Acessibilidade / Reportar erro

The bycatch of piramutaba, Brachyplatystoma vaillantii industrial fishing in a salinity and depth gradient in the Amazon estuary, Brazil

ABSTRACT

The piramutaba, Brachyplatystoma vaillantii is a freshwater catfish that is the most abundant fishery resource in the Amazon estuary. Piramutaba trawling is done on industrial fishing scale and is characterized by the presence of many freshwater and marine bycatch species, with and without commercial value. Here we describe the bycatch of the industrial fishery of piramutaba in the Amazon estuary and evaluate the relationship of two important environmental factors, depth and salinity, with the accidental capture of freshwater and marine fishes in the Amazon estuary in the rainy and dry seasons. We identified 21 cartilaginous fish species (19.1% freshwater and 80.9% marine) and 125 bony fish species (25.6% freshwater and 74.4% marine). The bycatch included 64 species without commercial value (43% of all bycatch species), which are always discarded. Freshwater and estuarine fishes exhibited significantly higher abundances in shallower environments, while marine fishes were similarly abundant along the entire depth gradient. On the contrary, the abundance of freshwater fishes significantly decreased, and that of estuarine and marine fishes significantly increased with increasing salinity. Regarding the conservation status of the bycatch species, one is classified as vulnerable (VU), and seven as critically endangered (CR). The information on the bycatch of piramutaba fishery in the Amazon estuary is important to subsidize regional fisheries policies and the management of protected areas.

KEYWORDS:
freshwater; marine; environmental factors

RESUMO

A piramutaba, Brachyplatystoma vaillantii é um bagre de água doce que representa o recurso pesqueiro mais abundante no estuário amazônico. O arrasto da piramutaba é feito em escala industrial, caracterizado pela presença de muitas espécies de água doce e marinha capturadas de forma incidental, com e sem valor comercial. Aqui descrevemos a captura incidental da pesca industrial de piramutaba no estuário amazônico e avaliamos a relação de dois fatores ambientais, profundidade e salinidade, com a captura incidental de espécies de água doce e marinhas nas estações chuvosa e seca. Identificamos 21 espécies de peixes cartilaginosos (19,1% de água doce e 80,9% marinhos) e 125 espécies de peixes ósseos (25,6% de água doce e 74,4% marinhos). A captura incidental incluiu 64 espécies sem valor comercial (43% de todas as espécies capturadas) que sempre são descartadas. Os peixes de água doce e estuarinos exibiram abundâncias significativamente maiores em ambientes mais rasos, enquanto os peixes marinhos foram igualmente abundantes ao longo de todo o gradiente de profundidade. Inversamente, a abundância de peixes de água doce diminuiu significativamente, e a de peixes estuarinos e marinhos aumentou significativamente em salinidades maiores. Em relação ao estado de conservação das espécies capturadas, uma é reconhecida como vulnerável (VU) e sete como criticamente ameaçadas (CR). As informações sobre a captura incidental da pesca da piramutaba no estuário amazônico são fundaentais para subsidiar políticas pesqueiras regionais e gestão de áreas protegidas.

PALAVRA-CHAVE:
água doce; marinho; fatores ambientais

INTRODUCTION

The piramutaba, Brachyplatystoma vaillantii (Siluriformes: Pimelodidae) is a freshwater catfish that is the most abundant fishery resource of the Amazon estuary, formed by a panmitic population along the Solimões-Amazonas River (Barthem and Goulding 1997Barthem, R.B.; Goulding, M. 1997. The Catfish Connection: Ecology, Migration, and Conservation of Amazon Predators. Columbia University Press, New York. 144 p.; Formiga et al. 2021Formiga K.M.; Batista, J.S.; Alves-Gomes, J.A. 2021. The most important fishery resource in the Amazon, the migratory catfish Brachyplatystoma vaillantii (Siluriformes: Pimelodidae), is composed by an unique and genetically diverse population in the Solimões-Amazonas River System. Neotropical Ichthyology, 19: e200082. ). This catfish is explored by artisanal fisheries using gillnets and long lines and industrial fisheries using pair or triple trawling (Barthem, and Goulding 1997Barthem, R.B.; Goulding, M. 1997. The Catfish Connection: Ecology, Migration, and Conservation of Amazon Predators. Columbia University Press, New York. 144 p.; Ruffino 2003Ruffino, M.L. 2003. A pesca e os recursos pesqueiros na Amazônia Brasileira. IBAMA/ProVárzea, Manaus, p.137-167.). The industrial fishery of the piramutaba began in 1971 with the use of adapted shrimp boats (Silva et al. 2016Silva, L.E.O.; Silva, K.C.A.; Contra, I.H.A. 2014. Sobre a pesca industrial para peixes diversos na plataforma continental amazônica. Revista Brasileira de Engenharia de Pesca, 7: 34-53.), reached the largest landing (22,486 tonnes) in 1977, and occupied the ninth place on the list of exportation goods from Pará state, Brazil by 1980 (Dias-Neto et al. 1985Dias Neto, J.; Damasceno, J.F.G.; Pontes, A.C. 1985. Biologia e pesca da piramutaba, Brachyplatystoma vaillantii Valenciennes, na região Norte do Brasil. SUDEPE, Série Documentos Técnicos, 35: 47-112.; Barthem 1990Barthem, R.B. 1990. Descrição da pesca da piramutaba (Brachyplatystoma vaillantii) no estuário e na calha do rio Amazonas. Boletim do Museu Paraense Emilio Goeldi, 6: 117-130.; Dias-Neto 1991Dias Neto, J. 1991. A Pesca da Piramutaba (Brachyplatystoma vaillantii, Val.) na região Norte do Brasil. Atlântica, 13: 11-19. ; Prestes et al. 2022Prestes, L.; Barthem, R.; Mello-Filho, A.; Anderson, E.; Correa, S.B.; Couto, T.B.D.; et al. 2022. Proactively averting the collapse of Amazon fisheries based on three migratory flagship species. PloS One, 17: e0264490.). The piramutaba trawl fishery is limited to the Amazon estuary facing the Marajó Island and the coast of state of Amapá coast, Brazil (Prestes et al. 2022Prestes, L.; Barthem, R.; Mello-Filho, A.; Anderson, E.; Correa, S.B.; Couto, T.B.D.; et al. 2022. Proactively averting the collapse of Amazon fisheries based on three migratory flagship species. PloS One, 17: e0264490.), a region characterized by the extensive input of sediments by the Amazon River (Geyer et al. 1996Geyer, W.R.; Beardsley, R.C.; Lentz, S.J.; Candela, J.; Limeburner, R.; Johns, W.E.; Castro, B.M.; Soares, I.D. 1996. Physical oceanography of the Amazon shelf. Continental Shelf Research, 16: 575-616.), with enormous oscillation in the discharge of the Amazon River, which, at its peak in May-June, more than doubles the minimum discharge, which occurs in November (Guimberteau et al. 2012Guimberteau, M.; Drapeau, G.; Ronchail, J.; Sultan, B.; Polcher, J.; Martinez, J.M.; et al. 2012. Discharge simulation in the sub-basins of the amazon using orchidee forced by new datasets. Hydrology and Earth System Sciences, 16: 911-935.). The region is located between the North Cape (01º42’S and 49º55’W) and the Maguari Cape (00º15’S and 48º25’W) (Figure 1), encompassing a 80-mile coastline stretch with a depth range between 3 and 20 m (Santos et al. 1984Santos, G.M; Jegu, M.; Mérona, B. 1984. Catálogo de peixes comerciais do Rio Tocantins. Projeto Tucuruí. Eletronorte/CNPq/INPA, Manaus, 86p.; Dias-Neto et al. 1985Dias Neto, J.; Damasceno, J.F.G.; Pontes, A.C. 1985. Biologia e pesca da piramutaba, Brachyplatystoma vaillantii Valenciennes, na região Norte do Brasil. SUDEPE, Série Documentos Técnicos, 35: 47-112.).

