Acessibilidade / Reportar erro

Effects of automotive diesel oil on germination of Avicennia germinans and Laguncularia racemosa mangrove propagules

ABSTRACT

Mangrove ecosystems are sensitive to oil, as spills can impair developmental processes of mangrove vegetation. Since the 2010s, the Brazilian equatorial margin, more specifically the Pará-Maranhão Basin and the mouth of the Amazonas River, has been affected by oil runoff from urban activities and the increased risk from exploratory deepwater drilling for oil extraction. Dispersal of mangrove propagules occurs during the tidal cycles, when the presence of tensors in the water can affect germination. We analyzed the effects of diesel oil on the germination of propagules of the two most common mangrove species in the region, Laguncularia racemosa and Avicennia germinans, in six treatments of diesel oil in the water (0.5%, 1%, 1.5%, 2%, 3% and 4%) and a diesel-free control. The response variables were germinability (G%), mean germination time, mean germination speed and the germination speed index (GSI). G% and GSI in L. racemosa propagules differed significantly between the control and all treatments (G% and GSI < 10% in the 3% treatment). Propagules of A. germinans were more resistant, and the physiological variables did not differ significantly among treatments and control (G% > 90% in all treatments). Our results indicate that, at the germination stage, L. racemosa was more susceptible than A. germinans to contamination by automotive diesel oil.

KEYWORDS:
hydrocarbons; environmental tensors; Brazilian Equatorial margin; ecophysiological responses

RESUMO

Os ecossistemas de manguezais são sensíveis ao óleo, pois os derramamentos podem prejudicar os processos de desenvolvimento da vegetação de mangue. Desde a década de 2010, a margem equatorial brasileira, mais especificamente a Bacia do Pará-Maranhão e a foz do Rio Amazonas, vem sendo afetada pelo vazamento de petróleo proveniente de atividades urbanas e pelo aumento do risco de perfurações exploratórias em águas profundas para extração de petróleo. A dispersão dos propágulos do manguezal ocorre durante os ciclos das marés, quando a presença de tensores na água pode afetar a germinação. Analisamos os efeitos do óleo diesel na germinação de propágulos de duas espécies de mangue mais comuns na região, Laguncularia racemosa e Avicennia germinans, em seis tratamentos de óleo diesel na água (0,5%, 1%, 1,5%, 2%, 3% e 4%) e um controle sem óleo diesel. As variáveis ​resposta foram germinabilidade (G%), tempo médio de germinação, velocidade média de germinação e índice de velocidade de germinação (IVG). G% e IVG dos propágulos de L. racemosa diferiram significativamente entre o controle e todos os tratamentos (G% e GSI < 10% no tratamento 3%). Os propágulos de A. germinans foram mais resistentes e as variáveis ​fisiológicas não diferiram significativamente entre tratamentos e controle (G% > 90% em todos os tratamentos). Nossos resultados indicam que, no estágio de germinação, L. racemosa foi mais suscetivel que A. germinans à contaminação por óleo diesel automotivo.

PALAVRAS-CHAVE:
hidrocarbonetos; tensor ambiental; margem Equatorial Brasileira; respostas ecofisiológicas

INTRODUCTION

Mangroves are among the most productive ecosystems in the world, providing important ecosystem services and wide connectivity with other coastal ecosystems such as coral reefs, marine prairies, as well as a continental-ocean interface (Yokoya 1995Yokoya, N.S. 1995. Distribuição e origem. In: Schaeffer-Novelli, Y. (Ed.). Manguezal: Ecossistema entre a Terra e o Mar. Caribbean Ecological Research, São Paulo, p.9-12.; Mochel 2011Mochel, F.R. 2011. Manguezais amazônicos: status para a conservação e a sustentabilidade na zona costeira maranhense. In: Martins, M.B; Oliveira, T.G. (Ed.). Amazônia Maranhense. Diversidade e Conservação. MPEG, Belém, p.93-118.; ICMbio 2018ICMBio. 2018. Atlas dos Manguezais do Brasil. Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, 176p. ( (https://ava.icmbio.gov.br/pluginfile.php/4592/mod_data/content/14085/atlas%20dos_manguezais_do_brasil.pdf ). Accessed on 11 Jul 2023.
https://ava.icmbio.gov.br/pluginfile.php...
; Kristian and Oktorie 2018Kristian, A.; Oktorie, O. 2018. Study of coastal mangrove conservation in the world. Sumatra Journal of Disaster, Geography and Geography Education, 2: 49-52.; Van Der Stocken 2019Van Der Stocken, T.; Carroll, D.; Menemenlis, D.; Simard, M.; Koedam, N. 2019. Global-scale dispersal and connectivity in mangroves. Proceedings of the National Academy of Sciences of the United States of America, 116: 915-922. ). In 2018, global mangrove coverage was estimated at 150,000 km2 and nearly 25% was damaged by human actions, mainly deforestation, pollution, coastal zone occupation, shrimp cultivation and climate change (Ferreira and Lacerda 2016Ferreira, A.C.; Lacerda, L.D. 2016. Degradation and conservation of Brazilian mangroves, status and perspectives. Ocean & Coastal Management, 125: 38-46.; Kristian and Oktorie 2018). Brazil has approximately 10,020 km2 of mangrove forest, 77.6% of which are in the Amazon coastal zone of the Brazilian states of Maranhão, Pará and Amapá (Diniz et al. 2019Diniz, C.; Cortinhas, L.; Nerino, G.; Rodrigues, J.; Sadeck, L.; Adami, M.; et al. 2019. Brazilian mangrove status: Three decades of satellite data analysis. Remote Sensing, 11: 808. doi.org/10.3390/rs11070808
https://doi.org/doi.org/10.3390/rs110708...
).

