Acessibilidade / Reportar erro

Auricular Vagus Nerve Stimulation in Heart Failure: Critical Analysis and Future Perspectives

Auricular Stimulation/methods; Vagus Nerve; Epilepsy/prevention and control; Heart Failure; Transcutaneous Electric Nerve Stimulation/methods

The term VAGUS, from the Latin, was chosen to name the cranial nerve with the most complex diversity of functions and which affects numerous physiological processes, such as autonomic, immunological, cardiovascular, gastrointestinal, respiratory and endocrine regulation. 11. Hilz MJ. Transcutaneous vagus nerve stimulation - A brief introduction and overview. Auton Neurosci.2022;243:10338. Autonomic Neuroscience: Basic and Clinical 243 (2022) 103038.

The vagus nerve is made up of 20% efferent fibers and 80% afferent fibers, which make reciprocal connections between the brain and our organs. Afferent fibers transmit sensory information upward and terminate in four nuclei located in the medulla, including the nucleus tractus solitarius (NTS). Its efferent functions include sending parasympathetic cholinergic signals from brain nuclei to target organs. 11. Hilz MJ. Transcutaneous vagus nerve stimulation - A brief introduction and overview. Auton Neurosci.2022;243:10338. Autonomic Neuroscience: Basic and Clinical 243 (2022) 103038. , 22. Butt MF, Albusoda A, Farmer AD, Aziz Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat.2020;236(4):588-611. Doi: 10.1111/joa.13122.
https://doi.org/10.1111/joa.13122....

Invasive vagus nerve stimulation (VNS) has been established as a therapy for refractory epilepsies for approximately 20 years. Because it has a single entrance to the brain, its electrostimulation promotes modulating access to certain brain subcortical areas. 33. Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol,2022;1(8):477-82. Doi:10.1016/S1474-4422(02)00220X
https://doi.org/10.1016/S1474-4422(02)00...

4. Giordano F, Zicca A, Barba C, Guerrini R, Genitori L. Vagus nerve stimulation: surgical technique of implantation and revision and related morbidity. Epilepsia.2017;58(Suppl):1-85. Doi:10.1111/epi.13678
https://doi.org/10.1111/epi.13678...

5. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia.2010;51(6):1069-77. Doi:10.1111/j.1528-1167.2009.02397
https://doi.org/10.1111/j.1528-1167.2009...
- 66. Schuurman PR, Beukers RJ. Ventricular a systole during vagal nerve stimulation.Epilepsia.2009;50:967-8. Doi:10.1111/j.1528-1167.2008.01907.X
https://doi.org/10.1111/j.1528-1167.2008...

In the 1930s, it was known that VNS caused changes in the electroencephalogram (EEG). In 1988, the first device was implanted and, in 1997, approved by the FDA for the treatment of refractory epilepsy, after demonstrations of reduction in the number and severity of seizures, in patients unresponsive to pharmacological and surgical treatments. 55. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia.2010;51(6):1069-77. Doi:10.1111/j.1528-1167.2009.02397
https://doi.org/10.1111/j.1528-1167.2009...
, 66. Schuurman PR, Beukers RJ. Ventricular a systole during vagal nerve stimulation.Epilepsia.2009;50:967-8. Doi:10.1111/j.1528-1167.2008.01907.X
https://doi.org/10.1111/j.1528-1167.2008...

The so-called vagal “stimulator” has been implanted through a minimally invasive surgery, with the insertion of an electrode around the left cervical vagus nerve and a current generator in the infraclavicular region, similarly to an artificial cardiac pacemaker. 44. Giordano F, Zicca A, Barba C, Guerrini R, Genitori L. Vagus nerve stimulation: surgical technique of implantation and revision and related morbidity. Epilepsia.2017;58(Suppl):1-85. Doi:10.1111/epi.13678
https://doi.org/10.1111/epi.13678...
Stimulation on the left side left is preferred as it reduces the risk of bradycardia or asystole, which can be induced by stimulation of the right cervical vagus.