Figure 1
Location of the Amazon estuary (small map, in red) and detailment of the study area between North Cape (one asterisk) and Maguari Cape (two asterisks) by the mouth of the Amazon River. This figure is in color in the electronic version.

The great economic importance of the piramutaba fishery led to many scientific studies on the species, including topics such as migration (Godoy 1979Godoy, M.P. 1979. Marcação e Migração da Piramutaba, Brachyplatystoma vaillantii (Val. 1940) na Bacia Amazônica (Pará e Amazonas), Brasil. (Pisces Nematognalhi, Pimelodidae). Boletim da Faculdade de Ciências Agrárias do Pará, 11: 1-21.; Barthem and Goulding 1997Barthem, R.B.; Goulding, M. 1997. The Catfish Connection: Ecology, Migration, and Conservation of Amazon Predators. Columbia University Press, New York. 144 p.; Duponchelle et al. 2021Duponchelle, F.; Isaac, V.J.; Doria, C.; Van Damme, P.A.; Herrera‐R, G.A.; Anderson, E.P.; et al. 2021. Conservation of migratory fishes in the Amazon basin. Aquatic Conservation: Marine and Freshwater Ecosystems, 31: 1087-1105.), age and growth determination (Barthem and Petrere 1995Barthem, R.B.; Petrere-Jr, M. 1995. Fisheries and population dynamics of the freshwater catfish Brachyplatystoma vaillantii in the Amazon estuary. In: Armantrout, N.B. (Ed.). Condition of the World’s Aquatic Habitat. Proceedings of the World Fisheries Congress, Theme 1. I.B.H. Publishing Ltd., New Delhi, Athens, p. 329-350.; Alonso and Pirker 2005Alonso, J.C.; Pirker, L.E.M. 2005. Dinâmica populacional e estado atual da exploração de piramutaba e de dourada. In: Fabré, N.N. e Barthem, R.B. O Manejo da Pesca dos Grandes Bagres Migradores. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Brasília. p.21-28.), genetic variability (Rodrigues 2009Rodrigues, F.C. 2009. Estimativa da variabilidade genética da piramutaba (Brachyplatystoma vaillantii) por meio de marcadores moleculares microssatélites e D-loop de quatro localidades da Amazônia: diferença ente calha e tributários. Master’s dissertation, Instituto Nacional de Pesquisas da Amazônia (INPA), Brazil. 96p. (https://repositorio.inpa.gov.br/handle/1/37572?locale=en).
https://repositorio.inpa.gov.br/handle/1...
; Batista et al. 2005Batista, J.S.; Aquino, K.F.; Farias, I.P.; Gomes, J.A.A. 2005. Variabilidade genética da dourada e da piramutaba na bacia Amazônica. In: Fabré, N.N.; Barthem, R.B. (Ed.). O Manejo da Pesca dos Grandes Bagres Migradores: Piramutaba e Dourada no Eixo Solimões-Amazonas. IBAMA/ProVárzea, Manaus, p.15-19.), fishing stock (Barthem 1990Barthem, R.B. 1990. Descrição da pesca da piramutaba (Brachyplatystoma vaillantii) no estuário e na calha do rio Amazonas. Boletim do Museu Paraense Emilio Goeldi, 6: 117-130.; Barthem and Petrere 1995Barthem, R.B.; Petrere-Jr, M. 1995. Fisheries and population dynamics of the freshwater catfish Brachyplatystoma vaillantii in the Amazon estuary. In: Armantrout, N.B. (Ed.). Condition of the World’s Aquatic Habitat. Proceedings of the World Fisheries Congress, Theme 1. I.B.H. Publishing Ltd., New Delhi, Athens, p. 329-350.; Chaves et al. 2003Chaves, R.A.; Silva, K.C.A.; Ivo, C.T.C.; Cintra, I.H.A.; Aviz, J.S. 2003. Sobre a pesca da piramutaba, Brachyplatystoma vaillantii (Valenciennes, 1840) em pescarias da frota industrial no estado do Pará. Boletim Técnico Científico do Cepnor, 3: 163-177. ; Alonso and Pirker 2005Alonso, J.C.; Pirker, L.E.M. 2005. Dinâmica populacional e estado atual da exploração de piramutaba e de dourada. In: Fabré, N.N. e Barthem, R.B. O Manejo da Pesca dos Grandes Bagres Migradores. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Brasília. p.21-28.; Barthem et al. 2015Barthem, R.B.; Mello, F.A.; Assunção, W.; Gomes, P.F.F.; Brabosa, C.A.C. 2015. Estrutura de tamanho e distribuição espacial da piramutaba (Brachyplatystoma vaillantii) na foz amazônica: implicações para o manejo da pesca. Boletim do Instuto de Pesca, 41: 249-260.), gear selectivity (Barthem 1998Barthem, R.B. 1998. Seletividade de rede de emalhar para piramutaba (Brachyplatystoma vaillantii). Boletim do Museu Paraense Emilio Goeldi, 14: 5-18.; Furtado Junior et al. 2013Furtado Jr, I.; Sousa, G.F.; Silva Tavares, M.C.; Begot, L.H. 2013. Seletividade da rede de arrasto para captura da piramutaba, Brachyplatystoma vaillantii (valenciennes, 1840) obtida pela relação comprimento-perímetro. Tropical Journal of Fisheries and Aquatic Sciences (Boletim Técnico Científico do Cepnor), 7: 85-96.), and fisheries management (Klautau et al. 2016aKlautau, A.G.C.M.; Cordeiro, A.P.B.; Cintra, I.H.A.; Silva, L.E.O.; Carvalho, H.R.L.; Ito, L.S. 2016a. Impacted biodiversity by industrial piramutaba fishing in the Amazon river mouth. Boletim do Instituto e Pesca, 42: 102-111.; Prestes et al. 2022Prestes, L.; Barthem, R.; Mello-Filho, A.; Anderson, E.; Correa, S.B.; Couto, T.B.D.; et al. 2022. Proactively averting the collapse of Amazon fisheries based on three migratory flagship species. PloS One, 17: e0264490.). The knowledge on the biodiversity of the bycatch produced during the paired trawling, however, is still poor and marred by dubious species identifications (Barthem 1985; Jimenez et al. 2013Jimenez, E.A.; Asano-Filho, M.; Frédou, F.L. 2013. Fish bycatch of the laulao catfish Brachyplatystoma vaillantii (Valenciennes, 1840) trawl fishery in the Amazon estuary. Brazilian Journal of Oceanography, 61: 129-140.; Silva et al. 2016Silva, L.E.O.; Silva, K.C.A.; Contra, I.H.A. 2014. Sobre a pesca industrial para peixes diversos na plataforma continental amazônica. Revista Brasileira de Engenharia de Pesca, 7: 34-53.; Klautau et al. 2016bKlautau, A.G.C.M.; Cordeiro, A.P.B.; Cintra, I.H.A.; Silva, L.E.O.; Bastos, C.E.M.C.; Carvalho, H.R.L.; Ito, L.S. 2016b. Analysis of the industrial fishing of piramutaba catfish, Brachyplatystoma vaillantii (Valenciennes 1840), in two estuarine areas of the Brazilian Amazon. Pan-American Journal of Aquatic Sciences, 11: 143-150.) which is further complicated by the absence of voucher material from bycatch surveys (AP Marceniuk, personal observation).

