Acessibilidade / Reportar erro

Predatory capacity and intraguild interaction between aphidophagous predators in the control of rose bush aphids

ABSTRACT

Chrysoperla externa (Hagen) and Hippodamia convergens (Guérin-Meneville) are voracious generalist predators, and important aphid control agents. In an environment containing a complex of species, the occurrence of intraguild interactions can interfere in the predator behavior and consumption. The aim of this work was to know the number of nymphs of Rhodobium porosum (Sanderson) and Macrosiphum rosae (Linnaeus) consumed by larvae of C. externa and H. convergens, and the interaction between these predators when confined together. First, second and third instar nymphs of R. porosum and M. rosae were provided in Petri dishes containing rose leaflets and second instar larvae of the predators. Intraguild interaction was studied in Petri dishes containing first instar nymphs of both aphid species and a second instar larva of C. externa plus one of H. convergens. A third treatment consisted of dishes containing a second instar larva of both predators maintained in the absence of prey. The evaluations took place throughout the entire instar of the predators. C. externa consumed a greater number of R. porosum nymphs and H. convergens a greater number of M. rosae nymphs. For both species of prey, the highest consumption was verified on the last day of evaluation. There was a positive interaction when the predator’s larvae were confined in the presence of aphid nymphs, with no mortality observed for any of them. In the absence of prey, there was 70% mortality of H. convergens larvae due to intraguild predation.

Keywords:
Chrysopidae; Coccinellidae; Biological Control

Introduction

The use of more than one species of natural enemy can be recommended to control one or more pests simultaneously, being an important strategy for the optimization of biological control (Gardiner and Landis, 2007Gardiner, M. M., Landis, D. A., 2007. Impact of intraguild predation by adult Harmonia axyridis (Coleoptera: Coccinellidae) on Aphis glycines (Hemiptera: Aphididae) biological control in cage studies. Biol. Control 40 (3), 386-395. http://dx.doi.org/10.1016/j.biocontrol.2006.11.005.
http://dx.doi.org/10.1016/j.biocontrol.2...
; Chow et al., 2010Chow, A., Chau, A., Heinz, K. M., 2010. Compatibility of Amblyseius (Typhlodromips) swirskii (Athias-Henriot) (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae) for biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on roses. Biol. Control 53 (2), 188-196. http://dx.doi.org/10.1016/j.biocontrol.2009.12.008.
http://dx.doi.org/10.1016/j.biocontrol.2...
). However, the simultaneous presence of the natural enemies and, consequently, the increase in the complexity of the food chain, can cause changes in the behavior of one or all species released. These changes occur in the presence or absence of target pests, due to several interactions mediated by the density of trophic chain components, including intraguild interaction (Messelink et al., 2012Messelink, G. J., Sabelis, M. W., Janssen, A., 2012. Generalist predators, food web complexities and biological pest control in greenhouse crops. In: Larramendy, M. L., Soloneski, S. (Eds.), Integrated Pest Management and Pest Control: Current and Future Tatics. InTech, Rijeka, pp. 191-214.; Khudr et al., 2020Khudr, M. S., Fliegner, L., Buzhdygan, O. Y., Wurst, S., 2020. Super-predation and intraguild interactions in a multi-predator-one-prey system alter the abundance and behaviour of green peach aphid (Hemiptera: aphididae). Can. Entomol. 152, 200-223. http://dx.doi.org/10.4039/tce.2020.7.
http://dx.doi.org/10.4039/tce.2020.7...
). The results of these interactions can be positive, due to a complementary action between the natural enemies, causing an increase in the suppression effect of pest arthropod populations (Chailleux et al., 2013Chailleux, A., Bearez, P., Pizzol, J., Amiens-Desneux, E., Ramirez-Romero, R., Desneux, N., 2013. Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest Tuta absoluta. J. Pest Sci. 86 (3), 533-541. http://dx.doi.org/10.1007/s10340-013-0498-6.
http://dx.doi.org/10.1007/s10340-013-049...
; Devee et al., 2018Devee, A., Arvaniti, K., Perdikis, D., 2018. Intraguild predation among three aphidophagous predators. Bull. Insectol. 71, 11-19.; Souza et al., 2019Souza, B., Santos-Cividanes, T. M., Cividanes, F. J., Sousa, A. L. V., 2019. Predatory Insects. In: Souza, B., Vázquez, L., Marucci, R. (Eds.), Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham.). However, negative interaction can also occur, such as intraguild predation (IGP), where members of the same guild compete for resources, resulting in the mortality of one of them. This interaction can compromise the regulation of the pest population, as the dominant predator will feed on the other, called intraguild prey (Polis et al., 1989Polis, G. A., Myers, C. A., Holt, R. D., 1989. The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20 (1), 297-330. http://dx.doi.org/10.1146/annurev.es.20.110189.001501.
http://dx.doi.org/10.1146/annurev.es.20....
), resulting in the reduction of control agents (Hagler and Blackmer, 2015Hagler, J. R., Blackmer, F., 2015. Evidence of intraguild predation on a key member of the cotton predator complex. Food Webs 4, 8-13. http://dx.doi.org/10.1016/j.fooweb.2015.06.001.
http://dx.doi.org/10.1016/j.fooweb.2015....
; Fu et al., 2017Fu, W., Yu, X., Ahmed, N., Zhang, S., Liu, T., 2017. Intraguild predation on the aphid parasitoid Aphelinus asychis by the ladybird Harmonia axyridis. BioControl 62 (1), 61-70. http://dx.doi.org/10.1007/s10526-016-9774-8.
http://dx.doi.org/10.1007/s10526-016-977...
).

The use of predators to reduce pest populations forms the basis of several biological control programs (Sabelis et al., 2008Sabelis, M. W., Janssen, A., Lesna, I., Aratchige, N. S., Nomikou, M., van Rijn, P. C. J., 2008. Developments in the use of predatory mites for biological pest control. IOBC WPRS Bull. 32, 187-199.; Messelink et al., 2012Messelink, G. J., Sabelis, M. W., Janssen, A., 2012. Generalist predators, food web complexities and biological pest control in greenhouse crops. In: Larramendy, M. L., Soloneski, S. (Eds.), Integrated Pest Management and Pest Control: Current and Future Tatics. InTech, Rijeka, pp. 191-214.). The ability of generalist predators to remain in the farming environment at low prey densities or even in the absence of prey, exploring other food resources, constitutes a main reason to include this category of natural enemy in such programs (Messelink et al., 2013Messelink, G. J., Bloemhard, C. M. J., Sabelis, M. W., Janssen, A., 2013. Biological control of aphids in the presence of thrips and their enemies. Biol. Control 58, 45-55. http://dx.doi.org/10.1007/s10526-012-9462-2.
http://dx.doi.org/10.1007/s10526-012-946...
). The green lacewing Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) presents a high potential to be used in biological control programs due to characteristics such as the variety of prey used as a food resource (Souza et al., 2008Souza, B., Costa, R. I. F., Tanque, R. L., Oliveira, P. S., Santos, F. A., 2008. Aspectos da predação entre larvas de Chrysoperla externa (Hagen, 1861) e Ceraeochrysa cubana (Hagen, 1861) (Neuroptera: Chrysopidae) em laboratório. Cienc. Agrotec. 32 (3), 712-716. http://dx.doi.org/10.1590/S1413-70542008000300002.
http://dx.doi.org/10.1590/S1413-70542008...
), high survival rate and voracity (Cuello et al., 2019Cuello, E. M., Andorno, A. V., Hernández, C. M., López, S. N., 2019. Prey consumption and development of the indigenous lacewing Chrysoperla externa feeding on two exotic Eucalyptus pests. Biocontrol Sci. Technol. 29 (12), 1159-1171. http://dx.doi.org/10.1080/09583157.2019.1660958.
http://dx.doi.org/10.1080/09583157.2019....
), wide distribution and adaptation to agricultural environments (Carvalho and Souza, 2009Carvalho, C. F., Souza, B., 2009. Métodos de criação e produção de crisopídeos. In: Bueno, V.H.P (Ed.), Controle biológico de Pragas: produção massal e controle de qualidade. Editora UFLA, Lavras, pp. 77-115.; Salamanca et al., 2015Salamanca, J., Pareja, M., Rodriguez-Saona, C., Resende, A. L. S., Souza, B., 2015. Behavioral responses of adult lacewings, Chrysoperla externa, to a rose-aphid-coriander complex. Biol. Control 80, 103-112. http://dx.doi.org/10.1016/j.biocontrol.2014.10.003.
http://dx.doi.org/10.1016/j.biocontrol.2...
), in addition to being easy to rear in the laboratory (Bezerra et al., 2017Bezerra, C. E. S., Amaral, B. B., Souza, B., 2017. Rearing Chrysoperla externa larvae on artificial diets. Neotrop. Entomol. 46 (1), 93-99. http://dx.doi.org/10.1007/s13744-016-0427-5.
http://dx.doi.org/10.1007/s13744-016-042...
; Palomares-Pérez et al., 2020Palomares-Pérez, M., Bravo-Núñez, M., Arredondo-Bernal, H. C., 2020. Functional response of Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) fed with Melanaphis sacchari (Zehntner, 1897) (Hemiptera: Aphididae). Proc. Entomol. Soc. Wash. 121 (2), 256-264. http://dx.doi.org/10.4289/0013-8797.121.2.256.
http://dx.doi.org/10.4289/0013-8797.121....
). Similarly, Hippodamia convergens (Guérin-Méneville, 1842) (Coleoptera: Coccinellidae) feeds on a wide variety of sap-sucking insects, mainly aphids (Boiça-Junior et al., 2004Boiça Junior, A. L., Santos, T. M., Kuranishi, A. K., 2004. Desenvolvimento larval e capacidade predatória de Cycloneda sanguinea (Linnaeus, 1763) e Hippodamia convergens (Guérin-Méneville, 1842) alimentadas com Aphis gossypii Glover, 1877 sobre cultivares de algodoeiro. Acta Sci. Agron. 26, 239-244. http://dx.doi.org/10.4025/actasciagron.v26i2.1892.
http://dx.doi.org/10.4025/actasciagron.v...
; Iftikhar et al., 2020Iftikhar, A., Hafeez, F., Hafeez, M., Farooq, M., Asif Aziz, M., Sohaib, M., Naeem, A., Lu, Y., 2020. Sublethal effects of a juvenile hormone analog, Pyriproxyfen on demographic parameters of non-target predator, Hippodamia convergens Guérin-Méneville (Coleoptera: coccinellidae). Ecotoxicology 29 (7), 1017-1028. http://dx.doi.org/10.1007/s10646-020-02159-7.
http://dx.doi.org/10.1007/s10646-020-021...
) and has a wide geographic distribution and adaptation to different environments (Vargas et al., 2012Vargas, G., Michaud, J. P., Nechols, J. R., 2012. Larval food supply constrains female reproductive schedules in Hippodamia convergens (Coleoptera: coccinellidae). Ann. Entomol. Soc. Am. 105 (6), 832-839. http://dx.doi.org/10.1603/AN12010.
http://dx.doi.org/10.1603/AN12010...
; Delgado-Ramírez et al., 2019Delgado-Ramírez, C. S., Salas-Araiza, M. D., Martínez-Jaime, O. A., Guzmán-Mendoza, R., Flores-Mejia, S., 2019. Predation capability of Hippodamia convergens (Coleoptera: Coccinellidae) and Chrysoperla carnea (Neuroptera: Chrysopidae) feeding of Melanaphis sacchari (Hemiptera: Aphididae). Fla. Entomol. 102 (1), 24-28. http://dx.doi.org/10.1653/024.102.0104.
http://dx.doi.org/10.1653/024.102.0104...
).