Oil pollution is one of the most recurrent impacts on coastal and marine systems due to accidents with oil tankers, offshore exploratory activities, leaks of fuel or lubricant from vessels, all of which damages the adjacent ecosystems (Thompson and Thompson 2020Thompson, F.; Thompson, C. 2020. Biotecnologia Marinha. Ed. FURG, Rio Grande, 855p. ) and human health (Pena et al. 2020Pena, P.G.L; Northcross, A.L.; Lima, M.A.G.; Rêgo, R.C.F. 2020. Derramamento de óleo bruto na costa brasileira em 2019: emergência em saúde pública em questão. Cadernos de Saúde Pública, 36: e00231019.
https://doi.org/e00231019...
). Oil pollution can also occur during port operations with anchored vessels, from leaks in pipelines (Matos et al. 2019Matos, D.L.; Cunha, D.R.; Cutrim, S. 2019. Diagnóstico dos acidentes envolvendo derrame de óleo ao mar no complexo portuário de São Luís. In: IV Congresso Internacional de Desempenho Portuário. Campinas. 23p. ( (https://proceedings.science/cidesport-2019/papers/diagnostico-dos-acidentes-envolvendo-derrame-de-oleo-ao-mar-no-complexo-portuario-de-sao-luis?lang=pt-br ). Accessed on 13 Jul.2023.
https://proceedings.science/cidesport-20...
), during vessel cleaning (Alcântara and Santos 2005Alcântara, E.H.; Santos, M.C.F.V. 2005. Mapeamento de áreas de sensibilidade ambiental ao derrame de óleo na região Portuária do Itaqui, São Luís, MA-Brasil. In: Anais XII Simpósio Brasileiro de Sensoriamento Remoto, Goiânia, Brasil, INPE, p.3605-3617.), leaks from stored fuels in tanks at gas stations (Finotti et al. 2001Finotti, A.R.; Caicedo, N.O.L.; Rodriguez, M.T.R. 2001. Contaminações subterrâneas com combustíveis derivados de petróleo: Toxicidade e a legislação brasileira. Revista Brasileira de Recursos Hídricos, 6: 29-46. ), pipeline, road and rail transport (Martins and Mochel 2022Martins, J.C.S.; Mochel, F.R. 2022. Main spills of diesel oil and fuel oils in mangrove ecosystems in Brazil, from 1975 to 2022. International Journal of Biological and Natural Sciences, 2: 1-13. ).

The impact of oil on coastal environments depends on the amount of spillage, the type of oil and its toxicity, and environmental conditions such as the predominant type of sediments, tidal circulation and prevailing climatic conditions at the time of contact with the oil (Soares et al. 2006Soares, M L.G.; da Silva Junior, C.M.G.; Cavalcanti, V.F.; de Almeida, P.M.M.; de Souza Monteiro, A.; de Oliveira Chaves, F.; et al. 2006. Regeneração de floresta de mangue atingida por óleo na Baía de Guanabara (Rio de Janeiro, Brasil): resultados de 5 anos de monitoramento. Geochimica Brasiliensis, 20: 38-61.; Chequer et al. 2017Chequer, L.; Bitencourt, J.A.P.; Waite, C.C.C.; Santos, E.S.; Franco, D.C.; Alves, R.; Crapez, M.A.C. 2017. Response of mangrove propagules to the presence of oil- and hydrocarbon degrading bacteria during an experimental oil spill. Latin American Journal of Aquatic Research, 45: 814-821. ). Acute and chronic effects result from impacts of different types of oil in mangrove ecosystems (Hoff and Michel 2014Hoff, R.; Michel, J. 2014. Oil Spills in Mangroves: Planning & Response Considerations. National Oceanic and Atmospheric Administration, 96p. ( (https://repository.library.noaa.gov/view/noaa/877 ). Accessed on 10 Jul 2023.
https://repository.library.noaa.gov/view...
). Diesel oil is the most consumed fuel in Brazil (Petrobras 2021Petrobrás. 2021. Óleo Diesel: Informações Técnicas. Petróleo Brasileiro S.A., 26p. ( (https://petrobras.com.br/data/files/04/93/72/4C/5A39C710E2EF93B7B8E99EA8/Manual-de-Diesel_2021.pdf ). Accessed on 13 Jul 2023.
https://petrobras.com.br/data/files/04/9...
).

Mangroves on the Amazonian coast are largely pristine, although areas near large urban centers such as the capital cities of Belém (Pará state), Macapá (Amapá), and São Luis (Maranhão), all located within the delta complex of the Amazonas River, may be heavily affected by urban pollution, including oil runoff. There are records of a diesel oil spill in São Marcos Bay (Maranhão) after the collision of a ship with a shipwreck stranded on a sandbar in 1990, and of diesel oil leakage in a mangrove during the fueling process of mining-train locomotives in 2000, among other occurrences (Martins and Mochel 2022Martins, J.C.S.; Mochel, F.R. 2022. Main spills of diesel oil and fuel oils in mangrove ecosystems in Brazil, from 1975 to 2022. International Journal of Biological and Natural Sciences, 2: 1-13. ). Since the 2010s, the Brazilian equatorial margin has increasingly been the target of development plans and exploratory deepwater drilling for oil and natural gas extraction, raising the risk for possible oil leaks from activities related to these operations in the fragile and lush areas of mangroves on the Amazon coast (Silva Junior and Magrini 2014Silva Junior, O.M; Magrini, A. 2014. Exploração de hidrocarbonetos na foz do rio Amazonas: perspectivas de impactos ambientais no âmbito das áreas ofertadas na 11ª rodada de licitações da agência nacional do petróleo. Revista GeoAmazônia; 2: 146-158. ).