Trawling has low selectivity, therefore producing a high proportion of accidental captures (Perez and Pezzuto 1998Perez, J.A.A.; Pezzuto, P.R. 2006. A pesca de arrasto de talude do sudeste e sul do Brasil: Tendências da frota nacional entre 2001-2003. Boletim do Instituto de Pesca, 32: 127-50.; Diamond et al. 2000Diamond, S.L.; Cowell, L.G.; Crowder, L.B. 2000. Population effects of shrimp trawl bycatch on Atlantic croaker. Canadian Journal of Fisheries and Aquatic Sciences, 57: 2010-2021. ) of species with and without commercial value, the latter being discarded (Alverson et al. 1994Alverson, D.L.; Freeberg, M.H.; Pope, J.G.; Murawski, J.A. 1994. A global assessment of fisheries bycatch and discards. F.A.O. Fisheries Technical Paper, # 339, 233p.; Clucas 1998Clucas I. 1998. Bycatch - is it a bonus from the sea? Infofish International, 3: 24-28. ). Accidental captures may have a significant impact on local biodiversity (Clucas 1997Clucas, I. 1997. A study of the options for utilization of bycath and discards from marine capture fisheries. Food and Agriculture Organization of the United Nations, Rome, 59p.) by altering the community structure and food webs (Anderson et al. 2013Anderson, M.J.; Tolimieri, N.; Millar, R.B. 2013. Beta diversity of demersal fish assemblages in the North-Eastern Pacific: Interactions of latitude and depth. PLoS ONE, 8: e57918. ), which makes trawling management challenging (Davies et al. 2009Davies, R.W.D.; Cripps, S.J.; Nickson, A.; Porter, G. 2009. Defining and estimating global marine fisheries bycatch. Marine Policy, 33: 661-72.). The correct identification of the bycatch is fundamental for establishing the guidelines for fisheries zonation, which should be based on all the populations affected by the activity (sensu Manthey and Fridley 2009Manthey, M.; Fridley, J.D. 2009. Beta diversity metrics and the estimation of niche width via species co-occurrence data: reply to Zeleny. Journal of Ecology, 97: 18-22. ). Therefore, the incomplete knowledge of the fish diversity of the bycatch of the piramutaba industrial fishery hampers the development of effective protection measures for the local fauna and the management of the ecosystems affected by the activity (Thrush et al. 1998Thrush, S.; Hewitt, J.; Cummings, V.; Dayton, P.; Cryer, M.; Turner, S. et al. 1998. Disturbance of the marine benthic habitat by commercial fishing: impacts at the scale of the fishery. Ecological Applications, 8: 866-79.; Greenstreet and Rogers 2004Greenstreet, S.P.; Rogers, S. 2004. Indicators of the health of the North Sea fish community: identifying reference levels for an ecosystem approach to management. ICES Journal of Marine Science, 67: 573-93. ; Juan and Demestres 2012Juan, S.; Demestre, M. 2012. A trawl disturbance Indicator to quantify large scale fishing impact on benthic ecosystems. Ecological Indicators, 18: 183-90.).

In this study, we describe the bycatch of the industrial fishery of the piramutaba in the Amazon estuary by integrating secondary data from the literature with primary data from the Japan International Cooperation Agency (JICA), the Centro Nacional de Pesquisa e Conservação da Biodiversidade Marinha do Norte (CEPNOR-ICMBIO), and personal databases from collaborators. Considering that salinity and depth were the main forces that structured the distribution patterns of species in the Ariidae family in the Amazon estuary (Soares et al. 2021Soares, B.E.; Benone, N.L.; Barthem, R.B.; Marceniuk, A.P.; Montag, L.F.A. 2021. Environmental conditions promote local segregation, but functional distinctiveness allows aggregation of catfishes in the Amazonian estuary. Estuarine, Coastal and Shelf Science, 251: 1-8.), we analyzed the influence of these two factors considering the abundance of all fish captured by trawls in the same area. For this, we grouped the fish into three groups, marine, estuarine and freshwater, and tested the abundance of these groups in response to salinity and depth in the periods of the year when the discharge of the Amazon River is maximum and minimum.

MATERIAL AND METHODS

Study area

The study area was undertaken in the inner estuary of the Amazon River mouth, in the fishing area of the Brazilian bottom pair trawler fleet (Figure 1). The area is characterized by the shallow muddy bottom and the dynamism of the mixture of the freshwater of the Amazon River and the marine water (Curtin and Legeckis 1986Curtin, T.B.; Legeckis, R.V. 1986. Physical observations in the plume region of the Amazon river during peak discharge - I. Surface variability. Continental Shelf Research., 6: 31-51.; Eisma and Marel 1971Eisma, D.; Van Der Marel, H.W. 1971. Marine muds along the Guyana coast and their origin from Amazon Basin. Contribution in Mineralogy and Petrology, 31: 321-334.). The annual discharge cycle of the Amazon River ranges from 230×103 m3 s−1 in the first half of the year to 103×103 m³ s−1 in the second half (Guimberteau et al. 2012Guimberteau, M.; Drapeau, G.; Ronchail, J.; Sultan, B.; Polcher, J.; Martinez, J.M.; et al. 2012. Discharge simulation in the sub-basins of the amazon using orchidee forced by new datasets. Hydrology and Earth System Sciences, 16: 911-935.) and causes the displacement of wedge salt along the shelf of the Amazon mouth, being the most critical force acting on the salinity structure of the plume (Geyer et al. 1996Geyer, W.R.; Beardsley, R.C.; Lentz, S.J.; Candela, J.; Limeburner, R.; Johns, W.E.; Castro, B.M.; Soares, I.D. 1996. Physical oceanography of the Amazon shelf. Continental Shelf Research, 16: 575-616.). The dry season is marked by the arrival of brackish waters to the coast in May, and by the predominance of fresh waters from December (Barthem and Schwassmann 1994Barthem, R.B.; Schwassmann, H.O. 1994. Amazon river influence on the seasonal displacement of the Salt Wedge in the Tocantins River Estuary, Brazil, 1983-1985. Boletim do Museu Paraense Emílio Goeldi, 10: 119-130.).

Database

We compiled a species list of bycatch from available data of published studies on the bycatch of the industrial outrigger trawling fleet of the North coast do Brazil (Barthem 1985; Jimenez et al. 2013Jimenez, E.A.; Asano-Filho, M.; Frédou, F.L. 2013. Fish bycatch of the laulao catfish Brachyplatystoma vaillantii (Valenciennes, 1840) trawl fishery in the Amazon estuary. Brazilian Journal of Oceanography, 61: 129-140.; Silva et al. 2016Silva, L.E.O.; Silva, K.C.A.; Contra, I.H.A. 2014. Sobre a pesca industrial para peixes diversos na plataforma continental amazônica. Revista Brasileira de Engenharia de Pesca, 7: 34-53.; Klautau et al. 2016), primary data from the Japan International Cooperation Agency (JICA) from 1996 to 1997, and Research and Conservation National Center of Northern Marine Biodiversity (CEPNOR, Brazil) from 2016 to 2020.

The collections by JICA, Museu Paraense Emilio Goeldi (MPEG), and Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMAIBAMA. 1998. Camarão do Norte e Piramutaba. Peixes Comerciais do Médio Amazonas. Coleção Meio Ambiente, Série Estudos de Pesca, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Brasília , 214p.) were performed between 1996 and 1997, sampling in an area divided into 1330 blocks of 3′ latitude by 3′ longitude each and nearly nine square nautical miles in total. Samplings were carried out during three trawling expeditions in the dry period of 1996 (August to September), the rainy period of 1997 (March to April), and the dry period of 1997 (August to September). Each seasonal survey comprised 120 trawling stations distributed randomly and proportionally to the area of three strata of isobaths: 5-10 m, 10-20 m, and 20-50 m. In each station, fishes were sampled by bottom trawling conducted by a pair of vessels operating for 30 min along the current direction at a constant 2-3 knots speed. Standardized trawls were carried out at daytime by trawlers equipped with bottom trawl nets of 58.2 m length and 14 cm between opposite knots, with all collected specimens identified and counted.

