Acessibilidade / Reportar erro

The first complete mitochondrial genomes of three dobsonfly species (Megaloptera: Corydalidae) from Pakistan with phylogenetic implications

ABSTRACT

Megaloptera is a small holometabolous insect order that includes two genera and three species of Corydalidae in Pakistan. Here we sequenced the complete mitochondrial genomes of these three Pakistani corydalids: Nevromus intimus (McLachlan, 1869) (16,614 bp), Protohermes motuoensis Liu & Yang, 2006 (16,238 bp), and Protohermes walkeri Navás, 1929 (16,514 bp). It also represents the first set of complete mitogenomes sequenced for Neuropterida in Pakistan. The gene order was found to be similar to other published dobsonfly mitogenomes except the variable length of the non-coding region in each species. The phylogenetic analysis using 13 protein-coding genes by Maximum likelihood and Bayesian inference yielded largely consistent topologies, in which the phylogenetic positions of the three species herein studied are recovered.

Keywords:
Phylogenetic analysis,; Mitochondrial genome,; Neuropterida,; Corydalinae,; Northern Pakistan

Introduction

The insect mitochondrial genome (mitogenome or mtDNA) is a closed-circular double-stranded molecule of 14-20 kilobases (kb) in size that encodes 37 genes, including 13 protein-coding genes (PCGs: nad1-6, nad4L, atp6, atp8, cox1-3, cob), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs: rrnS, rrnL), and a variable-length of non-coding A+T-rich region (Boore, 1999Boore, J.L., 1999. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767-1780. https://doi.org/10.1093/nar/27.8.1767.
https://doi.org/10.1093/nar/27.8.1767...
; Cameron, 2014Cameron, S.L., 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu. Rev. Entomol. 59, 95-117. https://doi.org/10.1146/annurev-ento-011613-162007.
https://doi.org/10.1146/annurev-ento-011...
). To date, the mitogenomes of 28 recognized insect orders have been sequenced (Cameron, 2014Cameron, S.L., 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu. Rev. Entomol. 59, 95-117. https://doi.org/10.1146/annurev-ento-011613-162007.
https://doi.org/10.1146/annurev-ento-011...
) and are extensively used for analyzing the evolutionary history, biogeographical history, population phylogeographic relationships, and molecular phylogenetic studies at various taxonomic levels (Cameron, 2014Cameron, S.L., 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu. Rev. Entomol. 59, 95-117. https://doi.org/10.1146/annurev-ento-011613-162007.
https://doi.org/10.1146/annurev-ento-011...
; Cameron et al., 2009Cameron, S.L., Sullivan, J., Song, H., Miller, K.B., Whiting, M.F., 2009. A mitochondrial genome phylogeny of the Neuropterida (lace-wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders. Zool. Scr. 38, 575-590. https://doi.org/10.1016/j.gene.2014.07.052.
https://doi.org/10.1016/j.gene.2014.07.0...
; Ma et al., 2012Ma, C., Yang, P.C., Jiang, F., Chapuis, M.P., Shali, Y., Sword, G.A., Kang, L., 2012. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Mol. Ecol. 21, 4344-4358. https://doi.org/10.1111/j.1365-294X.2012.05684.x.
https://doi.org/10.1111/j.1365-294X.2012...
; Simon and Hadrys, 2013Simon, S., Hadrys, H., 2013. A comparative analysis of complete mitochondrial genomes among Hexapoda. Mol. Phylogenet. Evol. 69, 393-403. https://doi.org/10.1016/j.ympev.2013.03.033.
https://doi.org/10.1016/j.ympev.2013.03....
; Timmermans et al., 2014Timmermans, M.J.T.N., Lees, D.C., Simonsen, T.J., 2014. Towards a mitogenomic phylogeny of Lepidoptera. Mol. Biol. Evol. 79, 169-178. https://doi.org/10.1016/j.ympev.2014.05.031.
https://doi.org/10.1016/j.ympev.2014.05....
; Jiang et al., 2020Jiang, Y.L., Yang, Y., Yue, L., Hayashi, F., Yang, D., Liu, X.Y., 2020. Origin and spatio-temporal diversification of a fishfly lineage endemic to the islands of East Asia (Megaloptera: corydalidae). Syst. Entomol. 46, 124-139. https://doi.org/10.1111/syen.12452.
https://doi.org/10.1111/syen.12452...
, 2022Jiang, Y.L., Yue, L., Yang, F., Gillung, J.P., Winterton, S.L., Price, B.W., Contreras-Ramos, A., Hayashi, F., Aspöck, U., Aspöck, H., Yeates, D.K., Yang, D., Liu, X.Y., 2022. Similar pattern, different paths: tracing the biogeographical history of Megaloptera (Insecta: Neuropterida) using mitochondrial phylogenomics. Cladistics. 38, 374-391. https://doi.org/10.1111/cla.12494.
https://doi.org/10.1111/cla.12494...
). The gene arrangements within mtDNA are a key feature that provides valuable information regarding the evolutionary relationships at different taxonomic ranks and can be variable among insects (Boore et al., 1995Boore, J.L., Collins, T.M., Stanton, D., Daehler, L.L., Brown, W.M., 1995. Deducing the pattern of arthropod phytogeny from mitochondrial DNA rearrangements. Nature. 376, 163-165. https://doi.org/10.1038/376163a0.
https://doi.org/10.1038/376163a0...
; Boore, 1999Boore, J.L., 1999. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767-1780. https://doi.org/10.1093/nar/27.8.1767.
https://doi.org/10.1093/nar/27.8.1767...
).