Mangrove tree species have viviparous reproduction as an inherent characteristic and propagule dispersal occurs through the tides (Hutchings and Saenger 1987Hutchings, P.; Saenger, P. 1987. Ecology of Mangroves. University of Queensland Press, St. Lucia, 388p.; Elmqvist and Cox 1996Elmqvist, T.; Cox, P.A. 1996. The evolution of vivipary in flowering plants.Oikos, 77: 3-9. ; Tomlinson 2016Tomlinson, P.B. 2016. The Botany of Mangroves. 2nd ed. Cambridge University Press, Cambridge, 406p.). Dispersion success depends on the buoyancy and durability of propagules, as well as on their hydrodynamics and mortality from predation and damage caused by crabs and insects (Kathiresan and Bingham 2001Kathiresan, K.; Bingham, B.L. 2001. Biology of mangroves and mangrove ecosystems. Advances in Marine Biology, 40: 81-251.; Hoff and Michel 2014Hoff, R.; Michel, J. 2014. Oil Spills in Mangroves: Planning & Response Considerations. National Oceanic and Atmospheric Administration, 96p. ( (https://repository.library.noaa.gov/view/noaa/877 ). Accessed on 10 Jul 2023.
https://repository.library.noaa.gov/view...
; Hogarth 2015Hogarth, P.J. 2015. The Biology of Mangroves and Seagrasses. 3rd ed. Oxford University Press, Oxford, 288p.). It is in this highly vulnerable phase of the plant that the presence of tensors in the water can affect germination. Oil contamination can harm the germination process, as well as the growth, development and establishment of mangrove seedlings (Duke et al. 1998Duke, N.C.; Ellison, J.; Burns, K.A. 1998. Surveys of oil spill incidentes affecting mangrove habitat in Australia: a preliminary assessment of incidents, impacts on mangroves, and recovery of deforested areas. The APPEA Journal, 38: 646-654. ; Chindah et al. 2011Chindah, A.C; Braide, S.A.; Amakiri, J.O.; Onokurhefe, J. 2011. Effect of crude oil on the development of white mangrove seedlings (Avicennia germinans) in the Niger Delta, Nigeria.Polish Journal of Environmental Studies, 20: 275-284.; Hoff and Michel 2014; Chequer et al. 2017Chequer, L.; Bitencourt, J.A.P.; Waite, C.C.C.; Santos, E.S.; Franco, D.C.; Alves, R.; Crapez, M.A.C. 2017. Response of mangrove propagules to the presence of oil- and hydrocarbon degrading bacteria during an experimental oil spill. Latin American Journal of Aquatic Research, 45: 814-821. ).

Previous studies with mangrove species in contact with various types of petroleum derivatives and crude oil were developed with the propagules planted directly in the sediment or transferred at the mangrove seedling stage and subsequently exposed to the contaminant (Zhang et al. 2007Zhang, C.G.; Leung, K.K.; Wong, Y.S.; Tam, N.F.Y. 2007. Germination, growth and physiological responses of mangrove plant (Bruguiera gymnorrhiza) to lubricating oil pollution. Environmental and Experimental Botany, 60: 127-136.; Naidoo et al. 2010Naidoo, G.; Naidoo, Y.; Achar, P. 2010. Responses of the mangroves Avicennia marina and Bruguiera gymnorrhiza to oil contamination. Flora - Morphology, Distribution, Functional Ecology of Plants, 205: 357-362. ; Nardes et al. 2013Nardes, E.; De Camargo, M.G.; Lana, P.C. 2013. Efeitos de um derrame experimental de óleo bunker na sobrevivência e taxas de crescimento de plântulas de Laguncularia racemosa (Combretaceae). Revista Biotemas, 26: 53-67.; Amin et al. 2017Amin, B.; Nurrachmi, I.; Rumiyatin, R. 2017. The effects of crude oil on growth and biomass of mangrove Bruguiera sexangula seedling in the intertidal area of Dumai City, Indonesia. International Journal of Applied Environmental Sciences, 12: 399-407.; Chequer et al. 2017Chequer, L.; Bitencourt, J.A.P.; Waite, C.C.C.; Santos, E.S.; Franco, D.C.; Alves, R.; Crapez, M.A.C. 2017. Response of mangrove propagules to the presence of oil- and hydrocarbon degrading bacteria during an experimental oil spill. Latin American Journal of Aquatic Research, 45: 814-821. ; Guedes et al. 2018Guedes, F.A.F.; Rossetto, P.B.; Guimarães, F.; Wilwerth, M.W.; Paes, J.E.S.; Nicolás, M.F.; et al. 2018. Characterization of Laguncularia racemosa transcriptome and molecular response to oil pollution. Aquatic Toxicology. 205: 36-50.). In the present study, we evaluated the germination of propagules submitted to different percentages of contamination of estuarine water with diesel oil under laboratory conditions, aiming to analyze the effects of the contaminant on the first stage after propagules have left the trees. Among the mangrove species that occur on the Amazonian coast, we opted to work with the two most common and widely distributed ones, the black mangrove, Avicennia germinans (L.) L., locally known as siriba or siriúba, and the white mangrove or inkworm, Laguncularia racemosa C.F. Gaertn.