VNS can cause a range of side effects: from hoarseness, dysphagia, and local pain (due to its proximity to the glossopharyngeal nerve), to sudden atrioventricular blocks, due to its efferent effect on the sinus and atrioventricular node, but technical improvement and parameter adjustments of stimulation made the risk/benefit balance worthwhile, especially by reducing the mortality rate in patients with intractable epilepsy. 44. Giordano F, Zicca A, Barba C, Guerrini R, Genitori L. Vagus nerve stimulation: surgical technique of implantation and revision and related morbidity. Epilepsia.2017;58(Suppl):1-85. Doi:10.1111/epi.13678
https://doi.org/10.1111/epi.13678...

5. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia.2010;51(6):1069-77. Doi:10.1111/j.1528-1167.2009.02397
https://doi.org/10.1111/j.1528-1167.2009...
- 66. Schuurman PR, Beukers RJ. Ventricular a systole during vagal nerve stimulation.Epilepsia.2009;50:967-8. Doi:10.1111/j.1528-1167.2008.01907.X
https://doi.org/10.1111/j.1528-1167.2008...

Despite numerous studies demonstrating its effectiveness, the mechanism by which VNS controls epilepsy has not yet been fully understood. There are hypotheses that it acts by reducing brain excitability 11. Hilz MJ. Transcutaneous vagus nerve stimulation - A brief introduction and overview. Auton Neurosci.2022;243:10338. Autonomic Neuroscience: Basic and Clinical 243 (2022) 103038. and by its anti-inflammatory action, as the role of inflammation in the occurrence of epileptic seizures has recently been demonstrated.

After the success of therapy for epilepsy, the effects of VNS began to be studied more and clinical applications began to be tried for many other conditions, 77. Beekwilder JP, Beems T. Overview of the Clinical Applications of Vagus Nerve Stimulation. J Clin Neurophysiol.2010;27(2):130-8. J Clin Neurophysiol.2010;27(2):130-8. DOI: 10.1097/WNP.0b013e3181d64d8a.
https://doi.org/10.1097/WNP.0b013e3181d6...

8. Rush AJ, Marangell LB, Sackeim HÁ, George MS, Brannan SK, Davis SM, et al. Vagus nerve stimulation for treatment-resistant depression:a randomized controlled acute phase trial. Biol Psychiatry.2005;58(5):347-54.

9. Austelle CW, O’Leary GH, Thompson S, Gruber E, Kahn A, Manett AJ, et al. A comprehensive review of vagus nerve stimulation for depression. Neuromodulation.2022;25(3):308-15. https://doi.org/10.1111/ner.13528 .
https://doi.org/10.1111/ner.13528...

10. Ikramuddin S, Blackstone RP, Brancatisano A, Toouli J, Shah SN, Wolfe BM, et al. Effect of reversible intermittent intraabdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial. JAMA. 2014;312(9):915-22. Doi:10.1001/jama.2014.10540
https://doi.org/10.1001/jama.2014.10540...

11. Apovian CM, Shah SN, Wolfe BM, Ikramudin S, Miller CJ, Tweden, KS, et al. Two-year outcomes of vagal nerve blocking (vBloc) for the treatment of obesity in the ReCharge trial. Obes Surg. 2017;27(1):169-76. Doi:10.1007/s11695-0162325-7
https://doi.org/10.1007/s11695-0162325-7...
- 1212. Silberstein SD, Mechtler LL, Kudrow DB, Calhoun AH, McClure C, Saper JR, et al., on behalf of ACT1 Study Group, Non-invasive vagus nerve stimulation for the acute treatment of cluster headache: fndings from the randomized, double-blind, sham-controlled ACT1 study. Headache.2016;56(8):1317-32. Doi: 10.1111/head.12896
https://doi.org/10.1111/head.12896...
such as migraine, obesity, depression, inflammatory bowel diseases and heart failure (HF). 1414. De Ferrari GM, Crijns HJ, Borggrefe M, Milasinovic G, Smid J, Zabel M, et al., for the CardioFit Multicenter Trial Investigators. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J.2011;32(7):847-55. doi:10.1093/eurheartj/ehq424
https://doi.org/10.1093/eurheartj/ehq424...
, 1515. Zannad F, De Ferrari GM, Tuinenburg AE, Wright D, Brugada J, Butter C, et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J.2015; 36(7):425-33. doi:10.1093/eurheartj/ehu345
https://doi.org/10.1093/eurheartj/ehu345...

