Acessibilidade / Reportar erro

From leaves to inflorescences: Gall induction of Iatrophobia brasiliensis Rübsaamen, 1915 on inflorescences of Manihot caerulescens Pohl (Euphorbiaceae) during the dry season

ABSTRACT

Gall-inducing insects are highly specialized herbivores as they have the ability to control and redirect the development of host plants to obtain food and shelter. The distribution of galls on plants can be influenced by seasonality and phenological events, which determines the reproductive success of these insects. The species Manihot caerulescens Pohl (Euphorbiaceae) has a great diversity of gall-inducing insects in the Cerrado of Western Bahia. Our study aimed to (1) study the fauna associated with M. caerulescens Pohl (Euphorbiaceae) and (2) evaluate the phenological events of this host plant species. We performed gall collections between July 2018 and June 2020 and monitored 30 individuals of the host species to study the phenology in the Serra da Bandeira, Bahia, Brazil. The emerged insects in the laboratory were mounted on permanent slides and identified. We found galls on the stems, leaves and inflorescences. Stem galls were induced by lepidopterans (Alucitidae), and leaf and inflorescence galls by Iatrophobia brasiliensis Rübsaamen, 1915 (Cecidomyiidae). Further, we showed that I. brasiliensis preferentially induced galls on the leaves, however during the dry season, galls were induced on the inflorescences. Although the induction of galls on the leaves by I. brasiliensis has already been reported in the literature, here for the first time we record the presence of galls on the inflorescences induced by the same gall-inducing species. Our study constitutes an important contribution towards the knowledge of the insect-plant interaction between M. caerulescens and I. brasiliensis in the Cerrado of Bahia.

Keywords:
Cerrado; Cecidomyiidae; Insect-plant interaction; Iatrophobia

Introduction

The distribution of herbivorous insects in tropical environments is mainly influenced by host plant diversity (Kuchenbecker and Fagundes, 2018Kuchenbecker, J., Fagundes, M., 2018. Diversity of insects associated with two common plants in the Brazilian Cerrado: responses of two guilds of herbivores to bottom-up and top-down forces. Eur. J. Entomol. 115, 354-363. https://doi.org/10.14411/eje.2018.035.
https://doi.org/10.14411/eje.2018.035...
; Araújo et al., 2019Araújo, W.S., Moreira, L.T., Falcão, L.A.D., Borges, M.A.Z., Fagundes, M., Faria, M.L., Guilherme, F.A.G., 2019. Superhost plants alter the structure of plant–galling insect networks in Neotropical Savannas. Plants 8, 369. https://doi.org/10.3390/plants8100369.
https://doi.org/10.3390/plants8100369...
;). Many endophagous insects use host plants for feeding, nesting and development, as is the case with gall-inducing insects (Cornell, 1989Cornell, H.V., 1989. Endophage-ectophage ratios and plant defense. Evol. Ecol. 3, 64-76. https://doi.org/10.1007/BF02147932.
https://doi.org/10.1007/BF02147932...
; Araújo et al., 2019Araújo, W.S., Moreira, L.T., Falcão, L.A.D., Borges, M.A.Z., Fagundes, M., Faria, M.L., Guilherme, F.A.G., 2019. Superhost plants alter the structure of plant–galling insect networks in Neotropical Savannas. Plants 8, 369. https://doi.org/10.3390/plants8100369.
https://doi.org/10.3390/plants8100369...
;). Gall-inducing insects are able to control and redirect host plants to their benefit (Coelho et al., 2017Coelho, M.S., Carneiro, M.A.A., Branco, C.A., Borges, R.A.X., Fernandes, G.W., 2017. Galling insects of the Brazilian Páramos: species richness and composition along high-altitude grasslands. Environ. Entomol. 46, 1243-1253. https://doi.org/10.1093/ee/nvx147.
https://doi.org/10.1093/ee/nvx147...
), and are therefore considered the most sophisticated herbivores in nature. These insects have high specificity with the plant and host organ for oviposition (Carneiro et al., 2009aCarneiro, M.A.A., Branco, C.S.A., Braga, C.E.D., Almada, E.D., Costa, M.B.M., Maia, V.C., Fernandes, G.W., 2009a. Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Rev. Bras. Entomol. 53 (4), 365-378. https://doi.org/10.1590/s0085-56262009000300010.
https://doi.org/10.1590/s0085-5626200900...
; Guedes et al., 2018Guedes, L.M., Aguilera, N., Ferreira, B.G., Becerra, J., Hernández, V., Isaias, R.M.S., 2018. Anatomical and phenological implications of the relationship between Schinus polygama (Cav.) (Cabrera) and the galling insect Calophya rubra (Blanchard). Plant Biol. 20, 507-515. https://doi.org/10.1111/plb.12696.
https://doi.org/10.1111/plb.12696...
; Araújo et al., 2019Araújo, W.S., Moreira, L.T., Falcão, L.A.D., Borges, M.A.Z., Fagundes, M., Faria, M.L., Guilherme, F.A.G., 2019. Superhost plants alter the structure of plant–galling insect networks in Neotropical Savannas. Plants 8, 369. https://doi.org/10.3390/plants8100369.
https://doi.org/10.3390/plants8100369...
; Fagundes et al., 2019Fagundes, M., Barbosa, E.M., Oliveira, J.B.B.S., Brito, B.G.S., Freitas, K.T., Freitas, K.F., Reis-Junior, R., 2019. Galling inducing insects associated with a tropical shrub: the role of resource concentration and species interactions. Ecol. Austral 29, 12-19. https://doi.org/10.25260/EA.19.29.1.0.751.
https://doi.org/10.25260/EA.19.29.1.0.75...
), however, when a given gall-inducing insect interacts with more than one plant species, they are usually phylogenetically related (Santos-Silva and Araujo, 2020Santos-Silva, J., Araujo, T.J., 2020. Are Fabaceae the principal super-hosts of galls in Brazil? An. Acad. Bras. Cienc. 92, e20181115. https://doi.org/10.1590/0001-3765202020181115.
https://doi.org/10.1590/0001-37652020201...
).

