Acessibilidade / Reportar erro

Mercury in muscle and liver of Plagioscion squamosissimus (Acanthuriformes: Sciaenidae) from the Machado River, Brazilian Amazon

ABSTRACT

The Machado River is the main tributary of the Madeira River in the state of Rondônia, a region that has been impacted by deforestation, livestock, urban development, alluvial gold mining and urban and industrial effluents that likely contribute to the introduction of mercury (Hg) in the aquatic system. We aimed to determine the concentrations of total Hg (THg) in muscle and liver of Plagioscion squamosissimus, a main fishing resource in the region. Fish were sampled for two years at five sites, along a 90-km stretch of the middle Machado River. THg concentrations were analyzed in 64 muscle and 54 liver samples by cold vapor atomic absorption spectrophotometry (FIMS-400). THg levels were related with fish size and sex and with periods of the hydrological cycle. THg concentrations in both organs were positively and significantly related with fish body size. There was no significant variation in THg among periods of the hydrological cycle. Mean THg concentrations in muscle (1.09 ± 0.72 mg kg-1) and liver (1.28 ± 1.23 mg kg-1) were higher than the limit established by the WHO. Our results suggest that residual mercury from former alluvial gold extraction and lixiviation of mercury naturally occurring in the soil due to large-scale deforestaion is accumulating in the aquatic food chain in the Machado River. We conclude that it is necessary to monitor the levels of mercury in commercially important fish species in the region.

KEYWORDS:
fish; heavy metal; Rondônia

RESUMO

O Rio Machado é o principal afluente do Rio Madeira no estado de Rondônia, uma região impactada por desmatamento, pecuária, desenvolvimento urbano, mineração de ouro e efluentes urbanos e industriais, que provavelmente contribuem para a introdução de mercúrio (Hg) no sistema aquático. Nosso objetivo foi determinar as concentrações de Hg total (THg) em músculo e fígado de Plagioscion squamosissimus, um importante recurso pesqueiro na região. Os peixes foram amostrados durante dois anos em cinco locais ao longo de 90 km no médio Rio Machado. As concentrações de THg foram analisadas em 64 amostras de músculos e 54 de fígado por espectrofotometria de absorção atômica com vapor frio (FIMS-400). As concentrações de mercúrio foram relacionadas ao tamanho e sexo dos peixes, e com períodos do ciclo hidrológico. As concentrações de THg em ambos os órgãos foram relacionadas positiva e significativamente com o tamanho corporal dos peixes. Não houve variação significativa do THg entre os períodos do ciclo hidrológico. As concentrações médias de THg no músculo (1,09 ± 0,72 mg kg-1) e no fígado (1,28 ± 1,23 mg kg-1) foram superiores ao limite estabelecido pela OMS. Os resultados sugerem que o mercúrio residual da extração de ouro e lixiviação de mercúrio que ocorre naturalmente no solo desmatado está se acumulando na cadeia alimentar aquática do Rio Machado. Concluímos que é necessário monitorar os níveis de mercúrio em espécies de peixes comerciais na região.

PALAVRAS-CHAVE:
peixe; metal pesado; Rondônia

INTRODUCTION

Mercury concentrations found in different environmental matrices in the Amazon region, can be attributed to natural (Lacerda and Pfeiffer 1992Lacerda, L.D., Pfeiffer, W.C.P. 1992. Mercury form gold mining in the Amazon environment - an overview. Química Nova, 15: 155-160.) and anthropic origin, the main source being gold mining (Lacerda and Pfeiffer 1992Lacerda, L.D., Pfeiffer, W.C.P. 1992. Mercury form gold mining in the Amazon environment - an overview. Química Nova, 15: 155-160.; Bastos et al. 2006Bastos, W.R.; Gomes, J.P.O.; Oliveira, R.C.; Almeida, R.; Nascimento, E.L.; Bernardi, J.V.E.; Pfeiffer, W.C. 2006. Mercury in the environment and riverside population in the Madeira River Basin, Amazon, Brazil.Science of the Total Environment, 368: 344-351.). During the burning of gold-mercury amalgam, Hg is volatilized and is transported via the atmosphere, contaminating rivers and soils in other regions (Lacerda and Salomons 1992Lacerda, L.D.; Salomons, W. 1992. Mercúrio na Amazônia: Uma Bomba Relógio Química? Série Tecnologia Ambiental. 1st ed. CETEM/CNPq, Rio de Janeiro, 78p.; Hancon 1995Hancon, S.; Artaxo, P.; Gerab, F.; Yamasoe, M.A.; Campos, R.C.; Conti, L.F.; De Lacerda, L.D. 1995. Atmospheric mercury and trace elements in the region of Alta Floresta in the Amazon Basin. Water, Air and Soil Pollution, 80: 273-283.). In the Machado River, a tributary of the Madeira River, which forms a major right-margin subbasin of the Amazonas River in the southwestern Brazilian Amazon, alluvial gold extraction has also been recorded (CNEC 1985CNEC. 1985. Inventário Hidrelétrico da Bacia do Rio Ji-Paraná; Estudos Ambientais da Bacia e Análise dos Impactos Ambientais no Trecho 2, Relatório Final Anexo IV. Unpublished technical environmental impact report. Consórcio Nacional de Engenheiros Consultores S.A. (CNEC), São Paulo, 35 maps.). The Madeira River is known for intensive gold extraction, maily in the 1970s and 1980s (Lacerda and Pfeiffer 1992; Bastos et al. 2006). The Machado River flows for 972 km from the central Brazilian Shield, through a region that has suffered high rates of slash and burn deforestation (Ferraz et al. 2005Ferraz, S.F.D.; Vettorazzi, C.A.; Theobald, D.M.; Ballester, M.A.R. 2005. Landscape dynamics of Amazonian deforestation between 1984 and 2002 in central Rondonia, Brazil: assessment and future scenarios. Forest and Ecology Management, 204: 67-83.), along one of the main highways into the Amazon region (BR-364). Over 50% of the Machado River basin was deforested until 2019 (INPE/Prodes 2019INPE/PRODES. 2019. Instituto Nacional de Pesquisas Espaciais. Projeto PRODES. Monitoramento da floresta Amaznica brasileira por satélite. ((http://www.obt.inpe.br/prodes ). Acessed on 01 Nov 2019.
http://www.obt.inpe.br/prodes...
). Soil, unprotected as a result of desforestation, can contribute to entry of mercury into Amazonian aquatic ecosystems (Nascimento et al. 2020Nascimento, E.L.; Miyai, R.K.; Gomes, J.P.O.; Almeida, R.; De Carvalho, D.P.; Manzatto, A.G.; Bernardi, J.V.E.; Silveira, E.G.; Bastos, W.R. 2020. Dynamics of mercury in the plankton of a hydroelectric reservoir, Western Amazon. Environmental Monitoring and Assessment, 1: 192-647. ). At present, alluvial gold extraction is declining in the basin and has become rare (Rodrigues and Marta 2017Rodrigues, W.B.; Marta, J.M.C. 2017. Exploração aurífera artesanal e a migração de garimpeiros para o território rondoniense. Fronteiras: Revista de História, 33: 43-69.). However, even where sediments contaminated with mercury have been removed to prevent methylation, the mercury used in gold amalgamation can still be found in high levels in rivers throughout the Amazon Basin (Mailman et al. 2006Mailman, M.; Stepnuk, L.; Cicek, N.; Bodaly, R.D. 2006. Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes: A review.Science of the Total Environmental, 368: 224-235.).