To date, more than 160 complete or nearly complete mitogenomes of Neuropterida species have been sequenced and are available on GenBank (https://www.ncbi.nlm.nih.gov/). The mitochondrial phylogenomics have greatly improved our knowledge on the phylogeny and biogeography of various groups of Neuropterida (Jiang et al., 2016Jiang, Y.L., Yang, F., Yang, D., Liu, X.Y., 2016. Complete mitochondrial genome of a Neotropical dobsonfly Chloronia mirifica Navás, 1925 (Megaloptera: Corydalidae), with phylogenetic implications for the genus Chloronia Banks, 1908. Zootaxa. 4162, 46-60.; Wang et al., 2017Wang, Y.Y., Liu, X.Y., Garzón-Orduña, I.J., Winterton, S.L., Yan, Y., Aspöck, U., Yang, D., 2017. Mitochondrial phylogenomics illuminates the evolutionary history of Neuropterida. Cladistics. 33, 1-20.; Yang et al., 2018Yang, F., Chang, W.C., Hayashi, F., Gillung, J., Jiang, Y.L., Yang, D., Liu, X.Y., 2018. Evolutionary history of the complex polymorphic dobsonfly genus Neoneuromus (Megaloptera: corydalidae). Syst. Entomol. 43, 568-595.; Jiang et al., 2022Jiang, Y.L., Yue, L., Yang, F., Gillung, J.P., Winterton, S.L., Price, B.W., Contreras-Ramos, A., Hayashi, F., Aspöck, U., Aspöck, H., Yeates, D.K., Yang, D., Liu, X.Y., 2022. Similar pattern, different paths: tracing the biogeographical history of Megaloptera (Insecta: Neuropterida) using mitochondrial phylogenomics. Cladistics. 38, 374-391. https://doi.org/10.1111/cla.12494.
https://doi.org/10.1111/cla.12494...
; Shen et al., 2022Shen, R., Aspöck, H., Aspöck, U., Plant, J., Dai, Y., Liu, X.Y., 2022. Unraveling the evolutionary history of the snakefly family Inocelliidae (Insecta: Raphidioptera) through integrative phylogenetics. Cladistics. 38, 515-537.). However, no complete mitochondrial genome is available on the Pakistani species of Neuropterida until now. Here, the complete mitochondrial genomes of three Pakistani Megaloptera species are first sequenced and analyzed. This research provides a basic foundation for future molecular phylogenetic studies on Megaloptera and other groups of Neuropterida in Pakistan.

Materials and Methods

Sampling and DNA extraction

Adult specimens of Nevromus intimus (Punjab: Murre [1♂, 30.VII.2019, 33.92192°N, 73.40353°E, 1928 m]), Protohermes motuoensis (Khyber Pakhtunkhwa: Swat [1♂, 11.IX.2019, 35.054092°N, 72.564847°E, 760 m]) and Protohermes walkeri (Azad Kashmir: Bagh [1♀, 04.VIII.2019, 34.5844°N, 73.4638°E, 1628 m]) were collected from the northern areas of Pakistan in 2019. The specimens were stored in 95% ethanol and refrigerated at -20°C. The specimens are deposited in the Entomological Museum of China Agricultural University (CAU), Beijing, China. Total genomic DNA was extracted from the thoracic muscle tissues or several legs of each individual sample preserved in ethanol, using the TIANamp Genomic DNA Kit (TIANGEN BIOTECH CO., LTD, Beijing, China) following manufacturers’ instructions.

