AP, Varela MT, Corrêa ITS, Tempone AG, et al. Coumaric acid analogues inhibit growth and melanin biosynthesis in Cryptococcus neoformans and potentialize amphotericin B antifungal activity. Eur J Pharm Sci. 2020;153:105473.
-115115. Wermuth CG. Selective optimization of side activities: The SOSA approach. Drug Discov Today. 2006;11(3/4):160-4.-116116. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: Progress, challenges and recommendations. Nat Rev Drug Discov. 2018;18(1):41-58.. Therefore, expanding the applicability of a drug to other diseases is a promising approach that has been successfully used in recent years to identify drugs with antifungal activity3737. Rossi SA, De Oliveira HC, Agreda-Mellon D, Lucio J, Soares Mendes-Giannini MJ, García-Cambero JP, et al. Identification of off-patent drugs that show synergism with amphotericin B or that present antifungal action against Cryptococcus neoformans and Candida spp. Antimicrob Agents Chemother. 2020;64(4):1-16..

In recent years, a series of drugs developed for other therapeutic purposes have demonstrated antifungal activity against Cryptococcus spp.117117. Hai TP, Van AD, Ngan NTT, Nhat LTH, Lan NPH, Vinh Chau N V, et al. The combination of tamoxifen with amphotericin B, but not with fluconazole, has synergistic activity against the majority of clinical isolates of Cryptococcus neoformans. Mycoses. 2019;62(9):818-25.

118. Donlin MJ, Meyers MJ. Repurposing and optimization of drugs for discovery of novel antifungals. Drug Discov Today . 2022;27(7):2008-14.

119. Ogundeji AO, Pohl CH, Sebolai OM. Repurposing of aspirin and ibuprofen as candidate anti-Cryptococcus drugs. Antimicrob Agents Chemother . 2016;60(8):4799-808.

120. Ribeiro N de Q, Costa MC, Magalhães TFF, Carneiro HCS, Oliveira LV, Fontes ACL, et al. Atorvastatin as a promising anticryptococcal agent. Int J Antimicrob Agents. 2017;49(6):695-702.

121. Cheng Zhen, Hui Lu, Yuang-ying jiang FY. P092 Otilonium bromide is a potente antifungal agent against fluconazole - and flucytosine - resistant Cryptococcus neoformans strains. Medical Mycology. 2022; 60(9):72-92.

122. Brilhante RSN, Silva JAT, Dos Santos Araújo G, Pereira VS, Gotay WJP, De Oliveira JS, et al. Darunavir inhibits Cryptococcus neoformans/Cryptococcus gattii species complex growth and increases the susceptibility of biofilms to antifungal drugs. J Med Microbiol. 2020;69(6):830-7.

123. Truong M, Monahan LG, Carter DA, Charles IG. Repurposing drugs to fast-track therapeutic agents for the treatment of cryptococcosis. PeerJ. 2018;2018(5):1-18.

124. de Oliveira HC, Joffe LS, Simon KS, Castelli RF, Reis FCG, Bryan AM, et al. Fenbendazole controls in vitro growth, virulence potential, and animal infection in the Cryptococcus model. Antimicrob Agents Chemother . 2020;64(6):e00286-20.

125. Joffe LS, Schneider R, Lopes W, Azevedo R, Staats CC, Kmetzsch L, et al. The anti-helminthic compound mebendazole has multiple antifungal effects against Cryptococcus neoformans. Front Microbiol. 2017;8:535.

126. De Castro Spadari C, Vila T, Rozental S, Ishida K. Miltefosine has a postantifungal effect and induces apoptosis in cryptococcus yeasts. Antimicrob Agents Chemother . 2018;62(8):e00312-18.

127. Zhai B, Wu C, Wang L, Sachs MS, Lin X. The antidepressant sertraline provides a promising therapeutic option for neurotropic cryptococcal infections. Antimicrob Agents Chemother . 2012;56(7):3758-66.

128. Breuer MR, Dasgupta A, Vasselli JG, Lin X, Shaw BD, Sachs MS. The antidepressant sertraline induces the formation of supersized lipid droplets in the human pathogen Cryptococcus neoformans. J Fungi. 2022;8(6):642.

129. Dolan K, Montgomery S, Buchheit B, DiDone L, Wellington M, Krysan DJ. Antifungal activity of tamoxifen: In vitro and in vivo activities and mechanistic characterization. Antimicrob Agents Chemother . 2009;53(8):3337-46.
-130130. Butts A, Krysan DJ. Antifungal Drug Discovery: something old and something new. PLoS Pathog . 2012;8(9):9-11.. The most notable examples of repurposed pharmaceutical compounds for cryptococcal meningitis that have reached the clinical trial stage involve the drugs sertraline and tamoxifen22. Iyer KR, Revie NM, Fu C, Robbins N, Cowen LE. Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat Rev Microbiol. 2021;19(7):454-66.

3. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Physiol Behav. 2017;176(10):139-48.

4. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. Aids. 2009;23(4):525-30.

5. Soares EA, Lazera MS, Wanke B, Faria M De, Soares EA, Coutinho ZF. Mortality by cryptococcosis in Brazil from 2000 to 2012 : A descriptive epidemiological study. PLoS Negl Trop Dis. 2019;13(7):1-17.

6. Zavala S, Baddley JW. Cryptococcosis. Semin Respir Crit Care. 2020;41(1):69-79.

7. Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence. 2019;10(1):490-501.

8. Bermas A, Geddes-McAlister J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol Microbiol. 2020;114(5):721-34.

9. Spadari C de C, Wirth F, Lopes LB, Ishida K. New approaches for cryptococcosis treatment. Microorganisms. 2020;8(4):1-15.

10. Kong Q, Cao Z, Lv N, Zhang H, Liu Y, Hu L, et al. Minocycline and fluconazole have a synergistic effect Against Cryptococcus neoformans Both in vitro and in vivo. Front Microbiol. 2020;11(05):1-11.

11. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2-3):155-76.

12. Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach?. JACC Basic to Transl Sci. 2019;4(7):845-54.

13. Chen YC, Chang TY, Liu JW, Chen FJ, Chien CC, Lee CH, et al. Increasing trend of fluconazole-non-susceptible Cryptococcus neoformans in patients with invasive cryptococcosis: A 12-year longitudinal study. BMC Infect Dis. 2015;15(1):1-7.

14. Firacative C, Lizarazo J, Illnait-Zaragozí MT, Castañeda E, Arechavala A, Córdoba S, et al. The status of cryptococcosis in latin America. Mem Inst Oswaldo Cruz. 2018;113(7):1-23.

15. Meyer W, Trilles L. Genotyping of the Cryptococcus neoformans/C. gattii species complex. Australian Biochemist. 2010;41(1):12-16.

16. Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol. 2009;47(6):561-70.

17. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The case for adopting the “Species Complex” nomenclature for the etiologic agents of Cryptococcosis. Msphere. 2017;2(1):1-7.

18. Farrer RA, Chang M, Davis MJ, Dorp L Van, Yang D, Shea T, et al. A New Lineage of Cryptococcus gattii (VGV) discovered in the Central Zambezian Miombo Woodlands. Ecol Evol Sci. 2019;10(6):e02306-19.

19. Negroni R. Cryptococcosis. Clin Dermatol. 2012;30(6):599-609.

20. Reis-Filho JB dos, Neves AC, Zymberg ST, Oliveira R de MC de. O líquido cefalorraquiano inicial nas meningencefalites por Cryptococcus neoformans. Rev Inst Med Trop S Paulo. 1985;27(4):173-8.

21. Siddiqi OK, Ghebremichael M, Dang X, Atadzhanov M, Kaonga P, Khoury MN, et al. Molecular diagnosis of central nervous system opportunistic infections in HIV-infected zambian adults. Clin Infect Dis. 2014;58(12):1771-7.

22. Hurtado JC, Castillo P, Fernandes F, Navarro M, Lovane L, Casas I, et al. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep. 2019;9(1):1-10.

23. Miot J, Leong T, Takuva S, Parrish A, Dawood H. Cost-effectiveness analysis of flucytosine as induction therapy in the treatment of cryptococcal meningitis in HIV-infected adults in South Africa. BMC Health Serv Res. 2021;21(1):1-11.

24. Pinheiro SB, Sousa ES, Cortez ACA, da Silva Rocha DF, Menescal LSF, Chagas VS, et al. Cryptococcal meningitis in non-HIV patients in the State of Amazonas, Northern Brazil. Brazilian J Microbiol. 2020;52(1):279-88.

25. Brizendine KD, Baddley JW, Pappas PG. Predictors of mortality and differences in clinical features among patients with cryptococcosis according to immune status. PLoS One. 2013;8(3):e60431

26. Bielska E, May RC. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res. 2016;16(1):1-12.

27. Hommel B, Sturny-Leclère A, Volant S, Veluppillai N, Duchateau M, Yu CH, et al. Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. Plos Pathog. 2019;15(9):e1008070.