Among of the prey availability to generalist predators, aphids (Hemiptera: Aphididae) represent an important food source to lacewings and ladybirds (Khudr et al., 2020Khudr, M. S., Fliegner, L., Buzhdygan, O. Y., Wurst, S., 2020. Super-predation and intraguild interactions in a multi-predator-one-prey system alter the abundance and behaviour of green peach aphid (Hemiptera: aphididae). Can. Entomol. 152, 200-223. http://dx.doi.org/10.4039/tce.2020.7.
http://dx.doi.org/10.4039/tce.2020.7...
). These insects can colonize several agricultural crops (Riddick, 2017Riddick, E. W., 2017. Identification of conditions for successful aphid control by ladybirds in greenhouses. Insects 8 (2), 38. http://dx.doi.org/10.3390/insects8020038.
http://dx.doi.org/10.3390/insects8020038...
; Smith et al., 2018Smith, G. H., Roberts, J. M., Pope, T. W., 2018. Terpene based biopesticides as potential alternatives to synthetic insecticides for control of aphid pests on protected ornamentals. Crop Prot. 110, 125-130. http://dx.doi.org/10.1016/j.cropro.2018.04.011.
http://dx.doi.org/10.1016/j.cropro.2018....
). In rose bushes (Rosa sp.), the aphid species Rhodobium porosum (Sanderson, 1901) and Macrosiphum rosae (Linnaeus, 1758) are important pests, both in protected environments and in the fields, colonizing plants at different times of the year (Blackman and Eastop, 2000Blackman, R. L., Eastop, V. F., 2000. Aphids on the World’s Crops: an Identification and Information Guide, 2nd ed. Wiley, London.; Barjadze et al., 2011Barjadze, S., Karaca, İ., Yaşar, B., Japoshvili, G., 2011. The yellow rose aphid Rhodobium porosum: a new pest of damask rose in Turkey. Phytoparasitica 39 (1), 159-162. http://dx.doi.org/10.1007/s12600-010-0133-5.
http://dx.doi.org/10.1007/s12600-010-013...
). Due to the sap suction, these insects cause atrophy and curling of flower buds and contribute to the development of sooty mold, compromising the growth and reducing the commercial value of the plants.

Considering the relationship between aphids and their predators in rose bushes, as well as the added value to this culture, prior to establishing a biological control program involving the use of these mortality agents, it is important to understand their behavior when isolated and when there is interaction. In this work, we evaluated the consumption capacity of nymphs of R. porosum and M. rosae in different instars by second instar larvae of C. externa and H. convergens, as well as the intraguild interaction between these predators, when confined together, in the presence and absence of aphids.

Material and methods

The study was conducted in the Biological Control Laboratory of the Department of Entomology (DEN), at Federal University of Lavras (UFLA), Lavras, MG, Brazil.

The aphids were obtained from stock colonies reared on rose bushes (Rosa sp.), cultivar Avalanche, cultivated in greenhouse. The age standardization of the nymphs used was performed according to Fonseca et al. (2000)Fonseca, A. R., Carvalho, C. F., Souza, B., 2000. Resposta Funcional de Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) Alimentada com Schizaphis graminum (Rondani) (Hemiptera: Aphididae). An. Soc. Entomol. Bras. 29 (2), 309-317. http://dx.doi.org/10.1590/S0301-80592000000200013.
http://dx.doi.org/10.1590/S0301-80592000...
. The predators were obtained from stock colonies maintained in the Laboratory of Entomology at UFLA, according to the methodology from Carvalho and Souza (2009)Carvalho, C. F., Souza, B., 2009. Métodos de criação e produção de crisopídeos. In: Bueno, V.H.P (Ed.), Controle biológico de Pragas: produção massal e controle de qualidade. Editora UFLA, Lavras, pp. 77-115. for the green lacewing C. externa and from Santos et al. (2009)Santos, N. R. P., Santos-Cividanes, T. M., Cividanes, F. J., Anjos, A. C. R., Oliveira, L. V. L., 2009. Aspectos Biológicos de Harmonia axyridis alimentada com duas espécies de presas e predação intraguilda com Eriopis connexa. Pesqui. Agropecu. Bras. 44 (6), 554-560. http://dx.doi.org/10.1590/S0100-204X2009000600002.
http://dx.doi.org/10.1590/S0100-204X2009...
for the H. convergens with the adaptation of eight pairs per cage.

Newly hatched larvae of C. externa and H. convergens were individualized in glass tubes (8.5cm height; 2.5cm diameter) and fed with eggs of Ephestia kuehniella (Zeller, 1879) (Lepidoptera: Pyralidae) until reaching the second-instar, when they were used in the bioassays.

Predatory capacity of Chrysoperla externa and Hippodamia convergens

The tests were carried out in Petri dishes (5cm diameter) containing rose leaflets attached to a 5 mm layer of agar-water solution (1%), with the abaxial surface facing upwards. In each plate were placed 90, 70 and 60 nymphs of first, second and third instar of R. porosum, respectively. The same procedure was adopted for M. rosae. The number of nymphs offered to predators was obtained from preliminary tests. A second-instar larva of C. externa and a second-instar larva of H. convergens were released in each plate. The plates were sealed with transparent PVC film and kept at 25±1°C, relative humidity (RH) of 70±10% and photophase of 12 hours. The surviving nymphs were counted every 24 hours after the release, throughout all the second instar of the predators.

The killed aphids, regardless of whether they were totally or partially consumed, were replaced every day, using age-standardized nymphs from a parallel rearing. This procedure ensured feeding the predators with nymphs of the same age throughout the experiment. The following combinations were tested: second instar of C. externa with first, second and third-instars of R. porosum and M. rosae, and second instar of H. convergens with first, second and third-instars of R. porosum and M. rosae. A completely randomized design with ten replications was adopted.