In the context of HF, still using implantable devices, two important clinical studies were carried out. NECTAR-HF demonstrated a statistically significant improvement in quality of life and functional class (NYHA) in the group submitted to the intervention, but not in echocardiographic parameters and autonomic tone. In INOVATE-HF, patients who received an implantable device or conventional medical treatment showed no difference in primary outcomes (death from all causes, worsening heart failure, and left ventricular end-systolic volume). But there was an improvement in quality of life and in the result of the 6-minute walk test in the stimulated group. 1414. De Ferrari GM, Crijns HJ, Borggrefe M, Milasinovic G, Smid J, Zabel M, et al., for the CardioFit Multicenter Trial Investigators. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J.2011;32(7):847-55. doi:10.1093/eurheartj/ehq424
https://doi.org/10.1093/eurheartj/ehq424...

15. Zannad F, De Ferrari GM, Tuinenburg AE, Wright D, Brugada J, Butter C, et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J.2015; 36(7):425-33. doi:10.1093/eurheartj/ehu345
https://doi.org/10.1093/eurheartj/ehu345...
- 1616. Gold MR, Van Veldhuisen DJ, Hauptman PJ, Borggrefe M, Kubo SH, Lieberman RA, et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J Am Coll Cardiol.2016;68(6):149-58. doi:10.1016/j.jacc.2016.03.525.
https://doi.org/10.1016/j.jacc.2016.03.5...

Due to its invasive nature, side effects and complications inherent to the surgery, non-invasive VNS modalities began to be developed, particularly trans auricular stimulation. 11. Hilz MJ. Transcutaneous vagus nerve stimulation - A brief introduction and overview. Auton Neurosci.2022;243:10338. Autonomic Neuroscience: Basic and Clinical 243 (2022) 103038. , 22. Butt MF, Albusoda A, Farmer AD, Aziz Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat.2020;236(4):588-611. Doi: 10.1111/joa.13122.
https://doi.org/10.1111/joa.13122....
, 1717. Bauer S, Baier H, Baumgartner C, Bohlmann K, Fauser S, Graf W, et al. Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul.2016;9(3):356-63. doi:10.1016/j.brs.2015.11.003
https://doi.org/10.1016/j.brs.2015.11.00...
The auricular branch of the vagus nerve can indirectly influence the cardiovascular system, via afferent pathways that reach the nucleus tractus solitarius (NTS), which neurons project to cardioinhibitory efferent central vagal neurons. These, in turn, propagate parasympathetic activity to the sinus node and AV node. The NTS, through other pathways, also inhibits excitatory impulses to sympathetic preganglionic neurons in the spinal cord. This inhibition decreases sympathetic activity to the cardiovascular system. 1818. Garamendi-Ruiz I, Gómez-Esteban JC. Cardiovascular autonomic effects of vagus nerve stimulation. Clin Auton Res. 2019;29(2):183-94. Doi: 10.1007/s10286-017-0477-8.
https://doi.org/10.1007/s10286-017-0477-...
, 1919. Badran BW, Mithoefer OJ, Summer CE, La Bate NT, Glusman CE, Badran AW, et al. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul.2018;11(4):699-708. Doi:10.1016/j.brs2018.04.004
https://doi.org/10.1016/j.brs2018.04.004...