The collections by CEPNOR were carried out under SISBIO license # 44915-7 and all species collected by CEPNOR are represented by voucher specimens in the ichthyological collection of Museu Paraense Emílio Goeldi (MPEG) in Belém (Pará, Brazil), the zoological collection of Universidade Santa Cecília at Santos (AZUSC) in Santos (São Paulo, Brazil), and the Laboratory of Fish Biology and Genetics (LBP) at Universidade Estadual Paulista Júlio de Mesquita in Botucatu (São Paulo, Brazil). Images and voucher numbers of all marine species captured by CEPNOR are available in Marceniuk et al. (2020Marceniuk, A.P.; Barthem, R.B.; Wosiacki, W.B.; Klautau, A.G.C.M.; Vaske-Junior, T.; Rotundo, M.M.; et al. 2020. Sharks and batoids (Subclass Elasmobranchii) caught in the industrial fisheries off the Brazilian North coast. Revista Nordestina de Biologia, 27: 1-13. ; 2021aMarceniuk, A.P.; Caires, R. A.; Carvalho-Filho, A.; Rotundo, M.M.; Santos, W.C.R.; Klautau, A.G.C.M. 2021a. Peixes Teleósteos da costa Norte do Brasil. 1st ed. NUELI/MPEG, Belém, 900p. ).

Species were identified using the descriptions and collection keys provided by Van Der Sleen and Albert (2017)Sleen, P.V.D.; Albert, J.S. 2018. Field Guide to the Fishes of the Amazon, Orinoco, and Guianas. 1st ed., Princeton University Press, Nova Jersey, 1488p. and Marceniuk et al. (2021a)Marceniuk, A.P.; Caires, R. A.; Carvalho-Filho, A.; Rotundo, M.M.; Santos, W.C.R.; Klautau, A.G.C.M. 2021a. Peixes Teleósteos da costa Norte do Brasil. 1st ed. NUELI/MPEG, Belém, 900p. . Species were further classified as primary marine, estuarine, or freshwater following Nelson (2016)Nelson, J. S.; Grande, T.C.; Wilson, M.V.H. 2016. Fishes of the World. 5th ed. John Wiley e Sons Inc., New Jersey, 707p. and as pelagic, demersal, or benthonic following Marceniuk et al. (2021b)Marceniuk, A.P.; Caires, R. A.; Carvalho-Filho, A.; Klautau, A.G.C.M.; Santos, W.C.R.; et al. 2021b. Teleostei fishes of the North Coast of Brazil and adjacent areas. Revista CEPSUL: Biodiversidade e Conservação Marinha, 10: 1-50.. The market value for the piramutaba and all other bycatch was obtained at Ver-o-Peso Market (Belém, Pará state, Brazil) by WSRS, APM and JPRJ. The conservation status of the species followed the Red Book of the Brazilian Fauna Threatened with Extinction (ICMBio, 2018ICMBio. 2018. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. v.1, 1st ed., Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, 492p.), and its updates (MMA 2022MMA. 2022. Ministério do Meio Ambiente. Portaria MMA # 148/2022, de 7 de junho de 2022. Diário Oficial da União, 08/06/2022, 108 (Seção 1): 74. (https://unbciencia.unb.br/images/Noticias/2022/06-Jun/PORTARIA_MMA_No148_7_DE_JUNHO_DE_2022.pdf).
https://unbciencia.unb.br/images/Noticia...
).

Depth and salinity information were obtained during the sea-borne survey in the Amazon River Mouth by JICA, concomitantly with the collection of the primary data on fish composition. Salinity was measured from the surface to the bottom with an STD (Alec Denshi AST200PK STD, salinity measuring capability 0-40 ‰, depth range 0-200 m, measurement distance 0.2 m).

Statistical analysis

We evaluated the importance of seasonality and two environmental variables (depth and salinity) to the abundance of freshwater, estuarine, and marine fish using the data sampled by JICA between 1996 and 1997. As the data distribution was heteroscedastic (according to Levene’s test), we used the Kruskal-Wallis H test to evaluate differences in the abundance of freshwater, estuarine, and marine fish between the rainy and dry seasons. We then evaluated the importance of depth (average depth at hauling) and salinity (average salinity at hauling) to the average abundance of freshwater, estuarine, and marine fishes by fitting generalized additive models (GAMs) integrating a smoothing parameter to consider the nonlinear relationship of the variables. GAMs were performed using the default gam function from the mgcv package (Wood 2011Wood, S.N. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (B), 73: 3-36.) in the R environment (R Core Team 2021R Core Team 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL (https://www.R-project.org/).
https://www.R-project.org/...
). All analyses considered a 5% level of significance.

RESULTS

Bycatch species composition

We identified 21 sharks and batoids from 10 taxonomic families and five orders (Table 1; Figure 2a), with four freshwater species (19.1%), and 17 marine species (80.9%). The richest order among the elasmobranchs was Myliobatiformes, with 11 species, four associated with freshwater, and seven with marine environments (Table 1). The richest family among cartilaginous fishes was Potamotrygonidae, including five species, four associated with freshwater (Table 1). Regarding habitat use, 12 cartilaginous species were benthonic (i.e., associated with the substrate), and nine were pelagic or demersal (i.e., actively swimming in the water column) (Table 1). Isogomphodon oxyrhynchus, Fontitrygon geijskesi, Plesiotrygon iwamae (Figure 3a), Potamotrygon humerosa (Figure 3b), Potamotrygon scobina (Figure 3d) and Styracura schmardae are endemic to the area of influence of the Amazon-Orinoco plume and its drainages (Table 1).

Table 1
Sharks, batoids and bone fishes caught as bycatch of piramutaba fishery in the Amazon estuary, on the northern coast of Brazil. Orders and families are ordered alphabetically. Figure = in Marceniuk et al. (2019) (*), in Marceniuk et al. (2021a)Marceniuk, A.P.; Caires, R. A.; Carvalho-Filho, A.; Rotundo, M.M.; Santos, W.C.R.; Klautau, A.G.C.M. 2021a. Peixes Teleósteos da costa Norte do Brasil. 1st ed. NUELI/MPEG, Belém, 900p. (**), or in present study (without asterisk). Species list = published and unpublished species surveys where the soecies is listed: Barthem (1985) (A), Jimenez et al. (2013) (B), Silva et al. (2016) (C), Klautau et al. (2016) (D), JICA (E), CEPNOR onboard observers (F). Comm value = commercial value: target species (A), commercial value higher than target species (>), commercial value lower than target species (<), equal commercial value equal to target species (=), no commercial value (*). Habitat: freshwater (FW), brackish water (BW), marine and estuarine (M). Habit: pelagic (I), demersal (J), benthic (K). End = endemic to the influence area of the Amazonian-Orinoco plume and its drainages. Status = conservation status in the Brazilian List of Endangered Fauna (ICMBio 2018ICMBio. 2018. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. v.1, 1st ed., Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, 492p.): CR = critically endangered (CR), vulnerable (V), near threatened (NT), least concern (LC), data deficient (DD), not evaluated (X) .

Figure 2
Composition of the bycatch of piramutaba fisheries in the Amazon estuary, northern coast of Brazil. A - Taxonomic and marine-estuarine/freshwater composition (%) of Elasmobranchii; B - Taxonomic and marine-estuarine/freshwater composition (%) of Teleostei; C - Economic value of the by-catch species: higher than Brachyplatystoma vaillantii (red), equal to B. vaillantii (orange), lower than B. vaillantii (yellow), no commercial value (grey); D - Conservation status: critically endangered (CR), vulnerable (VU), near threatened (NT), data deficient (DD), not evaluated (NE), least concern (LC). This figure is in color in the electronic version.