28. World Health Organization (WHO). Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. Geneva: WHO; 2022.64p.

29. Alvarez M, Chipana CT, Suarez F. Proctocolitis by cryptococcus in an immunocompetent patient: first report in Peru. Rev Gastroenterol Peru. 2019;39(3):288-91.

30. Tan GSE, Singh R, Chong TYR, Su PQ, Lee JSS, Wong KJH, et al. Severe primary cutaneous Cryptococcus gattii causing ulcerative cellulitis in an immunocompetent patient. Lancet Infect Dis. 2019;19(10):1148-49.

31. Jarvis JN, Lawrence DS, Meya DB, Kagimu E, Kasibante J, Mpoza E, Rutakingirwa MK, et al. Single-dose lipossomal amphotericin B treatment for cryptococcal meningitis. N Engl J Med. 2022;386(12):1109-20.

32. Eileen K, Maziarz MD, John R Perfect M. Cryptococcosis. Intraocular Inflamm. 2016;30(1):1277-83.

33. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clin Infect Dis . 2010;50(3):291-322.

34. Ellis D. Amphotericin B: Spectrum and resistance. J Antimicrob Chemother. 2002;49(SUPL. S1):7-10.

35. Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci USA. 2012;109(7):2234-9.

36. Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223-7.

37. Rossi SA, De Oliveira HC, Agreda-Mellon D, Lucio J, Soares Mendes-Giannini MJ, García-Cambero JP, et al. Identification of off-patent drugs that show synergism with amphotericin B or that present antifungal action against Cryptococcus neoformans and Candida spp. Antimicrob Agents Chemother. 2020;64(4):1-16.

38. Montgomery JA, Hewson K. Synthesis of potential anticancer agents. X. 2-Fluoroadenosine. J Am Chem Soc. 1957;79(16):4559-60.

39. Bennett JE, Dismukes WE, Duma RJ, Medoff G, Sande MA, Gallis H, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N Engl J Med . 1979:301(3):126-31.

40. Dromer F, Bernede-Bauduin C, Guillemot D, Lortholary O. Major role for amphotericin B-flucytosine combination in severe cryptococcosis. PLoS One . 2008;3(8):e2870.

41. Hope WW, Tabernero L, Denning DW, Anderson MJ. Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents Chemother . 2004;48(11):4377-86.

42. Billmyre RB, Applen Clancey S, Li LX, Doering TL, Heitman J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis inCryptococcus. Nat Commun. 2020;11(1):1-9.

43. Vidal JE, de Albuquerque Moraes C, de Siqueira REB, Miranda NFB, Marcusso R, Boulware DR, et al. HIV-associated cryptococcal meningitis patients treated with Amphotericin B deoxycholate plus flucytosine under routine care conditions in a referral center in São Paulo, Brazil. Mycopathologia. 2021;186(1):93-102.

44. Richardson k, Copper K, Marriott MS, Tarbit MH, Troke PF, Whittle PJ. Discovery of Fluconazole, a Novel Antifungal Agent. Rev Infect Dis. 1990;12(3):267-71.

45. Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med. 2016;3:1-10.

46. Gulshan K, Moye-Rowley WS. Multidrug resistance in fungi. Eukaryot Cell. 2007;6(11):1933-42.

47. Howard-Jones AR, Sparks R, Pham D, Halliday C, Beardsley J, Chen SC. Pulmonary cryptococcosis. J Fungi. 2022;8(11):1-19.

48. Kelly SL, Lamb DC, Taylor M, Corran AJ, Baldwin BC, Powderly WG. Resistance to amphotericin B associated with defective sterol Δ8→7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett. 1994;122(1-2):39-42.

49. Carolus H, Pierson S, Lagrou K, Van Dijck P. Amphotericin b and other polyenes-discovery, clinical use, mode of action and drug resistance. J Fungi. 2020;6(4):1-20.

50. Scorzoni L, de Paula e Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, et al. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front Microbiol. 2017;8(1):1-23.

51. Chang YC, Lamichhane AK, Cai H, Walter PJ, Bennett JE, Kwon-Chung KJ. Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in cryptococci. Nat Commun. 2021;12(1):1-13.

52. Venkateswarlu K, Taylor M, Manning NJ, Rinaldi MG. Fluconazole Tolerance in Clinical Isolates of Cryptococcus neoformans. Antimicrob Agents Chemother . 1997;41(4):748-51.

53. Peetermans W, Bobbaers H, Verhaegen J, Vandepitte J. Fluconazole-resistant Cryptococcus neoformans var gattii in an AIDS patient. Acta Clin Belg. 1993;48(6):405-9.

54. Bongomin F, Oladele RO, Gago S, Moore CB, Richardson MD. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus specie. Mycoses. 2018;61(5):290-7.

55. Loyse A, Dromer F, Day J, Lortholary O, Harrison TS. Flucytosine and cryptococcosis: Time to urgently address the worldwide accessibility of a 50-year-old antifungal. J Antimicrob Chemother. 2013;68(11):2435-44.

56. Perfect JR, Dismukes WE, Dromer F, Goldman DL, John R, Hamill RJ, et al. Cryptococcosis. Proc Natl Acad Sci USA . 2012;30(1 SUPPL.):S3-13.

57. Rodero L, Mellado E, Rodriguez AC, Salve A, Guelfand L, Cahn P, et al. G484S Amino Acid Substitution in Lanosterol 14-α Demethylase (ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate. Antimicrob Agents Chemother . 2003;47(11):3653-6.

58. Sanguinetti M, Posteraro B, La Sorda M, Torelli R, Fiori B, Santangelo R, et al. Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans. Infect Immun. 2006;74(2):1352-9.

59. Chang M, Sionov E, Lamichhane AK, Kwon-chung KJ, Chang YC. Roles of Three Cryptococcus neoformans and Cryptococcus gattii efflux pump-coding genes in response to drug treatment. Antimicrob Agents Chemother . 2018;62(4):1-14.

60. Sionov E, Lee H, Chang YC, Kwon-Chung KJ. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 2010;6(4):1-13.

61. Ferreira GF, Santos DA. Heteroresistance and fungi. Mycoses. 2017;60(9):562-8.

62. Brukner I, Oughton M. A fundamental change in antibiotic susceptibility testing would better prevent therapeutic failure: from individual to population-based analysis. Front Microbiol. 2020;11:1-3.

63. Varma A, Kwon-Chung KJ. Heteroresistance of Cryptococcus gattii to fluconazole. Antimicrob Agents Chemother . 2010;54(6):2303-11.

64. Badali H, Wiederhold NP. Antifungal Resistance Testing and Implications for Management. Curr Fungal Infect Rep. 2019;13(4):274-83.

65. de Sousa ESO, Cortez ACA, de Souza Carvalho Melhem M, Frickmann H, de Souza JVB. Factors influencing susceptibility testing of antifungal drugs: a critical review of document M27-A4 from the Clinical and Laboratory Standards Institute (CLSI). Brazilian J Microbiol . 2020;51(4):1791-800.

66. Moreira IDMB, Cortez ACA, De Souza ÉS, Pinheiro SB, De Souza Oliveira JG, Sadahiro A, et al. Investigation of fluconazole heteroresistance in clinical and environmental isolates of Cryptococcus neoformans complex and Cryptococcus gattii complex in the state of Amazonas, Brazil. Med Mycol. 2022;60(3):1-9.

67. Pereira DG. Importância do metabolismo no planejamento de fármacos. Quim Nova. 2007;30(1):171-7.

68. Wright GD. Unlocking the potential of natural products in drug discovery. Microb Biotechnol. 2019;12(1):55-7.

69. Ramírez-Rendon D, Passari AK, Ruiz-Villafán B, Rodríguez-Sanoja R, Sánchez S, Demain AL. Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol. 2022;106(5-6):1855-78.

70. Calixto JB. The role of natural products in modern drug discovery. Biological Sciences. 2019;91(Suppl 3):e20190105.

71. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770-803.

72. El-Naggar HA, Bashar MAE, Rady I, El-Wetidy MS, Suleiman WB, Al-Otibi FO, et al. Two red sea sponge extracts (Negombata magnifica and Callyspongia siphonella) induced anticancer and antimicrobial activity. Appl Sci. 2022;12(3):1-23.

73. CLSI. M44-A2: Method for antifungal disk diffusion susceptibility testing of yeasts. Clin Lab Stand Institute. 2009;29(17).

74. CLSI. M27-A4. Reference method for broth dilution antifungal susceptibility testing of yeasts. Clin Lab Stand Institute . 2017;4th ed.