Behavior and intraguild interaction between Chrysoperla externa and Hippodamia convergens in the presence and absence of aphids

Petri dishes containing rose leaflets were prepared in the same way as in the predatory capacity trial. In treatments with the presence of aphids, 150 first-instar nymphs of R. porosum or 150 first-instar nymphs of M. rosae were placed on the leaflets. The number of aphids offered to the predators was higher than the average daily consumption in order to avoid possible prey shortages and maintain the predator/prey equivalence. Prey were used in their youngest instar because the results of the test on predatory capacity showed greater consumption in this instar. As for predators, a second-instar larva of C. externa and a second-instar larva of H. convergens were released on each plate. The following treatments were tested: a) C. externa, H. convergens and R. porosum, b) C. externa, H. convergens and M. rosae, c) C. externa and H. convergens in the absence of prey. The number of prey consumed and dead larvae of C. externa and H. convergens was evaluated daily. A completely randomized design with ten replications was used. For consumption data, analysis of variance was performed, and the means were compared using the Tukey test at a significance level of 0.05, using the statistical software R (R Development Core Team, 2013R Development Core Team, 2013. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, 409 pp.). For intraguild predation, the survival rate (%) was calculated.

In order to understand the results of intraguild interaction, the behavior of predators in the first hour of release was evaluated in an additional experiment. The records were taken from the counting of time and the observation of behavioral categories (Velasco-Hernández et al., 2013Velasco-Hernández, M. C., Ramirez-Romero, R., Cicero, L., Michel-Rios, C., Desneux, N., 2013. Intraguild predation on the whitefly parasitoid Eretmocerus eremicus by the generalist predator Geocoris punctipes: a behaviour approach. PLoS One 8 (11), 1-9. http://dx.doi.org/10.1371/journal.pone.0080679.
http://dx.doi.org/10.1371/journal.pone.0...
), for one hour, using the Etholog 2.2 software (Ottoni, 2000Ottoni, E. B., 2000. EthoLog 2.2: a tool for the transcription and timing of behavior observation sessions. Behav. Res. Methods Instrum. Comput. 32 (3), 446-449. http://dx.doi.org/10.3758/BF03200814.
http://dx.doi.org/10.3758/BF03200814...
). It is noteworthy that the behavioral categories “I” (intraguild predation) and “T” (try to predate) were not included in the analyses, as they were used only to record negative interactions, in the three conditions in which the predators were present simultaneously. The tests were performed in plates prepared in the same way as in the previous assays, and a second-instar larva of the predator was released with 30 first-instar nymphs of R. porosum or 30 first-instar nymphs of M. rosae or no aphids, according to the following treatments: a) H. convergens and R. porosum, b) H. convergens and M. rosae, c) C. externa and R. porosum, d) C. externa and M. rosae, e) C. externa, H. convergens and R. porosum, f) C. externa, H. convergens and M. rosae and g) C. externa and H. convergens.

For the treatments in which the two predators were released, were considered six behavioral categories (Table 1). A completely randomized design was adopted, with five replications. The time spent in each category was transformed from seconds to percentage.

Table 1
Categories used to evaluate the behavior of Chrysoperla externa (Chrysopidae) and Hippodamia convergens (Coccinellidae), in the presence and absence of Rhodobium porosum and Macrosiphum rosae (Aphididae). Temperature of 25±1°C, relative humidity of 70±10% and 12-hour photophase.

Statistical analysis

For the aphid instar consumption, the data were submitted to an analysis of variance and means were compared by Tukey's test at a significance level of 0.05. The t test was used to compare the total number of aphids of each species consumed by each predator and to compare the consumption between predators. For the behavioral evaluation data were compared using the non-parametric Kruskal-Wallis and Dunn’s test at a significance level of 0.05. Data analysis was performed using the R statistical program (R Development Core Team, 2013R Development Core Team, 2013. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, 409 pp.).

Results

Predatory capacity of Chrysoperla externa and Hippodamia convergens

The number of R. porosum and M. rosae nymphs consumed by the predators is related to the prey development stage, as well as the predators' development during the second-instar, which lasted four days for C. externa and three days for H. convergens. We found that nymphs on first-instar were predated in greater numbers than those on second and third (p < 0.001); and regardless of prey instar, predatory activity increased with predator development, showing higher consumption on the last day (p < 0.001) (Tables 2 and 3).

Table 2
Daily average consumption (± standard error) of nymphs of Rhodobium porosum e Macrosiphum rosae (Aphididae) by second instar larvae of Chrysoperla externa (Chrysopidae). Temperature of 25±1°C, relative humidity of 70±10% and 12-hour photophase.
Table 3
Daily average consumption (± standard error) of nymphs of Rhodobium porosum e Macrosiphum rosae (Aphididae) by second instar larvae of Hippodamia convergens (Coccinellidae). Temperature of 25±1°C, relative humidity of 70±10% and 12-hour photophase.

When comparing the average total consumption of nymphs of R. porosum and M. rosae, there were significant differences according to the prey development stage and also the species of the aphid. Chrysoperla externa larvae fed on a greater number of first and second-instar nymphs of R. porosum (263.4 and 222.6, respectively) in relation to the same instars of M. rosae; however, when on the third-instar, there was a higher consumption of M. rosae nymphs (162.1) (Table 2). For H. convergens, the opposite occurred: nymphs of M. rosae on first and second-instar were predated in greater numbers (184.4 and 150.3, respectively) in relation to those of R. porosum, but when on the third-instar, R. porosum nymphs were more consumed than those of M. rosae (98.9) (Table 3).

When comparing the consumption of R. porosum nymphs, the larvae of C. externa fed on a greater number of individuals in the three instars, in relation to those of H. convergens (p < 0.05), resulting in a higher daily average of aphids consumed (Table 4).

Table 4
Average number (± standard error) of nymphs of Rhodobium porosum (Aphididae) consumed by second instar larvae of Chrysoperla externa (Chrysopidae) and Hippodamia convergens (Coccinellidae). Temperature of 25±1°C, relative humidity of 70±10% and 12-hour photophase.

For M. rosae, there was no significant difference in the consumption of first (p = 0.193) and second-instar (p = 0.711) nymphs between predators. However, C. externa consumed a significantly higher number of third instar nymphs of this aphid (p < 0.05) (Table 5). Nevertheless, this difference did not significantly reflect the average daily consumption of nymphs by both predators.

Table 5
Average number (± standard error) of nymphs of Macrosiphum rosae (Aphididae) consumed by second instar larvae of Chrysoperla externa (Chrysopidae) and Hippodamia convergens (Coccinellidae). Temperature of 25±1°C, relative humidity of 70±10% and 12-hour photophase.

Behavior and intraguild interaction between Chrysoperla externa and Hippodamia convergens in the presence and absence of aphids

The survival rate of C. externa and H. convergens larvae was 100% when confined together, in the presence of either prey species (Figure 1). In the absence of prey, only 30% of the larvae of H. convergens survived, as a result of intraguild predation (Figure 1). In treatments involving both predators and the prey R. porosum, the total consumption during 24 hours was 119.2 nymphs, a higher value (p < 0.05) than the average obtained for the sum of consumption of each of them when kept separated (103.3 nymphs) (Table 6). In the presence of M. rosae, consumption was also higher (107.2) (p < 0.05) than the sum of consumption of each of them when evaluated individually (99.8) (Table 6).

Figure 1
Survival rate of predators Chrysoperla externa (Chrysopidae) and Hippodamia convergens (Coccinellidae) in the presence and absence of Rhodobium posorum and Macrosiphum rosae (Aphididae). Temperature of 25±1°C, relative humidity of 70±10% and 12-hour photophase.
Table 6
Individual daily average, together and sum of individual averages of first instar nymphs of Rhodobium porosum e Macrosiphum rosae (Aphididae) consumed by second instar larvae of Chrysoperla externa (Chrysopidae) and Hippodamia convergens (Coccinellidae). Temperature of 25±1°C, relative humidity of 70±10% and 12-hour photophase.

In the presence of prey, the time spent by C. externa larvae to predate both aphid species was higher than the other combinations, except for the one in which the larvae were maintained individually with M. rosae (X2 = 19.70; p < 0.05). The aphid species did not change the average time that C. externa larvae spent preying, and corresponded to 67.13% for R. porosum and 62.65% for M. rosae (Figure 2).

Figure 2
Time spent by Chrysoperla externa (Chrysopidae) in each behavioral category evaluated in the presence and absence of prey and another predator (Hippodamia convergens- Coccinellidae), during 60 minutes. Temperature of 25±1°C, relative humidity of 70±10% and 12-hour photophase. Average time (%) followed by the same letters do not differ from each other by the Kruskal-Wallis and Dunn’s Test p<0.05

The time that individual C. externa larvae (in the absence of H. convergens) were preying when confined with R. porosum was higher (63.49%) than when confined with M. rosae (49.60%) (X2 = 19.70; p < 0.05). Regarding searching time category, C. externa larvae were more agile in the presence of H. convergens than when individually. In a presence of the coccinellids larvae, C. externa larvae spent 16.70% of the time searching for R. porosum and 16.01% searching for M. rosae. Individually, the searching time was 25.43% e 28.89%, in the presence of R. porosum and M. rosae, respectively. In the absence of prey, the higher time of stopped category (27.65%) (X2 = 17.07; p < 0.05) and searching (61.48%) (X2 = 19.57; p < 0.05) was observed when C. externa larvae were not supplied with prey (Figure 2).