Figure 3
Freshwater batoids and bony fishes captured as bycatch of piramutaba fisheries in the Amazon estuary, northern coast of Brazil. Order Myliobatiformes, family Potamotrygonidae: A - Plesiotrygon iwamae (broken caudal fin); B - Potamotrygon humerosa; C - Potamotrygon orbignyi; D - Potamotrygon scobina. Order Clupeiformes, family Pristigasteridae: E - Pellona castelnaeana; F - Pellona flavipinnis. Order Siluriformes, family Loricariidae: G - Aphanotorulus emarginatus; family Aspredinidae: H - Aspredinichthys filamentosus; I - Aspredo aspredo; family Doradidae: J - Centrodoras brachiatus; K - Lithodoras dorsalis; family Auchenipteridae: L - Trachelyopterus galeatus; M - Ageneiosus ucayalensis; N - Pseudauchenipterus nodosus; family Pimelodidae: O - Brachyplatystoma filamentosum; P - Brachyplatystoma platynemum; Q - Brachyplatystoma rousseauxii; R - Brachyplatystoma vaillantii; S - Hypophthalmus edentatus; T - Propimelodus eigenmanni. Order Gymnotiformes, family Apteronotidae: U - Sternarchella schotti; V - Sternarchella sima; W - Sternarchorhamphus muelleri. Order Acanthuriformes, family Sciaenidae: X - Plagioscion auratus; Y - Plagioscion squamosissimus. This figure is in color in the electronic version.

Regarding bony fishes, we identified 125 species (Table 1; Figure 2b) of 40 families and 18 orders. Thirty-two species were from freshwater (25.6%), and 93 were marine (74.4%) (Table 1). The richest order of Teleostei was Siluriformes, with 34 species, 23 of them associated with freshwater, belonging to the families Aspredinidae (Figure 3h,i), Auchenipteridae (Figure 3l-n), Doradidae (Figure 3j,k), Heptapteridae and Pimelodidae (Figure 3o-t), and 11 associated with marine environments belonging to the family Ariidae. The second richest taxonomic order of bony fishes was Acanthuriformes, including 20 species of Sciaenidae, mainly associated with marine environments (18 vs. two freshwater species, Table 1). Most of the captured teleosteans were pelagic or demersal (112 species), and only 19 were benthonic, primarily Gobiiformes and Pleuronectiformes (Table 1). Thirty-three (26.4%) of the captured bony fish species were endemic (Table 1).

The bycatch included 64 species (43% of all bycatch species) with no commercial value (Figure 2c), which are always discarded, and 81 species (57%) with some commercial value (Table 1). Among the latter, nine were more valuable than piramutaba, 11 had similar value to piramutaba, and 61 had lower value than piramutaba and were only occasionally traded (Table 1). Regarding the conservation status of the bycatch species (Figure 2d), 109 (74.7%) were classified as safe or least concern (LC), six as near threatened (NT), one as vulnerable (VU), and seven as critically endangered (CR) (Table 1). Among the critically endangered species, six were cartilaginous fishes, including the endemic Isogomphodon oxyrhynchus, the sawfish Pristis pristis and three species of hammerhead sharks (Sphyrna), and only one was a bony fish, the Atlantic goliath grouper, Epinephelus itajara. We highlight that 23 of the identified species were not evaluated (NE) or data deficient (DD), eight of them endemic to the area (Table 1).

Effect of depth and salinity

The standardized samples obtained by JICA occurred in sites with depth ranging from 6 to 50 m, and salinity near the substrate ranging from 0.05 to 36 ppm. The occurrence and abundance of freshwater, estuarine, and marine fishes between the seasons and along the depth and salinity gradients was not random. While estuarine fishes did not differ in abundance between the dry and rainy season (H(1) = 0.851; p = 0.356), the abundance of both freshwater (H(1) = 20.712; p < 0.001) and marine fishes (H(1) = 6.462; p = 0.011) was significantly higher during the rainy season. Depth and salinity affected the abundance of freshwater, estuarine, and marine fishes differently (Figure 4). Freshwater (GAM; R² = 0.132; p < 0.001) and estuarine fishes (R² = 0.024; p = 0.002) exhibited significantly higher abundance in shallower environments, while marine fishes had similar abundance along the entire depth gradient (R² = 0.001; p = 0.221). On the contrary, the abundance of freshwater fishes significantly decreased (R² = 0.444; p < 0.001), and that of estuarine (R² = 0.067; p < 0.001) and marine fishes (R² = 0.211; p < 0.001) significantly increased with increasing salinity.

Figure 4
Generalized additive models (GAM) with smoothing parameters describing the relationship of depth (upper) and salinity (bottom) with the average abundance of freshwater (left), estuarine (middle), and marine fishes (right) of the bycatch of the piramutaba fisheries in the Amazon estuary. This figure is in color in the electronic version.

DISCUSSION

The bycatch of piramutaba fishery is composed of species with and without commercial value, being that 20 to 30% of the total capture is discarded (Dias-Neto et al. 1985; Ruffino 2003Ruffino, M.L. 2003. A pesca e os recursos pesqueiros na Amazônia Brasileira. IBAMA/ProVárzea, Manaus, p.137-167.; Jimenez et al. 2013Jimenez, E.A.; Asano-Filho, M.; Frédou, F.L. 2013. Fish bycatch of the laulao catfish Brachyplatystoma vaillantii (Valenciennes, 1840) trawl fishery in the Amazon estuary. Brazilian Journal of Oceanography, 61: 129-140.). We showed that almost 45% of all captured species in the bycatch have no commercial value, while the remaining species range from lower to higher market value than that of the piramutaba. This information is crucial for optimizing management criteria for the use of the bycatch of piramutaba. Some bycatch species are already overexploited fishery resources, such as Brachyplatystoma rousseauxii (Garcia-Vasquez et al. 2009Garcia-Vasquez, A.; Alonso, J.C.; Carvajal, F.; Moreau, J.; Nunez, J.; Renno, J.F.; Tello, S.; Montreuil, V.; Duponchelle, F. 2009. Life-history characteristics of the large Amazonian migratory catfish Brachyplatystoma rousseauxii in the Iquitos region, Peru. Journal of Fish Biology, 75: 2527-2551.; Agudelo-Córdoba et al. 2013Agudelo-Córdoba, E.; Petrere Jr, M.; Joven-León, Á.V.; Peláez, M.; Bonilla-Castillo, C.A.; Duponchelle, F. 2013. Breeding, growth and exploitation of Brachyplatystoma rousseauxii Castelnau, 1855 in the Caqueta River, Colombia. Neotropical Ichthyology, 11: 637-647. ).

The bycatch of the industrial fishery that targets piramutaba, a primary freshwater species, is mainly composed of marine fishes, while about 25% of the species are freshwater fishes (see Table 1). This association between freshwater and marine species in the Amazonian estuary is unique compared to other oceanic basins worldwide, due to the enormous oscillation in the discharge of the Amazon River (Guimberteau et al. 2012Guimberteau, M.; Drapeau, G.; Ronchail, J.; Sultan, B.; Polcher, J.; Martinez, J.M.; et al. 2012. Discharge simulation in the sub-basins of the amazon using orchidee forced by new datasets. Hydrology and Earth System Sciences, 16: 911-935.).