75. Def EE. Susceptibility testing of yeasts. Clin Microbiol Infect. 1997;3(1):14-6.

76. Trivella DBB, Bruder MCP, Oliveira FCB, Porcaro R, Rustiguel JK, Ribeiro LB, et al. Descoberta de fármacos a partir de produtos naturais e a abordagem molecular power house (MPH). Rev Fitos. 2022;16(Supl. 2):176-92.

77. Aldholmi M, Marchand P, Ourliac-Garnier I, Le Pape P, Ganesan A. A decade of antifungal leads from natural products: 2010-2019. Pharmaceuticals. 2019;12(4):2010-9.

78. Ribeiro R, Pinto E, Fernandes C, Sousa E. Marine cyclic peptides: antimicrobial activity and synthetic strategies. Mar Drugs. 2022;20(6):2-51.

79. Manjunath M, Skariyachan S. Screening of natural lead molecules against putative molecular targets of drug-resistant cryptococcus spp: an insight from computer-aided molecular design. Curr Top Med Chem. 2019;18(31):2681-701.

80. Cardoso NNR, Alviano CS, Blank AF, Arrigoni-Blank M de F, Romanos MT V, Cunha MML, et al. Anti-cryptococcal activity of ethanol crude extract and hexane fraction from Ocimum basilicum var. Maria bonita: Mechanisms of action and synergism with amphotericin B and Ocimum basilicum essential oil. Pharm Biol. 2017;55(1):1380-8.

81. Silva TC, de Ávila RI, Zara ALSA, Santos AS, Ataídes F, Freitas VAQ, et al. Punicalagin triggers ergosterol biosynthesis disruption and cell cycle arrest in Cryptococcus gattii and Candida albicans: Action mechanisms of punicalagin against yeasts. Brazilian J Microbiol . 2020;51(4):1719-27.

82. Teixeira AP de C, Nóbrega R de O, Lima E de O, Araújo W de O, Lima I de O. Antifungal activity study of the monoterpene thymol against Cryptococcus neoformans. Nat Prod Res. 2018;34(18):2630-3.

83. Folly MLC, Ferreira GF, Salvador MR, Sathler AA, da Silva GF, Santos JCB, et al. Evaluation of in vitro antifungal activity of Xylosma prockia (Turcz.) Turcz. (Salicaceae) leaves against Cryptococcus spp. Front Microbiol. 2020;10(2)1-13.

84. Kayo MT, Simo MK, Tagatsing Fotsing M, Talla E, Laurent S, Elst L Vander, et al. Antifungal potential of extracts, fractions and compounds from Uvaria comperei (Annonaceae) and Oxyanthus unilocularis (Rubiaceae). Nat Prod Res . 2020;35(24):5732-6.

85. Ren S, Deng K, Qiu S, Wang M, Avula B, Tripathi SK, et al. Identification of antifungal bisphosphocholines from medicinal Gentiana species. J Nat Prod . 2020;83(10):3207-11.

86. Omokhua-Uyi AG, Abdalla MA, Leonard CM, Aro A, Uyi OO, Van Staden J, et al. Flavonoids isolated from the South African weed Chromolaena odorata (Asteraceae) have pharmacological activity against uropathogens. BMC Complement Med Ther. 2020;20(1):1-15.

87. El Karkouri J, Bouhrim M, Al Kamaly OM, Mechchate H, Kchibale A, Adadi I, et al. Chemical composition, antibacterial and antifungal activity of the essential oil from Cistus ladanifer L. Plants. 2021;10(10):1-16.

88. Zulfiqar F, Pandey P, Tripathi SK, Ali Z, Chittiboyina AG, Khan IA. Benzoylcyclopropane derivatives from Hypoxis hemerocallidea corms. Planta Med. 2021:685-92.

89. Levorato-Vinche AD, Melhem M de SC, Bonfietti LX, de-la-Cruz-Chacón I, Boaro CSF, Fabro AT, et al. Antifungal activity of liriodenine on clinical strains of Cryptococcus neoformans and Cryptococcus gattii species complexes. J Venom Anim Toxins Incl Trop Dis. 2022;28(9):1-11.

90. Powers CN, Mayo JA, Moriarity DM, Vogler B, Setzer WN, McFeeters RL. Identification of Anticryptococcal bornyl compounds from Verbesina turbacensis and their structure-activity relationships. Planta Med. 2022;88:1341-47.

91. Beattie KD, Ellwood N, Kumar R, Yang X, Healy PC, Choomuenwai V, et al. Antibacterial and antifungal screening of natural products sourced from Australian fungi and characterisation of pestalactams D-F. Phytochemistry. 2016;124:79-85.

92. Li Y, Yue Q, Jayanetti DR, Swenson DC, Bartholomeusz GA, An Z, et al. Anti-Cryptococcus Phenalenones and cyclic tetrapeptides from Auxarthron pseudauxarthron. J Nat Prod . 2017;80(7):2101-9.

93. Perlatti B, Nichols CB, Lan N, Wiemann P, Harvey CJB, Alspaugh JA, et al. Identification of the Antifungal Metabolite chaetoglobosin p from Discosia rubi using a cryptococcus neoformans inhibition assay: insights into mode of action and biosynthesis. Front Microbiol. 2020;11:1766.

94. Perlatti B, Lan N, Xiang M, Earp CE, Spraker JE, Harvey CJB, et al. Anti-cryptococcal activity of preussolides A and B, phosphoethanolamine-substituted 24-membered macrolides, and leptosin C from coprophilous isolates of Preussia typharum. J Ind Microbiol Biotechnol . 2021;48(9-10).

95. Cadelis M, Grey A, van de Pas S, Geese S, Weir BS, Copp B, et al. Terrien, a metabolite made by Aspergillus terreus, has activity against Cryptococcus neoformans. PeerJ. 2022;10:e14239.

96. Kuvarina AE, Rogozhin EA, Sykonnikov MA, Timofeeva AV, Serebryakova MV, Fedorova NV, et al. Isolation and characterization of a novel hydrophobin, Sa-HFB1, with antifungal activity from an alkaliphilic fungus, Sodiomyces alkalinus. J Fungi. 2022;8(7):659.

97. Kumar R, Subramani R, Aalbersberg W. Three bioactive sesquiterpene quinones from the Fijian marine sponge of the genus Hippospongia. Nat Prod Res . 2013;27(16):1488-91.

98. Jamison MT, Dalisay DS, Molinski TF. Peroxide Natural Products from Plakortis zyggompha and the Sponge Association Plakortis halichondrioides-Xestospongia deweerdtae: Antifungal Activity against Cryptococcus gattii. J Nat Prod . 2016;79(3):555-63.

99. Thammasit P, Iadnut A, Mamoon K, Khacha-ananda S, Chupradit K, Tayapiwatana C, et al. A potential of propolis on major virulence factors of Cryptococcus neoformans. Microb Pathog. 2018;123:296-303.

100. Menezes-Silva L, da Silva CJ, de Faria LC, Pizzolante BC, Andrade-Silva LE, da Silva MV, et al. Hemolymph of triatomines presents fungistatic activity against Cryptococcus neoformans and improves macrophage function through MCP-I/TNF-α increase. J Venom Anim Toxins Incl Trop Dis . 2022;28:e20210124.

101. Robbins N, Spitzer M, Wang W, Waglechner N, Patel DJ, O’Brien JS, et al. Discovery of ibomycin, a complex macrolactone that exerts antifungal activity by impeding endocytic trafficking and membrane function. Cell Chem Biol. 2016;23(11):1383-94.

102. Beattie SR, Krysan DJ. Antifungal drug screening: thinking outside the box to identify novel antifungal scaffolds. Current Opinion in Microbiology. 2020;57(10):1-6.

103. Jiang Z, Liu N, Hu D, Dong G, Miao Z, Yao J, et al. The discovery of novel antifungal scaffolds by structural simplification of the natural product sampangine. Chem Commun. 2015;51(78):14648-51.

104. Barreiro EJ, Fraga CAM. Química Medicinal: As Bases Moleculares da Ação dos fármacos. 3ª edição. São Paulo: Artmed; 2014. 608 p.

105. Oliveira MS, Chaves OS, Cordeiro LV, Gomes ANP, Fernandes DA, Telles YCF, et al. Indoquinoline alkaloids from Sida rhombifolia (L.) (Malvaceae) and antimicrobial evaluation of Cryptolepinone derivatives. J Braz Chem Soc. 2022;00(00):1-8.

106. Freire CPV, Ferreira SB, De Oliveira NSM, Matsuura ABJ, Gama IL, Da Silva FDC, et al. Synthesis and biological evaluation of substituted α- And β-2,3-dihydrofuran naphthoquinones as potent anticandidal agents. Medchemcomm. 2010;1(3):229-32.