Larvae of both predators confined together spent more time preying when supplied with M. rosae nymphs (67.30%) than with R. porosum nymphs (42.30%) (X2 =18.04; p < 0.05). In the same conditions of confinement, the time spent to prey M. rose nymphs was higher than when was individually and with R. porosum nymphs (44.84%) (X2 =18.04; p < 0.05) (Figure 3).

Figure 3
Time spent by Hippodamia convergens (Coccinellidae) in each behavioral category evaluated in the presence and absence of prey and another predator (Chrysoperla externa - Chrysopidae), during 60 minutes. Temperature of 25±1°C, relative humidity of 70±10% and 12-hour photophase. Average time (%) followed by the same letters do not differ from each other by the Kruskal-Wallis and Dunn’s Test p<0.05.

Regarding the searching time, it was observed that, similar to C. externa, H. convergens spent more than half of the time foraging (60.57%) in the presence of the competitor and absence of prey (X2 = 20.87; p < 0.05). Under these conditions, the coccinellid larvae remained still for a longer period (35.59%) compared to the other combinations (X2 = 21.83; p < 0.05). It was observed that, when the predators met each other, H. convergens remained inhibited with the proximity of C. externa, inducing them to remain still.

Discussion

The greater number of first-instar nymphs of R. porosum and M. rosae consumed by both predators is directly related to the smaller size and body mass of the aphids. The lower body content to be ingested requires less handling time and, consequently, a greater number of preys consumed. The consumption of prey with smaller body size was also higher for C. externa and H. convergens larvae fed on nymphs of Cinara spp. (Hemiptera: Aphididae) compared to the larger nymphs (Cardoso and Lazzari, 2003aCardoso, J. T., Lazzari, S. M. N., 2003a. Development and consumption capacity of Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) fed with Cinara spp. (Hemiptera: Aphididae) under three temperatures. Rev. Bras. Zool. 20 (4), 573-576. http://dx.doi.org/10.1590/S0101-81752003000400002.
http://dx.doi.org/10.1590/S0101-81752003...
, 2003bCardoso, J. T., Lazzari, S. M. N., 2003b. Consumption of Cinara spp. (Hemiptera, Aphididae) by Cycloneda sanguinea (Linnaeus, 1763) and Hippodamia convergens Guérin-Méneville, 1842 (Coleoptera, Coccinellidae). Rev. Bras. Entomol. 47 (4), 559-562. http://dx.doi.org/10.1590/S0085-56262003000400004.
http://dx.doi.org/10.1590/S0085-56262003...
). These results are related to the ease of capturing smaller prey, which leads to greater consumption of nymphs in this stage, as also observed for C. externa larvae fed on nymphs of Schizaphis graminum (Rondani, 1852) (Hemiptera: Aphididae) (Fonseca et al., 2000Fonseca, A. R., Carvalho, C. F., Souza, B., 2000. Resposta Funcional de Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) Alimentada com Schizaphis graminum (Rondani) (Hemiptera: Aphididae). An. Soc. Entomol. Bras. 29 (2), 309-317. http://dx.doi.org/10.1590/S0301-80592000000200013.
http://dx.doi.org/10.1590/S0301-80592000...
).

The increase in the consumption of nymphs from the first to the last day of evaluations is due to the growth and development of the predator, even at the same instar, which demands greater consumption. H. convergens and C. externa also consumed more nymphs of Myzus persicae (Sulzer, 1776) (Hemiptera: Aphididae) as a result of their development and increase in body size (Katsarou et al., 2005Katsarou, I., Margaritopoulos, J. T., Tsitsipis, J. A., Perdikis, D. C., Zarpas, K. D., 2005. Effect of temperature on development, growth and feeding of Coccinella septempunctata and Hippodamia convergens reared on the tobacco aphid, Myzus persicae nicotianae. BioControl 50 (4), 565-588. http://dx.doi.org/10.1007/s10526-004-2838-1.
http://dx.doi.org/10.1007/s10526-004-283...
; Barbosa et al., 2006Barbosa, L. R., Carvalho, C. F., Souza, B., Auad, A. M., 2006. Influência da densidade de Myzus persicae (Sulzer) sobre alguns aspectos biológicos e capacidade predatória de Chrysoperla externa (Hagen). Acta Sci. Agron. 28 (2), 227-231. http://dx.doi.org/10.4025/actasciagron.v28i2.1076.
http://dx.doi.org/10.4025/actasciagron.v...
). The greater demand for prey as predators develop is attributable to the increasing requirement of nutrients for their growth, as well as for other physiological processes necessary to complete their life cycle (Guedes, 2013Guedes, C. F. C., 2013. Preferência alimentar e estratégias de alimentação em Coccinellidae (Coleoptera). Oecol. Aust. 17 (2), 59-80. http://dx.doi.org/10.4257/oeco.2013.1702.07.
http://dx.doi.org/10.4257/oeco.2013.1702...
).

The greater consumption of third-instar nymphs of M. rosae in relation to R. porosum by C. externa may be related to the behavior of the larva, that pierces the body of the prey and abandon them without being completely consumed. In the evaluations, the larvae were observed introducing their mouthparts in the prey, but because of their relatively large size, they release it quickly. This behavior caused higher mortality of nymphs compared to those of R. porosum, which are smaller and were entirely consumed. Theoretically, prey consumption involves capturing, handling, killing and ingesting its contents and/or its body parts, activities that are included in accounting for handling time (Veeravel and Baskaran, 1997Veeravel, R., Baskaran, P., 1997. Searching behaviour of two coccinellid predators, Coccinella transversalis Fab. and Cheilomenes sexmaculatus Fab., on eggplant infested with Aphis gossypii Glover. Int. J. Trop. Insect Sci. 17 (3-4), 363-368. http://dx.doi.org/10.1017/S1742758400019196.
http://dx.doi.org/10.1017/S1742758400019...
; Aljetlawi et al., 2004Aljetlawi, A. A., Sparrevik, E., Leonardsson, K., 2004. Prey-predator size-dependent functional response: derivation and rescaling to the real world. J. Anim. Ecol. 73 (2), 239-252. http://dx.doi.org/10.1111/j.0021-8790.2004.00800.x.
http://dx.doi.org/10.1111/j.0021-8790.20...
). The fact that the prey is not completely consumed does not affect the predator's ability to search and attack; and partial consumption of the prey can result in higher mortality due to less time spent in handling (Moradi et al., 2020Moradi, M., Hassanpour, M., Fathi, S. A. A., Golizadeh, A., 2020. Foraging behaviour of Scymnus syriacus (Coleoptera: Coccinellidae) provided with Aphis spiraecola and Aphis gossypii (Hemiptera: Aphididae) as prey: functional response and prey preference. Eur. J. Entomol. 117, 183-192. http://dx.doi.org/10.14411/eje.2020.009.
http://dx.doi.org/10.14411/eje.2020.009...
).