MATERIAL AND METHODS

Study area and material acquisition

The study was carried out on Maranhão Island (Maranhão State, Brazil), where mangroves are composed of Avicennia germinans, Avicennia schaueriana Stap. & Leech. ex Mold., Laguncularia racemosa, Rhizophora mangle L. and Conocarpus erectus L. (Rebelo-Mochel 1997Rebelo-Mochel, F. 1997. Mangroves on Săo Luís Island, Maranhăo Brazil. In: Kjerfve B.; Lacerda, L.D.; Diop, E.H.S. (Ed.). Mangrove Ecosystem Studies in Latin America and Africa, United Nations Educational, Scientific and Cultural Organizations, Paris, p.145-154.; Mochel 2011). Mangrove propagules from A. germinans and L. racemosa, as well as the estuarine water used for the experiment, were collected at the Mangue Seco mangrove, in the municipality of Raposa (2º27’06.86”S, 44°09’20.33”W to 2º27’21.81”S, 44°09’45.76”W) (Figure 1).

Figure 1
Location of the collection points of Laguncularia racemosa and Avicennia germinans propagules in the Mangue Seco mangrove, Ilha do Maranhão, Maranhão, Brazil. This figure is in color in the electronic version.

The collection was made during high tide. This site is quite pristine and regularly used as a research site by the authors, being far from the municipal headquarters, where a community of fishermen lives from shrimp and shellfish fishing. The propagules were identified according to the specifications of each plant of the species: A. germinans - light propagule, its length varies from 25 mm to 30 mm, L. racemosa - light propagule, its length varies from about 11.0 mm to 19.5 mm. Propagule collection and selection criteria followed the recommendations of Goforth and Thomas (1980Goforth, J.R.; Thomas, H.W. 1980. Plantings of Red Mangroves (Rhizophora mangle L.) for Stabilization of Marl Shorelines in the Florida Keys. Report ADA085599. Naval Ocean Systems Center, San Diego, 23p. ( (https://apps.dtic.mil/sti/citations/ADA085599 ). Accessed on 11 Jul 2023.
https://apps.dtic.mil/sti/citations/ADA0...
) and Mochel and Fonseca (2019Mochel, F.R.; Fonseca, I.L.A. 2019. Abordagem integrada para a recuperação de manguezais degradados em áreas portuárias com estudo de caso em São Luís, Maranhão. In: Mochel, F.R. (Org). Gerenciamento Costeiro e Gerenciamento Portuário 2, Atena Editora, Ponta Grossa, p.59-71.), to select healthy propagules with greater possibility of developmental success. The experiment was carried out at the Mangrove Recovery Center (CERMANGUE) of the Department of Oceanography and Limnology at the Federal University of Maranhão (Universidade Federal do Maranhão, UFMA).

Germination

To observe the effect of the automotive diesel oil on propagule germination in both species, we simulated an acute contamination event with six treatments: 0.5% (T1); 1% (T2); 1.5% (T3); 2% (T4); 3% (T5) and 4% (T6) and a control (C) without oil, for each species, based on the study by Kim (2014Kim, K.D. 2014. Effects of diesel and kerosene on germination and growth of coastal wetland plant species.Bulletin of Environmental Contamination and Toxicology, 93: 596-602) who used 0%, 6%, 12% and 18% and Chequer et al. (2017Chequer, L.; Bitencourt, J.A.P.; Waite, C.C.C.; Santos, E.S.; Franco, D.C.; Alves, R.; Crapez, M.A.C. 2017. Response of mangrove propagules to the presence of oil- and hydrocarbon degrading bacteria during an experimental oil spill. Latin American Journal of Aquatic Research, 45: 814-821. ) who used 3%. The experiment was carried out in triplicate, each replicate on a different date. Each replicate consisted of one glass bowl containing 500 mL of estuarine water at 28 g kg-1 of salinity for each species and oil percentage. Salinity was measured with a portable refractometer (Quimis Q767-3, Shanghai Precision & Scientific Instrument Co., Shanghai, China). For each bowl, we used 36 propagules of A. germinans and 114 propagules of L. racemosa (Figure 2).

Figure 2
Distribution of Laguncularia racemosa and Avicennia germinans propagules in the experimental vials containing estuarine water (500 mL) and different percentages of diesel oil. This figure is in color in the electronic version.

The final amount of propagules used in the experiments varied (1) with the availability of parent trees in the study area, and (2) after sorting the healthy propagules in the laboratory. The propagules of A. germinans germinated from the 1st to the 6th day and those of L. racemosa germinated from the 1st to the 13th day of the experiment. Propagules were randomly distributed among replicates and were not grouped by size or weight. Propagules were considered germinated when they presented the hairy hypocotyl emission in A. germinans, and root protrusion with at least 1 cm in L. racemosa.

The following variables were evaluated: (1) germinability (G%), calculated as %G = (Σni /N-1).100, where Σni is the total number of germinated propagules per day in relation to the number of propagules put to germinate (N); (2) mean germination time (MGT, measured in days), calculated as T = Ʃ ni.ti / Ʃ ni, where ni = number of propagules germinated per day, and ti = incubation time; (3) mean germination speed (MGS. days-1), calculated as V = 1/t = Ʃ ni / Ʃ ni.ti, where t = mean germination time, ni = number of propagules, ti = incubation time; and (4) germination speed index (GSI), calculated as GSI = (G1/T1) + (G2/T2) + (G3/T3)... + (Gi/Ti), where G1 to Gi = number of germinated propagules each day, and T1 to Ti = time in days of the experiment (each day) (Maguire 1962Maguire, J.D. 1962. Speed of germination - aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2: 176-177.; Borghetti and Ferreira 2004Borghetti, F.; Ferreira, A.G. 2004. Interpretação de resultados de germinação. In: Ferreira, A.G.; Borghetti, F. (Ed.). Germinação: Do Básico ao Aplicado. Artmed, Porto Alegre, p.209-222.).