The middle section of the Machado River passes through areas with medium to very high alteration, mainly pasture and soybean croplands and associated urban centers and industrial plants, such as tanneries, meat packing plants and dairy plants. The main sources of water contamination are domestic sewage and industrial wastewater, irregular trash dumps, and runoff of agricultural chemicals (Vasanthi et al. 2019Vasanthi, N.; Muthukumaravel, K.; Sathick, O.; Sugumaran, J. 2019. Toxic effect of mercury on the freshwater fish oreochromis mossambicus. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 5: 64-76. ), causing pollution by toxic substances, such as oil, grease, nitrogen, phosphorus and heavy metals, as well as pathogenic bacteria (Nunes and Jesus 2019Nunes, J.V.; Jesus, T.B. 2019. Determinação de metais pesados (Mn, Cd, Cr, Cu, Pb) em peixes das espécies Astyanax bimaculatus, Hoplias malabarcius e Oreochromis niloticus presente na Lagoa Salgada-Rio Subaé-Feira de Santana (Bahia).Revista Brasileira de Meio Ambiente, 5: 23-31.). Among the heavy metals, mercury is found in the water, air, soil, sediments, plants and animals in organic forms (methylmercury, dimethylmercury), metallic form and as ionic mercury salts (Vasile et al. 2019Vasile, G.G.; Gheorghe, S.; Ene, C.; Serban, E.A.; Stoica, C. 2019. Total mercury in fish and benthic invertebrates collected from Olt River, Romania. Revista de Chimie, 70: 263-268.). Mercury is a highly toxic pollutant due to its ability for bioaccumulation (Ferreira et al. 2015Ferreira, S.L.; Lemos, V.A.; Silva, L.O.; Queiroz, A.F.; Souza, A.S.; Silva, E.G.; das Virgens, C.F. 2015. Analytical strategies of sample preparation for the determination of mercury in food matrices - a review.Microchemical Journal, 121: 227-236.), mainly in aquatic ecosystems (Vasile et al. 2019). The toxic status of mercury depends on the chemical form that is absorbed by the organism, the organic forms being the most toxic (Ferreira et al. 2015; Milhome et al. 2018Milhomem, F.E.O.; Oliveira, C.S.B.; Silveira, L.C.L.; Cruz, T.M.; Souza, G.S.; Costa Júnior, J.M.F. 2018. A ingestão de pescado e as concentrações de mercúrio em famílias de pescadores de Imperatriz (MA). Revista Brasileira de Epidemiologia, 19: 14-25.). In general, fish have an average methylmercury percentage relative to total mercury ranging from 97.3% in carnívorous fish to 96.4% in omnívoros fish (Kehrig and Malm 1999Kehrig, H.D.A.; Malm, O. 1999. Methylmercury in fish as a tool for understanding the Amazon mercury contamination.Applied Organometallic Chemistry, 13: 689-696.).

Some species of carnivorous fish are bioindicators of pollution in aquatic habitats and a source of food for other animals, as well as economically important fishing resources (Tacon and Metian 2009Tacon, A.G.; Metian, M. 2009. Fishing for feed or fishing for food: increasing global competition for small pelagic forage fish.Ambio, 4: 294-302.; Silva et al. 2019Silva, S.F.; Oliveira, D.C.; Pereira, J.P.G.; Castro, S.P.; Costa, B.N.S.; de Oliveira Lima, M. 2019. Seasonal variation of mercury in commercial fishes of the Amazon Triple Frontier, Western Amazon Basin.Ecological Indicator, 106:105-116.). Thus, it is important to determine concentrations of potentially toxic elements in their tissues (Milačič et al. 2019Milačič, R.; Zuliani, T.; Vidmar, J.; Bergant, M.; Kalogianni, E.; Smeti, E.; Ščančar, J. 2019. Potentially toxic elements in water, sediments and fish of the Evrotas River under variable water discharges.Science of the Total Environmental, 648: 1087-1096.). The South American silver croaker, Plagioscion squamosissimus (Heckel, 1840) is a sedentary fish native to the Amazon region (Santos et al. 2006Santos, G.M.; Ferreira, E.J.G.; Zuanon, J.A.S. 2006. Peixes Comerciais de Manaus. 1st. ed. Editora INPA, Manaus, 43p.). It is economically important in the region as a major protein source for local communities (Montes et al. 2011Montes, C.; Rosa Filho, J.S.; Rocha, R.M. 2011. Histological Biomarker as Diagnostic Tool for Evaluating the Environmental Quality of Guajará Bay-PA-Brazil. Environmental Monitor, 1: 35-48.) and in recreational fishing (Barros et al. 2012Barros, L.C.; Santos, U.; Zanuncio, J.C.; Dergam, J.A. 2012. Plagioscion squamosissimus (Sciaenidae) and Parachromis managuensis (Cichlidae): A threat to native fishes of the Doce River in Minas Gerais, Brazil. Plos ONE, 7: e39138. ). The species has a wide feeding spectrum (Hahn et al. 1999Hahn, N.S.; Loureiro, V.E.; Delariva, R.L. 1999. Atividade alimentar de curvina Plagioscion squamosissimus (Heckel, 1840) (Perciformes, Sciaenidae) no rio Paraná. Acta Scientiarum. Biological Sciences, 21: 309-314.; Bennemann et al. 2000Bennemann, S.T.; Shibatta, O.A.; Garavello, J.C. 2000. Peixes do rio Tibagi: Uma Abordagem Ecológica. 1st ed. Eduel, Londrina, 122p.; Bennemann et al. 2006Bennemann, S.T.; Capra, L.G.; Galves, W.; Shibatta, O.A. 2006. Dinâmica trófica dePlagioscion squamosissimus(Perciformes, Sciaenidae) em trechos de influência da represa Capivara (rios Paranapanema e Tibagi). Iheringia Serie Zoológica, 96: 115-119. ; Santos et al. 2016Santos, N.C.; Nascimento, M.T.; Rocha, A.A.F.; Dias, R.M.; Severi, W. 2016. Uso de recursos alimentares por Plagioscion squamosissimus-piscívoro não-nativo no reservatório de Sobradinho-BA, Brasil. Boletim do Instituto de Pesca, 40: 397-408.), although it is mostly piscivorous (Hahn et al. 1997Hahn, N.S.; Adrian, I.F.; Fugi, R.; Almeida, V.L.L. 1997. Ecologia trófica. In: Vazzoler, A.E.A.M.; Agostinho, A.A.; Hahn, N.S. (Ed.).A Planície de Inundação do Alto Rio Paraná: Aspectos Físicos, Biológicos e Socioeconômicos. v.1. EDUEM, Maringá, p.209-228.) or a generalist carnivore (Bennemann et al. 2011Bennemann, S.T.; Galves, W.; Capra, L.G. 2011. Recursos alimentares utilizados pelos peixes e estrutura trófica de quatro trechos no reservatório Capivara (Rio Paranapanema).Biota Neotropica, 11: 1-7. http://www.biotaneotropica.org.br/v11n1/pt/abstract?article+bn01411012011
http://www.biotaneotropica.org.br/v11n1/...
; Rocha et al. 2015Rocha, A.A.F.; Santos, N.C.L.; Medeiros, T.N.; Severi, W. 2015. Relações tróficas entre Acestrorhynchus britskii (nativa) e Plagioscion squamosissimus (introduzida) em sistema de reservatórios em cascata.Boletim do Insttuto de Pesca, 41: 917-930.; Neves et al. 2015Neves, M.P.; Delariva, R.L.; Guimarães, A.T.B.; Sanches, P.V. 2015. Carnivory during ontogeny of the Plagioscion squamosissimus: A successful non-native fish in a lentic environment of the Upper Paraná River Basin.PloS One, 10: e0141651. ). Due to its wide geographical distribution in the Amazon, abundance and tolerance to environmental stress in dammed river systems, and the relevance of studyng species on the top of the aquatic food chain (Custódio et al. 2020Custódio, F.B.; Andrade, A. M.G.F.; Guidi, L.R.; Leal, C.A.G.; Gloria, M.B.A. 2020. Total mercury in comercial fishes and estimation of Brazilian dietary exposure to methylmercury. Journal of Trace Elements in Medicine and Biology, 66: 126641. ), total mercury analysis of P. squamosissimus can help reveal important environmental features in tropical aquatic environments (Wunderlich et al. 2015Wunderlich, A.C.; Silva, R.J.; Zica, É.O.; Rebelo, M.F.; Parente, T.E.; Vidal-Martínez, V.M. 2015 The influence of seasonality, fish size and reproductive status on EROD activity in Plagioscion squamosissimus: Implications for biomonitoring of tropical/subtropical reservoirs.Ecological Indicators, 58: 267-276.).