Insect galls are developed from tissue hyperplasia and cell hypertrophy (Isaias et al., 2013Isaias, R.M.S., Carneiro, R.G.S., Oliveira, D.C., Santos, J.C., 2013. Illustrated and annotated checklist of Brazilian gall morphotypes. Neotrop. Entomol. 42, 230-239. https://doi.org/10.1007/s13744-013-0115-7.
https://doi.org/10.1007/s13744-013-0115-...
; Martini et al., 2019Martini, V.C., Moreira, A.S.F.P., Kuster, V.C., Oliveira, D.C., 2019. Galling insects as phenotype manipulators of cell wall composition during the development of galls induced on leaves of Aspidosperma tomentosum (Apocynaceae). S. Afr. J. Bot. 127, 226-233. https://doi.org/10.1016/j.sajb.2019.09.006.
https://doi.org/10.1016/j.sajb.2019.09.0...
) due to abnormal differentiation in mechanical and chemical response of inducers, resulting in characteristic growth that harbor gall-inducing insects (Santos-Silva and Araujo, 2020Santos-Silva, J., Araujo, T.J., 2020. Are Fabaceae the principal super-hosts of galls in Brazil? An. Acad. Bras. Cienc. 92, e20181115. https://doi.org/10.1590/0001-3765202020181115.
https://doi.org/10.1590/0001-37652020201...
). The plant tissues form a capsule that totally or partially shelters the gall-inducing insect (Araújo et al., 2019Araújo, W.S., Moreira, L.T., Falcão, L.A.D., Borges, M.A.Z., Fagundes, M., Faria, M.L., Guilherme, F.A.G., 2019. Superhost plants alter the structure of plant–galling insect networks in Neotropical Savannas. Plants 8, 369. https://doi.org/10.3390/plants8100369.
https://doi.org/10.3390/plants8100369...
), offering food, protection against natural enemies (Coelho et al., 2017Coelho, M.S., Carneiro, M.A.A., Branco, C.A., Borges, R.A.X., Fernandes, G.W., 2017. Galling insects of the Brazilian Páramos: species richness and composition along high-altitude grasslands. Environ. Entomol. 46, 1243-1253. https://doi.org/10.1093/ee/nvx147.
https://doi.org/10.1093/ee/nvx147...
) and protection (Stone and Schönrogge, 2003Stone, G.N., Schönrogge, K., 2003. The adaptive significance of insect gall morphology. Trends Ecol. Evol. 18, 512-522. https://doi.org/10.1016/S0169-5347(03)00247-7.
https://doi.org/10.1016/S0169-5347(03)00...
).