107. Jiang Z, Liu N, Dong G, Jiang Y, Liu Y, He X, et al. Scaffold hopping of sampangine: Discovery of potent antifungal lead compound against Aspergillus fumigatus and Cryptococcus neoformans. Bioorganic Med Chem Lett. 2014;24(17):4090-4.

108. Cruz KS, Lima ES, Silva MDJA Da, Souza ES De, Montoia A, Pohlit AM, et al. Screening and antifungal activity of a β-carboline derivative against cryptococcus neoformans and C. gattii. Int J Microbiol. 2019;2019:7157845.

109. Ferreira M do PSBC, Cardoso MF do C, da Silva F de C, Ferreira VF, Lima ES, Souza JVB. Antifungal activity of synthetic naphthoquinones against dermatophytes and opportunistic fungi: Preliminary mechanism-of-action tests. Ann Clin Microbiol Antimicrob. 2014;13(1):1-6.

110. Li Z, Liu N, Tu J, Ji C, Han G, Wang Y, et al. Discovery of novel simplified isoxazole derivatives of sampangine as potent anti-cryptococcal agents. Bioorganic Med Chem. 2019;27(5):832-40.

111. Krummenauer ME, Lopes W, Garcia AWA, Schrank A, Gnoatto SCB, Kawano DF, et al. A highly active triterpene derivative capable | of biofilm damage to control cryptococcus spp. Biomolecules. 2019;9(12):1-13.

112. Malefo MS, Ramadwa TE, Famuyide IM, McGaw LJ, Eloff JN, Sonopo MS, et al. Synthesis and antifungal activity of chromones and benzoxepines from the leaves of Ptaeroxylon obliquum. J Nat Prod . 2020;83(8):2508-17.

113. Masila VM, Ndakala AJ, Byamukama R, Midiwo JO, Kamau RW, Wang M, et al. Synthesis, structural assignments and antiinfective activities of 3-O-benzyl-carvotacetone and 3-hydroxy-2-isopropyl-5-methyl-p-benzoquinone. Nat Prod Res . 2021;35(21):3599-607.

114. Oliveira L, Ferrarini M, dos Santos AP, Varela MT, Corrêa ITS, Tempone AG, et al. Coumaric acid analogues inhibit growth and melanin biosynthesis in Cryptococcus neoformans and potentialize amphotericin B antifungal activity. Eur J Pharm Sci. 2020;153:105473.

115. Wermuth CG. Selective optimization of side activities: The SOSA approach. Drug Discov Today. 2006;11(3/4):160-4.

116. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: Progress, challenges and recommendations. Nat Rev Drug Discov. 2018;18(1):41-58.
-117117. Hai TP, Van AD, Ngan NTT, Nhat LTH, Lan NPH, Vinh Chau N V, et al. The combination of tamoxifen with amphotericin B, but not with fluconazole, has synergistic activity against the majority of clinical isolates of Cryptococcus neoformans. Mycoses. 2019;62(9):818-25.. Tamoxifen has not shown any benefit in eliminating Cryptococcus spp. from the cerebrospinal fluid, and the sertraline study had to be terminated early due to serious adverse effects116116. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: Progress, challenges and recommendations. Nat Rev Drug Discov. 2018;18(1):41-58.-117117. Hai TP, Van AD, Ngan NTT, Nhat LTH, Lan NPH, Vinh Chau N V, et al. The combination of tamoxifen with amphotericin B, but not with fluconazole, has synergistic activity against the majority of clinical isolates of Cryptococcus neoformans. Mycoses. 2019;62(9):818-25.. It is important to note that repurposed drugs are not optimized for indications other than those on the leaflet. Therefore, their pharmacokinetic properties and efficacy often need to be improved if off-label applications are desired. Considering this observation, an alternative approach to repurposing is the optimization of a compound or drug for its secondary effect, also known as SOSA115115. Wermuth CG. Selective optimization of side activities: The SOSA approach. Drug Discov Today. 2006;11(3/4):160-4.. For a comprehensive review of this approach, please refer to the recent work of Donlin and Meyers (2022)118118. Donlin MJ, Meyers MJ. Repurposing and optimization of drugs for discovery of novel antifungals. Drug Discov Today . 2022;27(7):2008-14..

COMBINATION THERAPY

Compared with the discovery of antibiotics, the discovery of antifungal agents is much more difficult. A common explanation for this finding is that fungus, similar to its human host, is a eukaryotic organism. This phylogenetic relatedness hinders the development of effective antifungal agents that are nontoxic to human cells130130. Butts A, Krysan DJ. Antifungal Drug Discovery: something old and something new. PLoS Pathog . 2012;8(9):9-11.. This problem is evident within the Cryptococcus genus because of the pathogenicity, virulence, and resistance mechanisms that these fungi have developed66. Zavala S, Baddley JW. Cryptococcosis. Semin Respir Crit Care. 2020;41(1):69-79.. In this context, combining different drugs for antifungal therapy is a feasible strategy to increase the efficacy of antifungals, decrease and/or avoid toxicity, and prevent fungal resistance.

The commonly used mode of assessing the combined effects of the two substances is the checkerboard test131131. Jung EH, Meyers DJ, Bosch J, Casadevall A. Novel antifungal compounds discovered in medicines for malaria venture’s malaria box. Msphere. 2018;3(2):1-12.

132. Bonapace CR, Bosso JA, Friedrich L V, White RL. Comparison of methods of interpretation of checkerboard synergy testing. Diagn Microbiol Infect Dis. 2002;44(4):363-6.
-133133. Livengood SJ, Drew RH, Perfect JR. Combination therapy for invasive fungal infections. Curr Fungal Infect Rep. 2020;14(1):40-9.. This method is based on the broth microdilution technique, in line with document M7-A4 of the CLSI7474. CLSI. M27-A4. Reference method for broth dilution antifungal susceptibility testing of yeasts. Clin Lab Stand Institute . 2017;4th ed.. Table 3 summarizes published drug combination studies of amphotericin B and fluconazole against Cryptococcus spp. In summary, the presented combinations are associated with improved activity of conventional antifungal agents owing to the combined action of more than one target, as well as reduced toxicity, because small amounts of one or both drugs can be used in combination1212. Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach?. JACC Basic to Transl Sci. 2019;4(7):845-54.. An example of this is flucytosine, which seems to be of little use when used on its own for cryptococcosis therapy but has been reported to act synergistically in combination with amphotericin B. Therefore, additional benefits for the treatment of cryptococcal meningitis are observed when this drug is used in combination88. Bermas A, Geddes-McAlister J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol Microbiol. 2020;114(5):721-34.. Consequently, combined antifungal therapy using flucytosine and amphotericin B has been used for at least four decades. However, as mentioned previously, the adverse effects, high cost, and unavailability of flucytosine in resource-poor countries still negatively interfere with the treatment of cryptococcal meningitis2525. Brizendine KD, Baddley JW, Pappas PG. Predictors of mortality and differences in clinical features among patients with cryptococcosis according to immune status. PLoS One. 2013;8(3):e60431

26. Bielska E, May RC. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res. 2016;16(1):1-12.

27. Hommel B, Sturny-Leclère A, Volant S, Veluppillai N, Duchateau M, Yu CH, et al. Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. Plos Pathog. 2019;15(9):e1008070.

28. World Health Organization (WHO). Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. Geneva: WHO; 2022.64p.

29. Alvarez M, Chipana CT, Suarez F. Proctocolitis by cryptococcus in an immunocompetent patient: first report in Peru. Rev Gastroenterol Peru. 2019;39(3):288-91.

30. Tan GSE, Singh R, Chong TYR, Su PQ, Lee JSS, Wong KJH, et al. Severe primary cutaneous Cryptococcus gattii causing ulcerative cellulitis in an immunocompetent patient. Lancet Infect Dis. 2019;19(10):1148-49.

31. Jarvis JN, Lawrence DS, Meya DB, Kagimu E, Kasibante J, Mpoza E, Rutakingirwa MK, et al. Single-dose lipossomal amphotericin B treatment for cryptococcal meningitis. N Engl J Med. 2022;386(12):1109-20.

32. Eileen K, Maziarz MD, John R Perfect M. Cryptococcosis. Intraocular Inflamm. 2016;30(1):1277-83.

33. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clin Infect Dis . 2010;50(3):291-322.

34. Ellis D. Amphotericin B: Spectrum and resistance. J Antimicrob Chemother. 2002;49(SUPL. S1):7-10.

35. Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci USA. 2012;109(7):2234-9.

36. Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223-7.

37. Rossi SA, De Oliveira HC, Agreda-Mellon D, Lucio J, Soares Mendes-Giannini MJ, García-Cambero JP, et al. Identification of off-patent drugs that show synergism with amphotericin B or that present antifungal action against Cryptococcus neoformans and Candida spp. Antimicrob Agents Chemother. 2020;64(4):1-16.