For H. convergens, the higher consumption of first and second-instar nymphs of M. rosae compared to R. porosum may be associated with the nutritional quality of the prey, as well as the nutritional requirement of the predator (Eubanks and Denno, 2000Eubanks, M. D., Denno, R. F., 2000. Health food versus fast food: the effects of prey quality and mobility on prey selection by a generalist predator and indirect interactions among prey species. Ecol. Entomol. 25 (2), 140-146. http://dx.doi.org/10.1046/j.1365-2311.2000.00243.x.
http://dx.doi.org/10.1046/j.1365-2311.20...
; Mirhosseini et al., 2015Mirhosseini, M. A., Hosseini, M., Jalali, M., 2015. Effects of diet on development and reproductive fitness of two predatory coccinellids (Coleoptera: coccinellidae). Eur. J. Entomol. 112 (3), 446-452. http://dx.doi.org/10.14411/eje.2015.051.
http://dx.doi.org/10.14411/eje.2015.051...
; Farooq et al., 2018Farooq, M., Shakeel, M., Iftikhar, A., Shahid, M. R., Zhu, X., 2018. Age-stage, two-sex life tables of the lady beetle (Coleoptera: Coccinellidae) feeding on different aphid species. J. Econ. Entomol. 111 (2), 575-585. http://dx.doi.org/10.1093/jee/toy012.
http://dx.doi.org/10.1093/jee/toy012...
; Souza et al., 2019Souza, B., Santos-Cividanes, T. M., Cividanes, F. J., Sousa, A. L. V., 2019. Predatory Insects. In: Souza, B., Vázquez, L., Marucci, R. (Eds.), Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham.). Aphidophagous coccinellids depend on essential food for reproduction and embryonic and post-embryonic development. However, nutrients from other types of prey can be important for complementing their diet (Souza et al., 2019Souza, B., Santos-Cividanes, T. M., Cividanes, F. J., Sousa, A. L. V., 2019. Predatory Insects. In: Souza, B., Vázquez, L., Marucci, R. (Eds.), Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham.), which might vary in relation to palatability (Lundgren, 2009Lundgren, J. G., 2009. Nutritional aspects of non-prey foods in the life histories of predaceous Coccinellidae. Biol. Control 51 (2), 294-305. http://dx.doi.org/10.1016/j.biocontrol.2009.05.016.
http://dx.doi.org/10.1016/j.biocontrol.2...
). Thus, the greater consumption of M. rosae by H. convergens when compared with R. porosum can be related to these aspects. Furthermore, the size of the prey plays important roles since M. rosae has a larger body volume than R. porosum. Another factor that may have interfered in the capture of prey is the color of the nymphs of M. rosae, and the shape of their body. Some species of coccinellids tend to feed on prey with coloration that distinguishes them from the host plant (Mondor and Warren, 2000Mondor, E. B., Warren, J. L., 2000. Unconditioned and conditioned responses to colour in the predatory coccinellid Harmonia axyridis (Coleoptera: coccinellidae). Eur. J. Entomol. 97 (4), 463-467. http://dx.doi.org/10.14411/eje.2000.071.
http://dx.doi.org/10.14411/eje.2000.071...
). Therefore, the nymphs of M. rosae, may have been more easily detected by the predator. According to Lim and Ben-Yakir (2020)Lim, U. T., Ben-Yakir, D., 2020. Visual sensory systems of predatory and parasitic arthropods. Biocontrol Sci. Technol. 30 (7), 1-12. http://dx.doi.org/10.1080/09583157.2020.1752362.
http://dx.doi.org/10.1080/09583157.2020....
, coccinellids use visual cues to select prey, including chromatic sensitivity and geometric perception.

The third-instar nymphs of R. porosum were predated in greater numbers than the nymphs of M. rosae probably because they are smaller. There was a certain difficulty for H. convergens larvae in capturing larger nymphs, compared to C. externa larvae. This may be due to the different types of mouthparts of these predators. A predator's efficiency and greater attack capacity are dependent on the chances of contact between it and its prey. Here, this contact is related to the maximum distance at which the predator is able to attack the prey and, therefore, the skill and speed of movement have an important impact on the predation rate (Veeravel and Baskaran, 1997Veeravel, R., Baskaran, P., 1997. Searching behaviour of two coccinellid predators, Coccinella transversalis Fab. and Cheilomenes sexmaculatus Fab., on eggplant infested with Aphis gossypii Glover. Int. J. Trop. Insect Sci. 17 (3-4), 363-368. http://dx.doi.org/10.1017/S1742758400019196.
http://dx.doi.org/10.1017/S1742758400019...
; Bayoumy and Awadalla, 2018Bayoumy, M. H., Awadalla, H. S., 2018. Foraging responses of Coccinella septempunctata, Hippodamia variegata and Chrysoperla carnea to changing in density of two aphid species. Biocontrol Sci. Technol. 28 (3), 226-241. http://dx.doi.org/10.1080/09583157.2018.1437597.
http://dx.doi.org/10.1080/09583157.2018....
). In this regard, coccinellid larvae require greater proximity to the prey in relation to those of lacewings, generating a disadvantage in the capture activity.

The results of the intraguild interaction between predators indicated a negative response only in the absence of prey, which was characterized by the predation of H. convergens by C. externa. In the absence of extraguild prey, there is an increase in the foraging behavior of predators and, consequently, an increase in the encounter rate, contributing to the occurrence of intraguild predation (Zarei et al., 2020Zarei, M., Madadi, H., Zamani, A. A., Nedvěd, O., 2020. Intraguild predation between Chrysoperla carnea (Neuroptera: Chrysopidae) and Hippodamia variegata (Coleoptera: Coccinellidae) at various extraguild prey densities and arena complexities. Insects 11 (5), 1-11. http://dx.doi.org/10.3390/insects11050288.
http://dx.doi.org/10.3390/insects1105028...
). Silva et al. (2022)Silva, A. C., Cahú, R. C., Cogitskei, M. M., Kubota, K. S. G., Sujii, E. R., Togni, P. H. B., 2022. Intercropping collard plants with coriander modulates behavioral interactions among aphidophagous predators by altering microhabitat structure. Biol. Control 176, 1-11. http://dx.doi.org/10.1016/j.biocontrol.2022.105084
http://dx.doi.org/10.1016/j.biocontrol.2...
demonstrated a reduction in intraguild predation between coccinellids and lacewings in intercrop system due to presence and increase herbivore movement, making the shared prey more vulnerable than the intraguild prey. According to Michalko; Pekár (2014)Michalko, R., Pekár, S., 2014. Is different degree of individual specialization in three closely related spider species caused by different selection pressures? Basic Appl. Ecol. 15, 496-506. http://dx.doi.org/10.1016/j.baae.2014.08.003.
http://dx.doi.org/10.1016/j.baae.2014.08...
, in the presence of shared prey, generalist predators choose which prey they will consume according to nutritional composition, defense behavior and size.

In the case of lacewings and coccinellids, there is a preference and competition for aphids (Khudr et al., 2020Khudr, M. S., Fliegner, L., Buzhdygan, O. Y., Wurst, S., 2020. Super-predation and intraguild interactions in a multi-predator-one-prey system alter the abundance and behaviour of green peach aphid (Hemiptera: aphididae). Can. Entomol. 152, 200-223. http://dx.doi.org/10.4039/tce.2020.7.
http://dx.doi.org/10.4039/tce.2020.7...
). Therefore, the results obtained in this work reiterate those obtained in other studies that demonstrated the performance of C. externa larvae as intraguild predators when in the absence of prey. However, in addition to the presence of extraguild prey, the density of their populations is also a factor that interferes in predation (Lucas, 2005Lucas, E., 2005. Intraguild predation among aphidophagous predators. Eur. J. Entomol. 102 (3), 351-364. http://dx.doi.org/10.14411/eje.2005.052.
http://dx.doi.org/10.14411/eje.2005.052...
; Nóia et al., 2008Nóia, M. B., Borges, I., Soares, A. O., 2008. Intraguild predation between the aphidophagous ladybird beetles Harmonia axyridis and Coccinella undecimpunctata (Coleoptera: Coccinellidae): the role of intra and extraguild prey densities. Biol. Control 46 (2), 140-146. http://dx.doi.org/10.1016/j.biocontrol.2008.03.004.
http://dx.doi.org/10.1016/j.biocontrol.2...
; Trotta et al., 2015Trotta, V., Durán Prieto, J., Fanti, P., Battaglia, D., 2015. Prey abundance and intraguild predation between Adalia bipunctata (Coleoptera: Coccinellidae) and Macrolophus pygmaeus (Hemiptera: Miridae). Eur. J. Entomol. 112 (4), 862-865. http://dx.doi.org/10.14411/eje.2015.080.
http://dx.doi.org/10.14411/eje.2015.080...
; Devee et al., 2018Devee, A., Arvaniti, K., Perdikis, D., 2018. Intraguild predation among three aphidophagous predators. Bull. Insectol. 71, 11-19.). The results of this study show that not only the presence of the prey, but also the density of individuals, are factors that interfere in the occurrence of intraguild interaction, since the number of nymphs consumed by the two predators when confined together was higher than the daily consumption of each predator evaluated separately.

Regarding to the predators involved in the negative interaction, only C. externa larvae behaved as intraguild predators. Golsteyn et al. (2021)Golsteyn, L., Mertens, H., Audenaert, J., Verhoeven, R., Gobin, B., De Clercq, P., 2021. Intraguild interactions between the mealybug predators Cryptolaemus montrouzieri and Chrysoperla carnea. Insects 12 (7), 655. http://dx.doi.org/10.3390/insects12070655.
http://dx.doi.org/10.3390/insects1207065...
found a negative interaction between larvae of Chrysoperla carnea (Stephens, 1836) (Neuroptera: Chrysopidae) and larvae of Cryptolaemus montrouzieri (Mulsant, 1853) (Coleoptera: Coccinellidae) both in the presence and absence of prey, observing greater aggressiveness of the lacewing in relation to the coccinellid. The fact that a predator is characterized as more aggressive compared to another is associated with body morphology and speed of movement. The lacewing larvae have prominent mandibles and are more agile compared to coccinellid larvae, which favors their success in intraguild interaction (Michaud and Grant, 2003Michaud, J. P., Grant, A. K., 2003. Intraguild predation among ladybeetles and a green lacewing: do the larval spines of Curinus coeruleus (Coleoptera: Coccinellidae) serve a defensive function? Bull. Entomol. Res. 93 (6), 499-505. http://dx.doi.org/10.1079/BER2003269.
http://dx.doi.org/10.1079/BER2003269...
).