Statistical analysis

The Levene test was used to evaluate the homogeneity of variance. Variables that met the assumption for parametric analysis were compared among treatments and the control with ANOVA. Significant results were compared by the post-hoc Tukey test for pairwise comparison of the means. Variables with non-parametric distribution were analyzed with a Kruskal-Wallis test followed by Mann-Whitney tests for pairwise comparison. To further evaluate the association of the germination variables with the oil treatments in each species, we used principal component analysis (PCA) based on a correlation matrix (Valentin 2012Valentin, J.L. 2012. Ecologia Numérica: Uma Introdução à Análise Multivariada de Dados Ecológicos. Interciência, Rio de Janeiro, 168p.; Legendre and Legendre 2012Legendre, P.; Legendre, L. 2012. Numerical Ecology. 3rd. ed. Elsevier Science, Amsterdam, 989p.). The statistical significance of the difference between the groups obtained by the ordination technique was assessed with a one-way PERMANOVA test (Anderson 2001Anderson, M.J. 2001. A new method for non-parametric multivariance analysis of variance. Austral Ecology. 26:32-46.). The statistical analyses were performed with the Past 4.03 software (Hammer et al. 2001Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4: 1-9.) with a significance level of 0.05 for all tests.

RESULTS

Laguncularia racemosa showed a significant difference among treatments for G% (F = 4.15; df = 6/14, p = 0.013), with significantly higher G% in the control and no difference among replicates within treatments (rejoinder) (Table 1). Avicennia germinans, showed no significant difference in G% among the treatments and the control (F = 0.42; df = 6,14, p = 0.85) (Table 1). GSI varied significantly in L. racemosa (F = 6.20; df = 6,13, p = 0.002), with all treatments presenting significantly lower values than the control (Table 1). No significant difference was observed for GSI in A. germinans (F = 0.25; df = 6/14, p = 0.95). No significant variation was observed among treatments and control for MGT and MGS in both species (Table 1).

Table 1
Physiological variables of germination of Laguncularia racemosa and Avicennia germinans propagules (mean ± standard deviation of three replicates) subjected to different percentagens of diesel oil 0.5% (T1); 1% (T2); 1,5% (T3); 2% (T4); 3% (T5); 4% (T6) and 0% (C-control). G% = germinability; MGT = mean germination time; MGS = mean germination speed; GSI = germination speed index. Different letters in the column within species indicate significant pairwise differences between treatments and control (C) according to a Tukey test.

Axis 1 and 2 of the PCA explained 46% and 35% of the data variance, respectively. G%, GSI and MGS of L. racemosa were positively correlated with axis 1, being associated with the control. MGT was negatively correlated with axis 1, being associated with treatments with higher concentrations of diesel oil (T4, T5 and T6). MGS and GSI of A. germinans were positively correlated with axis 2, being associated with the control and T1, while MGT was negatively correlated with axis 2, with association with treatments T2, T3 and T4, and G% was close to the origin of the graph, indicating low representativeness in the sample, and little association with the treatments (Figure 3). The PERMANOVA indicated significant differences (F = 99.09; p = 0.01) among the control (CG) and the treatments with low T1, T2 and T3) and high (T4, T5 and T6) oil concentrations.

Figure 3
Principal component analysis (PCA) showing the correlation among germination response variables (G% = germinability; MGT = mean germination time; MGS = mean germination speed; GSI = germination speed index) for Laguncularia racemosa and Avicennia germinans with low percentages of diesel oil [LP: 0.5% (T1); 1% (T2); 1,5% (T3)], high percentages of diesel oil [HP: 2% (T4); 3% (T5), 4% (T6)] and the control group with no diesel oil (CG). This figure is in color in the electronic version.

DISCUSSION

Our results showed that A. germinans and L. racemosa responded differently when exposed to diesel oil. Avicennia germinans exposed to crude oil in concentrations of 15 ml and 120 ml showed retardation in seedling development (Chindah et al. 2011Chindah, A.C; Braide, S.A.; Amakiri, J.O.; Onokurhefe, J. 2011. Effect of crude oil on the development of white mangrove seedlings (Avicennia germinans) in the Niger Delta, Nigeria.Polish Journal of Environmental Studies, 20: 275-284.), and the development and survival of planted propagules of A. schaueriana, R. mangle and L. racemosa exposed to 3% of marine diesel oil was significantly affected (Chequer et al. 2017Chequer, L.; Bitencourt, J.A.P.; Waite, C.C.C.; Santos, E.S.; Franco, D.C.; Alves, R.; Crapez, M.A.C. 2017. Response of mangrove propagules to the presence of oil- and hydrocarbon degrading bacteria during an experimental oil spill. Latin American Journal of Aquatic Research, 45: 814-821. ).