Many factors can influence the distribution of galls on host plants, including the seasonality of the rainfall that can change the availability of water and nutrients in the soil, which affects plant development (Oliveira and Scareli-Santos, 2018Oliveira, F.G.S., Scareli-Santos, C., 2018. Infestação por galhas foliares em Ouratea spectabilis (Mart. ex Engl.) Engl. (Ochnaceae) e sua relação com os teores de açúcares. Desafios 5, 20-29. https://doi.org/10.20873/uft.2359-3652.2018v5nEspecialp20.
https://doi.org/10.20873/uft.2359-3652.2...
; Menezes et al., 2023Menezes, J.B., Lima, V.P., Calado, D.C., 2023. Insect galls from the Serra da Bandeira (Barreiras, Western Bahia, Brazil). Biota Neotrop. 23, e20231527. https://doi.org/10.1590/1676-0611-bn-2023-1527.
https://doi.org/10.1590/1676-0611-bn-202...
). At the beginning of the rainy season, most plants emit new leaves and branches, which increases the availability of food resources, favoring the development and survival of gall-inducing insects (Pinheiro et al., 2002Pinheiro, F., Diniz, I.R., Coelho, D., Bandeira, M.P.S., 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol. 27, 132-136. https://doi.org/10.1046/j.1442-9993.2002.01165.x.
https://doi.org/10.1046/j.1442-9993.2002...
; Araújo, 2013Araújo, W., 2013. A importância de fatores temporais para a distribuição de insetos herbívoros em sistemas Neotropicais. Rev. Biol. 10, 1-7. https://doi.org/10.7594/revbio.10.01.01.
https://doi.org/10.7594/revbio.10.01.01...
). Thus, it can be noted that the behavior of the plant is closely connected to abiotic factors, which drive phenological events (Novaes et al., 2020Novaes, L.R., Calixto, E.S., Oliveira, M.L., Alves-de-Lima, L., Almeida, O., Torezan-Silingardi, H.M., 2020. Environmental variables drive phenological events of anemocoric plants and enhance diaspore dispersal potential: a new wind-based approach. Sci. Total Environ. 730, 139039. https://doi.org/10.1016/j.scitotenv.2020.139039.
https://doi.org/10.1016/j.scitotenv.2020...
).

In addition to seasonality, the synchrony or asynchrony of phenological events also determines the reproductive success of gallers (Yukawa, 2000Yukawa, J., 2000. Synchronization of gallers with host plant phenology. Popul. Ecol. 42, 105-113. https://doi.org/10.1007/PL00011989.
https://doi.org/10.1007/PL00011989...
). The timing of phenological events, such as budding, flowering and fruiting in plant species, may vary in plant species (Fagundes et al., 2018Fagundes, M., Xavier, R.C.F., Faria, M.L., Lopes, L.G.O., Cuevas-Reyes, P., Reis-Junior, R., 2018. Plant phenological asynchrony and community structure of gall-inducing insects associated with a tropical tree species. Ecol. Evol. 8, 10687-10697. https://doi.org/10.1002/ece3.4477.
https://doi.org/10.1002/ece3.4477...
). These changes in ecological variation include differences in temperature, photoperiod, moisture and soil quality (Campos et al., 2010Campos, P.T., Costa, M.C.D., Isaias, R.M.S., Moreira, A.S.F.P., Oliveira, D.C., Lemos-Filho, J. P., 2010. Phenological relationships between two insect galls and their host plants: Aspidosperma australe and A. spruceanum (Apocynaceae). Acta Bot. Bras. 24, 727-733. https://doi.org/10.1590/S0102-33062010000300016.
https://doi.org/10.1590/S0102-3306201000...
). Plant phenology can reduce herbivore actions by using the host's satiation mechanism or by producing resource parts that vary over time (Fagundes et al., 2018Fagundes, M., Xavier, R.C.F., Faria, M.L., Lopes, L.G.O., Cuevas-Reyes, P., Reis-Junior, R., 2018. Plant phenological asynchrony and community structure of gall-inducing insects associated with a tropical tree species. Ecol. Evol. 8, 10687-10697. https://doi.org/10.1002/ece3.4477.
https://doi.org/10.1002/ece3.4477...
). In contrast, herbivores try to synchronize their life cycle with the appearance of target organs in the plant to ensure greater offspring performance (Thompson and Gilbert, 2014Thompson, K., Gilbert, F., 2014. Phenological synchrony between a plant and a specialised herbivore. Basic Appl. Ecol. 15, 353-361. https://doi.org/10.1016/j.baae.2014.05.003.
https://doi.org/10.1016/j.baae.2014.05.0...
).

Iatrophobia Rübsaamen, 1916 (Cecidomyiidae) is a monotypic genus and considered oligophagous. Studies have shown that many species of the genus Manihot Mill. (Euphorbiaceae) have galls induced by Iatrophobia brasiliensis Rübsaamen, 1915. Carneiro et al. (2009a)Carneiro, M.A.A., Branco, C.S.A., Braga, C.E.D., Almada, E.D., Costa, M.B.M., Maia, V.C., Fernandes, G.W., 2009a. Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Rev. Bras. Entomol. 53 (4), 365-378. https://doi.org/10.1590/s0085-56262009000300010.
https://doi.org/10.1590/s0085-5626200900...
compiled biological and taxonomic data of 196 species of cecidomyids in 128 plant species in Brazil, among them, the induction of galls by I. brasiliensis on Manihot dichotoma Ule (Euphorbiaceae), Manihot palmata Müll.Arg. (Euphorbiaceae), Manihot tripartita (Spreng.) Müll.Arg. (Euphorbiaceae) and Manihot esculenta Crantz (Euphorbiaceae).