Another factor that interferes in the intraguild predation is the size of the species involved, with the intraguild predator usually having greater body volume (Lucas, 2005Lucas, E., 2005. Intraguild predation among aphidophagous predators. Eur. J. Entomol. 102 (3), 351-364. http://dx.doi.org/10.14411/eje.2005.052.
http://dx.doi.org/10.14411/eje.2005.052...
; Devee et al., 2018Devee, A., Arvaniti, K., Perdikis, D., 2018. Intraguild predation among three aphidophagous predators. Bull. Insectol. 71, 11-19.). However, in the case of lacewings and coccinellids, when both are of equal size, lacewing larvae have an advantage over coccinellids in terms of competitiveness and predation behavior (Sengonca and Frings, 1985Sengonca, C., Frings, B., 1985. Interference and competitive behaviour of the aphid predators, Chrysoperla carnea and Coccinella septempunctata in the laboratory. Entomophaga 30 (3), 245-251. http://dx.doi.org/10.1007/BF02372225.
http://dx.doi.org/10.1007/BF02372225...
; Lucas, 2005Lucas, E., 2005. Intraguild predation among aphidophagous predators. Eur. J. Entomol. 102 (3), 351-364. http://dx.doi.org/10.14411/eje.2005.052.
http://dx.doi.org/10.14411/eje.2005.052...
; Zarei et al., 2020Zarei, M., Madadi, H., Zamani, A. A., Nedvěd, O., 2020. Intraguild predation between Chrysoperla carnea (Neuroptera: Chrysopidae) and Hippodamia variegata (Coleoptera: Coccinellidae) at various extraguild prey densities and arena complexities. Insects 11 (5), 1-11. http://dx.doi.org/10.3390/insects11050288.
http://dx.doi.org/10.3390/insects1105028...
). The larvae of the predators involved in the present study were in the second instar and had similar sizes, therefore, the predation of C. externa on H. convergens is a result of its greater aggressiveness and agility.

Regarding the results obtained for predator behavior, the longer time spent by C. externa larvae in predating R. porosum nymphs, compared to M. rosae, is in line with that obtained for predatory capacity, since there was a higher consumption of R. porosum nymphs compared to M. rosae. For H. convergens, the longest time spent in predation was verified in the presence of M. rosae, both together with C. externa and individually, coinciding with the result obtained for the predatory capacity of this coccinellid.

The greater time invested in predation by larvae of C. externa and H. convergens, when confined together, indicates a behavioral change, especially of those of C. externa, when they notice the presence of H. convergens. This perception may have been responsible for the increase in the number of aphids consumed, in relation to the condition in which they were kept alone, resulting in a longer predation time. Janssen et al. (1998)Janssen, A., Pallini, A., Venzon, M., Sabelis, M. W., 1998. Behaviour and indirect interactions in food webs of plant inhabiting arthropods. Exp. Appl. Acarol. 22 (9), 497-521. http://dx.doi.org/10.1023/A:1006089924336.
http://dx.doi.org/10.1023/A:100608992433...
report that when two competitors forage in the same area, in addition to competition for the same resource, changes in search behavior may occur, reflecting changes in the attack rate. Thus, the shorter foraging time of C. externa larvae in the presence of the competitor may be associated with greater speed and agility in the search for prey, resulting in a greater number of prey consumed and a greater time spent in predation, as discussed earlier. On the other hand, in the absence of the competitor, C. externa larvae were able to search for prey more slowly, generating a longer search time. Thus, the change in the behavior of C. externa against another predator resulted in a positive effect defined by the reduction in the number of nymphs of both aphid species studied.

In the absence of prey, a situation in which a negative interaction was verified, only the larvae of C. externa attacked the larvae of H. convergens. It has been observed that lacewing larvae can reach coccinellid larvae at a greater distance due to their prominent mouthparts, which facilitates capture. According to Zarei et al. (2020)Zarei, M., Madadi, H., Zamani, A. A., Nedvěd, O., 2020. Intraguild predation between Chrysoperla carnea (Neuroptera: Chrysopidae) and Hippodamia variegata (Coleoptera: Coccinellidae) at various extraguild prey densities and arena complexities. Insects 11 (5), 1-11. http://dx.doi.org/10.3390/insects11050288.
http://dx.doi.org/10.3390/insects1105028...
, the confinement of C. carnea larvae with Hippodamia variegata (Goeze, 1777) larvae results in higher mortality of H. variegata due to the ease of capture by C. carnea larvae, whose mouthparts are introduced into the abdominal tergites of the coccinelid, paralyzing and making it impossible to defend itself.

Conclusion

The greater consumption capacity of C. externa and H. convergens larvae was observed when offered first-instar nymphs of R. porosum and M. rosae. During the development of the predator inside the instar an increase in the consumption capacity was observed. The intraguild interaction in the presence of prey was positive between C. externa and H. convergens, with intraguild predation only in the absence of prey. Although both R. porosum and M. rosae have consumed a greater number of different species, both preys are targets of these predators. These results point out to the success of the isolated or simultaneous use of these predators to control aphids in rose bushes. The results obtained in this work are important to assist in biological control programs using generalist predators.

Acknowledgments

The authors thank Dr. Marcus Vinícius Sampaio, Universidade Federal de Uberlândia, Brazil, for the identification of the aphid species and to FAPEMIG and CNPq for financial support.