The objective of this study was to analyze the total mercury concentration in P. squamosissimus in the Machado River, considering that, as a carnivorous species, it can accumulate high concentrations of mercury, wich can be transferred to humans through consumption. Mercury concentrations in muscle and liver were related to fish size and sex, and to periods of the hydrological cycle.

MATERIAL AND METHODS

Study area

The study was carried out in the Machado River (also known as Ji-Paraná River). The Machado River Basin covers 75,400 km2 in the state of Rondônia, Brazil (Figure 1). The river is formed by the Pimenta Bueno and Comemoração rivers (Krusche et al. 2005Krusche, A.V.; Ballester, M.V.R.; Victoria, R.L.; Bernardes, M.C.; Leite, N.K.; Hanada, L.; Gomes, B.M. 2005. Efeitos das mudanças do uso da terra na biogeoquímica dos corpos d’água da bacia do rio Ji-Paraná, Rondônia.Acta Amazonica, 35: 197-205.) and runs through the states of Rondônia and Amazonas, Brazil. The hydrological regime is characterized by a flood peak in March and minimum ebb level in September (ANA 2020ANA. 2013. Agência Nacional de Águas. HidroWeb -Sistema de informações hidrológicas, ( HidroWeb -Sistema de informações hidrológicas, (http://hidroweb.ana.gov.br/ ). Accessed on 15 Oct 2020.
http://hidroweb.ana.gov.br/...
). It runs through the Jaru Biological Reserve (ReBio Jaru, Figure 1), which has a total area of 47,733 km2 (ICMBIO 2010ICMBIO. 2010. Instituto Chico Mendes de Conservação da Biodiversidade. Plano de manejo da Reserva Biológica do Jaru, 128p. ( (https://www.icmbio.gov.br/portal/images/stories/imgs-unidades-coservacao/Resumo%20Executivo%20-%20RB%20do%20Jaru.pdf ). Accessed on 19 Sep 2020.
https://www.icmbio.gov.br/portal/images/...
), with a conserved riparian zone covered by mostly open ombrophilous forest with low floristic variation (IBGE 1992IBGE. 1992. Manual Técnico da Vegetação Brasileira.1st ed. IBGE, Rio de Janeiro, 49p.). The preserved area along ReBio Jaru has a riverine zone constituted of shrubby and woody angiosperms (Supplementary Material, Figure S1a,b) that compose the primary forest (Supplementary Material, Figure S1c), which provides reproduction and feeding ground for fish and where fishing is prohibited (ICMBIO 2010ICMBIO. 2010. Instituto Chico Mendes de Conservação da Biodiversidade. Plano de manejo da Reserva Biológica do Jaru, 128p. ( (https://www.icmbio.gov.br/portal/images/stories/imgs-unidades-coservacao/Resumo%20Executivo%20-%20RB%20do%20Jaru.pdf ). Accessed on 19 Sep 2020.
https://www.icmbio.gov.br/portal/images/...
). The unpreserved area outside ReBio Jaru is composed of pasture, with a riverine zone on the right bank composed of grasses, and a narrow strip with a few woody angiosperms and stretches of bushes on the left bank (Supplementary Material, Figure S1f). In this area, there is fishing activity (artisanal and recreational and constant sand dredging (Supplementary Material, Figure S1d,e).

Figure 1
Location of the study area in Rondônia state, northwestern Brazil and sampled stretch of the Machado River showing the sampling sites (see details in Figure S1). This figure is in color in the electronic version.

Fish sampling and biometric data

Samplings were carried out bimonthly from June 2013 to April 2015 simultaneously at five sites along the Machado River. Three sites were located in ReBio Jaru (Carmita, Farofa and Suretama) and two sites (São Sebastião and Poção) outside ReBio Jaru (Figure 1). A total of 12 samples were taken (four samples in 2013, six in 2014 and two in 2015. Of these two samplings occurred during the rising water season, four during high water, two during subsiding water and four during low water. The hydrological periods were categorized based on ANA (2020ANA. 2013. Agência Nacional de Águas. HidroWeb -Sistema de informações hidrológicas, ( HidroWeb -Sistema de informações hidrológicas, (http://hidroweb.ana.gov.br/ ). Accessed on 15 Oct 2020.
http://hidroweb.ana.gov.br/...
). Average river depth is 11.4 m in high water season and 6.5 m in the low water season. Poção and São Sebastião are located, respectively, 50 and 5 km upstream of ReBio Jaru, while Carmita, Farofa and Suretama are at approximately 4 km from each other, making a total sampling distance of 90 km. At each site, eight sets of gillnets (2 x 20 m with mesh sizes varying from 30 to 100 mm) were used. The sampling effort was standardized, and scientific capture was carried out for 24 hours continuously at each sampling site. The living specimens found at the end of the 24-hour period were sacrificed in a solution of clove oil (Eugenol, two drops per liter; according to the American Veterinary Medical Association 2001). One specimen was fixed in 10% formalin, subsequently preserved in 70% ethanol and deposited in the ichthyology collection at Rondônia Federal University (voucher nr. UFRO-ICT 023107).

For each specimen captured, the stantard length (SL) (in cm) was measured using an ichthyometer with 0.1 cm accuracy, and total wet weight (TW) (in g) was obtained with a digital scale with 0.01 g accuracy. The sex was determined through macroscopic gonad inspection (Vazzoler 1996Vazzoler, A.E.A.M. 1996. Biologia da Reprodução de Peixes Teleósteos: Teoria e Prática. 1st ed. EDUEM, Maringá , 169p.; Nuñez and Duponchelle 2009Nuñez, J.; Duponchelle, F. 2009.Towards a universal scale to assess sexual maturation and related life history traits in oviparous teleost ishes. Fish Physiology and Biochemistry, 35: 167-180.), only adult individuals were analyzed. Samplings was authorized by Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio (SISBIO licenses nr. 47345-1 and 40663-2).

Chemical extraction for mercury quantification

All samples were transported on ice to the Environmental Biogeochemistry Laboratory at Universidade Federal de Rondônia (UNIR), where they were catalogued and stored in freezers until analysis. Total mercury was extracted according to Bastos et al. (1998Bastos, W.R.; Malm, O.; Pfeiffer, W.C.; Cleary, D. 1998. Establishment and analytical quality control of laboratories for Hg determination in biological and geological samples in the Amazon, Brazil. Ciência e Cultura, 50: 255-260.). About 200 mg of muscle and liver tissue (ww) of each specimen were weighed separately in glass tubes and inserted into a block digester (Tecnal, TE-040/25) for 30 min at 70 oC using 1.0 mL of H2O2 (Merck) and 4.0 mL of H2SO4:HN03 (1:1, Merck). Thereafter, 6.0 mL of KMnO4 (5%, Merck) were added to each sample, which were than inserted into the bock digester at 70o.C for a further 20 min. After cooling the samples, droplets of HONH2.HCl (12%, Merck) were added and the final volume was completed to 15 ml with ultra-pure water in Falcon tubes, where total Hg was measured by cold vapor atomic absorption spectrophotometry (CV-AAS, PerkinElmer FIMS-400 flow injection mercury system, Germany). All measurements were performed in triplicate and analyzed in parallel with internationally certified material (DORM-2, NRC-Canada) to ensure satisfactory quality control. The THg data were expressed relative to wet weight. Recovery rates were 102 ± 2% and detection and quantification limits were 0.018 mg kg-1 and 0.054 mg kg-1, respectively.