Library preparation, and Illumina sequencing

The sequencing library was generated using Truseq Nano DNA Sample Prep Kits (Illumina, USA) with insert sizes from 350 bp sequence data with 150 bp paired-end reads. Raw reads were trimmed of adapters using Trimmomatic (Bolger et al., 2014Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30, 2114-2120. https://doi.org/10.1093/bioinformatics/btu170.
https://doi.org/10.1093/bioinformatics/b...
). GenBank accession numbers of all sequences used in this study are provided in Table 1. The clustering of the index-coded samples was performed on a cBot Cluster Generation System using Novaseq PE Cluster Kit v.2.5 (Illumina).

Table 1
List of taxa included in this study.

Genome assembly and annotation

We did the reference-guided assembling by mapping to the mitogenome of Nevromus exterior Navás, 1927 and Protohermes concolorus Yang & Yang, 1988 as the reference sequences (Hua et al., 2009Hua, J., Li, M., Dong, P., Xie, Q., Bu, W., 2009. The mitochondrial genome of Protohermes concolorus Yang et Yang, 1988 (Insecta: Megaloptera: Corydalidae). Mol. Biol. Rep. 36, 1757-1765. https://doi.org/10.1007/s11033-008-9379-0.
https://doi.org/10.1007/s11033-008-9379-...
; Jiang et al., 2015Jiang, Y.L., Zhou, Y.J., Wang, Y.Y., Yue, L., Yan, Y., Wang, M.Q., Liu, X.Y., 2015. Complete mitochondrial genomes of two Oriental dobsonflies, Neoneuromus tonkinensis (van der Weele) and Nevromus exterior (Navás) (Megaloptera: Corydalidae), and phylogenetic implications of Corydalinae. Zootaxa. 3964, 44-62. https://doi.org/10.11646/zootaxa.3964.1.2.
https://doi.org/10.11646/zootaxa.3964.1....
) through GENEIOUS v. 9.0 (Kearse et al., 2012Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., Drummond, A., 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28, 1647-1649. https://doi.org/10.1093/bioinformatics/bts199.
https://doi.org/10.1093/bioinformatics/b...
) (https://www.geneious.com), with the parameters set as follows: 95% minimum overlap identity, 4 maximum ambiguity, and minimum overlap of 25 bp. The other parameters use the default settings. The preliminary mitogenome annotations were conducted using the MITOS web server, under default settings, and the invertebrate genetic code for mitochondria (Bernt et al., 2013Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., Stadler, P.F., 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313-319. https://doi.org/10.1016/j.ympev.2012.08.023.
https://doi.org/10.1016/j.ympev.2012.08....
). For the mitochondrial protein-coding genes, we first removed the stop codon of each sequence. Then, the nucleotide sequences were aligned based on their corresponding amino acid translations using the MAFFT algorithm implemented in TranslatorX (Abascal et al., 2010Abascal, F., Zardoya, R., Telford, M.J., 2010. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38, 7-13. https://doi.org/10.1093/nar/gkq291.
https://doi.org/10.1093/nar/gkq291...
). Poorly aligned sites were removed with Gblocks v 0.91 (Talavera and Castresana, 2007Talavera, G., Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. https://doi.org/10.1080/10635150701472164.
https://doi.org/10.1080/1063515070147216...
), under options for a less stringent selection. For the mitochondrial tRNA and rRNA genes, each of them was aligned using MAFFT (Katoh and Standley, 2013Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. https://doi.org/10.1093/molbev/mst010.
https://doi.org/10.1093/molbev/mst010...
) under the iterative refinement method incorporating the most accurate local pairwise alignment information (E-INS-i), and ambiguously aligned sites were pruned using Gblocks with the same settings mentioned above. All alignments were checked in MEGA 7 (Kumar et al., 2016Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054.
https://doi.org/10.1093/molbev/msw054...
). Finally, all alignments were concatenated using FASconCAT_v1.0 (Kück and Meusemann, 2010Kück, P., Meusemann, K., 2010. FASconCAT: convenient handling of data matrices. Mol. Phylogenet. Evol. 56, 1115-1118. https://doi.org/10.1016/j.ympev.2010.04.024.
https://doi.org/10.1016/j.ympev.2010.04....
) to construct the full dataset of PCGs. Mitogenome maps were constructed using CG View server V 1.0 (http://stothard.afns.ualberta.ca/cgview_server/) (Grant and Stothard, 2008Grant, J.R., Stothard, P., 2008. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 36 (Suppl 2), W181. https://doi.org/10.1093/nar/gkn179.
https://doi.org/10.1093/nar/gkn179...
).