Under unfavorable conditions, the seed germination process can be hampered (Baskin and Baskin 2014Baskin, C.C.; Baskin, J.M. 2014. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. 2nd ed. Academic/Elsevier, San Diego, 1602p. ), which seemed to have been the case for L. racemosa, indicating that the species is sensitive to contact with diesel oil in the germinative stage, reinforcing the evidence from other studies that the components of petroleum derivatives or crude oil can inhibit both the germination process and the development of several mangrove species (Zhang et al. 2007Zhang, C.G.; Leung, K.K.; Wong, Y.S.; Tam, N.F.Y. 2007. Germination, growth and physiological responses of mangrove plant (Bruguiera gymnorrhiza) to lubricating oil pollution. Environmental and Experimental Botany, 60: 127-136.; Hoff and Michel 2014Hoff, R.; Michel, J. 2014. Oil Spills in Mangroves: Planning & Response Considerations. National Oceanic and Atmospheric Administration, 96p. ( (https://repository.library.noaa.gov/view/noaa/877 ). Accessed on 10 Jul 2023.
https://repository.library.noaa.gov/view...
; Guedes et al. 2018Guedes, F.A.F.; Rossetto, P.B.; Guimarães, F.; Wilwerth, M.W.; Paes, J.E.S.; Nicolás, M.F.; et al. 2018. Characterization of Laguncularia racemosa transcriptome and molecular response to oil pollution. Aquatic Toxicology. 205: 36-50.).

There was a significant variation in the germination speed index in L.racemosa, with greatest germination capacity of the propagules in the control, and decreasing capacity with the increase of diesel oil in the treatments. This same effect of decreasing germination capacity was also observed for halophytes from coastal wetlands exposed to diesel oil (Kim 2014Kim, K.D. 2014. Effects of diesel and kerosene on germination and growth of coastal wetland plant species.Bulletin of Environmental Contamination and Toxicology, 93: 596-602).

Avicennia germinans showed no negative effects of diesel oil on any of the germination variables analyzed, but the absence of a significant effect does not allow us to speculate to what extent the species would be resistant to diesel oil percentages greater than 4%. The mangrove response to contact with oil depends on the amount and type of oil with which it is impacted (Chequer et al. 2017Chequer, L.; Bitencourt, J.A.P.; Waite, C.C.C.; Santos, E.S.; Franco, D.C.; Alves, R.; Crapez, M.A.C. 2017. Response of mangrove propagules to the presence of oil- and hydrocarbon degrading bacteria during an experimental oil spill. Latin American Journal of Aquatic Research, 45: 814-821. ; Soares et al. 2006Soares, M L.G.; da Silva Junior, C.M.G.; Cavalcanti, V.F.; de Almeida, P.M.M.; de Souza Monteiro, A.; de Oliveira Chaves, F.; et al. 2006. Regeneração de floresta de mangue atingida por óleo na Baía de Guanabara (Rio de Janeiro, Brasil): resultados de 5 anos de monitoramento. Geochimica Brasiliensis, 20: 38-61.). It is also necessary to consider the developental stage of the mangrove when it is hit by the contaminant (stage of germination, seedlings or established tree). Studies conducted on A. germinans seedlings using different concentrations of lubricating oil and crude oil (15ml, 120ml) caused their death (Proffitt et al. 1995Proffitt, C.E.; Devlin, D.J.; Lindsey, M. 1995. Effects of oil on mangrove seedlings grown under different environmental conditions.Boletim de Poluição Marinha, 30: 788-793. ; Chindah et al. 2011Chindah, A.C; Braide, S.A.; Amakiri, J.O.; Onokurhefe, J. 2011. Effect of crude oil on the development of white mangrove seedlings (Avicennia germinans) in the Niger Delta, Nigeria.Polish Journal of Environmental Studies, 20: 275-284.), while in Avicennia marina (Forssk.) Vierh. and Bruguiera gymnorrhiza (L.) Lam., marine fuel oil (bunker) impaired the healthy development and caused seedling abnormalities (Naidoo et al. 2010Naidoo, G.; Naidoo, Y.; Achar, P. 2010. Responses of the mangroves Avicennia marina and Bruguiera gymnorrhiza to oil contamination. Flora - Morphology, Distribution, Functional Ecology of Plants, 205: 357-362. ). Although there is extensive literature about the negative effects of oil spills on mangrove ecosystems, reporting short and long-term effects, the action of oil on propagules in the germination stage, when they are dispersed in the water, is still little known.

CONCLUSIONS

The germination of Laguncularia racemosa was significantly lower than that of Avicennia germinans when exposed to diesel oil at percentagens between 0.5 and 4%. This indicates that this species is especially susceptible to diesel oil in the germination stage of the propagules, suggesting a greater degradation potential than other mangrove species in areas affected by diesel oil spills. Avicennia germinans proved to be resistant to the percentages applied in this study, and it is recommended to test this species with higher percentages of oil. Our results contribute to the knowledge on the sensitivity of propagules during the germination process to tensors and the general process of ecological recovery of mangroves degraded by diesel oil residues.

ACKNOWLEDGMENTS

To Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão, FAPEMA, which funded this research. To the Mangrove Laboratory (Laboratório de Manguezais, LAMA) and to the Mangrove Recovery Center (Centro de Recuperação de Manguezais, CERMANGUE) for the infrastructure and support provided to carry out the experiments.

