Acessibilidade / Reportar erro

Resistance of schistosomes to hycanthone and oxamniquine

Abstract

Genetic crosses between phenotypically resistant and sensitive schistosomes demonstrated that resistance to hycanthone and oxamniquine behaves like a recessive trait, thus suggesting that resistance is due to the lack of some factor. We hypothesized that, in order to kill schistosomes, hycanthone and oxamniquine need to be converted into an active metabolite by some parasite enzyme wich, if inactive, results in drug resistance. Esterification of the drugs seemed to be the most likely event as it would lead to the production of an alkylating agent upon dissociation of the ester. An artificial ester of hycanthone was indeed active even in resistant worms, thus indirectly supporting our hypothesis. In addition, several lines of evidence demonstrated that exposure to hycanthone and oxamniquine results in alkylation of worm macromolecules. Thus, radioactive drugs formed covalent bonds with the DNA of sensitive (but not of resistant) schistosomes; an antiserum raised against hycanthone detected the presence of the drug in the purified DNA fraction of sensitive (but not of resistant) schistosomes; a drug-DNA adduct was isolated from hycanthone-treated worms and fully characterized as hycanthone-deoxyguanosine.

Schistosomes; Drug resistance; Hycanthone; Oxamniquine


ABSTRACT

Resistance of schistosomes to hycanthone and oxamniquine

Donato Cioli1

Livia Pica-Mattoccia1

Sydney Archer2

Institute of Cell Biology, Roma, Italy

Rensselaer Polytechnic Institute, Troy, USA

Genetic crosses between phenotypically resistant and sensitive schistosomes demonstrated that resistance to hycanthone and oxamniquine behaves like a recessive trait, thus suggesting that resistance is due to the lack of some factor. We hypothesized that, in order to kill schistosomes, hycanthone and oxamniquine need to be converted into an active metabolite by some parasite enzyme wich, if inactive, results in drug resistance. Esterification of the drugs seemed to be the most likely event as it would lead to the production of an alkylating agent upon dissociation of the ester. An artificial ester of hycanthone was indeed active even in resistant worms, thus indirectly supporting our hypothesis. In addition, several lines of evidence demonstrated that exposure to hycanthone and oxamniquine results in alkylation of worm macromolecules. Thus, radioactive drugs formed covalent bonds with the DNA of sensitive (but not of resistant) schistosomes; an antiserum raised against hycanthone detected the presence of the drug in the purified DNA fraction of sensitive (but not of resistant) schistosomes; a drug-DNA adduct was isolated from hycanthone-treated worms and fully characterized as hycanthone-deoxyguanosine.

Full text available only in PDF format.

Texto completo disponível apenas em PDF.

Publication Dates

  • Publication in this collection
    22 June 2009
  • Date of issue
    1989
Instituto Oswaldo Cruz, Ministério da Saúde Av. Brasil, 4365 - Pavilhão Mourisco, Manguinhos, 21040-900 Rio de Janeiro RJ Brazil, Tel.: (55 21) 2562-1222, Fax: (55 21) 2562 1220 - Rio de Janeiro - RJ - Brazil
E-mail: memorias@fiocruz.br