Data analysis

The Shapiro-Wilks and the Levene test were used to analyze the normality and homoscedasticity of the data and determine the application of parametric tests (ANOVA and t-test) (Zar 1996Zar, J.H. 1996. Biostatistical Analysis. 1st ed. Prentice-Hall, New Jersey, 123p.). Length and weight were compared between males and females using t-tests. Mercury concentration in muscle and liver tissue was compared between males and females, and between hydrological periods of the Machado River using two-way ANOVA. The relation between mercury concentration in muscle and liver and the length (cm) and weight (g) of the P. squamosissimus individuals was evaluated with linear regression. All statistical analyses were performed in R version 3.3.3. (R Core Team 2017R Development Core Team. 2017. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ( (https://www.r-project.org/ ). Acessed on 15 Nov 2019.
https://www.r-project.org/...
). In all analyses, results were considered significant at p ≤ 0.05.

RESULTS

A total of 65 P. squamosissimus individuals (SL = 55.0 ± 8.3, SLMin = 16.5 cm, SLMax = 68.5 cm; tW = 2626 ± 879 g, TWMin = 85 g, TWMax = 4200 g) were used for THg measurement in muscle tissue and 55 for liver tissue. Some liver samples were lost due to logistical problems. The average concentration of THg was 1.09 ± 0.72 mg kg-1 in muscle and 1.28 ± 1.23 mg kg-1 in liver.

Average length and weight of the males was 47.5 ± 7.3 cm (SLMin = 16.5 cm, SLMax = 68.5 cm) and 2618 ± 893 g (TWMin = 85 g, TWMax = 4200 g), respectively. For females, average length was 49.0 ± 5.0 cm (SLMin = 38.0 cm, SLMax = 55.0 cm), and weight was 2658 ± 856 g (TWMin = 1200 g, TWMax = 4135 g). No significant differences occurred in length (t = 1.77; df = 1; p = 0.10), and weight (t = 1.27; df = 1; p = 0.22) between males and females, as well as in THg concentration in muscle and liver (ANOVA, F = 0.48; df = 3; p = 0.48) (Figure 2).

Figure 2
THg concentration in muscle (Mu) and liver (Li) of Plagioscion squamosissimus males (M) and females (F) sampled in the Machado River (Brazilian Amazon). The square indicates the median, the box the 25 and 75 percentiles, the bars the range, and the circles represent data points considered to be outliers.

Ther was a positive and significant regression of THg in muscle (r 2 = 0.37; p = 0.008; n = 64) (Figure 3a) and liver (r 2 = 0.18; p = 0.04; n = 55) (Figure 3c) on total length, and also of THg in muscle (r 2 = 0.29; p = 0.04; n = 64) (Figure 3b) and liver (r 2 = 0.33; p = 0.04; n = 54) (Figure 3d) on total weight.

Figure 3
Linear regression of total Hg concentration in muscle (A, B) and liver (C, D) on standard length (A, C) and weight (B, D) of Plagioscion squamosissimus sampled in the Machado River (Brazilian Amazon).

The regression THg concentration in muscle and liver was positive and significant (r = 0.83; p < 0.0001; n = 52) (Figure 4). The THg concentration in muscle and liver did not vary significantly between the periods of the hydrological cycle (ANOVA, F = 1.43; df = 3; p = 0.23) (Table 1).

Figure 4
Regression analysis of total Hg concentration in muscle on total Hg concentration in liver in 52 individuals of Plagioscion squamosissimus sampled in the Machado River (Brazilian Amazon).

Table 1
Biometrical data and total mercury (THg) concentration in muscle and liver of Plagioscion squamosissimus in different periods of the hydrological cycle in the Machado River, Rondônia state, Brazil. Values are the mean ± standard deviation followed by the range (in parentheses).

DISCUSSION

Average THg concentration in muscle and liver of P. squamosissimus was above the limit of 0.50 mg.kg-1 established for human consumption (WHOWHO. 2019. World Health Organization. Preventing disease through healthy environments: mercury in skin lightening products. ((https://apps.who.int/iris/handle/10665/330015 ). Accessed on 18 Sep 2020.
https://apps.who.int/iris/handle/10665/3...
2019) for both sexes and throughout the hydrological cycle. Similar results were obtained in other studies in the Amazon region (e.g.Bastos et al. 2008Bastos, W.R.; Rebelo, M.D.F.; Fonseca, M.D.F.; Almeida, R.D.; Malm, O. 2008. Um estudo descritivo do mercúrio em peixes da bacia do Rio Madeira, Amazônia, Brasil.Acta Amazonica, 38: 431-438.; Sampaio da Silva et al. 2013Sampaio da Silva, D.; Lucotte, M.; Paquet, S.; Brux, G.; Lemire, M. 2013. Inverse mercury and selenium concentration patterns between herbivorous and piscivorous fish in the Tapajos River, Brazilian Amazon.Ecotoxicology and environmental safety, 97: 17-25.; Azevedo-Silva 2016Azevedo-Silva, C.E.; Almeida, R.; Carvalho, D.P.; Ometto, J.P.; de Camargo, P.B.; Dorneles, P.R.; Torres, J.P. 2016. Mercury biomagnification and the trophic structure of the ichthyofauna from a remote lake in the Brazilian Amazon.Environmental Research, 151: 286-296.), yet our sample size (n = 65) was more representative than the average sample size in the mentioned studies (30.4 ± 29.8). The mercury concentrations found in our study were higher than in other studies carried out in the Amazon basin (Table 2).

Table 2
Data on mercury concentration in muscle (relative to wet weight) of Plagioscion squamosissimus sampled in several rivers of the Amazon basin over 14 years. N = sample size (values in parentheses indicate number of males/females, if available). Length (standard length) and weight values are the median (minimum - maximum). Hydrological period: R = rising water; H = high water; S = subsiding water; L = low water. Biometrical and mercury values are the mean followed by the range in parentheses, when available. ND = not determined.

As in the studies of Bastos et al. (2015Bastos, W.R.; Dórea, J.G.; Bernardi, J.V.E.; Lauthartte, L.C.; Mussy, M.H.; Lacerda, L.D.; Malm, O. 2015. Mercury in fish of the Madeira river (temporal and spatial assessment), Brazilian Amazon.Environmental Research, 140: 191-197., 2016) and Pecoraro et al. (2019Pecoraro, G.D.; Hortellani, M.A.; Hagiwara, Y.S.; Braga, E.S.; Sarkis, J.E.; Azevedo, J.S. 2019. Bioaccumulation of total mercury (THg) in catfish (Siluriformes, Ariidae) with different sexual maturity from Cananéia-Iguape Estuary, SP, Brazil.Bulletin of Environmental Contamination and Toxicology, 102: 175-179.), there were no significant differences in the THg concentration of males and females in our study. THg accumulation in fish depends on the trophic level of the focal species (Romanuk et al. 2011Romanuk, T.N.; April, H.A.; Hutchings, J.A. 2011. Trophic level scales positively with body size in fishes. Global Ecology and Biogeography, 20: 231-240. ). The trophic level of P. squamosissimus is between 3.4 and 3.6 (Costa and Angelini 2020Costa, I.D.; Angelini, R. 2020. Gut content analysis confirms the feeding plasticity of a generalist fish species in a tropical river.Acta Limnologica Brasiliensia, 32: e21.). There are indications of the existence of only small-scale artisanal mining of gold and cassiterite outside the Jaru Biological Reserve (J.P.O. Gomes, JBR management, pers. comm.). Thus, it is likely that the Hg found in the fish is mainly of natural origin, i.e., from the Hg naturally present in Amazonian soils (Bastos et al. 2007; Rua-Ibarz et al. 2019Rua-Ibarz, A.; Bolea-Fernandez, E.; Maage, A.; Frantzen, S.; Sanden, M.; Vanhaecke, F. 2019. Tracing mercury pollution along the Norwegian coast via elemental, speciation, and isotopic analysis of liver and muscle tissue of deep-water marine fish (Brosme brosme).Environmetal Science & Technology, 53: 1776-1785.), which reaches the rivers through leaching from the soil in deforested areas.