References

  • Aljetlawi, A. A., Sparrevik, E., Leonardsson, K., 2004. Prey-predator size-dependent functional response: derivation and rescaling to the real world. J. Anim. Ecol. 73 (2), 239-252. http://dx.doi.org/10.1111/j.0021-8790.2004.00800.x
    » http://dx.doi.org/10.1111/j.0021-8790.2004.00800.x
  • Barbosa, L. R., Carvalho, C. F., Souza, B., Auad, A. M., 2006. Influência da densidade de Myzus persicae (Sulzer) sobre alguns aspectos biológicos e capacidade predatória de Chrysoperla externa (Hagen). Acta Sci. Agron. 28 (2), 227-231. http://dx.doi.org/10.4025/actasciagron.v28i2.1076
    » http://dx.doi.org/10.4025/actasciagron.v28i2.1076
  • Barjadze, S., Karaca, İ., Yaşar, B., Japoshvili, G., 2011. The yellow rose aphid Rhodobium porosum: a new pest of damask rose in Turkey. Phytoparasitica 39 (1), 159-162. http://dx.doi.org/10.1007/s12600-010-0133-5
    » http://dx.doi.org/10.1007/s12600-010-0133-5
  • Bayoumy, M. H., Awadalla, H. S., 2018. Foraging responses of Coccinella septempunctata, Hippodamia variegata and Chrysoperla carnea to changing in density of two aphid species. Biocontrol Sci. Technol. 28 (3), 226-241. http://dx.doi.org/10.1080/09583157.2018.1437597
    » http://dx.doi.org/10.1080/09583157.2018.1437597
  • Bezerra, C. E. S., Amaral, B. B., Souza, B., 2017. Rearing Chrysoperla externa larvae on artificial diets. Neotrop. Entomol. 46 (1), 93-99. http://dx.doi.org/10.1007/s13744-016-0427-5
    » http://dx.doi.org/10.1007/s13744-016-0427-5
  • Blackman, R. L., Eastop, V. F., 2000. Aphids on the World’s Crops: an Identification and Information Guide, 2nd ed. Wiley, London.
  • Boiça Junior, A. L., Santos, T. M., Kuranishi, A. K., 2004. Desenvolvimento larval e capacidade predatória de Cycloneda sanguinea (Linnaeus, 1763) e Hippodamia convergens (Guérin-Méneville, 1842) alimentadas com Aphis gossypii Glover, 1877 sobre cultivares de algodoeiro. Acta Sci. Agron. 26, 239-244. http://dx.doi.org/10.4025/actasciagron.v26i2.1892
    » http://dx.doi.org/10.4025/actasciagron.v26i2.1892
  • Cardoso, J. T., Lazzari, S. M. N., 2003a. Development and consumption capacity of Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) fed with Cinara spp. (Hemiptera: Aphididae) under three temperatures. Rev. Bras. Zool. 20 (4), 573-576. http://dx.doi.org/10.1590/S0101-81752003000400002
    » http://dx.doi.org/10.1590/S0101-81752003000400002
  • Cardoso, J. T., Lazzari, S. M. N., 2003b. Consumption of Cinara spp. (Hemiptera, Aphididae) by Cycloneda sanguinea (Linnaeus, 1763) and Hippodamia convergens Guérin-Méneville, 1842 (Coleoptera, Coccinellidae). Rev. Bras. Entomol. 47 (4), 559-562. http://dx.doi.org/10.1590/S0085-56262003000400004
    » http://dx.doi.org/10.1590/S0085-56262003000400004
  • Carvalho, C. F., Souza, B., 2009. Métodos de criação e produção de crisopídeos. In: Bueno, V.H.P (Ed.), Controle biológico de Pragas: produção massal e controle de qualidade. Editora UFLA, Lavras, pp. 77-115.
  • Chailleux, A., Bearez, P., Pizzol, J., Amiens-Desneux, E., Ramirez-Romero, R., Desneux, N., 2013. Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest Tuta absoluta. J. Pest Sci. 86 (3), 533-541. http://dx.doi.org/10.1007/s10340-013-0498-6
    » http://dx.doi.org/10.1007/s10340-013-0498-6
  • Chow, A., Chau, A., Heinz, K. M., 2010. Compatibility of Amblyseius (Typhlodromips) swirskii (Athias-Henriot) (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae) for biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on roses. Biol. Control 53 (2), 188-196. http://dx.doi.org/10.1016/j.biocontrol.2009.12.008
    » http://dx.doi.org/10.1016/j.biocontrol.2009.12.008
  • Cuello, E. M., Andorno, A. V., Hernández, C. M., López, S. N., 2019. Prey consumption and development of the indigenous lacewing Chrysoperla externa feeding on two exotic Eucalyptus pests. Biocontrol Sci. Technol. 29 (12), 1159-1171. http://dx.doi.org/10.1080/09583157.2019.1660958
    » http://dx.doi.org/10.1080/09583157.2019.1660958
  • Delgado-Ramírez, C. S., Salas-Araiza, M. D., Martínez-Jaime, O. A., Guzmán-Mendoza, R., Flores-Mejia, S., 2019. Predation capability of Hippodamia convergens (Coleoptera: Coccinellidae) and Chrysoperla carnea (Neuroptera: Chrysopidae) feeding of Melanaphis sacchari (Hemiptera: Aphididae). Fla. Entomol. 102 (1), 24-28. http://dx.doi.org/10.1653/024.102.0104
    » http://dx.doi.org/10.1653/024.102.0104
  • Devee, A., Arvaniti, K., Perdikis, D., 2018. Intraguild predation among three aphidophagous predators. Bull. Insectol. 71, 11-19.
  • Eubanks, M. D., Denno, R. F., 2000. Health food versus fast food: the effects of prey quality and mobility on prey selection by a generalist predator and indirect interactions among prey species. Ecol. Entomol. 25 (2), 140-146. http://dx.doi.org/10.1046/j.1365-2311.2000.00243.x
    » http://dx.doi.org/10.1046/j.1365-2311.2000.00243.x
  • Farooq, M., Shakeel, M., Iftikhar, A., Shahid, M. R., Zhu, X., 2018. Age-stage, two-sex life tables of the lady beetle (Coleoptera: Coccinellidae) feeding on different aphid species. J. Econ. Entomol. 111 (2), 575-585. http://dx.doi.org/10.1093/jee/toy012
    » http://dx.doi.org/10.1093/jee/toy012
  • Fonseca, A. R., Carvalho, C. F., Souza, B., 2000. Resposta Funcional de Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) Alimentada com Schizaphis graminum (Rondani) (Hemiptera: Aphididae). An. Soc. Entomol. Bras. 29 (2), 309-317. http://dx.doi.org/10.1590/S0301-80592000000200013
    » http://dx.doi.org/10.1590/S0301-80592000000200013
  • Fu, W., Yu, X., Ahmed, N., Zhang, S., Liu, T., 2017. Intraguild predation on the aphid parasitoid Aphelinus asychis by the ladybird Harmonia axyridis. BioControl 62 (1), 61-70. http://dx.doi.org/10.1007/s10526-016-9774-8
    » http://dx.doi.org/10.1007/s10526-016-9774-8
  • Gardiner, M. M., Landis, D. A., 2007. Impact of intraguild predation by adult Harmonia axyridis (Coleoptera: Coccinellidae) on Aphis glycines (Hemiptera: Aphididae) biological control in cage studies. Biol. Control 40 (3), 386-395. http://dx.doi.org/10.1016/j.biocontrol.2006.11.005
    » http://dx.doi.org/10.1016/j.biocontrol.2006.11.005
  • Golsteyn, L., Mertens, H., Audenaert, J., Verhoeven, R., Gobin, B., De Clercq, P., 2021. Intraguild interactions between the mealybug predators Cryptolaemus montrouzieri and Chrysoperla carnea. Insects 12 (7), 655. http://dx.doi.org/10.3390/insects12070655
    » http://dx.doi.org/10.3390/insects12070655
  • Guedes, C. F. C., 2013. Preferência alimentar e estratégias de alimentação em Coccinellidae (Coleoptera). Oecol. Aust. 17 (2), 59-80. http://dx.doi.org/10.4257/oeco.2013.1702.07
    » http://dx.doi.org/10.4257/oeco.2013.1702.07
  • Hagler, J. R., Blackmer, F., 2015. Evidence of intraguild predation on a key member of the cotton predator complex. Food Webs 4, 8-13. http://dx.doi.org/10.1016/j.fooweb.2015.06.001
    » http://dx.doi.org/10.1016/j.fooweb.2015.06.001
  • Iftikhar, A., Hafeez, F., Hafeez, M., Farooq, M., Asif Aziz, M., Sohaib, M., Naeem, A., Lu, Y., 2020. Sublethal effects of a juvenile hormone analog, Pyriproxyfen on demographic parameters of non-target predator, Hippodamia convergens Guérin-Méneville (Coleoptera: coccinellidae). Ecotoxicology 29 (7), 1017-1028. http://dx.doi.org/10.1007/s10646-020-02159-7
    » http://dx.doi.org/10.1007/s10646-020-02159-7
  • Janssen, A., Pallini, A., Venzon, M., Sabelis, M. W., 1998. Behaviour and indirect interactions in food webs of plant inhabiting arthropods. Exp. Appl. Acarol. 22 (9), 497-521. http://dx.doi.org/10.1023/A:1006089924336
    » http://dx.doi.org/10.1023/A:1006089924336
  • Katsarou, I., Margaritopoulos, J. T., Tsitsipis, J. A., Perdikis, D. C., Zarpas, K. D., 2005. Effect of temperature on development, growth and feeding of Coccinella septempunctata and Hippodamia convergens reared on the tobacco aphid, Myzus persicae nicotianae. BioControl 50 (4), 565-588. http://dx.doi.org/10.1007/s10526-004-2838-1
    » http://dx.doi.org/10.1007/s10526-004-2838-1
  • Khudr, M. S., Fliegner, L., Buzhdygan, O. Y., Wurst, S., 2020. Super-predation and intraguild interactions in a multi-predator-one-prey system alter the abundance and behaviour of green peach aphid (Hemiptera: aphididae). Can. Entomol. 152, 200-223. http://dx.doi.org/10.4039/tce.2020.7
    » http://dx.doi.org/10.4039/tce.2020.7
  • Lim, U. T., Ben-Yakir, D., 2020. Visual sensory systems of predatory and parasitic arthropods. Biocontrol Sci. Technol. 30 (7), 1-12. http://dx.doi.org/10.1080/09583157.2020.1752362
    » http://dx.doi.org/10.1080/09583157.2020.1752362