Phylogenetic analyses

To test the phylogenetic positions of the three Pakistani dobsonflies, the phylogenetic analyses were carried out based on two mitogenomic datasets: PCG123 (nucleotide data of 13 PCGs) and PCG_AA (amino acid sequences of the 13 PCGs) of 49 species (44 ingroup taxa of Corydalinae and 5 outgroup taxa respectively belonging to Chauliodinae, Sialidae, and Raphidioptera), including the three species from Pakistan (Table 1). We used PartitionFinder v.2.1.1 (Lanfear et al., 2016Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T., Calcott, B., 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772-773.) to determine the best partitioning schemes for the datasets under the Bayesian Information Criterion (BIC). Detailed information on the partitions and the best models selected are summarized in Table 2.

Table 2
Best-fit partitioning schemes and models of evolution determined by PartitionFinder.

Phylogenies were inferred based on Bayesian inference (BI) and Maximum likelihood (ML). ML analysis was performed in IQ-TREE (Nguyen et al., 2015Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. https://doi.org/10.1093/molbev/msu300.
https://doi.org/10.1093/molbev/msu300...
; Trifinopoulos et al., 2016Trifinopoulos, J., Nguyen, L.T., von Haeseler, A., Minh, B.Q., 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, 232-235.) and the BI analysis was performed in MrBayes v.3.2.7a (Ronquist et al., 2012Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MRBAYES 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61, 539-542. https://doi.org/10.1093/sysbio/sys029.
https://doi.org/10.1093/sysbio/sys029...
) implemented on XSEDE (Extreme Science and Engineering Discovery Environment) through the CIPRES Science Gateway (Miller et al., 2010Miller, M., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE), 2010, New Orleans. Annals. New York: IEEE, pp. 1-8. https://doi.org/10.1109/GCE.2010.5676129.
https://doi.org/10.1109/GCE.2010.5676129...
) (http://www.phylo.org/) with various data partition schemes and best-fitting models determined by PartitionFinder. The maximum likelihood method was performed on IQ-tree website server (http://iqtree.cibiv.univie.ac.at) with 1000 bootstrap replicates. The BI analysis contains four simultaneous Markov chain Monte Carlo (MCMC) runs of 2 million generations. Trees were sampled every 1000 generations and the burn-in fraction set to 25%. Analyses terminated when the standard deviation of clade frequencies fell below 0.01, which indicates that stationarity had been reached. A majority-rule consensus tree was calculated with posterior probabilities (PPs) for each node. The phylogenetic relationships were also reconstructed with the MrBayes and IQ-TREE plugin in PhyloSuite 1.2.2 (Zhang et al., 2020Zhang, D., Gao, F.L., Jakovlic, I., Zou, H., Zhang, J., Li, W.X., Wang, G.T., 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348-355. https://doi.org/10.1111/1755-0998.13096.
https://doi.org/10.1111/1755-0998.13096...
). Trees were visualized and edited with FIGTREE v1.3.1 (Rambaut, 2009Rambaut, A., 2009. FigTree Version 1.3. 1. Available in: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 4 January 2011).
http://tree.bio.ed.ac.uk/software/figtre...
).

Results

The complete mitogenome of Nevromus intimus is 16,614 bp in length, which is similar to Protohermes motuoensis (16,238 bp) and Protohermes walkeri (16,585 bp), and the mitochondrial genome maps are presented in Fig. 1. It contains 13 PCGs, two rRNAs, 22 tRNAs, and a variably lengthed control region: 1,867 bp (Protohermes walkeri), 1,527 bp (Protohermes motuoensis), and 1,858 bp (Nevromus intimus) (Tables 3 -5). Genetic divergence was calculated with the Kimura 2-parameter (K2P) model (Kimura, 1980Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120.) in MEGA 7.0 based on COI. The intraspecific genetic distance of P. motuoensis was 0.010 between the specimens respectively from Pakistan and China (Table S1).