The measurement of THg concentration in body tissues provides important information for biological monitoring programs, but the analyses are expensive and laborious. Muscle is usually the target tissue to detect accumulation of methylmercury (MeHg) and the reservoir of highly toxic mercury species, but is not a good tissue to measure deposition of inorganic Hg (iHg) (Régine et al. 2006Régine, M.B.; Gilles, D.; Yannick, D.; Alain, B. 2006. Mercury distribution in fish organs and food regimes: Significant relationships from twelve species collected in French Guaiana (Amazonian basin). Science of the Total Environmental, 368: 262−270.). Muscle tissue has a slower response to changes in Hg concentrations in the environment since it reflects the accumulation of Hg during a long exposure period, making it less sensitive to short-term changes of environmental Hg levels (Xu et al. 2015Xu, X.; Wang, W.X. 2015. Isotopic fractionation during the uptake and elimination of inorganic mercury by a marine fish. Environmental Pollution, 206: 202-208.). In contrast, liver tissue is highly responsive to exposure to iHg and is the best target tissue for detection of short-term changes in contamination, because the liver is able to accumulate higher Hg concentrations than other tissues (Rua-Ibarz et al. 2019Rua-Ibarz, A.; Bolea-Fernandez, E.; Maage, A.; Frantzen, S.; Sanden, M.; Vanhaecke, F. 2019. Tracing mercury pollution along the Norwegian coast via elemental, speciation, and isotopic analysis of liver and muscle tissue of deep-water marine fish (Brosme brosme).Environmetal Science & Technology, 53: 1776-1785.). The liver has an important function in the process of detoxification and metabolism of Hg, and is one of the main organs responsible for demethylation of MeHg and subsequent redistribution of the two main forms of Hg (Rua-Ibarz et al. 2019). Hence, the iHg in the liver can originate from direct capture by the organism and/or demethylation of MeHg (Rua-Ibarz et al. 2019). Changes in Hg exposure are generally reflected in the concentration in liver tissue before other organs and tissues, such as muscle (Xu et al. 2015).

The Hg concentration in our study showed no seasonal variation. The hydrological cycle and levels of anthropic activity in the basin can affect the transport and availability of Hg in aquatic environments (Squadrone et al. 2013Squadrone, S.; Prearo, M.; Brizio, P.; Gavinelli, S.; Pellegrino, M.; Scanzio, T. 2013. Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian Rivers.Chemosphere, 90: 358-365.). The increased rainfall during the rising water and high water periods can be an additional factor for the increase of Hg in the region, since this trace element can be released into the atmosphere and fall back to earth in rainwater, reaching various areas of the basin (Veiga and Hinton 2002Veiga, M.M.; Hinton, J.J. 2002. Abandoned Artisanal Gold Mines in the Brazilian Amazon: A Legacy of Mercury Pollution. 1st ed. Blackwell Publishing Ltd., Oxford, 234p.). Rain can therefore contribute to the remobilization of Hg in the substrate of aquatic habitats (Moreno-Brush et al. 2016Moreno-Brush, M.; Rydberg, J.; Gamboa, N.; Storch, I.; Biester, H. 2016. Is mercury from small-scale gold mining prevalent in the southeastern Peruvian Amazon?Environmental Pollution, 218: 150-159.), increasing its availability in the environment.

The hydrological cycle of the rivers also influences the dynamics of gold mining in the Amazon basin, because the gold is alluvial. Low water level makes gold mining more difficult, so miners tend to interrupt their activity in the low water season, thus reducing the discharge of Hg and exposure to fish (Soares et al. 2018Soares, J.M.; Gomes, J.M.; Anjos, M.R.; Silveira, J.N.; Custódio, F.B.; Gloria, M.B.A. 2018. Mercury in fish from the Madeira River and health risk to Amazonian and riverine populations.Food Research International, 109: 537-543.). No significant differences in the concentration of Hg in carnivorous fish species (Serrasalmus spp, Hoplias malabaricus (Bloch 1794) and Cichla spp) were found between the low water and high water seasons in the Negro River (Dorea et al. 2006Dorea, J.G.; Barbosa, A.C.; Silva, G.S. 2006. Fish mercury bioaccumulation as a function of feeding behavior and hydrological cycles of the Rio Negro, Amazon.Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 142: 275-283.), nor in carnivorous/piscivorous species (Serrasalmus spp, Pinirampus pirinampu (Spix & Agassiz, 1829) and Cichla spp) in the Madeira River (Bastos et al. 2007Bastos, W.R.; de Almeida, R.; Dórea, J.G.; Barbosa, A.C. 2007. Annual flooding and fish-mercury bioaccumulation in the environmentally impacted Rio Madeira (Amazon).Ecotoxicology, 16: 341-346.). In places that have high Hg levels in the soil and high potential for methylation and deterioration of biomass, as found in the Amazon region, the interactions between species occur in all periods of the hydrological cycle, but do not alter the general state of bioaccumulation of Hg by fish (Bastos et al. 2007).

The complex trophic interactions (trophic plasticity, feeding selectivity, amplitude and overlap of food niches) among species, as well as their variability in Hg bioaccumulation patterns in high and low water periods (Bastos et al. 2007Bastos, W.R.; de Almeida, R.; Dórea, J.G.; Barbosa, A.C. 2007. Annual flooding and fish-mercury bioaccumulation in the environmentally impacted Rio Madeira (Amazon).Ecotoxicology, 16: 341-346.), can explain the absence of significant differences in THg concentrations between the periods of the hydrological cycle in our study. In the rising water and high water seasons, when average THg concentrations were also above the recommended limit (WHO 2019WHO. 2019. World Health Organization. Preventing disease through healthy environments: mercury in skin lightening products. ((https://apps.who.int/iris/handle/10665/330015 ). Accessed on 18 Sep 2020.
https://apps.who.int/iris/handle/10665/3...
), spawning activity occurs in P. squamosissimus. The exposure of fish to Hg can compromise the reproduction, growth and immunity (Graves et al. 2017Graves, S.D.; Kidd, K.A.; Houlahan, J.E.; Munkittrick, K.R. 2017. General and histological indicators of health in wild fishes from a biological mercury hotspot in northeastern North America.Environmental Toxicology and Chemistry, 36: 976-987.). Embryos and fingerlings exposed to Hg can develop abnormalities, changes in behavior and delayed development, reducing the chances of survival (Weis 2009Weis, J.S. 2009. Reproductive, developmental, and neurobehavioral effects of methylmercury in fishes.Journal Environmental Science health, 27: 212-225.).

The THg concentrations in most of the P. squamosissimus specimens were above the level allowed for the consumption of meat from predatory fish by humans by Brazilian legislation (1.0 mg kg-1) (Brasil 1998Brasil. 1998. Ministério da Saúde, Agência Nacional de Vigilância Sanitária. Portaria nº 685 de 27 de agosto de 1998 (define níveis máximos de contaminantes químicos em alimentos) . ( (https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-vegetal/legislacao-1/biblioteca-de-normas-vinhos-e-bebidas/portaria-no-685-de-27-de-agosto-de-1998.pdf ). Accessed on 10 Feb 2022.
https://www.gov.br/agricultura/pt-br/ass...
) and above the limit established for fish consumption by the WHO (0.50 mg kg-1) (WHO 2019WHO. 2019. World Health Organization. Preventing disease through healthy environments: mercury in skin lightening products. ((https://apps.who.int/iris/handle/10665/330015 ). Accessed on 18 Sep 2020.
https://apps.who.int/iris/handle/10665/3...
). Mercury intoxication can cause various disturbances in humans, especially in vulnerable groups such as babies, children and pregnant women (Fuentes-Gandara et al. 2018Fuentes-Gandara, F.; Pinedo-Hernández, J.; Marrugo-Negrete, J.; Díez, S. 2018. Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea.Environmental Geochemistry Health, 40: 229-242.). Mercury can affect humans at different biological levels, causing considerable damage to the central nervous system and kidneys (Beckers and Rinklebe 2017Beckers, F.; Rinklebe, J. 2017. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47: 693-794.). Plagioscion squamosissimus is widely consumed by the urban and rural population of the central region of Rondônia state, with relevant economic importance in regional trade. Therefore, it is necessary to monitor the Hg levels in this fish species on a regular basis.