38. Montgomery JA, Hewson K. Synthesis of potential anticancer agents. X. 2-Fluoroadenosine. J Am Chem Soc. 1957;79(16):4559-60.
-3939. Bennett JE, Dismukes WE, Duma RJ, Medoff G, Sande MA, Gallis H, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N Engl J Med . 1979:301(3):126-31..

TABLE 3:
Studies assessing combinations of drugs or bioactive compounds with promising antifungal activity against Cryptococcus spp.

There is some hope on the horizon, with the new antifungals fosmanogepix and opelconazole, which are in the advanced stages of clinical development and exhibit antifungal activity against Cryptococcus spp. However, the available antifungal therapies for this infection remain limited. The adverse effects and high costs of the combined amphotericin B and flucytosine therapy, as well as the emerging resistance of C. neoformans and C. gattii to fluconazole, pose considerable challenges to clinical treatment. To overcome these problems, the use of drugs and combination therapies has attracted considerable attention in recent years. These methodologies have been increasingly applied because they are associated with a fast and economical mode of searching for new antifungal agents with antifungal activity against cryptococci. In parallel, research on the bioprospecting of natural products and studies, including planned structural modifications of bioactive molecules, continues in research laboratories. These combined efforts have fueled the ongoing hope of identifying a successful new antifungal agent, either by screening or targeted modifications of pre-existing molecules.

ACKNOWLEDGMENTS

The authors would like to thank Matthew Miller for the critical and stylistic review of the manuscript. We would like to thank Fundação de Amparo à Pesquisa do Estado do Amazonas, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