REFERENCES

  • Amin, B.; Nurrachmi, I.; Rumiyatin, R. 2017. The effects of crude oil on growth and biomass of mangrove Bruguiera sexangula seedling in the intertidal area of Dumai City, Indonesia. International Journal of Applied Environmental Sciences, 12: 399-407.
  • Alcântara, E.H.; Santos, M.C.F.V. 2005. Mapeamento de áreas de sensibilidade ambiental ao derrame de óleo na região Portuária do Itaqui, São Luís, MA-Brasil. In: Anais XII Simpósio Brasileiro de Sensoriamento Remoto, Goiânia, Brasil, INPE, p.3605-3617.
  • Anderson, M.J. 2001. A new method for non-parametric multivariance analysis of variance. Austral Ecology 26:32-46.
  • Baskin, C.C.; Baskin, J.M. 2014. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination 2nd ed. Academic/Elsevier, San Diego, 1602p.
  • Borghetti, F.; Ferreira, A.G. 2004. Interpretação de resultados de germinação. In: Ferreira, A.G.; Borghetti, F. (Ed.). Germinação: Do Básico ao Aplicado Artmed, Porto Alegre, p.209-222.
  • Chequer, L.; Bitencourt, J.A.P.; Waite, C.C.C.; Santos, E.S.; Franco, D.C.; Alves, R.; Crapez, M.A.C. 2017. Response of mangrove propagules to the presence of oil- and hydrocarbon degrading bacteria during an experimental oil spill. Latin American Journal of Aquatic Research, 45: 814-821.
  • Chindah, A.C; Braide, S.A.; Amakiri, J.O.; Onokurhefe, J. 2011. Effect of crude oil on the development of white mangrove seedlings (Avicennia germinans) in the Niger Delta, Nigeria.Polish Journal of Environmental Studies, 20: 275-284.
  • Diniz, C.; Cortinhas, L.; Nerino, G.; Rodrigues, J.; Sadeck, L.; Adami, M.; et al 2019. Brazilian mangrove status: Three decades of satellite data analysis. Remote Sensing, 11: 808. doi.org/10.3390/rs11070808
    » https://doi.org/doi.org/10.3390/rs11070808
  • Duke, N.C.; Ellison, J.; Burns, K.A. 1998. Surveys of oil spill incidentes affecting mangrove habitat in Australia: a preliminary assessment of incidents, impacts on mangroves, and recovery of deforested areas. The APPEA Journal, 38: 646-654.
  • Elmqvist, T.; Cox, P.A. 1996. The evolution of vivipary in flowering plants.Oikos, 77: 3-9.
  • Ferreira, A.C.; Lacerda, L.D. 2016. Degradation and conservation of Brazilian mangroves, status and perspectives. Ocean & Coastal Management, 125: 38-46.
  • Finotti, A.R.; Caicedo, N.O.L.; Rodriguez, M.T.R. 2001. Contaminações subterrâneas com combustíveis derivados de petróleo: Toxicidade e a legislação brasileira. Revista Brasileira de Recursos Hídricos, 6: 29-46.
  • Goforth, J.R.; Thomas, H.W. 1980. Plantings of Red Mangroves (Rhizophora mangle L.) for Stabilization of Marl Shorelines in the Florida Keys Report ADA085599. Naval Ocean Systems Center, San Diego, 23p. ( (https://apps.dtic.mil/sti/citations/ADA085599 ). Accessed on 11 Jul 2023.
    » https://apps.dtic.mil/sti/citations/ADA085599
  • Guedes, F.A.F.; Rossetto, P.B.; Guimarães, F.; Wilwerth, M.W.; Paes, J.E.S.; Nicolás, M.F.; et al 2018. Characterization of Laguncularia racemosa transcriptome and molecular response to oil pollution. Aquatic Toxicology 205: 36-50.
  • Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4: 1-9.
  • Hoff, R.; Michel, J. 2014. Oil Spills in Mangroves: Planning & Response Considerations National Oceanic and Atmospheric Administration, 96p. ( (https://repository.library.noaa.gov/view/noaa/877 ). Accessed on 10 Jul 2023.
    » https://repository.library.noaa.gov/view/noaa/877
  • Hogarth, P.J. 2015. The Biology of Mangroves and Seagrasses 3rd ed. Oxford University Press, Oxford, 288p.
  • Hutchings, P.; Saenger, P. 1987. Ecology of Mangroves University of Queensland Press, St. Lucia, 388p.
  • ICMBio. 2018. Atlas dos Manguezais do Brasil Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, 176p. ( (https://ava.icmbio.gov.br/pluginfile.php/4592/mod_data/content/14085/atlas%20dos_manguezais_do_brasil.pdf ). Accessed on 11 Jul 2023.
    » https://ava.icmbio.gov.br/pluginfile.php/4592/mod_data/content/14085/atlas%20dos_manguezais_do_brasil.pdf
  • Kathiresan, K.; Bingham, B.L. 2001. Biology of mangroves and mangrove ecosystems. Advances in Marine Biology, 40: 81-251.
  • Kim, K.D. 2014. Effects of diesel and kerosene on germination and growth of coastal wetland plant species.Bulletin of Environmental Contamination and Toxicology, 93: 596-602
  • Kristian, A.; Oktorie, O. 2018. Study of coastal mangrove conservation in the world. Sumatra Journal of Disaster, Geography and Geography Education, 2: 49-52.
  • Legendre, P.; Legendre, L. 2012. Numerical Ecology 3rd. ed. Elsevier Science, Amsterdam, 989p.
  • Maguire, J.D. 1962. Speed of germination - aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2: 176-177.
  • Martins, J.C.S.; Mochel, F.R. 2022. Main spills of diesel oil and fuel oils in mangrove ecosystems in Brazil, from 1975 to 2022. International Journal of Biological and Natural Sciences, 2: 1-13.