CONCLUSIONS

The average mercury concentrations in the muscle and liver tissues of Plagioscion squamosissimus sampled in the Machado River were above the limits established by the WHO for human consumption. Since muscle tissue is the main part consumed, the results of this study are of great interest for analysis of regional food safety, mainly with regard to the different chemical species of Hg. However, we emphasize that no significant differences were found in the concentration of mercury between muscle and liver, between sexes and among the annual hydrological periods. We highlight that elemental analyses are necessary, involving species and isotopes of Hg (1) in different fish species in the watershed, (2) in the same species in different places, (3) at different trophic levels, and particularly (4) in different tissues of the same species, to configure a robust approach to understand this important threat to the enviornment and human health.

ACKNOWLEDGMENTS

We are grateful to the staff members of the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBIO) for their logistic and financial assistance during the fieldwork.

REFERENCES

  • ANA. 2013. Agência Nacional de Águas. HidroWeb -Sistema de informações hidrológicas, ( HidroWeb -Sistema de informações hidrológicas, (http://hidroweb.ana.gov.br/ ). Accessed on 15 Oct 2020.
    » http://hidroweb.ana.gov.br/
  • Anjos, M.R.D.; Machado, N.G.; Silva, M.E.P.D.; Bastos, W.R.; Miranda, M.R.; Carvalho, D.P.D.; Fulan, J.Â. 2016. Bioaccumulation of methylmercury in fish tissue from the Roosevelt River, Southwestern Amazon basin.Revista Ambiente & Água, 11: 508-518.
  • Azevedo-Silva, C.E.; Almeida, R.; Carvalho, D.P.; Ometto, J.P.; de Camargo, P.B.; Dorneles, P.R.; Torres, J.P. 2016. Mercury biomagnification and the trophic structure of the ichthyofauna from a remote lake in the Brazilian Amazon.Environmental Research, 151: 286-296.
  • Barros, L.C.; Santos, U.; Zanuncio, J.C.; Dergam, J.A. 2012. Plagioscion squamosissimus (Sciaenidae) and Parachromis managuensis (Cichlidae): A threat to native fishes of the Doce River in Minas Gerais, Brazil. Plos ONE, 7: e39138.
  • Bastos, W.R.; de Almeida, R.; Dórea, J.G.; Barbosa, A.C. 2007. Annual flooding and fish-mercury bioaccumulation in the environmentally impacted Rio Madeira (Amazon).Ecotoxicology, 16: 341-346.
  • Bastos, W.R.; Dórea, J.G.; Bernardi, J.V.E.; Lauthartte, L.C.; Mussy, M.H.; Lacerda, L.D.; Malm, O. 2015. Mercury in fish of the Madeira river (temporal and spatial assessment), Brazilian Amazon.Environmental Research, 140: 191-197.
  • Bastos, W.R.; Dórea, J.G.; Bernardi, J.V.E.; Manzatto, A.G.; Mussy, M.H.; Lauthartte, L.C.; Malm, O. 2016. Sex-related mercury bioaccumulation in fish from the Madeira River, Amazon. Environmental Research, 144: 73-80.
  • Bastos, W.R.; Gomes, J.P.O.; Oliveira, R.C.; Almeida, R.; Nascimento, E.L.; Bernardi, J.V.E.; Pfeiffer, W.C. 2006. Mercury in the environment and riverside population in the Madeira River Basin, Amazon, Brazil.Science of the Total Environment, 368: 344-351.
  • Bastos, W.R.; Malm, O.; Pfeiffer, W.C.; Cleary, D. 1998. Establishment and analytical quality control of laboratories for Hg determination in biological and geological samples in the Amazon, Brazil. Ciência e Cultura, 50: 255-260.
  • Bastos, W.R.; Rebelo, M.D.F.; Fonseca, M.D.F.; Almeida, R.D.; Malm, O. 2008. Um estudo descritivo do mercúrio em peixes da bacia do Rio Madeira, Amazônia, Brasil.Acta Amazonica, 38: 431-438.
  • Beckers, F.; Rinklebe, J. 2017. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47: 693-794.
  • Bennemann, S.T.; Capra, L.G.; Galves, W.; Shibatta, O.A. 2006. Dinâmica trófica dePlagioscion squamosissimus(Perciformes, Sciaenidae) em trechos de influência da represa Capivara (rios Paranapanema e Tibagi). Iheringia Serie Zoológica, 96: 115-119.
  • Bennemann, S.T.; Galves, W.; Capra, L.G. 2011. Recursos alimentares utilizados pelos peixes e estrutura trófica de quatro trechos no reservatório Capivara (Rio Paranapanema).Biota Neotropica, 11: 1-7. http://www.biotaneotropica.org.br/v11n1/pt/abstract?article+bn01411012011
    » http://www.biotaneotropica.org.br/v11n1/pt/abstract?article+bn01411012011
  • Bennemann, S.T.; Shibatta, O.A.; Garavello, J.C. 2000. Peixes do rio Tibagi: Uma Abordagem Ecológica 1st ed. Eduel, Londrina, 122p.
  • Beltran-Pedreros, S.; Zuanon, J.; Leite, R.G.; Peleja, J.R.P.; Mendonça, A.B.; Forsberg, B.R. 2011. Mercury bioaccumulation in fish of commercial importance from different trophic categories in an Amazon floodplain lake.Neotropical Ichthyology, 9: 901-908.
  • Bittarello, A.C.; Vieira, J.C.S.; Braga, C.P.; de Paula Araújo, W.L.; da Cunha Bataglioli, I.; da Silva, J.M.; de Magalhães Padilha, P. 2019. Characterization of molecular biomarkers of mercury exposure to muscle tissue of Plagioscion squamosissimus and Colossoma macropomum from the Amazon region.Food Chemistry, 276: 247-254.
  • Bourdineaud, J.P.; Durrieu, G.; Sarrazin, S.L.F.; da Silva, W.C.R.; Mourão, R.H.V.; de Oliveira, R.B. 2015. Mercurial exposure of residents of Santarém and Oriximiná cities (Pará, Brazil) through fish consumption.Environmental Science and Pollution Research, 22: 12150-12161.
  • Brasil. 1998. Ministério da Saúde, Agência Nacional de Vigilância Sanitária. Portaria nº 685 de 27 de agosto de 1998 (define níveis máximos de contaminantes químicos em alimentos) . ( (https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-vegetal/legislacao-1/biblioteca-de-normas-vinhos-e-bebidas/portaria-no-685-de-27-de-agosto-de-1998.pdf ). Accessed on 10 Feb 2022.
    » https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-vegetal/legislacao-1/biblioteca-de-normas-vinhos-e-bebidas/portaria-no-685-de-27-de-agosto-de-1998.pdf
  • Castro, N.S.S.D.; Braga, C.M.; Trindade, P.A.D.A.; Giarrizzo, T.; Lima, M.D.O. 2016. Mercury in fish and sediment of Purus River, Acre State, Amazon.Cadernos Saúde Coletiva, 24: 294-300.
  • CNEC. 1985. Inventário Hidrelétrico da Bacia do Rio Ji-Paraná; Estudos Ambientais da Bacia e Análise dos Impactos Ambientais no Trecho 2, Relatório Final Anexo IV. Unpublished technical environmental impact report. Consórcio Nacional de Engenheiros Consultores S.A. (CNEC), São Paulo, 35 maps.
  • Costa, I.D.; Angelini, R. 2020. Gut content analysis confirms the feeding plasticity of a generalist fish species in a tropical river.Acta Limnologica Brasiliensia, 32: e21.
  • Custódio, F.B.; Andrade, A. M.G.F.; Guidi, L.R.; Leal, C.A.G.; Gloria, M.B.A. 2020. Total mercury in comercial fishes and estimation of Brazilian dietary exposure to methylmercury. Journal of Trace Elements in Medicine and Biology, 66: 126641.
  • Da Silva, D.S.; Lucotte, M.; Paquet, S.; Brux, G.; Lemire, M. 2013. Inverse mercury and selenium concentration patterns between herbivorous and piscivorous fish in the Tapajos River, Brazilian Amazon.Ecotoxicology and Environmental Safety, 97: 17-25.
  • Dorea, J.G.; Barbosa, A.C.; Silva, G.S. 2006. Fish mercury bioaccumulation as a function of feeding behavior and hydrological cycles of the Rio Negro, Amazon.Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 142: 275-283.
  • Ferraz, S.F.D.; Vettorazzi, C.A.; Theobald, D.M.; Ballester, M.A.R. 2005. Landscape dynamics of Amazonian deforestation between 1984 and 2002 in central Rondonia, Brazil: assessment and future scenarios. Forest and Ecology Management, 204: 67-83.
  • Ferreira, S.L.; Lemos, V.A.; Silva, L.O.; Queiroz, A.F.; Souza, A.S.; Silva, E.G.; das Virgens, C.F. 2015. Analytical strategies of sample preparation for the determination of mercury in food matrices - a review.Microchemical Journal, 121: 227-236.
  • Fuentes-Gandara, F.; Pinedo-Hernández, J.; Marrugo-Negrete, J.; Díez, S. 2018. Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea.Environmental Geochemistry Health, 40: 229-242.
  • Graves, S.D.; Kidd, K.A.; Houlahan, J.E.; Munkittrick, K.R. 2017. General and histological indicators of health in wild fishes from a biological mercury hotspot in northeastern North America.Environmental Toxicology and Chemistry, 36: 976-987.
  • Hahn, N.S.; Adrian, I.F.; Fugi, R.; Almeida, V.L.L. 1997. Ecologia trófica. In: Vazzoler, A.E.A.M.; Agostinho, A.A.; Hahn, N.S. (Ed.).A Planície de Inundação do Alto Rio Paraná: Aspectos Físicos, Biológicos e Socioeconômicos v.1. EDUEM, Maringá, p.209-228.
  • Hahn, N.S.; Loureiro, V.E.; Delariva, R.L. 1999. Atividade alimentar de curvina Plagioscion squamosissimus (Heckel, 1840) (Perciformes, Sciaenidae) no rio Paraná. Acta Scientiarum. Biological Sciences, 21: 309-314.
  • Hancon, S.; Artaxo, P.; Gerab, F.; Yamasoe, M.A.; Campos, R.C.; Conti, L.F.; De Lacerda, L.D. 1995. Atmospheric mercury and trace elements in the region of Alta Floresta in the Amazon Basin. Water, Air and Soil Pollution, 80: 273-283.
  • IBGE. 1992. Manual Técnico da Vegetação Brasileira1st ed. IBGE, Rio de Janeiro, 49p.
  • ICMBIO. 2010. Instituto Chico Mendes de Conservação da Biodiversidade. Plano de manejo da Reserva Biológica do Jaru, 128p. ( (https://www.icmbio.gov.br/portal/images/stories/imgs-unidades-coservacao/Resumo%20Executivo%20-%20RB%20do%20Jaru.pdf ). Accessed on 19 Sep 2020.