The abundance of estuarine fishes did not vary significantly between the dry and the rainy seasons (minimum and maximum discharge of the Amazon River), while freshwater species were more abundant during the rainy season and marine species were more abundant during the dry seasons. Seasonal variation in rainfall is a major environmental factor determining the taxonomic and functional composition of fish communities in estuaries (Barletta et al. 2005Barletta, M.; Barletta-Bergan, A.; Saint-Paul, U.; Hubold, G. 2005. The role of salinity in structuring the fish assemblages in a tropical estuary. Journal of Fish Biology, 66: 45-72.; Castillo-Rivera 2013Castillo-Rivera, M. 2013. Influence of rainfall pattern in the seasonal variation of fish abundance in a tropical estuary with restricted marine communication. Journal of Water Resource and Protection, 5: 311-319. ; Molina et al. 2020Molina, A.; Duque, G.; Cogua, P. 2020. Influences of environmental conditions in the fish assemblage structure of a tropical estuary. Marine Biodiversity, 50: 5-12. ). The composition turnover is usually associated to: (i) life-history traits by species using different habitats for reproduction (Dantas et al. 2010Dantas, D.V.; Barletta, M.; Costa, M.F.; Barbosa-Cintra, S.C.T.; Possatto, F.E.; Ramos, J.A.A.; Lima, A.R.A.; Saint-Paul, U. 2010. Movement patterns of catfishes (Ariidae) in a tropical semi-arid estuary. Journal of Fish Biology, 76: 2540-2557. ; Fontoura et al. 2019Fontoura, N.F.; Schulz, U.H.; Alves, T.P.; Silveira, T.C.L.; Pereira1, J.J.; Antonetti, D.D. 2019. How far upstream: A review of estuary-fresh water fish movements in a large neotropical basin. Frontiers in Marine Science, 12: 315-336.) and (ii) physiological constraints due to changes in salinity level (Lisboa et al. 2015Lisboa, V.; Barcarolli, I.F.; Sampaio, L.A.; Bianchini, A. 2015. Effect of salinity on survival, growth and biochemical parameters in juvenile Lebranch mullet Mugil liza (Perciformes: Mugilidae). Neotropical Ichthyology, 13: 447-452. ; Smyth and Elliott 2016).

The seasonal variation in salinity is more important for primary marine or primary freshwater species than for estuarine species, because the latter display higher osmoregulatory efficiency and can better cope with this environmental variation (Becker et al. 2011Becker, A.G.; Gonçalves, F.G.; Toledo, J.A.; Burns, M.D.M.; Garcia, L..; Vieira, J.P.; Baldisserotto, B. 2011. Plasma ion levels of freshwater and marine/estuarine teleosts from Southern Brazil. Neotropical Ichthyology, 9: 895-900.; Marshall 2012Marshall, W.S. 2012. Osmoregulation in Estuarine and Intertidal Fishes. In: McCormick, S.; Farrell, A.P.; Brauner, C. (Ed.). Euryhaline Fishes, Elsevier, Waltham, p.395-434.; Park et al. 2020). Consequently, the abundance of estuarine fishes tends to be stable between seasons, while abundance of marine and freshwater fishes is higher in the season when salinity levels are lower (rainy season) or higher (dry season), respectively, as corroborated by our GAM results.

The association of fish species with depth is more complex than with salinity, depending on habitat use and osmoregulation. Freshwater fishes have lower osmoregulatory efficiency and might occupy the shallower waters along the coastline both because of lower salinity levels and of adequate habitat structure. Estuarine fishes can better cope with salinity variation, but are usually inhabit or migrate seasonally to shallower areas and more structured environments (Akin et al. 2003Akin, S.; Winemiller, K.O.; Gelwick, F.P. 2003. Seasonal and spatial variations in fish and macrocrustacean assemblage structure in Mad Island Marsh estuary, Texas. Estuarine Coastal and Shelf Science, 57: 269-282. ; Barletta et al. 2005Barletta, M.; Barletta-Bergan, A.; Saint-Paul, U.; Hubold, G. 2005. The role of salinity in structuring the fish assemblages in a tropical estuary. Journal of Fish Biology, 66: 45-72.; Dantas et al. 2010Dantas, D.V.; Barletta, M.; Costa, M.F.; Barbosa-Cintra, S.C.T.; Possatto, F.E.; Ramos, J.A.A.; Lima, A.R.A.; Saint-Paul, U. 2010. Movement patterns of catfishes (Ariidae) in a tropical semi-arid estuary. Journal of Fish Biology, 76: 2540-2557. ). Marine species might use shallower areas with lower salinity levels in specific periods of their life cycle (Smyth and Elliott 2016Smyth, K.; Elliott, M. 2016. Effects of changing salinity on the ecology of the marine environment. In: Solan M.; Whitele, N.M. Stressors in the Marine Environment. Oxford University Press, Oxford, p.161-174.). Therefore, the spatial pattern of variation in salinity levels in the Amazon estuary, where lower salinity is frequently associated with shallower areas, is important in shaping the distribution of fishes and the turnover of species with different affinity levels (Soares et al. 2021Soares, B.E.; Benone, N.L.; Barthem, R.B.; Marceniuk, A.P.; Montag, L.F.A. 2021. Environmental conditions promote local segregation, but functional distinctiveness allows aggregation of catfishes in the Amazonian estuary. Estuarine, Coastal and Shelf Science, 251: 1-8.).

The majority (90%) of threatened species in the bycatch are elasmobranchs, six of them critically endangered and three vulnerable. Other threatened elasmobranch species that occur in the area, but were not reported in the piramutaba bycatch, include the stingrays Fontitrygon colarensis (VU), Paratrygon aiereba (CR) and Pseudobatos percellens (VU) (ICMBio 2018ICMBio. 2018. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. v.1, 1st ed., Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, 492p.; MMA 2022MMA. 2022. Ministério do Meio Ambiente. Portaria MMA # 148/2022, de 7 de junho de 2022. Diário Oficial da União, 08/06/2022, 108 (Seção 1): 74. (https://unbciencia.unb.br/images/Noticias/2022/06-Jun/PORTARIA_MMA_No148_7_DE_JUNHO_DE_2022.pdf).
https://unbciencia.unb.br/images/Noticia...
). The potential negative impact of the fishery on the populations of these endangered species has not yet been assessed.

CONCLUSIONS

The present study poses an important advance on the knowledge of the fauna captured during piramutaba trawling in the mouth of the Amazon River and the influence of the hydrological cycle of the river on the structure of this community. This information will support the establishment of criteria for management for the use of the bycatch of the piramutaba fishery in order to improve the definition of areas and periods allowed for the operation of this fishing fleet. Given the observed gaps in the knowledge of the ichthyofauna in the region, we highlight the importance to increase the knowledge on the biology and fishery stocks of the endemic fauna, especially sharks and batoids.

ACKNOWLEDGMENTS

We thank Projeto Áreas Marinhas e Costeiras Protegidas - GEF Mar of the Brazilian Federal Government, responsible for supporting the collection of the specimens examined. APM is grateful to Programa de Capacitação Institucional (Ministério da Ciência, Tecnologia e Inovação - MCTIC/ Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, proc. # 444338/2018-7 and 300675/2019-4) and to the postdoctoral fellowship at Universidade Federal da Paraiba (Fundação de Apoio à Pesquisa do Estado da Paraíba - FAPESQ proc. # 1262/2021).