Although potentially effective and less invasive, proposed atrial pacing protocols and their results vary greatly. 22. Butt MF, Albusoda A, Farmer AD, Aziz Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat.2020;236(4):588-611. Doi: 10.1111/joa.13122.
https://doi.org/10.1111/joa.13122....
, 2020. Rush AJ, Marangell LB, Sackeim HA, George MS, Brannan SK, Davis SM, et al. Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial. Epilepsy Behav.2013;28(3):343-6. Doi:10.1016/j.yebeh.2013.02.001
https://doi.org/10.1016/j.yebeh.2013.02....
, 2121. Badran BW, Brown JC, Doudle LT, Mithoefer OJ, LaBate, N.T., Coatsworth J, et al. Tragus or cymba conchae? Investigating the anatomicalfoundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimul.2018;11(4):47-8. Doi:10.1016/j.brs.2018.06.003.
https://doi.org/10.1016/j.brs.2018.06.00...
The region encompasses other auricular nerves that may be inadvertently stimulated. Stimulation of different auricular nerves can induce different cerebral and peripheral effects, which affect the reproducibility of the method. 22. Butt MF, Albusoda A, Farmer AD, Aziz Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat.2020;236(4):588-611. Doi: 10.1111/joa.13122.
https://doi.org/10.1111/joa.13122....
, 2222. Badran BW, Yu AB, Adair D, Mappin G, DeVries WH, Jenkins DD, et al. Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): technique, targeting, and considerations. J Vis Exp.2019;(143):10.3791/58984. Doi:10.3791/58984
https://doi.org/10.3791/58984...
Multiple reflexes can be triggered, such as the Arnold cough reflex and tearing, headache, local skin irritation, dizziness and even syncope.

The article published by Arquivos Brasileiros de Cardiologia 2323. Couceiro SM, Sant’Anna LB, Sant’Anna MB, Menezes RSM, Mesquita ET, Sant’Anna FM. Auricular Vagal Neuromodulation and its Application in Patients with Heart Failure and Reduced Ejection Fraction. DOI: https://doi.org/10.36660/abc.20220581 . Arq Bras Cardiol. 2023; 120(5):e20220581
https://doi.org/10.36660/abc.20220581...
prospectively evaluated 2 groups of patients with compensated HF. In the intervention group, they used a transcutaneous electrode on the superior concha and the other on the right earlobe, with the aim of stimulating terminations of the vagus, but also of the great auricular nerve of the lobe, for technical ease and standardization of the protocol. In the sham group, both electrodes were placed on the right earlobe. The intervention time was empirically determined, as well as the duration of treatment.

The intervention group was older and had a higher rMSSD index, and the sham group had a better quality of life index and better NYHA functional class at the time of recruitment. In both groups there was an improvement in performance in the 6mWT. In the intervention group, the improvement was statistically significant, but even so, the performance was inferior to that of the sham group.

An improvement in quality of life was observed in the intervention group, with no difference in the control group, whose quality of life was higher before the intervention.

Heart rate variability (HRV) is a method that has been used for years to assess vagal tonus, considered cardioprotective, associated with other clinical and laboratory variables. 2424. Stys A, Current clinical applications of heart rate variability. Clin Cardiol.1998 Oct;21(10):719-24. Doi: 10.1002/clc.4960211005.
https://doi.org/10.1002/clc.4960211005...

25. Nunan D, Gavin RH, Sandercock D, Brodie DA, Quantitative Systematic Review of Normal Values for Short-Term Heart Rate Variability in Healthy Adults. Pacing Clin Electrophysiol.2010;33(11):1407-17. Doi:10.1111/j.1540.8159.2010.02841.x
https://doi.org/10.1111/j.1540.8159.2010...
- 2626. Sammito S, Böckelmann I. Reference values for time- and frequency-domain heart rate variability measures. Heart Rhythm.2016;13(6):309-16. https://doi.org/10.1016/j.hrthm.2016.02.006 .
https://doi.org/10.1016/j.hrthm.2016.02....
It is noted that the rMSSD values were higher before the interventions in the sham group and no significant difference was observed between the groups after the treatment. The only parameter that improved after stimulation was the SDNN. However, it is difficult to assess the value of a single HRV parameter in patients with HF under pharmacological treatment, for whom we have no information regarding the drugs used.