    » https://www.icmbio.gov.br/portal/images/stories/imgs-unidades-coservacao/Resumo%20Executivo%20-%20RB%20do%20Jaru.pdf
  • INPE/PRODES. 2019. Instituto Nacional de Pesquisas Espaciais. Projeto PRODES. Monitoramento da floresta Amaznica brasileira por satélite. ((http://www.obt.inpe.br/prodes ). Acessed on 01 Nov 2019.
    » http://www.obt.inpe.br/prodes
  • Kehrig, H.D.A.; Malm, O. 1999. Methylmercury in fish as a tool for understanding the Amazon mercury contamination.Applied Organometallic Chemistry, 13: 689-696.
  • Krusche, A.V.; Ballester, M.V.R.; Victoria, R.L.; Bernardes, M.C.; Leite, N.K.; Hanada, L.; Gomes, B.M. 2005. Efeitos das mudanças do uso da terra na biogeoquímica dos corpos d’água da bacia do rio Ji-Paraná, Rondônia.Acta Amazonica, 35: 197-205.
  • Lacerda, L.D., Pfeiffer, W.C.P. 1992. Mercury form gold mining in the Amazon environment - an overview. Química Nova, 15: 155-160.
  • Lacerda, L.D.; Salomons, W. 1992. Mercúrio na Amazônia: Uma Bomba Relógio Química? Série Tecnologia Ambiental. 1st ed. CETEM/CNPq, Rio de Janeiro, 78p.
  • Lima, D.P.D.; Santos, C.; Silva, R.D.S.; Yoshioka, E.T.O.; Bezerra, R.M. 2015. Heavy metal contamination in fish and water from Cassiporé River basin, State of Amapá, Brazil.Acta Amazonica, 45: 405-414.
  • Mailman, M.; Stepnuk, L.; Cicek, N.; Bodaly, R.D. 2006. Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes: A review.Science of the Total Environmental, 368: 224-235.
  • Milačič, R.; Zuliani, T.; Vidmar, J.; Bergant, M.; Kalogianni, E.; Smeti, E.; Ščančar, J. 2019. Potentially toxic elements in water, sediments and fish of the Evrotas River under variable water discharges.Science of the Total Environmental, 648: 1087-1096.
  • Milhomem, F.E.O.; Oliveira, C.S.B.; Silveira, L.C.L.; Cruz, T.M.; Souza, G.S.; Costa Júnior, J.M.F. 2018. A ingestão de pescado e as concentrações de mercúrio em famílias de pescadores de Imperatriz (MA). Revista Brasileira de Epidemiologia, 19: 14-25.
  • Montes, C.; Rosa Filho, J.S.; Rocha, R.M. 2011. Histological Biomarker as Diagnostic Tool for Evaluating the Environmental Quality of Guajará Bay-PA-Brazil. Environmental Monitor, 1: 35-48.
  • Moreno-Brush, M.; Rydberg, J.; Gamboa, N.; Storch, I.; Biester, H. 2016. Is mercury from small-scale gold mining prevalent in the southeastern Peruvian Amazon?Environmental Pollution, 218: 150-159.
  • Nascimento, E.L.; Miyai, R.K.; Gomes, J.P.O.; Almeida, R.; De Carvalho, D.P.; Manzatto, A.G.; Bernardi, J.V.E.; Silveira, E.G.; Bastos, W.R. 2020. Dynamics of mercury in the plankton of a hydroelectric reservoir, Western Amazon. Environmental Monitoring and Assessment, 1: 192-647.
  • Neves, M.P.; Delariva, R.L.; Guimarães, A.T.B.; Sanches, P.V. 2015. Carnivory during ontogeny of the Plagioscion squamosissimus: A successful non-native fish in a lentic environment of the Upper Paraná River Basin.PloS One, 10: e0141651.
  • Nunes, J.V.; Jesus, T.B. 2019. Determinação de metais pesados (Mn, Cd, Cr, Cu, Pb) em peixes das espécies Astyanax bimaculatus, Hoplias malabarcius e Oreochromis niloticus presente na Lagoa Salgada-Rio Subaé-Feira de Santana (Bahia).Revista Brasileira de Meio Ambiente, 5: 23-31.
  • Nuñez, J.; Duponchelle, F. 2009.Towards a universal scale to assess sexual maturation and related life history traits in oviparous teleost ishes. Fish Physiology and Biochemistry, 35: 167-180.
  • Oliveira, R.C.; Dórea, J.G.; Bernardi, J.V.; Bastos, W.R.; Almeida, R.; Manzatto, Â.G. 2010. Fish consumption by traditional subsistence villagers of the Rio Madeira (Amazon): impact on hair mercury.Annals of Human Biology, 37: 629-642.
  • Pecoraro, G.D.; Hortellani, M.A.; Hagiwara, Y.S.; Braga, E.S.; Sarkis, J.E.; Azevedo, J.S. 2019. Bioaccumulation of total mercury (THg) in catfish (Siluriformes, Ariidae) with different sexual maturity from Cananéia-Iguape Estuary, SP, Brazil.Bulletin of Environmental Contamination and Toxicology, 102: 175-179.
  • R Development Core Team. 2017. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ( (https://www.r-project.org/ ). Acessed on 15 Nov 2019.
    » https://www.r-project.org/
  • Régine, M.B.; Gilles, D.; Yannick, D.; Alain, B. 2006. Mercury distribution in fish organs and food regimes: Significant relationships from twelve species collected in French Guaiana (Amazonian basin). Science of the Total Environmental, 368: 262−270.
  • Rivera, S.J.; Pacheco, L.F.; Achá, D.; Molina, C.I.; Miranda-Chumacero, G. 2016. Low total mercury in Caiman yacare (Alligatoridae) as compared to carnivorous, and non-carnivorous fish consumed by Amazonian indigenous communities.Environmental Pollution, 218: 366-371.
  • Rocha, A.A.F.; Santos, N.C.L.; Medeiros, T.N.; Severi, W. 2015. Relações tróficas entre Acestrorhynchus britskii (nativa) e Plagioscion squamosissimus (introduzida) em sistema de reservatórios em cascata.Boletim do Insttuto de Pesca, 41: 917-930.
  • Rodrigues, W.B.; Marta, J.M.C. 2017. Exploração aurífera artesanal e a migração de garimpeiros para o território rondoniense. Fronteiras: Revista de História, 33: 43-69.
  • Romanuk, T.N.; April, H.A.; Hutchings, J.A. 2011. Trophic level scales positively with body size in fishes. Global Ecology and Biogeography, 20: 231-240.
  • Rua-Ibarz, A.; Bolea-Fernandez, E.; Maage, A.; Frantzen, S.; Sanden, M.; Vanhaecke, F. 2019. Tracing mercury pollution along the Norwegian coast via elemental, speciation, and isotopic analysis of liver and muscle tissue of deep-water marine fish (Brosme brosme).Environmetal Science & Technology, 53: 1776-1785.
  • Sampaio da Silva, D.; Lucotte, M.; Paquet, S.; Brux, G.; Lemire, M. 2013. Inverse mercury and selenium concentration patterns between herbivorous and piscivorous fish in the Tapajos River, Brazilian Amazon.Ecotoxicology and environmental safety, 97: 17-25.
  • Sampaio da Silva, D.; Lucotte, M.; Paquet, S.; Davidson, R. 2009. Influence of ecological factors and of land use on mercury levels in fish in the Tapajós River basin, Amazon.Environmental Research, 109: 432-446.
  • Santos, G.M.; Ferreira, E.J.G.; Zuanon, J.A.S. 2006. Peixes Comerciais de Manaus 1st. ed. Editora INPA, Manaus, 43p.
  • Santos, N.C.; Nascimento, M.T.; Rocha, A.A.F.; Dias, R.M.; Severi, W. 2016. Uso de recursos alimentares por Plagioscion squamosissimus-piscívoro não-nativo no reservatório de Sobradinho-BA, Brasil. Boletim do Instituto de Pesca, 40: 397-408.
  • Silva, S.F.; Oliveira, D.C.; Pereira, J.P.G.; Castro, S.P.; Costa, B.N.S.; de Oliveira Lima, M. 2019. Seasonal variation of mercury in commercial fishes of the Amazon Triple Frontier, Western Amazon Basin.Ecological Indicator, 106:105-116.
  • Soares, J.M.; Gomes, J.M.; Anjos, M.R.; Silveira, J.N.; Custódio, F.B.; Gloria, M.B.A. 2018. Mercury in fish from the Madeira River and health risk to Amazonian and riverine populations.Food Research International, 109: 537-543.
  • Sousa, E.A.D.; Miranda, M.R.; dos Santos, M.H.; Costa Júnior, W.A.; Lauthartte, L.C.; Mussy, M.H.; Bastos, W.R. 2015. Assessment of trace metals in Amazonian fish exposed to untreated urban sewage: high chromium concentrations in fish tissues.Revista Ambiente & Água, 10: 499-509.
  • Squadrone, S.; Prearo, M.; Brizio, P.; Gavinelli, S.; Pellegrino, M.; Scanzio, T. 2013. Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian Rivers.Chemosphere, 90: 358-365.
  • Tacon, A.G.; Metian, M. 2009. Fishing for feed or fishing for food: increasing global competition for small pelagic forage fish.Ambio, 4: 294-302.
  • Vasanthi, N.; Muthukumaravel, K.; Sathick, O.; Sugumaran, J. 2019. Toxic effect of mercury on the freshwater fish oreochromis mossambicus. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 5: 64-76.
  • Vasile, G.G.; Gheorghe, S.; Ene, C.; Serban, E.A.; Stoica, C. 2019. Total mercury in fish and benthic invertebrates collected from Olt River, Romania. Revista de Chimie, 70: 263-268.
  • Vazzoler, A.E.A.M. 1996. Biologia da Reprodução de Peixes Teleósteos: Teoria e Prática 1st ed. EDUEM, Maringá , 169p.
  • Veiga, M.M.; Hinton, J.J. 2002. Abandoned Artisanal Gold Mines in the Brazilian Amazon: A Legacy of Mercury Pollution 1st ed. Blackwell Publishing Ltd., Oxford, 234p.
  • Weis, J.S. 2009. Reproductive, developmental, and neurobehavioral effects of methylmercury in fishes.Journal Environmental Science health, 27: 212-225.
  • WHO. 2019. World Health Organization. Preventing disease through healthy environments: mercury in skin lightening products. ((https://apps.who.int/iris/handle/10665/330015 ). Accessed on 18 Sep 2020.
    » https://apps.who.int/iris/handle/10665/330015
  • Wunderlich, A.C.; Silva, R.J.; Zica, É.O.; Rebelo, M.F.; Parente, T.E.; Vidal-Martínez, V.M. 2015 The influence of seasonality, fish size and reproductive status on EROD activity in Plagioscion squamosissimus: Implications for biomonitoring of tropical/subtropical reservoirs.Ecological Indicators, 58: 267-276.
  • Xu, X.; Wang, W.X. 2015. Isotopic fractionation during the uptake and elimination of inorganic mercury by a marine fish. Environmental Pollution, 206: 202-208.
  • Zar, J.H. 1996. Biostatistical Analysis 1st ed. Prentice-Hall, New Jersey, 123p.
  • CITE AS:

    Costa, I.D.; Nascimento, E.L.; Faccheti, M.S.A.; Nunes, N.N.S.; Gomes, J.P.O.; Almeida, R.; Bastos, W.R. 2022. Mercury in muscle and liver of Plagioscion squamosissimus (Acanthuriformes: Sciaenidae) from the Machado River, Brazilian Amazon. Acta Amazonica 52: 60-68.

SUPPLEMENTARY MATERIAL

(only available in the electronic version)

Costa et al. Mercury in muscle and liver of Plagioscion squamosissimus (Acanthuriformes: Sciaenidae) from the Machado River, Brazilian Amazon

Figure S1
Sampling sites in the Machado River, Rondônia state, Brazil: A - Carmita; B - Farofa; C − Suretama (preserved area); D − São Sebastião, sand dredging activity; E and F − (S1F) Poção, pasture, few woody angiosperms and stretches of bushes, degraded local banks (unpreserved area).

Edited by

ASSOCIATE EDITOR:

Carlos José Sousa Passos

Publication Dates

  • Publication in this collection
    16 Mar 2022
  • Date of issue
    Jan-Mar 2022

History

  • Received
    22 Apr 2020
  • Accepted
    10 Feb 2022
Instituto Nacional de Pesquisas da Amazônia Av. André Araujo, 2936 Aleixo, 69060-001 Manaus AM Brasil, Tel.: +55 92 3643-3030, Fax: +55 92 643-3223 - Manaus - AM - Brazil
E-mail: acta@inpa.gov.br