  • Lucas, E., 2005. Intraguild predation among aphidophagous predators. Eur. J. Entomol. 102 (3), 351-364. http://dx.doi.org/10.14411/eje.2005.052
    » http://dx.doi.org/10.14411/eje.2005.052
  • Lundgren, J. G., 2009. Nutritional aspects of non-prey foods in the life histories of predaceous Coccinellidae. Biol. Control 51 (2), 294-305. http://dx.doi.org/10.1016/j.biocontrol.2009.05.016
    » http://dx.doi.org/10.1016/j.biocontrol.2009.05.016
  • Messelink, G. J., Sabelis, M. W., Janssen, A., 2012. Generalist predators, food web complexities and biological pest control in greenhouse crops. In: Larramendy, M. L., Soloneski, S. (Eds.), Integrated Pest Management and Pest Control: Current and Future Tatics. InTech, Rijeka, pp. 191-214.
  • Messelink, G. J., Bloemhard, C. M. J., Sabelis, M. W., Janssen, A., 2013. Biological control of aphids in the presence of thrips and their enemies. Biol. Control 58, 45-55. http://dx.doi.org/10.1007/s10526-012-9462-2
    » http://dx.doi.org/10.1007/s10526-012-9462-2
  • Michalko, R., Pekár, S., 2014. Is different degree of individual specialization in three closely related spider species caused by different selection pressures? Basic Appl. Ecol. 15, 496-506. http://dx.doi.org/10.1016/j.baae.2014.08.003
    » http://dx.doi.org/10.1016/j.baae.2014.08.003
  • Michaud, J. P., Grant, A. K., 2003. Intraguild predation among ladybeetles and a green lacewing: do the larval spines of Curinus coeruleus (Coleoptera: Coccinellidae) serve a defensive function? Bull. Entomol. Res. 93 (6), 499-505. http://dx.doi.org/10.1079/BER2003269
    » http://dx.doi.org/10.1079/BER2003269
  • Mirhosseini, M. A., Hosseini, M., Jalali, M., 2015. Effects of diet on development and reproductive fitness of two predatory coccinellids (Coleoptera: coccinellidae). Eur. J. Entomol. 112 (3), 446-452. http://dx.doi.org/10.14411/eje.2015.051
    » http://dx.doi.org/10.14411/eje.2015.051
  • Mondor, E. B., Warren, J. L., 2000. Unconditioned and conditioned responses to colour in the predatory coccinellid Harmonia axyridis (Coleoptera: coccinellidae). Eur. J. Entomol. 97 (4), 463-467. http://dx.doi.org/10.14411/eje.2000.071
    » http://dx.doi.org/10.14411/eje.2000.071
  • Moradi, M., Hassanpour, M., Fathi, S. A. A., Golizadeh, A., 2020. Foraging behaviour of Scymnus syriacus (Coleoptera: Coccinellidae) provided with Aphis spiraecola and Aphis gossypii (Hemiptera: Aphididae) as prey: functional response and prey preference. Eur. J. Entomol. 117, 183-192. http://dx.doi.org/10.14411/eje.2020.009
    » http://dx.doi.org/10.14411/eje.2020.009
  • Nóia, M. B., Borges, I., Soares, A. O., 2008. Intraguild predation between the aphidophagous ladybird beetles Harmonia axyridis and Coccinella undecimpunctata (Coleoptera: Coccinellidae): the role of intra and extraguild prey densities. Biol. Control 46 (2), 140-146. http://dx.doi.org/10.1016/j.biocontrol.2008.03.004
    » http://dx.doi.org/10.1016/j.biocontrol.2008.03.004
  • Ottoni, E. B., 2000. EthoLog 2.2: a tool for the transcription and timing of behavior observation sessions. Behav. Res. Methods Instrum. Comput. 32 (3), 446-449. http://dx.doi.org/10.3758/BF03200814
    » http://dx.doi.org/10.3758/BF03200814
  • Palomares-Pérez, M., Bravo-Núñez, M., Arredondo-Bernal, H. C., 2020. Functional response of Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) fed with Melanaphis sacchari (Zehntner, 1897) (Hemiptera: Aphididae). Proc. Entomol. Soc. Wash. 121 (2), 256-264. http://dx.doi.org/10.4289/0013-8797.121.2.256
    » http://dx.doi.org/10.4289/0013-8797.121.2.256
  • Polis, G. A., Myers, C. A., Holt, R. D., 1989. The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20 (1), 297-330. http://dx.doi.org/10.1146/annurev.es.20.110189.001501
    » http://dx.doi.org/10.1146/annurev.es.20.110189.001501
  • R Development Core Team, 2013. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, 409 pp.
  • Riddick, E. W., 2017. Identification of conditions for successful aphid control by ladybirds in greenhouses. Insects 8 (2), 38. http://dx.doi.org/10.3390/insects8020038
    » http://dx.doi.org/10.3390/insects8020038
  • Sabelis, M. W., Janssen, A., Lesna, I., Aratchige, N. S., Nomikou, M., van Rijn, P. C. J., 2008. Developments in the use of predatory mites for biological pest control. IOBC WPRS Bull. 32, 187-199.
  • Salamanca, J., Pareja, M., Rodriguez-Saona, C., Resende, A. L. S., Souza, B., 2015. Behavioral responses of adult lacewings, Chrysoperla externa, to a rose-aphid-coriander complex. Biol. Control 80, 103-112. http://dx.doi.org/10.1016/j.biocontrol.2014.10.003
    » http://dx.doi.org/10.1016/j.biocontrol.2014.10.003
  • Santos, N. R. P., Santos-Cividanes, T. M., Cividanes, F. J., Anjos, A. C. R., Oliveira, L. V. L., 2009. Aspectos Biológicos de Harmonia axyridis alimentada com duas espécies de presas e predação intraguilda com Eriopis connexa. Pesqui. Agropecu. Bras. 44 (6), 554-560. http://dx.doi.org/10.1590/S0100-204X2009000600002
    » http://dx.doi.org/10.1590/S0100-204X2009000600002
  • Sengonca, C., Frings, B., 1985. Interference and competitive behaviour of the aphid predators, Chrysoperla carnea and Coccinella septempunctata in the laboratory. Entomophaga 30 (3), 245-251. http://dx.doi.org/10.1007/BF02372225
    » http://dx.doi.org/10.1007/BF02372225
  • Silva, A. C., Cahú, R. C., Cogitskei, M. M., Kubota, K. S. G., Sujii, E. R., Togni, P. H. B., 2022. Intercropping collard plants with coriander modulates behavioral interactions among aphidophagous predators by altering microhabitat structure. Biol. Control 176, 1-11. http://dx.doi.org/10.1016/j.biocontrol.2022.105084
    » http://dx.doi.org/10.1016/j.biocontrol.2022.105084
  • Smith, G. H., Roberts, J. M., Pope, T. W., 2018. Terpene based biopesticides as potential alternatives to synthetic insecticides for control of aphid pests on protected ornamentals. Crop Prot. 110, 125-130. http://dx.doi.org/10.1016/j.cropro.2018.04.011
    » http://dx.doi.org/10.1016/j.cropro.2018.04.011
  • Souza, B., Costa, R. I. F., Tanque, R. L., Oliveira, P. S., Santos, F. A., 2008. Aspectos da predação entre larvas de Chrysoperla externa (Hagen, 1861) e Ceraeochrysa cubana (Hagen, 1861) (Neuroptera: Chrysopidae) em laboratório. Cienc. Agrotec. 32 (3), 712-716. http://dx.doi.org/10.1590/S1413-70542008000300002
    » http://dx.doi.org/10.1590/S1413-70542008000300002
  • Souza, B., Santos-Cividanes, T. M., Cividanes, F. J., Sousa, A. L. V., 2019. Predatory Insects. In: Souza, B., Vázquez, L., Marucci, R. (Eds.), Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham.
  • Trotta, V., Durán Prieto, J., Fanti, P., Battaglia, D., 2015. Prey abundance and intraguild predation between Adalia bipunctata (Coleoptera: Coccinellidae) and Macrolophus pygmaeus (Hemiptera: Miridae). Eur. J. Entomol. 112 (4), 862-865. http://dx.doi.org/10.14411/eje.2015.080
    » http://dx.doi.org/10.14411/eje.2015.080
  • Vargas, G., Michaud, J. P., Nechols, J. R., 2012. Larval food supply constrains female reproductive schedules in Hippodamia convergens (Coleoptera: coccinellidae). Ann. Entomol. Soc. Am. 105 (6), 832-839. http://dx.doi.org/10.1603/AN12010
    » http://dx.doi.org/10.1603/AN12010
  • Veeravel, R., Baskaran, P., 1997. Searching behaviour of two coccinellid predators, Coccinella transversalis Fab. and Cheilomenes sexmaculatus Fab., on eggplant infested with Aphis gossypii Glover. Int. J. Trop. Insect Sci. 17 (3-4), 363-368. http://dx.doi.org/10.1017/S1742758400019196
    » http://dx.doi.org/10.1017/S1742758400019196
  • Velasco-Hernández, M. C., Ramirez-Romero, R., Cicero, L., Michel-Rios, C., Desneux, N., 2013. Intraguild predation on the whitefly parasitoid Eretmocerus eremicus by the generalist predator Geocoris punctipes: a behaviour approach. PLoS One 8 (11), 1-9. http://dx.doi.org/10.1371/journal.pone.0080679
    » http://dx.doi.org/10.1371/journal.pone.0080679
  • Zarei, M., Madadi, H., Zamani, A. A., Nedvěd, O., 2020. Intraguild predation between Chrysoperla carnea (Neuroptera: Chrysopidae) and Hippodamia variegata (Coleoptera: Coccinellidae) at various extraguild prey densities and arena complexities. Insects 11 (5), 1-11. http://dx.doi.org/10.3390/insects11050288
    » http://dx.doi.org/10.3390/insects11050288

Edited by

Associate Editor: Renato Jose Machado

Publication Dates

  • Publication in this collection
    26 May 2023
  • Date of issue
    2023

History

  • Received
    06 Dec 2022
  • Accepted
    12 Apr 2023
Sociedade Brasileira De Entomologia Caixa Postal 19030, 81531-980 Curitiba PR Brasil , Tel./Fax: +55 41 3266-0502 - São Paulo - SP - Brazil
E-mail: sbe@ufpr.br