It is important to note that stimulation of the earlobe (a site innervated by the greater auricular nerve) is commonly used for sham stimulation in controlled studies. And this was the region chosen in this specific study. Functional brain MRI, however, demonstrated that this region is not physiologically inert and there is, therefore, a need to explore alternative sites for sham stimulation. 2121. Badran BW, Brown JC, Doudle LT, Mithoefer OJ, LaBate, N.T., Coatsworth J, et al. Tragus or cymba conchae? Investigating the anatomicalfoundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimul.2018;11(4):47-8. Doi:10.1016/j.brs.2018.06.003.
https://doi.org/10.1016/j.brs.2018.06.00...
, 2222. Badran BW, Yu AB, Adair D, Mappin G, DeVries WH, Jenkins DD, et al. Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): technique, targeting, and considerations. J Vis Exp.2019;(143):10.3791/58984. Doi:10.3791/58984
https://doi.org/10.3791/58984...

The literature is scarce in anatomical and functional publications and there is no clear consensus on the sites most densely innervated by the auricular branch of the vagus nerve. The brain regions activated by atrial VNS depend on specific parameters of the stimulator, which are also not yet well defined. The results of functional MRI studies suggest that the concha and internal tragus are the most suitable sites for this intervention. 2121. Badran BW, Brown JC, Doudle LT, Mithoefer OJ, LaBate, N.T., Coatsworth J, et al. Tragus or cymba conchae? Investigating the anatomicalfoundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimul.2018;11(4):47-8. Doi:10.1016/j.brs.2018.06.003.
https://doi.org/10.1016/j.brs.2018.06.00...
, 2222. Badran BW, Yu AB, Adair D, Mappin G, DeVries WH, Jenkins DD, et al. Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): technique, targeting, and considerations. J Vis Exp.2019;(143):10.3791/58984. Doi:10.3791/58984
https://doi.org/10.3791/58984...

Despite the great enthusiasm about the potential of atrial vagal stimulation in the most diverse clinical situations, whether this therapy will meet expectations is still unknown. 2727. Hilz MJ, Bolz A. Transcutaneous vagus nerve stimulation and the realm of its therapeutic hopes and physiologyic enigmas. [Editorial] Auton Neurosci.2022;243:103039. Doi:10.1016/j.autneu.2022.103039
https://doi.org/10.1016/j.autneu.2022.10...
The numerous publications on the subject use different stimulation systems and methodologies, which makes its applicability doubtful.

Issues such as stimulation duration, treatment time, stimulus-related parameters such as pulse width, frequency, and intensity, as well as the definition of the area of application still require many experimental studies and clinical trials, with long-term follow-up, for trans auricular VNS to become a proven useful therapeutic tool in HF and other several areas of medicine.