Figure 1
The maps of the complete mitochondrial genome of three Pakistani dobsonfly species. A. Protohermes walkeri; B. Protohermes motuoensis; C. Nevromus intimus.
Table 3
Organization of the complete mt genome in Protohermes walkeri.
Table 4
Organization of the complete mt genome in Protohermes motuoensis.
Table 5
Organization of the complete mt genome in Nevromus intimus.

For the phylogenetic analyses, the PCG123 dataset includes 11061 bp nucleotides for each taxon, and the PCG_AA dataset includes 3687 bp amino acids for each taxon. Four phylogenetic trees were obtained from the ML and BI analysis of the above two datasets (Fig. 2, Figs. S1-S4). The 13 Neoneuromus species form a monophyletic group with high nodal supports and Nevromus was recovered as sister group with high support values in all analysis as in Tu et al. (2021)Tu, Y.Z., Lin, A.L., Jiang, Y.L., Liu, X.Y., 2021. Comparative mitochondrial genomics and phylogenetics among species of the Oriental dobsonfly genus Neoneuromus van der Weele, 1909 (Megaloptera: corydalidae). J. Asia Pac. Entomol. 24, 1257-1265. https://doi.org/10.1016/j.aspen.2021.08.013.
https://doi.org/10.1016/j.aspen.2021.08....
. Similarly, 28 Protohermes species for a monophyletic group with high nodal supports in all analysis except for some branches with low support in ML analysis in PhyloSuite. In all analysis, the phylogenetic placement of the newly sequences species of Nevromus and Protohermes are consistent with Tu et al. (2021)Tu, Y.Z., Lin, A.L., Jiang, Y.L., Liu, X.Y., 2021. Comparative mitochondrial genomics and phylogenetics among species of the Oriental dobsonfly genus Neoneuromus van der Weele, 1909 (Megaloptera: corydalidae). J. Asia Pac. Entomol. 24, 1257-1265. https://doi.org/10.1016/j.aspen.2021.08.013.
https://doi.org/10.1016/j.aspen.2021.08....
and Jiang et al. (2022)Jiang, Y.L., Yue, L., Yang, F., Gillung, J.P., Winterton, S.L., Price, B.W., Contreras-Ramos, A., Hayashi, F., Aspöck, U., Aspöck, H., Yeates, D.K., Yang, D., Liu, X.Y., 2022. Similar pattern, different paths: tracing the biogeographical history of Megaloptera (Insecta: Neuropterida) using mitochondrial phylogenomics. Cladistics. 38, 374-391. https://doi.org/10.1111/cla.12494.
https://doi.org/10.1111/cla.12494...
, respectively. However, the basal-most portion of Chloroniella in Corydalinae was only supported in BI analysis by PhyloSuite (Fig. 2), which is consistent with the phylogenetic results in Jiang et al. (2022)Jiang, Y.L., Yue, L., Yang, F., Gillung, J.P., Winterton, S.L., Price, B.W., Contreras-Ramos, A., Hayashi, F., Aspöck, U., Aspöck, H., Yeates, D.K., Yang, D., Liu, X.Y., 2022. Similar pattern, different paths: tracing the biogeographical history of Megaloptera (Insecta: Neuropterida) using mitochondrial phylogenomics. Cladistics. 38, 374-391. https://doi.org/10.1111/cla.12494.
https://doi.org/10.1111/cla.12494...
, whereas in the ML tree through IQ-tree website server, the BI tree through the CIPRES Science Gateway, and ML tree in PhyloSuite, Chloroniella was recovered as sister to Protohermes (Figs. S1-S4).

Figure 2
Phylogenetic relationships among the selected species of Megaloptera based on mitogenomic data. BI tree for Megaloptera based on concatenated 13 PCGs with branch supports shown as Bayesian posterior probabilities. The colors represent different genera.