REFERENCES

  • 1
    Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The Case for Adopting the “Species Complex” Nomenclature for the Etiologic Agents of Cryptococcosis. Msphere. 2017;2(1):1-7.
  • 2
    Iyer KR, Revie NM, Fu C, Robbins N, Cowen LE. Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat Rev Microbiol. 2021;19(7):454-66.
  • 3
    Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Physiol Behav. 2017;176(10):139-48.
  • 4
    Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. Aids. 2009;23(4):525-30.
  • 5
    Soares EA, Lazera MS, Wanke B, Faria M De, Soares EA, Coutinho ZF. Mortality by cryptococcosis in Brazil from 2000 to 2012 : A descriptive epidemiological study. PLoS Negl Trop Dis. 2019;13(7):1-17.
  • 6
    Zavala S, Baddley JW. Cryptococcosis. Semin Respir Crit Care. 2020;41(1):69-79.
  • 7
    Zaragoza O. Basic principles of the virulence of Cryptococcus Virulence. 2019;10(1):490-501.
  • 8
    Bermas A, Geddes-McAlister J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans Mol Microbiol. 2020;114(5):721-34.
  • 9
    Spadari C de C, Wirth F, Lopes LB, Ishida K. New approaches for cryptococcosis treatment. Microorganisms. 2020;8(4):1-15.
  • 10
    Kong Q, Cao Z, Lv N, Zhang H, Liu Y, Hu L, et al. Minocycline and fluconazole have a synergistic effect Against Cryptococcus neoformans Both in vitro and in vivo. Front Microbiol. 2020;11(05):1-11.
  • 11
    Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2-3):155-76.
  • 12
    Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach?. JACC Basic to Transl Sci. 2019;4(7):845-54.
  • 13
    Chen YC, Chang TY, Liu JW, Chen FJ, Chien CC, Lee CH, et al. Increasing trend of fluconazole-non-susceptible Cryptococcus neoformans in patients with invasive cryptococcosis: A 12-year longitudinal study. BMC Infect Dis. 2015;15(1):1-7.
  • 14
    Firacative C, Lizarazo J, Illnait-Zaragozí MT, Castañeda E, Arechavala A, Córdoba S, et al. The status of cryptococcosis in latin America. Mem Inst Oswaldo Cruz. 2018;113(7):1-23.
  • 15
    Meyer W, Trilles L. Genotyping of the Cryptococcus neoformans/C. gattii species complex. Australian Biochemist. 2010;41(1):12-16.
  • 16
    Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii Med Mycol. 2009;47(6):561-70.
  • 17
    Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The case for adopting the “Species Complex” nomenclature for the etiologic agents of Cryptococcosis. Msphere. 2017;2(1):1-7.
  • 18
    Farrer RA, Chang M, Davis MJ, Dorp L Van, Yang D, Shea T, et al. A New Lineage of Cryptococcus gattii (VGV) discovered in the Central Zambezian Miombo Woodlands. Ecol Evol Sci. 2019;10(6):e02306-19.
  • 19
    Negroni R. Cryptococcosis. Clin Dermatol. 2012;30(6):599-609.
  • 20
    Reis-Filho JB dos, Neves AC, Zymberg ST, Oliveira R de MC de. O líquido cefalorraquiano inicial nas meningencefalites por Cryptococcus neoformans Rev Inst Med Trop S Paulo. 1985;27(4):173-8.
  • 21
    Siddiqi OK, Ghebremichael M, Dang X, Atadzhanov M, Kaonga P, Khoury MN, et al. Molecular diagnosis of central nervous system opportunistic infections in HIV-infected zambian adults. Clin Infect Dis. 2014;58(12):1771-7.
  • 22
    Hurtado JC, Castillo P, Fernandes F, Navarro M, Lovane L, Casas I, et al. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep. 2019;9(1):1-10.
  • 23
    Miot J, Leong T, Takuva S, Parrish A, Dawood H. Cost-effectiveness analysis of flucytosine as induction therapy in the treatment of cryptococcal meningitis in HIV-infected adults in South Africa. BMC Health Serv Res. 2021;21(1):1-11.
  • 24
    Pinheiro SB, Sousa ES, Cortez ACA, da Silva Rocha DF, Menescal LSF, Chagas VS, et al. Cryptococcal meningitis in non-HIV patients in the State of Amazonas, Northern Brazil. Brazilian J Microbiol. 2020;52(1):279-88.
  • 25
    Brizendine KD, Baddley JW, Pappas PG. Predictors of mortality and differences in clinical features among patients with cryptococcosis according to immune status. PLoS One. 2013;8(3):e60431
  • 26
    Bielska E, May RC. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res. 2016;16(1):1-12.
  • 27
    Hommel B, Sturny-Leclère A, Volant S, Veluppillai N, Duchateau M, Yu CH, et al. Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. Plos Pathog. 2019;15(9):e1008070.
  • 28
    World Health Organization (WHO). Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. Geneva: WHO; 2022.64p.
  • 29
    Alvarez M, Chipana CT, Suarez F. Proctocolitis by cryptococcus in an immunocompetent patient: first report in Peru. Rev Gastroenterol Peru. 2019;39(3):288-91.
  • 30
    Tan GSE, Singh R, Chong TYR, Su PQ, Lee JSS, Wong KJH, et al. Severe primary cutaneous Cryptococcus gattii causing ulcerative cellulitis in an immunocompetent patient. Lancet Infect Dis. 2019;19(10):1148-49.
  • 31
    Jarvis JN, Lawrence DS, Meya DB, Kagimu E, Kasibante J, Mpoza E, Rutakingirwa MK, et al. Single-dose lipossomal amphotericin B treatment for cryptococcal meningitis. N Engl J Med. 2022;386(12):1109-20.
  • 32
    Eileen K, Maziarz MD, John R Perfect M. Cryptococcosis. Intraocular Inflamm. 2016;30(1):1277-83.
  • 33
    Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clin Infect Dis . 2010;50(3):291-322.
  • 34
    Ellis D. Amphotericin B: Spectrum and resistance. J Antimicrob Chemother. 2002;49(SUPL. S1):7-10.
  • 35
    Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci USA. 2012;109(7):2234-9.
  • 36
    Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223-7.
  • 37
    Rossi SA, De Oliveira HC, Agreda-Mellon D, Lucio J, Soares Mendes-Giannini MJ, García-Cambero JP, et al. Identification of off-patent drugs that show synergism with amphotericin B or that present antifungal action against Cryptococcus neoformans and Candida spp. Antimicrob Agents Chemother. 2020;64(4):1-16.
  • 38
    Montgomery JA, Hewson K. Synthesis of potential anticancer agents. X. 2-Fluoroadenosine. J Am Chem Soc. 1957;79(16):4559-60.
  • 39
    Bennett JE, Dismukes WE, Duma RJ, Medoff G, Sande MA, Gallis H, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N Engl J Med . 1979:301(3):126-31.
  • 40
    Dromer F, Bernede-Bauduin C, Guillemot D, Lortholary O. Major role for amphotericin B-flucytosine combination in severe cryptococcosis. PLoS One . 2008;3(8):e2870.
  • 41
    Hope WW, Tabernero L, Denning DW, Anderson MJ. Molecular mechanisms of primary resistance to flucytosine in Candida albicans Antimicrob Agents Chemother . 2004;48(11):4377-86.
  • 42
    Billmyre RB, Applen Clancey S, Li LX, Doering TL, Heitman J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis inCryptococcus Nat Commun. 2020;11(1):1-9.
  • 43
    Vidal JE, de Albuquerque Moraes C, de Siqueira REB, Miranda NFB, Marcusso R, Boulware DR, et al. HIV-associated cryptococcal meningitis patients treated with Amphotericin B deoxycholate plus flucytosine under routine care conditions in a referral center in São Paulo, Brazil. Mycopathologia. 2021;186(1):93-102.
  • 44
    Richardson k, Copper K, Marriott MS, Tarbit MH, Troke PF, Whittle PJ. Discovery of Fluconazole, a Novel Antifungal Agent. Rev Infect Dis. 1990;12(3):267-71.
  • 45
    Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med. 2016;3:1-10.
  • 46
    Gulshan K, Moye-Rowley WS. Multidrug resistance in fungi. Eukaryot Cell. 2007;6(11):1933-42.
  • 47
    Howard-Jones AR, Sparks R, Pham D, Halliday C, Beardsley J, Chen SC. Pulmonary cryptococcosis. J Fungi. 2022;8(11):1-19.
  • 48
    Kelly SL, Lamb DC, Taylor M, Corran AJ, Baldwin BC, Powderly WG. Resistance to amphotericin B associated with defective sterol Δ8→7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett. 1994;122(1-2):39-42.
  • 49
    Carolus H, Pierson S, Lagrou K, Van Dijck P. Amphotericin b and other polyenes-discovery, clinical use, mode of action and drug resistance. J Fungi. 2020;6(4):1-20.
  • 50
    Scorzoni L, de Paula e Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, et al. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front Microbiol. 2017;8(1):1-23.
  • 51
    Chang YC, Lamichhane AK, Cai H, Walter PJ, Bennett JE, Kwon-Chung KJ. Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in cryptococci. Nat Commun. 2021;12(1):1-13.
  • 52
    Venkateswarlu K, Taylor M, Manning NJ, Rinaldi MG. Fluconazole Tolerance in Clinical Isolates of Cryptococcus neoformans Antimicrob Agents Chemother . 1997;41(4):748-51.
  • 53
    Peetermans W, Bobbaers H, Verhaegen J, Vandepitte J. Fluconazole-resistant Cryptococcus neoformans var gattii in an AIDS patient. Acta Clin Belg. 1993;48(6):405-9.
  • 54
    Bongomin F, Oladele RO, Gago S, Moore CB, Richardson MD. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus specie. Mycoses. 2018;61(5):290-7.
  • 55
    Loyse A, Dromer F, Day J, Lortholary O, Harrison TS. Flucytosine and cryptococcosis: Time to urgently address the worldwide accessibility of a 50-year-old antifungal. J Antimicrob Chemother. 2013;68(11):2435-44.
  • 56
    Perfect JR, Dismukes WE, Dromer F, Goldman DL, John R, Hamill RJ, et al. Cryptococcosis. Proc Natl Acad Sci USA . 2012;30(1 SUPPL.):S3-13.
  • 57
    Rodero L, Mellado E, Rodriguez AC, Salve A, Guelfand L, Cahn P, et al. G484S Amino Acid Substitution in Lanosterol 14-α Demethylase (ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate. Antimicrob Agents Chemother . 2003;47(11):3653-6.
  • 58
    Sanguinetti M, Posteraro B, La Sorda M, Torelli R, Fiori B, Santangelo R, et al. Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans Infect Immun. 2006;74(2):1352-9.