Referências

  • 1
    Hilz MJ. Transcutaneous vagus nerve stimulation - A brief introduction and overview. Auton Neurosci.2022;243:10338. Autonomic Neuroscience: Basic and Clinical 243 (2022) 103038.
  • 2
    Butt MF, Albusoda A, Farmer AD, Aziz Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat.2020;236(4):588-611. Doi: 10.1111/joa.13122.
    » https://doi.org/10.1111/joa.13122.
  • 3
    Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol,2022;1(8):477-82. Doi:10.1016/S1474-4422(02)00220X
    » https://doi.org/10.1016/S1474-4422(02)00220X
  • 4
    Giordano F, Zicca A, Barba C, Guerrini R, Genitori L. Vagus nerve stimulation: surgical technique of implantation and revision and related morbidity. Epilepsia.2017;58(Suppl):1-85. Doi:10.1111/epi.13678
    » https://doi.org/10.1111/epi.13678
  • 5
    Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia.2010;51(6):1069-77. Doi:10.1111/j.1528-1167.2009.02397
    » https://doi.org/10.1111/j.1528-1167.2009.02397
  • 6
    Schuurman PR, Beukers RJ. Ventricular a systole during vagal nerve stimulation.Epilepsia.2009;50:967-8. Doi:10.1111/j.1528-1167.2008.01907.X
    » https://doi.org/10.1111/j.1528-1167.2008.01907.X
  • 7
    Beekwilder JP, Beems T. Overview of the Clinical Applications of Vagus Nerve Stimulation. J Clin Neurophysiol.2010;27(2):130-8. J Clin Neurophysiol.2010;27(2):130-8. DOI: 10.1097/WNP.0b013e3181d64d8a.
    » https://doi.org/10.1097/WNP.0b013e3181d64d8a.
  • 8
    Rush AJ, Marangell LB, Sackeim HÁ, George MS, Brannan SK, Davis SM, et al. Vagus nerve stimulation for treatment-resistant depression:a randomized controlled acute phase trial. Biol Psychiatry.2005;58(5):347-54.
  • 9
    Austelle CW, O’Leary GH, Thompson S, Gruber E, Kahn A, Manett AJ, et al. A comprehensive review of vagus nerve stimulation for depression. Neuromodulation.2022;25(3):308-15. https://doi.org/10.1111/ner.13528 .
    » https://doi.org/10.1111/ner.13528
  • 10
    Ikramuddin S, Blackstone RP, Brancatisano A, Toouli J, Shah SN, Wolfe BM, et al. Effect of reversible intermittent intraabdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial. JAMA. 2014;312(9):915-22. Doi:10.1001/jama.2014.10540
    » https://doi.org/10.1001/jama.2014.10540
  • 11
    Apovian CM, Shah SN, Wolfe BM, Ikramudin S, Miller CJ, Tweden, KS, et al. Two-year outcomes of vagal nerve blocking (vBloc) for the treatment of obesity in the ReCharge trial. Obes Surg. 2017;27(1):169-76. Doi:10.1007/s11695-0162325-7
    » https://doi.org/10.1007/s11695-0162325-7
  • 12
    Silberstein SD, Mechtler LL, Kudrow DB, Calhoun AH, McClure C, Saper JR, et al., on behalf of ACT1 Study Group, Non-invasive vagus nerve stimulation for the acute treatment of cluster headache: fndings from the randomized, double-blind, sham-controlled ACT1 study. Headache.2016;56(8):1317-32. Doi: 10.1111/head.12896
    » https://doi.org/10.1111/head.12896
  • 13
    Klein HU, De Ferrari GM. Vagus nerve stimulation: a new approach to reduce heart failure. Cardiol J.2010;17(6):638-43. PMID:21154273
  • 14
    De Ferrari GM, Crijns HJ, Borggrefe M, Milasinovic G, Smid J, Zabel M, et al., for the CardioFit Multicenter Trial Investigators. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J.2011;32(7):847-55. doi:10.1093/eurheartj/ehq424
    » https://doi.org/10.1093/eurheartj/ehq424
  • 15
    Zannad F, De Ferrari GM, Tuinenburg AE, Wright D, Brugada J, Butter C, et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J.2015; 36(7):425-33. doi:10.1093/eurheartj/ehu345
    » https://doi.org/10.1093/eurheartj/ehu345
  • 16