Discussion

Our study provides the first detailed mitochondrial genome data on Megaloptera from Pakistan. In particular, we added the mitogenomic data of P. walkeri and N. intimus that have not yet been sequenced. The sister-group relationship between P. walkeri and P. niger, and their grouping with the other species of the P. costalis species-group support our previous placement of P. walkeri in the P. costalis group based on morphological characters, such as the widely separated lateral ocelli, the short, subcylindrical male ectoproct, and the female sternum 9 with a pair of sac-like lobes (Hassan et al., 2020Hassan, M.A., Hayashi, Y., Liu, X.Y., 2020. First record of the dobsonfly genus Protohermes van der Weele, 1907 from Pakistan (Megaloptera: corydalidae). Zootaxa. 4732, 422-434.). Moreover, the morphological similarity between P. walkeri and P. niger is also noteworthy. Protohermes niger is a spectacular species with sexual dimorphism, as the male is blackish in body and wing coloration, but the female is yellowish (Chang et al., 2013Chang, W., Hayashi, F., Liu, X.Y., Yang, D., 2013. Discovery of the female of Protohermes niger Yang & Yang (Megaloptera: Corydalidae): sexual dimorphism in coloration of a dobsonfly revealed by molecular evidence. Zootaxa. 3745, 84-92. http://dx.doi.org/10.11646/zootaxa.3745.1.7.
http://dx.doi.org/10.11646/zootaxa.3745....
). The females of P. niger have almost identical cephalic and pronotal marking patterns (different from most other Protohermes species) with P. walkeri. Thus, the present molecular data also suggests consistent interspecific relationship to the morphological inference concerning above two Protohermes species. For P. motuoensis, which is a species ranging along southern Himalayas (Hassan et al., 2020Hassan, M.A., Hayashi, Y., Liu, X.Y., 2020. First record of the dobsonfly genus Protohermes van der Weele, 1907 from Pakistan (Megaloptera: corydalidae). Zootaxa. 4732, 422-434.), the low genetic divergence of COI between the specimens respectively from Pakistan and southeastern Tibet confirms that they are conspecific despite long geographic distance of their distribution. By adding the mitogenome of N. intimus, the mitogenomic data are available for only two species of Nevromus. Nevromus intimus was assigned in a monophyletic group with Nevromus aspoeck Liu, Hayashi & Yang and N. exterior based on morphological data (Liu et al., 2012Liu, X.Y., Hayashi, F., Viraktamath, C.A., Yang, D., 2012. Systematics and biogeography of the dobsonfly genus Nevromus Rambur (Megaloptera: Corydalidae: Corydalinae) from the Oriental realm. Syst. Entomol. 37, 657-669.). Further molecular data are needed to investigate the phylogenetic position of N. intimus in Nevromus. The mitochondrial genome data of insects from Pakistan are still scarce. Our study may promote future works on molecular taxonomy and phylogeny of Neuropterida and other insect groups from Pakistan.

Acknowledgements

The first author would like to express his gratitude to Aqib Mateen (University of Poonch Rawalakot, Azad Kashmir, Pakistan) for his support and cooperation in collecting the megalopteran samples studied in this study from Azad Kashmir.

  • Funding This research was supported by the Chinese Government Scholarship, the Beijing Natural Science Foundation (No. 5212011), the National Natural Science Foundation of China (No. 32170448), and the National Animal Collection Resource Center, China.

