Acessibilidade / Reportar erro

Molecular approaches to malaria and Babesisosis diagnosis

Abstract

The development of additional methods for detecting and identifuing Babesia and Plasmodium infections may be useful in disease monitoring, management and control efforts. To preliminarily evaluate sunthetic peptide-based serodiagnosis, a hydrophilic sequence (DDESEFDKEK)was selected from published BabR gene of B. bovis. Immunization of rabbits and cattle with the hemocyanin-conjugated peptide elicited antibody responses that specifically detected both P. falciparum and B. bovis antigens by immunofluorescence and Western blots. Using a dot-ELISA with this peptide, antisera from immunized and naturally-infected cattle, and immunized rodents, were specifically detected. Reactivity was weak and correlated with peptide immunization or infection. DNA-based detection using repetitive DNA was species-specific in dot-blot formats for B. bovis DNA, and in both dot-blot and in situ formats for P. falciparum; a streamlined enzymelinked synthetic DNA assay for P. falciparum detected 30 parasites/mm(cúbicos) from patient blood using either colorimetric (2-15 h color development) or chemiluminescent detection (0.5-6-min. exposures). Serodiagnostic and DNA hybridization methods may be complementary in the respective detection of both chronic and acute infections. However, recent improvements in the polymerase chain reaction (PCR) make feasible a more sensitive and uniform approach to the diagnosis of these and other infectious disease complexes, with appropriate primers and processing methods. An analysis of ribosomal DNA genes of Plasmodium and Toxoplasma identified Apicomplexa-conserved sequence regions. Specific and distinctive PCR profiles were obtained for primers spanning the internal transcribed spacer locus for each of several Plasmodium and Babesia species.

Babesia; Plasmodium; diagnosis; synthetic peptide; serology; in situ detection; chemiluminescence; dot-blot; polymerase chain reaction; internal transcribed spacer; ribosomal DNA


ABSTRACT

Molecular approaches to malaria and Babesisosis diagnosis

G. L. McLaughlin

S. Montenegro-James1

M. H. Vodkin2

D. Howe2

M. Toro3

E. Leon3

R. Armijos4

I. Kakoma2

B. M. Greenwood5

M. Hassan-King5

J. Marich6

J. Ruth6

M. A. James2

Tulane University Medical Center, Department of Tropical Medicine, New Orleans, USA

Purdue University, Department of Veterinary Pathobiology, West Lafayette, USA

Instituto de Investigaciones Veterinarias Agropecuarias, Maracay, Venezuela

Universidad Central del Ecuador, Facultad de Ciencias Medicas, Laboratorio de Immunologia, Quito, Ecuador

Medical Research Council, Laboratories, Fajara, The Gambia

Molecular Biosystems Inc, San Diego, USA

The development of additional methods for detecting and identifuing Babesia and Plasmodium infections may be useful in disease monitoring, management and control efforts. To preliminarily evaluate sunthetic peptide-based serodiagnosis, a hydrophilic sequence (DDESEFDKEK)was selected from published BabR gene of B. bovis. Immunization of rabbits and cattle with the hemocyanin-conjugated peptide elicited antibody responses that specifically detected both P. falciparum and B. bovis antigens by immunofluorescence and Western blots. Using a dot-ELISA with this peptide, antisera from immunized and naturally-infected cattle, and immunized rodents, were specifically detected. Reactivity was weak and correlated with peptide immunization or infection. DNA-based detection using repetitive DNA was species-specific in dot-blot formats for B. bovis DNA, and in both dot-blot and in situ formats for P. falciparum; a streamlined enzymelinked synthetic DNA assay for P. falciparum detected 30 parasites/mm(cúbicos) from patient blood using either colorimetric (2-15 h color development) or chemiluminescent detection (0.5-6-min. exposures). Serodiagnostic and DNA hybridization methods may be complementary in the respective detection of both chronic and acute infections. However, recent improvements in the polymerase chain reaction (PCR) make feasible a more sensitive and uniform approach to the diagnosis of these and other infectious disease complexes, with appropriate primers and processing methods. An analysis of ribosomal DNA genes of Plasmodium and Toxoplasma identified Apicomplexa-conserved sequence regions. Specific and distinctive PCR profiles were obtained for primers spanning the internal transcribed spacer locus for each of several Plasmodium and Babesia species.

Full text available only in PDF format.

Texto completo disponível apenas em PDF.

Publication Dates

  • Publication in this collection
    04 June 2009
  • Date of issue
    1992
Instituto Oswaldo Cruz, Ministério da Saúde Av. Brasil, 4365 - Pavilhão Mourisco, Manguinhos, 21040-900 Rio de Janeiro RJ Brazil, Tel.: (55 21) 2562-1222, Fax: (55 21) 2562 1220 - Rio de Janeiro - RJ - Brazil
E-mail: memorias@fiocruz.br