    Gold MR, Van Veldhuisen DJ, Hauptman PJ, Borggrefe M, Kubo SH, Lieberman RA, et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J Am Coll Cardiol.2016;68(6):149-58. doi:10.1016/j.jacc.2016.03.525.
    » https://doi.org/10.1016/j.jacc.2016.03.525.
  • 17
    Bauer S, Baier H, Baumgartner C, Bohlmann K, Fauser S, Graf W, et al. Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul.2016;9(3):356-63. doi:10.1016/j.brs.2015.11.003
    » https://doi.org/10.1016/j.brs.2015.11.003
  • 18
    Garamendi-Ruiz I, Gómez-Esteban JC. Cardiovascular autonomic effects of vagus nerve stimulation. Clin Auton Res. 2019;29(2):183-94. Doi: 10.1007/s10286-017-0477-8.
    » https://doi.org/10.1007/s10286-017-0477-8.
  • 19
    Badran BW, Mithoefer OJ, Summer CE, La Bate NT, Glusman CE, Badran AW, et al. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul.2018;11(4):699-708. Doi:10.1016/j.brs2018.04.004
    » https://doi.org/10.1016/j.brs2018.04.004
  • 20
    Rush AJ, Marangell LB, Sackeim HA, George MS, Brannan SK, Davis SM, et al. Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial. Epilepsy Behav.2013;28(3):343-6. Doi:10.1016/j.yebeh.2013.02.001
    » https://doi.org/10.1016/j.yebeh.2013.02.001
  • 21
    Badran BW, Brown JC, Doudle LT, Mithoefer OJ, LaBate, N.T., Coatsworth J, et al. Tragus or cymba conchae? Investigating the anatomicalfoundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimul.2018;11(4):47-8. Doi:10.1016/j.brs.2018.06.003.
    » https://doi.org/10.1016/j.brs.2018.06.003.
  • 22
    Badran BW, Yu AB, Adair D, Mappin G, DeVries WH, Jenkins DD, et al. Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): technique, targeting, and considerations. J Vis Exp.2019;(143):10.3791/58984. Doi:10.3791/58984
    » https://doi.org/10.3791/58984
  • 23
    Couceiro SM, Sant’Anna LB, Sant’Anna MB, Menezes RSM, Mesquita ET, Sant’Anna FM. Auricular Vagal Neuromodulation and its Application in Patients with Heart Failure and Reduced Ejection Fraction. DOI: https://doi.org/10.36660/abc.20220581 . Arq Bras Cardiol. 2023; 120(5):e20220581
    » https://doi.org/10.36660/abc.20220581
  • 24
    Stys A, Current clinical applications of heart rate variability. Clin Cardiol.1998 Oct;21(10):719-24. Doi: 10.1002/clc.4960211005.
    » https://doi.org/10.1002/clc.4960211005
  • 25
    Nunan D, Gavin RH, Sandercock D, Brodie DA, Quantitative Systematic Review of Normal Values for Short-Term Heart Rate Variability in Healthy Adults. Pacing Clin Electrophysiol.2010;33(11):1407-17. Doi:10.1111/j.1540.8159.2010.02841.x
    » https://doi.org/10.1111/j.1540.8159.2010.02841.x
  • 26
    Sammito S, Böckelmann I. Reference values for time- and frequency-domain heart rate variability measures. Heart Rhythm.2016;13(6):309-16. https://doi.org/10.1016/j.hrthm.2016.02.006 .
    » https://doi.org/10.1016/j.hrthm.2016.02.006
  • 27
    Hilz MJ, Bolz A. Transcutaneous vagus nerve stimulation and the realm of its therapeutic hopes and physiologyic enigmas. [Editorial] Auton Neurosci.2022;243:103039. Doi:10.1016/j.autneu.2022.103039
    » https://doi.org/10.1016/j.autneu.2022.103039
  • Short Editorial related to the article: Auricular Vagal Neuromodulation and its Application in Patients with Heart Failure and Reduced Ejection Fraction

Publication Dates

  • Publication in this collection
    19 June 2023
  • Date of issue
    2023
Sociedade Brasileira de Cardiologia - SBC Avenida Marechal Câmara, 160, sala: 330, Centro, CEP: 20020-907, (21) 3478-2700 - Rio de Janeiro - RJ - Brazil, Fax: +55 21 3478-2770 - São Paulo - SP - Brazil
E-mail: revista@cardiol.br