References

  • Abascal, F., Zardoya, R., Telford, M.J., 2010. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38, 7-13. https://doi.org/10.1093/nar/gkq291
    » https://doi.org/10.1093/nar/gkq291
  • Beckenbach, A.T., Stewart, J.B., 2009. Insect mitochondrial genomics 3: the complete mitochondrial genome sequences of representatives from two neuropteroid orders: a dobsonfly (order Megaloptera) and a giant lacewing and an owlfly (order Neuroptera). Genome. 52, 31-38.
  • Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., Stadler, P.F., 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313-319. https://doi.org/10.1016/j.ympev.2012.08.023
    » https://doi.org/10.1016/j.ympev.2012.08.023
  • Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30, 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
    » https://doi.org/10.1093/bioinformatics/btu170
  • Boore, J.L., Collins, T.M., Stanton, D., Daehler, L.L., Brown, W.M., 1995. Deducing the pattern of arthropod phytogeny from mitochondrial DNA rearrangements. Nature. 376, 163-165. https://doi.org/10.1038/376163a0
    » https://doi.org/10.1038/376163a0
  • Boore, J.L., 1999. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767-1780. https://doi.org/10.1093/nar/27.8.1767
    » https://doi.org/10.1093/nar/27.8.1767
  • Cameron, S.L., Sullivan, J., Song, H., Miller, K.B., Whiting, M.F., 2009. A mitochondrial genome phylogeny of the Neuropterida (lace-wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders. Zool. Scr. 38, 575-590. https://doi.org/10.1016/j.gene.2014.07.052
    » https://doi.org/10.1016/j.gene.2014.07.052
  • Cameron, S.L., 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu. Rev. Entomol. 59, 95-117. https://doi.org/10.1146/annurev-ento-011613-162007
    » https://doi.org/10.1146/annurev-ento-011613-162007
  • Chang, W., Hayashi, F., Liu, X.Y., Yang, D., 2013. Discovery of the female of Protohermes niger Yang & Yang (Megaloptera: Corydalidae): sexual dimorphism in coloration of a dobsonfly revealed by molecular evidence. Zootaxa. 3745, 84-92. http://dx.doi.org/10.11646/zootaxa.3745.1.7
    » http://dx.doi.org/10.11646/zootaxa.3745.1.7
  • Grant, J.R., Stothard, P., 2008. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 36 (Suppl 2), W181. https://doi.org/10.1093/nar/gkn179
    » https://doi.org/10.1093/nar/gkn179
  • Hassan, M.A., Hayashi, Y., Liu, X.Y., 2020. First record of the dobsonfly genus Protohermes van der Weele, 1907 from Pakistan (Megaloptera: corydalidae). Zootaxa. 4732, 422-434.
  • Hua, J., Li, M., Dong, P., Xie, Q., Bu, W., 2009. The mitochondrial genome of Protohermes concolorus Yang et Yang, 1988 (Insecta: Megaloptera: Corydalidae). Mol. Biol. Rep. 36, 1757-1765. https://doi.org/10.1007/s11033-008-9379-0
    » https://doi.org/10.1007/s11033-008-9379-0
  • Jiang, Y.L., Zhou, Y.J., Wang, Y.Y., Yue, L., Yan, Y., Wang, M.Q., Liu, X.Y., 2015. Complete mitochondrial genomes of two Oriental dobsonflies, Neoneuromus tonkinensis (van der Weele) and Nevromus exterior (Navás) (Megaloptera: Corydalidae), and phylogenetic implications of Corydalinae. Zootaxa. 3964, 44-62. https://doi.org/10.11646/zootaxa.3964.1.2
    » https://doi.org/10.11646/zootaxa.3964.1.2
  • Jiang, Y.L., Yang, F., Yang, D., Liu, X.Y., 2016. Complete mitochondrial genome of a Neotropical dobsonfly Chloronia mirifica Navás, 1925 (Megaloptera: Corydalidae), with phylogenetic implications for the genus Chloronia Banks, 1908. Zootaxa. 4162, 46-60.
  • Jiang, Y.L., Yang, Y., Yue, L., Hayashi, F., Yang, D., Liu, X.Y., 2020. Origin and spatio-temporal diversification of a fishfly lineage endemic to the islands of East Asia (Megaloptera: corydalidae). Syst. Entomol. 46, 124-139. https://doi.org/10.1111/syen.12452
    » https://doi.org/10.1111/syen.12452
  • Jiang, Y.L., Yue, L., Yang, F., Gillung, J.P., Winterton, S.L., Price, B.W., Contreras-Ramos, A., Hayashi, F., Aspöck, U., Aspöck, H., Yeates, D.K., Yang, D., Liu, X.Y., 2022. Similar pattern, different paths: tracing the biogeographical history of Megaloptera (Insecta: Neuropterida) using mitochondrial phylogenomics. Cladistics. 38, 374-391. https://doi.org/10.1111/cla.12494
    » https://doi.org/10.1111/cla.12494
  • Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. https://doi.org/10.1093/molbev/mst010
    » https://doi.org/10.1093/molbev/mst010
  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., Drummond, A., 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28, 1647-1649. https://doi.org/10.1093/bioinformatics/bts199