  • Matos, D.L.; Cunha, D.R.; Cutrim, S. 2019. Diagnóstico dos acidentes envolvendo derrame de óleo ao mar no complexo portuário de São Luís. In: IV Congresso Internacional de Desempenho Portuário Campinas. 23p. ( (https://proceedings.science/cidesport-2019/papers/diagnostico-dos-acidentes-envolvendo-derrame-de-oleo-ao-mar-no-complexo-portuario-de-sao-luis?lang=pt-br ). Accessed on 13 Jul.2023.
    » https://proceedings.science/cidesport-2019/papers/diagnostico-dos-acidentes-envolvendo-derrame-de-oleo-ao-mar-no-complexo-portuario-de-sao-luis?lang=pt-br
  • Mochel, F.R. 2011. Manguezais amazônicos: status para a conservação e a sustentabilidade na zona costeira maranhense. In: Martins, M.B; Oliveira, T.G. (Ed.). Amazônia Maranhense. Diversidade e Conservação MPEG, Belém, p.93-118.
  • Mochel, F.R.; Fonseca, I.L.A. 2019. Abordagem integrada para a recuperação de manguezais degradados em áreas portuárias com estudo de caso em São Luís, Maranhão. In: Mochel, F.R. (Org). Gerenciamento Costeiro e Gerenciamento Portuário 2, Atena Editora, Ponta Grossa, p.59-71.
  • Naidoo, G.; Naidoo, Y.; Achar, P. 2010. Responses of the mangroves Avicennia marina and Bruguiera gymnorrhiza to oil contamination. Flora - Morphology, Distribution, Functional Ecology of Plants, 205: 357-362.
  • Nardes, E.; De Camargo, M.G.; Lana, P.C. 2013. Efeitos de um derrame experimental de óleo bunker na sobrevivência e taxas de crescimento de plântulas de Laguncularia racemosa (Combretaceae). Revista Biotemas, 26: 53-67.
  • Pena, P.G.L; Northcross, A.L.; Lima, M.A.G.; Rêgo, R.C.F. 2020. Derramamento de óleo bruto na costa brasileira em 2019: emergência em saúde pública em questão. Cadernos de Saúde Pública, 36: e00231019.
    » https://doi.org/e00231019
  • Petrobrás. 2021. Óleo Diesel: Informações Técnicas Petróleo Brasileiro S.A., 26p. ( (https://petrobras.com.br/data/files/04/93/72/4C/5A39C710E2EF93B7B8E99EA8/Manual-de-Diesel_2021.pdf ). Accessed on 13 Jul 2023.
    » https://petrobras.com.br/data/files/04/93/72/4C/5A39C710E2EF93B7B8E99EA8/Manual-de-Diesel_2021.pdf
  • Proffitt, C.E.; Devlin, D.J.; Lindsey, M. 1995. Effects of oil on mangrove seedlings grown under different environmental conditions.Boletim de Poluição Marinha, 30: 788-793.
  • Rebelo-Mochel, F. 1997. Mangroves on Săo Luís Island, Maranhăo Brazil. In: Kjerfve B.; Lacerda, L.D.; Diop, E.H.S. (Ed.). Mangrove Ecosystem Studies in Latin America and Africa, United Nations Educational, Scientific and Cultural Organizations, Paris, p.145-154.
  • Silva Junior, O.M; Magrini, A. 2014. Exploração de hidrocarbonetos na foz do rio Amazonas: perspectivas de impactos ambientais no âmbito das áreas ofertadas na 11ª rodada de licitações da agência nacional do petróleo. Revista GeoAmazônia; 2: 146-158.
  • Soares, M L.G.; da Silva Junior, C.M.G.; Cavalcanti, V.F.; de Almeida, P.M.M.; de Souza Monteiro, A.; de Oliveira Chaves, F.; et al 2006. Regeneração de floresta de mangue atingida por óleo na Baía de Guanabara (Rio de Janeiro, Brasil): resultados de 5 anos de monitoramento. Geochimica Brasiliensis, 20: 38-61.
  • Tomlinson, P.B. 2016. The Botany of Mangroves 2nd ed. Cambridge University Press, Cambridge, 406p.
  • Thompson, F.; Thompson, C. 2020. Biotecnologia Marinha Ed. FURG, Rio Grande, 855p.
  • Valentin, J.L. 2012. Ecologia Numérica: Uma Introdução à Análise Multivariada de Dados Ecológicos Interciência, Rio de Janeiro, 168p.
  • Van Der Stocken, T.; Carroll, D.; Menemenlis, D.; Simard, M.; Koedam, N. 2019. Global-scale dispersal and connectivity in mangroves. Proceedings of the National Academy of Sciences of the United States of America, 116: 915-922.
  • Yokoya, N.S. 1995. Distribuição e origem. In: Schaeffer-Novelli, Y. (Ed.). Manguezal: Ecossistema entre a Terra e o Mar Caribbean Ecological Research, São Paulo, p.9-12.
  • Zhang, C.G.; Leung, K.K.; Wong, Y.S.; Tam, N.F.Y. 2007. Germination, growth and physiological responses of mangrove plant (Bruguiera gymnorrhiza) to lubricating oil pollution. Environmental and Experimental Botany, 60: 127-136.
  • CITE AS:

    Martins, J.C.S.; Mochel, F.R.; Zanandrea, I.; Azevedo, J.W.J.; Lima, L.G.; Bezerra, D.S.; Abreu, E.G.N.; Silva, M.S.; Lima, A.M.S. 2023. Effects of automotive diesel oil on germination of Avicennia germinans and Laguncularia racemosa mangrove propagules. Acta Amazonica 53: 264-270.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author, Martins, J.C.S., upon reasonable request.

Edited by

ASSOCIATE EDITOR:

Carlos José S. Passos

Publication Dates

  • Publication in this collection
    27 Oct 2023
  • Date of issue
    Jul-Sep 2023

History

  • Received
    11 Aug 2022
  • Accepted
    07 July 2023
Instituto Nacional de Pesquisas da Amazônia Av. André Araujo, 2936 Aleixo, 69060-001 Manaus AM Brasil, Tel.: +55 92 3643-3030, Fax: +55 92 643-3223 - Manaus - AM - Brazil
E-mail: acta@inpa.gov.br