  • 59
    Chang M, Sionov E, Lamichhane AK, Kwon-chung KJ, Chang YC. Roles of Three Cryptococcus neoformans and Cryptococcus gattii efflux pump-coding genes in response to drug treatment. Antimicrob Agents Chemother . 2018;62(4):1-14.
  • 60
    Sionov E, Lee H, Chang YC, Kwon-Chung KJ. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 2010;6(4):1-13.
  • 61
    Ferreira GF, Santos DA. Heteroresistance and fungi. Mycoses. 2017;60(9):562-8.
  • 62
    Brukner I, Oughton M. A fundamental change in antibiotic susceptibility testing would better prevent therapeutic failure: from individual to population-based analysis. Front Microbiol. 2020;11:1-3.
  • 63
    Varma A, Kwon-Chung KJ. Heteroresistance of Cryptococcus gattii to fluconazole. Antimicrob Agents Chemother . 2010;54(6):2303-11.
  • 64
    Badali H, Wiederhold NP. Antifungal Resistance Testing and Implications for Management. Curr Fungal Infect Rep. 2019;13(4):274-83.
  • 65
    de Sousa ESO, Cortez ACA, de Souza Carvalho Melhem M, Frickmann H, de Souza JVB. Factors influencing susceptibility testing of antifungal drugs: a critical review of document M27-A4 from the Clinical and Laboratory Standards Institute (CLSI). Brazilian J Microbiol . 2020;51(4):1791-800.
  • 66
    Moreira IDMB, Cortez ACA, De Souza ÉS, Pinheiro SB, De Souza Oliveira JG, Sadahiro A, et al. Investigation of fluconazole heteroresistance in clinical and environmental isolates of Cryptococcus neoformans complex and Cryptococcus gattii complex in the state of Amazonas, Brazil. Med Mycol. 2022;60(3):1-9.
  • 67
    Pereira DG. Importância do metabolismo no planejamento de fármacos. Quim Nova. 2007;30(1):171-7.
  • 68
    Wright GD. Unlocking the potential of natural products in drug discovery. Microb Biotechnol. 2019;12(1):55-7.
  • 69
    Ramírez-Rendon D, Passari AK, Ruiz-Villafán B, Rodríguez-Sanoja R, Sánchez S, Demain AL. Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol. 2022;106(5-6):1855-78.
  • 70
    Calixto JB. The role of natural products in modern drug discovery. Biological Sciences. 2019;91(Suppl 3):e20190105.
  • 71
    Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770-803.
  • 72
    El-Naggar HA, Bashar MAE, Rady I, El-Wetidy MS, Suleiman WB, Al-Otibi FO, et al. Two red sea sponge extracts (Negombata magnifica and Callyspongia siphonella) induced anticancer and antimicrobial activity. Appl Sci. 2022;12(3):1-23.
  • 73
    CLSI. M44-A2: Method for antifungal disk diffusion susceptibility testing of yeasts. Clin Lab Stand Institute. 2009;29(17).
  • 74
    CLSI. M27-A4. Reference method for broth dilution antifungal susceptibility testing of yeasts. Clin Lab Stand Institute . 2017;4th ed.
  • 75
    Def EE. Susceptibility testing of yeasts. Clin Microbiol Infect. 1997;3(1):14-6.
  • 76
    Trivella DBB, Bruder MCP, Oliveira FCB, Porcaro R, Rustiguel JK, Ribeiro LB, et al. Descoberta de fármacos a partir de produtos naturais e a abordagem molecular power house (MPH). Rev Fitos. 2022;16(Supl. 2):176-92.
  • 77
    Aldholmi M, Marchand P, Ourliac-Garnier I, Le Pape P, Ganesan A. A decade of antifungal leads from natural products: 2010-2019. Pharmaceuticals. 2019;12(4):2010-9.
  • 78
    Ribeiro R, Pinto E, Fernandes C, Sousa E. Marine cyclic peptides: antimicrobial activity and synthetic strategies. Mar Drugs. 2022;20(6):2-51.
  • 79
    Manjunath M, Skariyachan S. Screening of natural lead molecules against putative molecular targets of drug-resistant cryptococcus spp: an insight from computer-aided molecular design. Curr Top Med Chem. 2019;18(31):2681-701.
  • 80
    Cardoso NNR, Alviano CS, Blank AF, Arrigoni-Blank M de F, Romanos MT V, Cunha MML, et al. Anti-cryptococcal activity of ethanol crude extract and hexane fraction from Ocimum basilicum var. Maria bonita: Mechanisms of action and synergism with amphotericin B and Ocimum basilicum essential oil. Pharm Biol. 2017;55(1):1380-8.
  • 81
    Silva TC, de Ávila RI, Zara ALSA, Santos AS, Ataídes F, Freitas VAQ, et al. Punicalagin triggers ergosterol biosynthesis disruption and cell cycle arrest in Cryptococcus gattii and Candida albicans: Action mechanisms of punicalagin against yeasts. Brazilian J Microbiol . 2020;51(4):1719-27.
  • 82
    Teixeira AP de C, Nóbrega R de O, Lima E de O, Araújo W de O, Lima I de O. Antifungal activity study of the monoterpene thymol against Cryptococcus neoformans Nat Prod Res. 2018;34(18):2630-3.
  • 83
    Folly MLC, Ferreira GF, Salvador MR, Sathler AA, da Silva GF, Santos JCB, et al. Evaluation of in vitro antifungal activity of Xylosma prockia (Turcz.) Turcz. (Salicaceae) leaves against Cryptococcus spp. Front Microbiol. 2020;10(2)1-13.
  • 84
    Kayo MT, Simo MK, Tagatsing Fotsing M, Talla E, Laurent S, Elst L Vander, et al. Antifungal potential of extracts, fractions and compounds from Uvaria comperei (Annonaceae) and Oxyanthus unilocularis (Rubiaceae). Nat Prod Res . 2020;35(24):5732-6.
  • 85
    Ren S, Deng K, Qiu S, Wang M, Avula B, Tripathi SK, et al. Identification of antifungal bisphosphocholines from medicinal Gentiana species. J Nat Prod . 2020;83(10):3207-11.
  • 86
    Omokhua-Uyi AG, Abdalla MA, Leonard CM, Aro A, Uyi OO, Van Staden J, et al. Flavonoids isolated from the South African weed Chromolaena odorata (Asteraceae) have pharmacological activity against uropathogens. BMC Complement Med Ther. 2020;20(1):1-15.
  • 87
    El Karkouri J, Bouhrim M, Al Kamaly OM, Mechchate H, Kchibale A, Adadi I, et al. Chemical composition, antibacterial and antifungal activity of the essential oil from Cistus ladanifer L. Plants. 2021;10(10):1-16.
  • 88
    Zulfiqar F, Pandey P, Tripathi SK, Ali Z, Chittiboyina AG, Khan IA. Benzoylcyclopropane derivatives from Hypoxis hemerocallidea corms. Planta Med. 2021:685-92.
  • 89
    Levorato-Vinche AD, Melhem M de SC, Bonfietti LX, de-la-Cruz-Chacón I, Boaro CSF, Fabro AT, et al. Antifungal activity of liriodenine on clinical strains of Cryptococcus neoformans and Cryptococcus gattii species complexes. J Venom Anim Toxins Incl Trop Dis. 2022;28(9):1-11.
  • 90
    Powers CN, Mayo JA, Moriarity DM, Vogler B, Setzer WN, McFeeters RL. Identification of Anticryptococcal bornyl compounds from Verbesina turbacensis and their structure-activity relationships. Planta Med. 2022;88:1341-47.
  • 91
    Beattie KD, Ellwood N, Kumar R, Yang X, Healy PC, Choomuenwai V, et al. Antibacterial and antifungal screening of natural products sourced from Australian fungi and characterisation of pestalactams D-F. Phytochemistry. 2016;124:79-85.
  • 92
    Li Y, Yue Q, Jayanetti DR, Swenson DC, Bartholomeusz GA, An Z, et al. Anti-Cryptococcus Phenalenones and cyclic tetrapeptides from Auxarthron pseudauxarthron J Nat Prod . 2017;80(7):2101-9.
  • 93
    Perlatti B, Nichols CB, Lan N, Wiemann P, Harvey CJB, Alspaugh JA, et al. Identification of the Antifungal Metabolite chaetoglobosin p from Discosia rubi using a cryptococcus neoformans inhibition assay: insights into mode of action and biosynthesis. Front Microbiol. 2020;11:1766.
  • 94
    Perlatti B, Lan N, Xiang M, Earp CE, Spraker JE, Harvey CJB, et al. Anti-cryptococcal activity of preussolides A and B, phosphoethanolamine-substituted 24-membered macrolides, and leptosin C from coprophilous isolates of Preussia typharum J Ind Microbiol Biotechnol . 2021;48(9-10).
  • 95
    Cadelis M, Grey A, van de Pas S, Geese S, Weir BS, Copp B, et al. Terrien, a metabolite made by Aspergillus terreus, has activity against Cryptococcus neoformans PeerJ. 2022;10:e14239.
  • 96
    Kuvarina AE, Rogozhin EA, Sykonnikov MA, Timofeeva AV, Serebryakova MV, Fedorova NV, et al. Isolation and characterization of a novel hydrophobin, Sa-HFB1, with antifungal activity from an alkaliphilic fungus, Sodiomyces alkalinus J Fungi. 2022;8(7):659.
  • 97
    Kumar R, Subramani R, Aalbersberg W. Three bioactive sesquiterpene quinones from the Fijian marine sponge of the genus Hippospongia Nat Prod Res . 2013;27(16):1488-91.
  • 98
    Jamison MT, Dalisay DS, Molinski TF. Peroxide Natural Products from Plakortis zyggompha and the Sponge Association Plakortis halichondrioides-Xestospongia deweerdtae: Antifungal Activity against Cryptococcus gattii J Nat Prod . 2016;79(3):555-63.
  • 99
    Thammasit P, Iadnut A, Mamoon K, Khacha-ananda S, Chupradit K, Tayapiwatana C, et al. A potential of propolis on major virulence factors of Cryptococcus neoformans Microb Pathog. 2018;123:296-303.
  • 100
    Menezes-Silva L, da Silva CJ, de Faria LC, Pizzolante BC, Andrade-Silva LE, da Silva MV, et al. Hemolymph of triatomines presents fungistatic activity against Cryptococcus neoformans and improves macrophage function through MCP-I/TNF-α increase. J Venom Anim Toxins Incl Trop Dis . 2022;28:e20210124.
  • 101
    Robbins N, Spitzer M, Wang W, Waglechner N, Patel DJ, O’Brien JS, et al. Discovery of ibomycin, a complex macrolactone that exerts antifungal activity by impeding endocytic trafficking and membrane function. Cell Chem Biol. 2016;23(11):1383-94.
  • 102
    Beattie SR, Krysan DJ. Antifungal drug screening: thinking outside the box to identify novel antifungal scaffolds. Current Opinion in Microbiology. 2020;57(10):1-6.
  • 103
    Jiang Z, Liu N, Hu D, Dong G, Miao Z, Yao J, et al. The discovery of novel antifungal scaffolds by structural simplification of the natural product sampangine. Chem Commun. 2015;51(78):14648-51.
  • 104