    » https://doi.org/10.1093/bioinformatics/bts199
  • Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120.
  • Kück, P., Meusemann, K., 2010. FASconCAT: convenient handling of data matrices. Mol. Phylogenet. Evol. 56, 1115-1118. https://doi.org/10.1016/j.ympev.2010.04.024
    » https://doi.org/10.1016/j.ympev.2010.04.024
  • Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054
    » https://doi.org/10.1093/molbev/msw054
  • Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T., Calcott, B., 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772-773.
  • Liu, X.Y., Hayashi, F., Viraktamath, C.A., Yang, D., 2012. Systematics and biogeography of the dobsonfly genus Nevromus Rambur (Megaloptera: Corydalidae: Corydalinae) from the Oriental realm. Syst. Entomol. 37, 657-669.
  • Ma, C., Yang, P.C., Jiang, F., Chapuis, M.P., Shali, Y., Sword, G.A., Kang, L., 2012. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Mol. Ecol. 21, 4344-4358. https://doi.org/10.1111/j.1365-294X.2012.05684.x
    » https://doi.org/10.1111/j.1365-294X.2012.05684.x
  • Miller, M., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE), 2010, New Orleans. Annals. New York: IEEE, pp. 1-8. https://doi.org/10.1109/GCE.2010.5676129
    » https://doi.org/10.1109/GCE.2010.5676129
  • Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. https://doi.org/10.1093/molbev/msu300
    » https://doi.org/10.1093/molbev/msu300
  • Rambaut, A., 2009. FigTree Version 1.3. 1. Available in: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 4 January 2011).
    » http://tree.bio.ed.ac.uk/software/figtree/
  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MRBAYES 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61, 539-542. https://doi.org/10.1093/sysbio/sys029
    » https://doi.org/10.1093/sysbio/sys029
  • Shen, R., Aspöck, H., Aspöck, U., Plant, J., Dai, Y., Liu, X.Y., 2022. Unraveling the evolutionary history of the snakefly family Inocelliidae (Insecta: Raphidioptera) through integrative phylogenetics. Cladistics. 38, 515-537.
  • Simon, S., Hadrys, H., 2013. A comparative analysis of complete mitochondrial genomes among Hexapoda. Mol. Phylogenet. Evol. 69, 393-403. https://doi.org/10.1016/j.ympev.2013.03.033
    » https://doi.org/10.1016/j.ympev.2013.03.033
  • Talavera, G., Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. https://doi.org/10.1080/10635150701472164
    » https://doi.org/10.1080/10635150701472164
  • Timmermans, M.J.T.N., Lees, D.C., Simonsen, T.J., 2014. Towards a mitogenomic phylogeny of Lepidoptera. Mol. Biol. Evol. 79, 169-178. https://doi.org/10.1016/j.ympev.2014.05.031
    » https://doi.org/10.1016/j.ympev.2014.05.031
  • Trifinopoulos, J., Nguyen, L.T., von Haeseler, A., Minh, B.Q., 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, 232-235.
  • Tu, Y.Z., Lin, A.L., Jiang, Y.L., Liu, X.Y., 2021. Comparative mitochondrial genomics and phylogenetics among species of the Oriental dobsonfly genus Neoneuromus van der Weele, 1909 (Megaloptera: corydalidae). J. Asia Pac. Entomol. 24, 1257-1265. https://doi.org/10.1016/j.aspen.2021.08.013
    » https://doi.org/10.1016/j.aspen.2021.08.013
  • Wang, Y.R., Wang, Y.Y., Chang, W.C., Liu, X.Y., Yang, D., 2014. Sequencing and analysis of the complete mitochondrial genome of the giant dobsonfly Acanthacorydalis orientalis (McLachlan) (Insecta: Megaloptera: Corydalidae). Zool. Syst. 39, 209-223.
  • Wang, Y.Y., Liu, X.Y., Garzón-Orduña, I.J., Winterton, S.L., Yan, Y., Aspöck, U., Yang, D., 2017. Mitochondrial phylogenomics illuminates the evolutionary history of Neuropterida. Cladistics. 33, 1-20.
  • Yang, F., Chang, W.C., Hayashi, F., Gillung, J., Jiang, Y.L., Yang, D., Liu, X.Y., 2018. Evolutionary history of the complex polymorphic dobsonfly genus Neoneuromus (Megaloptera: corydalidae). Syst. Entomol. 43, 568-595.
  • Zhang, D., Gao, F.L., Jakovlic, I., Zou, H., Zhang, J., Li, W.X., Wang, G.T., 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348-355. https://doi.org/10.1111/1755-0998.13096
    » https://doi.org/10.1111/1755-0998.13096

Edited by

Associate Editor: Renato Jose Machado

Publication Dates

  • Publication in this collection
    10 Mar 2023
  • Date of issue
    2022

History

  • Received
    29 Dec 2022
  • Accepted
    09 Feb 2023
Sociedade Brasileira De Entomologia Caixa Postal 19030, 81531-980 Curitiba PR Brasil , Tel./Fax: +55 41 3266-0502 - São Paulo - SP - Brazil
E-mail: sbe@ufpr.br