REFERENCES

  • Agudelo-Córdoba, E.; Petrere Jr, M.; Joven-León, Á.V.; Peláez, M.; Bonilla-Castillo, C.A.; Duponchelle, F. 2013. Breeding, growth and exploitation of Brachyplatystoma rousseauxii Castelnau, 1855 in the Caqueta River, Colombia. Neotropical Ichthyology, 11: 637-647.
  • Akin, S.; Winemiller, K.O.; Gelwick, F.P. 2003. Seasonal and spatial variations in fish and macrocrustacean assemblage structure in Mad Island Marsh estuary, Texas. Estuarine Coastal and Shelf Science, 57: 269-282.
  • Alonso, J.C.; Pirker, L.E.M. 2005. Dinâmica populacional e estado atual da exploração de piramutaba e de dourada. In: Fabré, N.N. e Barthem, R.B. O Manejo da Pesca dos Grandes Bagres Migradores Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Brasília. p.21-28.
  • Alverson, D.L.; Freeberg, M.H.; Pope, J.G.; Murawski, J.A. 1994. A global assessment of fisheries bycatch and discards. F.A.O. Fisheries Technical Paper, # 339, 233p.
  • Anderson, M.J.; Tolimieri, N.; Millar, R.B. 2013. Beta diversity of demersal fish assemblages in the North-Eastern Pacific: Interactions of latitude and depth. PLoS ONE, 8: e57918.
  • Barletta, M.; Barletta-Bergan, A.; Saint-Paul, U.; Hubold, G. 2005. The role of salinity in structuring the fish assemblages in a tropical estuary. Journal of Fish Biology, 66: 45-72.
  • Barthem, R.B. 1990. Descrição da pesca da piramutaba (Brachyplatystoma vaillantii) no estuário e na calha do rio Amazonas. Boletim do Museu Paraense Emilio Goeldi, 6: 117-130.
  • Barthem, R.B.; Schwassmann, H.O. 1994. Amazon river influence on the seasonal displacement of the Salt Wedge in the Tocantins River Estuary, Brazil, 1983-1985. Boletim do Museu Paraense Emílio Goeldi, 10: 119-130.
  • Barthem, R.B.; Petrere-Jr, M. 1995. Fisheries and population dynamics of the freshwater catfish Brachyplatystoma vaillantii in the Amazon estuary. In: Armantrout, N.B. (Ed.). Condition of the World’s Aquatic Habitat. Proceedings of the World Fisheries Congress, Theme 1 I.B.H. Publishing Ltd., New Delhi, Athens, p. 329-350.
  • Barthem, R.B.; Goulding, M. 1997. The Catfish Connection: Ecology, Migration, and Conservation of Amazon Predators Columbia University Press, New York. 144 p.
  • Barthem, R.B. 1998. Seletividade de rede de emalhar para piramutaba (Brachyplatystoma vaillantii). Boletim do Museu Paraense Emilio Goeldi, 14: 5-18.
  • Barthem, R.B.; Mello, F.A.; Assunção, W.; Gomes, P.F.F.; Brabosa, C.A.C. 2015. Estrutura de tamanho e distribuição espacial da piramutaba (Brachyplatystoma vaillantii) na foz amazônica: implicações para o manejo da pesca. Boletim do Instuto de Pesca, 41: 249-260.
  • Batista, J.S.; Aquino, K.F.; Farias, I.P.; Gomes, J.A.A. 2005. Variabilidade genética da dourada e da piramutaba na bacia Amazônica. In: Fabré, N.N.; Barthem, R.B. (Ed.). O Manejo da Pesca dos Grandes Bagres Migradores: Piramutaba e Dourada no Eixo Solimões-Amazonas IBAMA/ProVárzea, Manaus, p.15-19.
  • Becker, A.G.; Gonçalves, F.G.; Toledo, J.A.; Burns, M.D.M.; Garcia, L..; Vieira, J.P.; Baldisserotto, B. 2011. Plasma ion levels of freshwater and marine/estuarine teleosts from Southern Brazil. Neotropical Ichthyology, 9: 895-900.
  • Castillo-Rivera, M. 2013. Influence of rainfall pattern in the seasonal variation of fish abundance in a tropical estuary with restricted marine communication. Journal of Water Resource and Protection, 5: 311-319.
  • Chaves, R.A.; Silva, K.C.A.; Ivo, C.T.C.; Cintra, I.H.A.; Aviz, J.S. 2003. Sobre a pesca da piramutaba, Brachyplatystoma vaillantii (Valenciennes, 1840) em pescarias da frota industrial no estado do Pará. Boletim Técnico Científico do Cepnor, 3: 163-177.
  • Clucas, I. 1997. A study of the options for utilization of bycath and discards from marine capture fisheries Food and Agriculture Organization of the United Nations, Rome, 59p.
  • Clucas I. 1998. Bycatch - is it a bonus from the sea? Infofish International, 3: 24-28.
  • Curtin, T.B.; Legeckis, R.V. 1986. Physical observations in the plume region of the Amazon river during peak discharge - I. Surface variability. Continental Shelf Research, 6: 31-51.
  • Dantas, D.V.; Barletta, M.; Costa, M.F.; Barbosa-Cintra, S.C.T.; Possatto, F.E.; Ramos, J.A.A.; Lima, A.R.A.; Saint-Paul, U. 2010. Movement patterns of catfishes (Ariidae) in a tropical semi-arid estuary. Journal of Fish Biology, 76: 2540-2557.
  • Davies, R.W.D.; Cripps, S.J.; Nickson, A.; Porter, G. 2009. Defining and estimating global marine fisheries bycatch. Marine Policy, 33: 661-72.
  • Diamond, S.L.; Cowell, L.G.; Crowder, L.B. 2000. Population effects of shrimp trawl bycatch on Atlantic croaker. Canadian Journal of Fisheries and Aquatic Sciences, 57: 2010-2021.
  • Dias Neto, J.; Damasceno, J.F.G.; Pontes, A.C. 1985. Biologia e pesca da piramutaba, Brachyplatystoma vaillantii Valenciennes, na região Norte do Brasil. SUDEPE, Série Documentos Técnicos, 35: 47-112.
  • Dias Neto, J. 1991. A Pesca da Piramutaba (Brachyplatystoma vaillantii, Val.) na região Norte do Brasil. Atlântica, 13: 11-19.
  • Duponchelle, F.; Isaac, V.J.; Doria, C.; Van Damme, P.A.; Herrera‐R, G.A.; Anderson, E.P.; et al 2021. Conservation of migratory fishes in the Amazon basin. Aquatic Conservation: Marine and Freshwater Ecosystems, 31: 1087-1105.
  • Eisma, D.; Van Der Marel, H.W. 1971. Marine muds along the Guyana coast and their origin from Amazon Basin. Contribution in Mineralogy and Petrology, 31: 321-334.
  • Fontoura, N.F.; Schulz, U.H.; Alves, T.P.; Silveira, T.C.L.; Pereira1, J.J.; Antonetti, D.D. 2019. How far upstream: A review of estuary-fresh water fish movements in a large neotropical basin. Frontiers in Marine Science, 12: 315-336.
  • Formiga K.M.; Batista, J.S.; Alves-Gomes, J.A. 2021. The most important fishery resource in the Amazon, the migratory catfish Brachyplatystoma vaillantii (Siluriformes: Pimelodidae), is composed by an unique and genetically diverse population in the Solimões-Amazonas River System. Neotropical Ichthyology, 19: e200082.
  • Furtado Jr, I.; Sousa, G.F.; Silva Tavares, M.C.; Begot, L.H. 2013. Seletividade da rede de arrasto para captura da piramutaba, Brachyplatystoma vaillantii (valenciennes, 1840) obtida pela relação comprimento-perímetro. Tropical Journal of Fisheries and Aquatic Sciences (Boletim Técnico Científico do Cepnor), 7: 85-96.
  • Garcia-Vasquez, A.; Alonso, J.C.; Carvajal, F.; Moreau, J.; Nunez, J.; Renno, J.F.; Tello, S.; Montreuil, V.; Duponchelle, F. 2009. Life-history characteristics of the large Amazonian migratory catfish Brachyplatystoma rousseauxii in the Iquitos region, Peru. Journal of Fish Biology, 75: 2527-2551.
  • Geyer, W.R.; Beardsley, R.C.; Lentz, S.J.; Candela, J.; Limeburner, R.; Johns, W.E.; Castro, B.M.; Soares, I.D. 1996. Physical oceanography of the Amazon shelf. Continental Shelf Research, 16: 575-616.