    Barreiro EJ, Fraga CAM. Química Medicinal: As Bases Moleculares da Ação dos fármacos. 3ª edição. São Paulo: Artmed; 2014. 608 p.
  • 105
    Oliveira MS, Chaves OS, Cordeiro LV, Gomes ANP, Fernandes DA, Telles YCF, et al. Indoquinoline alkaloids from Sida rhombifolia (L.) (Malvaceae) and antimicrobial evaluation of Cryptolepinone derivatives. J Braz Chem Soc. 2022;00(00):1-8.
  • 106
    Freire CPV, Ferreira SB, De Oliveira NSM, Matsuura ABJ, Gama IL, Da Silva FDC, et al. Synthesis and biological evaluation of substituted α- And β-2,3-dihydrofuran naphthoquinones as potent anticandidal agents. Medchemcomm. 2010;1(3):229-32.
  • 107
    Jiang Z, Liu N, Dong G, Jiang Y, Liu Y, He X, et al. Scaffold hopping of sampangine: Discovery of potent antifungal lead compound against Aspergillus fumigatus and Cryptococcus neoformans Bioorganic Med Chem Lett. 2014;24(17):4090-4.
  • 108
    Cruz KS, Lima ES, Silva MDJA Da, Souza ES De, Montoia A, Pohlit AM, et al. Screening and antifungal activity of a β-carboline derivative against cryptococcus neoformans and C. gattii Int J Microbiol. 2019;2019:7157845.
  • 109
    Ferreira M do PSBC, Cardoso MF do C, da Silva F de C, Ferreira VF, Lima ES, Souza JVB. Antifungal activity of synthetic naphthoquinones against dermatophytes and opportunistic fungi: Preliminary mechanism-of-action tests. Ann Clin Microbiol Antimicrob. 2014;13(1):1-6.
  • 110
    Li Z, Liu N, Tu J, Ji C, Han G, Wang Y, et al. Discovery of novel simplified isoxazole derivatives of sampangine as potent anti-cryptococcal agents. Bioorganic Med Chem. 2019;27(5):832-40.
  • 111
    Krummenauer ME, Lopes W, Garcia AWA, Schrank A, Gnoatto SCB, Kawano DF, et al. A highly active triterpene derivative capable | of biofilm damage to control cryptococcus spp. Biomolecules. 2019;9(12):1-13.
  • 112
    Malefo MS, Ramadwa TE, Famuyide IM, McGaw LJ, Eloff JN, Sonopo MS, et al. Synthesis and antifungal activity of chromones and benzoxepines from the leaves of Ptaeroxylon obliquum J Nat Prod . 2020;83(8):2508-17.
  • 113
    Masila VM, Ndakala AJ, Byamukama R, Midiwo JO, Kamau RW, Wang M, et al. Synthesis, structural assignments and antiinfective activities of 3-O-benzyl-carvotacetone and 3-hydroxy-2-isopropyl-5-methyl-p-benzoquinone. Nat Prod Res . 2021;35(21):3599-607.
  • 114
    Oliveira L, Ferrarini M, dos Santos AP, Varela MT, Corrêa ITS, Tempone AG, et al. Coumaric acid analogues inhibit growth and melanin biosynthesis in Cryptococcus neoformans and potentialize amphotericin B antifungal activity. Eur J Pharm Sci. 2020;153:105473.
  • 115
    Wermuth CG. Selective optimization of side activities: The SOSA approach. Drug Discov Today. 2006;11(3/4):160-4.
  • 116
    Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: Progress, challenges and recommendations. Nat Rev Drug Discov. 2018;18(1):41-58.
  • 117
    Hai TP, Van AD, Ngan NTT, Nhat LTH, Lan NPH, Vinh Chau N V, et al. The combination of tamoxifen with amphotericin B, but not with fluconazole, has synergistic activity against the majority of clinical isolates of Cryptococcus neoformans Mycoses. 2019;62(9):818-25.
  • 118
    Donlin MJ, Meyers MJ. Repurposing and optimization of drugs for discovery of novel antifungals. Drug Discov Today . 2022;27(7):2008-14.
  • 119
    Ogundeji AO, Pohl CH, Sebolai OM. Repurposing of aspirin and ibuprofen as candidate anti-Cryptococcus drugs. Antimicrob Agents Chemother . 2016;60(8):4799-808.
  • 120
    Ribeiro N de Q, Costa MC, Magalhães TFF, Carneiro HCS, Oliveira LV, Fontes ACL, et al. Atorvastatin as a promising anticryptococcal agent. Int J Antimicrob Agents. 2017;49(6):695-702.
  • 121
    Cheng Zhen, Hui Lu, Yuang-ying jiang FY. P092 Otilonium bromide is a potente antifungal agent against fluconazole - and flucytosine - resistant Cryptococcus neoformans strains. Medical Mycology. 2022; 60(9):72-92.
  • 122
    Brilhante RSN, Silva JAT, Dos Santos Araújo G, Pereira VS, Gotay WJP, De Oliveira JS, et al. Darunavir inhibits Cryptococcus neoformans/Cryptococcus gattii species complex growth and increases the susceptibility of biofilms to antifungal drugs. J Med Microbiol. 2020;69(6):830-7.
  • 123
    Truong M, Monahan LG, Carter DA, Charles IG. Repurposing drugs to fast-track therapeutic agents for the treatment of cryptococcosis. PeerJ. 2018;2018(5):1-18.
  • 124
    de Oliveira HC, Joffe LS, Simon KS, Castelli RF, Reis FCG, Bryan AM, et al. Fenbendazole controls in vitro growth, virulence potential, and animal infection in the Cryptococcus model. Antimicrob Agents Chemother . 2020;64(6):e00286-20.
  • 125
    Joffe LS, Schneider R, Lopes W, Azevedo R, Staats CC, Kmetzsch L, et al. The anti-helminthic compound mebendazole has multiple antifungal effects against Cryptococcus neoformans Front Microbiol. 2017;8:535.
  • 126
    De Castro Spadari C, Vila T, Rozental S, Ishida K. Miltefosine has a postantifungal effect and induces apoptosis in cryptococcus yeasts. Antimicrob Agents Chemother . 2018;62(8):e00312-18.
  • 127
    Zhai B, Wu C, Wang L, Sachs MS, Lin X. The antidepressant sertraline provides a promising therapeutic option for neurotropic cryptococcal infections. Antimicrob Agents Chemother . 2012;56(7):3758-66.
  • 128
    Breuer MR, Dasgupta A, Vasselli JG, Lin X, Shaw BD, Sachs MS. The antidepressant sertraline induces the formation of supersized lipid droplets in the human pathogen Cryptococcus neoformans J Fungi. 2022;8(6):642.
  • 129
    Dolan K, Montgomery S, Buchheit B, DiDone L, Wellington M, Krysan DJ. Antifungal activity of tamoxifen: In vitro and in vivo activities and mechanistic characterization. Antimicrob Agents Chemother . 2009;53(8):3337-46.
  • 130
    Butts A, Krysan DJ. Antifungal Drug Discovery: something old and something new. PLoS Pathog . 2012;8(9):9-11.
  • 131
    Jung EH, Meyers DJ, Bosch J, Casadevall A. Novel antifungal compounds discovered in medicines for malaria venture’s malaria box. Msphere. 2018;3(2):1-12.
  • 132
    Bonapace CR, Bosso JA, Friedrich L V, White RL. Comparison of methods of interpretation of checkerboard synergy testing. Diagn Microbiol Infect Dis. 2002;44(4):363-6.
  • 133
    Livengood SJ, Drew RH, Perfect JR. Combination therapy for invasive fungal infections. Curr Fungal Infect Rep. 2020;14(1):40-9.
  • 134
    da Silva DL, Magalhães TFF, dos Santos JRA, de Paula TP, Modolo L V, de Fátima A, et al. Curcumin enhances the activity of fluconazole against Cryptococcus gattii-induced cryptococcosis infection in mice. J Appl Microbiol. 2016;120(1):41-8.
  • 135
    Wambaugh MA, Denham ST, Ayala M, Brammer B, Stonhill MA, Brown JCS. Synergistic and antagonistic drug interactions in the treatment of systemic fungal infections. Elife. 2020;9:e54160.
  • 136
    Menezes RT, Pereira TC, Junqueira JC, Oliveira LD, Scorzoni L. Synergistic combination of duloxetine hydrochloride and fluconazole reduces the cell growth and capsule size of Cryptococcus neoformans An Acad Bras Cienc. 2022;94(2):1-7.
  • 137
    Pereira TC, De Menezes RT, De Oliveira HC, De Oliveira LD, Scorzoni L. In vitro synergistic effects of fluoxetine and paroxetine in combination with amphotericin B against Cryptococcus neoformans Pathog Dis. 2021;79(2):1-9.
  • 138
    Fernandes KE, Weeks K, Carter DA. Lactoferrin is broadly active against yeasts and highly synergistic with amphotericin B. Antimicrob Agents Chemother . 2020;64(5):1-22.
  • 139
    Ferreira Magalhães TF, Costa MC, Holanda RA, Ferreira GF, Dutra Carvalho VS, Cota Freitas GJ, et al. N-acetylcysteine reduces amphotericin B deoxycholate nephrotoxicity and improves the outcome of murine cryptococcosis. Med Mycol. 2021;58(6):835-44.
  • 140
    Silva THS, Araújo CV, Santos KM da C, Alves NDS, Gomes THS, E Silva AKF, et al. Synergic effect of simvastatin in combination with amphotericin b against environmental strains of cryptococcus neoformans from northeastern brazil: A prospective experimental study. Sao Paulo Med. J 2020;138(1):40-6.
  • 141
    Movahed E, Yi Tan GM, Munusamy K, Yeow TC, Tay ST, Wong WF, et al. Triclosan demonstrates synergic effect with amphotericin B and fluconazole and induces apoptosis-like cell death in Cryptococcus neoformans Front Microbiol. 2016;7:360.
  • 142
    Sangalli-Leite F, Scorzoni L, Alves de Paula e Silva AC, da Silva J de F, de Oliveira HC, de Lacorte Singulani J, et al. Synergistic effect of pedalitin and amphotericin B against Cryptococcus neoformans by in vitro and in vivo evaluation. Int J Antimicrob Agents . 2016;48(5):504-11.
  • 143
    Horn C, Vediyappan G. Anticapsular and antifungal activity of α-cyperone. Antibiotics. 2021;10(1):1-10.
  • Financial Support: We would like to thank Fundação de Amparo à Pesquisa do State of Amazonas (FAPEAM) for the funding of the research by Naira Sulany Oliveira de Sousa through the granting of the POSGRAD UEA 2021 scholarship. The authors also would like to recognize funding received from Fundação de Amparo à Pesquisa do Estado do Amazonas (Public Notice N. 001/2017 −PPSUS), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, and Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq.

Publication Dates

  • Publication in this collection
    24 July 2023
  • Date of issue
    2023

History

  • Received
    29 Mar 2023
  • Accepted
    19 May 2023
Sociedade Brasileira de Medicina Tropical - SBMT Caixa Postal 118, 38001-970 Uberaba MG Brazil, Tel.: +55 34 3318-5255 / +55 34 3318-5636/ +55 34 3318-5287, http://rsbmt.org.br/ - Uberaba - MG - Brazil
E-mail: rsbmt@uftm.edu.br