  • Godoy, M.P. 1979. Marcação e Migração da Piramutaba, Brachyplatystoma vaillantii (Val. 1940) na Bacia Amazônica (Pará e Amazonas), Brasil. (Pisces Nematognalhi, Pimelodidae). Boletim da Faculdade de Ciências Agrárias do Pará, 11: 1-21.
  • Greenstreet, S.P.; Rogers, S. 2004. Indicators of the health of the North Sea fish community: identifying reference levels for an ecosystem approach to management. ICES Journal of Marine Science, 67: 573-93.
  • Guimberteau, M.; Drapeau, G.; Ronchail, J.; Sultan, B.; Polcher, J.; Martinez, J.M.; et al 2012. Discharge simulation in the sub-basins of the amazon using orchidee forced by new datasets. Hydrology and Earth System Sciences, 16: 911-935.
  • IBAMA. 1998. Camarão do Norte e Piramutaba. Peixes Comerciais do Médio Amazonas Coleção Meio Ambiente, Série Estudos de Pesca, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Brasília , 214p.
  • ICMBio. 2018. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. v.1, 1st ed., Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, 492p.
  • Jimenez, E.A.; Asano-Filho, M.; Frédou, F.L. 2013. Fish bycatch of the laulao catfish Brachyplatystoma vaillantii (Valenciennes, 1840) trawl fishery in the Amazon estuary. Brazilian Journal of Oceanography, 61: 129-140.
  • Juan, S.; Demestre, M. 2012. A trawl disturbance Indicator to quantify large scale fishing impact on benthic ecosystems. Ecological Indicators, 18: 183-90.
  • Klautau, A.G.C.M.; Cordeiro, A.P.B.; Cintra, I.H.A.; Silva, L.E.O.; Carvalho, H.R.L.; Ito, L.S. 2016a. Impacted biodiversity by industrial piramutaba fishing in the Amazon river mouth. Boletim do Instituto e Pesca, 42: 102-111.
  • Klautau, A.G.C.M.; Cordeiro, A.P.B.; Cintra, I.H.A.; Silva, L.E.O.; Bastos, C.E.M.C.; Carvalho, H.R.L.; Ito, L.S. 2016b. Analysis of the industrial fishing of piramutaba catfish, Brachyplatystoma vaillantii (Valenciennes 1840), in two estuarine areas of the Brazilian Amazon. Pan-American Journal of Aquatic Sciences, 11: 143-150.
  • Lisboa, V.; Barcarolli, I.F.; Sampaio, L.A.; Bianchini, A. 2015. Effect of salinity on survival, growth and biochemical parameters in juvenile Lebranch mullet Mugil liza (Perciformes: Mugilidae). Neotropical Ichthyology, 13: 447-452.
  • Manthey, M.; Fridley, J.D. 2009. Beta diversity metrics and the estimation of niche width via species co-occurrence data: reply to Zeleny. Journal of Ecology, 97: 18-22.
  • Marceniuk, A.P.; Barthem, R.B.; Wosiacki, W.B.; Klautau, A.G.C.M.; Vaske-Junior, T.; Rotundo, M.M.; et al 2020. Sharks and batoids (Subclass Elasmobranchii) caught in the industrial fisheries off the Brazilian North coast. Revista Nordestina de Biologia, 27: 1-13.
  • Marceniuk, A.P.; Caires, R. A.; Carvalho-Filho, A.; Rotundo, M.M.; Santos, W.C.R.; Klautau, A.G.C.M. 2021a. Peixes Teleósteos da costa Norte do Brasil. 1st ed. NUELI/MPEG, Belém, 900p.
  • Marceniuk, A.P.; Caires, R. A.; Carvalho-Filho, A.; Klautau, A.G.C.M.; Santos, W.C.R.; et al 2021b. Teleostei fishes of the North Coast of Brazil and adjacent areas. Revista CEPSUL: Biodiversidade e Conservação Marinha, 10: 1-50.
  • Marshall, W.S. 2012. Osmoregulation in Estuarine and Intertidal Fishes. In: McCormick, S.; Farrell, A.P.; Brauner, C. (Ed.). Euryhaline Fishes, Elsevier, Waltham, p.395-434.
  • MMA. 2022. Ministério do Meio Ambiente. Portaria MMA # 148/2022, de 7 de junho de 2022. Diário Oficial da União, 08/06/2022, 108 (Seção 1): 74. (https://unbciencia.unb.br/images/Noticias/2022/06-Jun/PORTARIA_MMA_No148_7_DE_JUNHO_DE_2022.pdf).
    » https://unbciencia.unb.br/images/Noticias/2022/06-Jun/PORTARIA_MMA_No148_7_DE_JUNHO_DE_2022.pdf
  • Molina, A.; Duque, G.; Cogua, P. 2020. Influences of environmental conditions in the fish assemblage structure of a tropical estuary. Marine Biodiversity, 50: 5-12.
  • Nelson, J. S.; Grande, T.C.; Wilson, M.V.H. 2016. Fishes of the World 5th ed. John Wiley e Sons Inc., New Jersey, 707p.
  • Perez, J.A.A.; Pezzuto, P.R. 2006. A pesca de arrasto de talude do sudeste e sul do Brasil: Tendências da frota nacional entre 2001-2003. Boletim do Instituto de Pesca, 32: 127-50.
  • Prestes, L.; Barthem, R.; Mello-Filho, A.; Anderson, E.; Correa, S.B.; Couto, T.B.D.; et al 2022. Proactively averting the collapse of Amazon fisheries based on three migratory flagship species. PloS One, 17: e0264490.
  • R Core Team 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL (https://www.R-project.org/).
    » https://www.R-project.org/
  • Rodrigues, F.C. 2009. Estimativa da variabilidade genética da piramutaba (Brachyplatystoma vaillantii) por meio de marcadores moleculares microssatélites e D-loop de quatro localidades da Amazônia: diferença ente calha e tributários Master’s dissertation, Instituto Nacional de Pesquisas da Amazônia (INPA), Brazil. 96p. (https://repositorio.inpa.gov.br/handle/1/37572?locale=en).
    » https://repositorio.inpa.gov.br/handle/1/37572?locale=en
  • Ruffino, M.L. 2003. A pesca e os recursos pesqueiros na Amazônia Brasileira IBAMA/ProVárzea, Manaus, p.137-167.
  • Santos, G.M; Jegu, M.; Mérona, B. 1984. Catálogo de peixes comerciais do Rio Tocantins Projeto Tucuruí. Eletronorte/CNPq/INPA, Manaus, 86p.
  • Silva, L.E.O.; Silva, K.C.A.; Contra, I.H.A. 2014. Sobre a pesca industrial para peixes diversos na plataforma continental amazônica. Revista Brasileira de Engenharia de Pesca, 7: 34-53.
  • Sleen, P.V.D.; Albert, J.S. 2018. Field Guide to the Fishes of the Amazon, Orinoco, and Guianas. 1st ed., Princeton University Press, Nova Jersey, 1488p.
  • Soares, B.E.; Benone, N.L.; Barthem, R.B.; Marceniuk, A.P.; Montag, L.F.A. 2021. Environmental conditions promote local segregation, but functional distinctiveness allows aggregation of catfishes in the Amazonian estuary. Estuarine, Coastal and Shelf Science, 251: 1-8.
  • Smyth, K.; Elliott, M. 2016. Effects of changing salinity on the ecology of the marine environment. In: Solan M.; Whitele, N.M. Stressors in the Marine Environment Oxford University Press, Oxford, p.161-174.
  • Thrush, S.; Hewitt, J.; Cummings, V.; Dayton, P.; Cryer, M.; Turner, S. et al 1998. Disturbance of the marine benthic habitat by commercial fishing: impacts at the scale of the fishery. Ecological Applications, 8: 866-79.
  • Wood, S.N. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (B), 73: 3-36.
  • CITE AS:

    Marceniuk, A.P.; Soares, B.E.; Rotundo, M.M.; Caires, R.A.; Rosa, R.S.; Santos, W.C.R.; Cordeiro, A.P.B. et al. 2023. The bycatch of piramutaba, Brachyplatystoma vaillantii industrial fishing in a salinity and depth gradient in the Amazon estuary, Brazil. Acta Amazonica 53: 93-106.

Edited by

ASSOCIATE EDITOR:

David Santana

Publication Dates

  • Publication in this collection
    28 Apr 2023
  • Date of issue
    Apr-Jun 2023

History

  • Received
    14 Feb 2022
  • Accepted
    07 Jan 2023
Instituto Nacional de Pesquisas da Amazônia Av. André Araujo, 2936 Aleixo, 69060-001 Manaus AM Brasil, Tel.: +55 92 3643-3030, Fax: +55 92 643-3223 - Manaus - AM - Brazil
E-mail: acta@inpa.gov.br