Gall-inducing insects deal with the mechanical and chemical defenses of plants (Ramos et al., 2019Ramos, L.F., Solar, R.R.C., Santos, H.T., Fagundes, M., 2019. Variation in community structure of gall‐inducing insects associated with a tropical plant supports the hypothesis of competition in stressful habitats. Ecol. Evol. 9, 13919-13930. https://doi.org/10.1002/ece3.5827.
https://doi.org/10.1002/ece3.5827...
). Thus, gallers tend to be highly specialized in their host plants, due to the high degree of intimacy of gall-inducing insects and their interactions with the host (Carneiro et al., 2009aCarneiro, M.A.A., Branco, C.S.A., Braga, C.E.D., Almada, E.D., Costa, M.B.M., Maia, V.C., Fernandes, G.W., 2009a. Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Rev. Bras. Entomol. 53 (4), 365-378. https://doi.org/10.1590/s0085-56262009000300010.
https://doi.org/10.1590/s0085-5626200900...
; Araújo et al., 2019Araújo, W.S., Moreira, L.T., Falcão, L.A.D., Borges, M.A.Z., Fagundes, M., Faria, M.L., Guilherme, F.A.G., 2019. Superhost plants alter the structure of plant–galling insect networks in Neotropical Savannas. Plants 8, 369. https://doi.org/10.3390/plants8100369.
https://doi.org/10.3390/plants8100369...
;). Generally, each insect species has a unique gall morphology (Price, 2005Price, P.W., 2005. Adaptive radiation of gall-inducing insects. Basic Appl. Ecol. 6, 413-421. https://doi.org/10.1016/j.baae.2005.07.002.
https://doi.org/10.1016/j.baae.2005.07.0...
). The gall morphotype, therefore, can be considered as part of the inducer's extended phenotype (Bourg and Hanson, 2014Bourg, A., Hanson, P., 2014. Host specificity of gall midges (Diptera: Cecidomyiidae) on ten species of Inga (Fabaceae). In: Fernandes, G.W., Santos, J.C. (Eds.), Neotropical Insect Galls. Springer, Dordrecht, pp. 151-161. https://doi.org/10.1007/978-94-017-8783-3_10.
https://doi.org/10.1007/978-94-017-8783-...
).

The selection of a particular plant by a gall-inducing insect is not a matter of chance, given that the insect encounters several plant taxa in a natural and heterogeneous environment. However, gall-inducing insects preferentially feed on plant organs, or specific plant parts. Thus, phenology and plant quality are essential factors in plant selection (Miller and Raman, 2019Miller, D.G., Raman, A., 2019. Host–plant relations of gall-inducing insects. Ann. Entomol. Soc. Am. 112, 1-19. https://doi.org/10.1093/aesa/say034.
https://doi.org/10.1093/aesa/say034...
). Furthermore, pregnant females play a key role in site selection for oviposition (Raman, 1991Raman, A., 1991. Cecidogenesis of leaf galls on Syzygium cumini (L.) Skeels (Myrtaceae) induced by Trioza jambolanae Crawford (Homoptera: psylloidea). J. Nat. Hist. 25, 653-663. https://doi.org/10.1080/00222939100770421.
https://doi.org/10.1080/0022293910077042...
; Miller and Raman, 2019Miller, D.G., Raman, A., 2019. Host–plant relations of gall-inducing insects. Ann. Entomol. Soc. Am. 112, 1-19. https://doi.org/10.1093/aesa/say034.
https://doi.org/10.1093/aesa/say034...
).

Here, to shed light on different ecological aspects related to insect-plant interactions, we (1) study the fauna associated with Manihot caerulescens Pohl (Euphorbiaceae) and (2) evaluate the phenological events of this host plant species.

Material and methods

Study area

The study was carried out in an area of Cerrado stricto sensu located in Serra da Bandeira in the municipality of Barreiras-BA (12°10'38.04”S, 44°99'59.37”W). The Cerrado biome is characterized by a seasonal climate, with two well-defined seasons, a rainy one (October to March) and a dry one (April to September). The average annual rainfall in this biome is 1,500mm and temperatures are generally mild throughout the year, varying between a minimum of 20.3º and a maximum of 31.5º C (Nascimento and Novais, 2020Nascimento, D.T.F., Novais, G.T., 2020. Clima do Cerrado: dinâmica atmosférica e características, variabilidades e tipologias climáticas. Élisée Rev. Geogr. UEG 9, e922021.).

Insect galls collection

We sampled a total of 24 collections between the months of July 2018 and June 2020 to study the reproductive and vegetative phenology. In the field, 30 individuals of the species M. caerulescens were randomly selected and inspected monthly. All plant organs along the trail were analyzed and photographed, and the galls characterized. For the characterization and analysis of the galls, collections were carried out between the months of May 2018 and February 2019, five leaves of each host plant were selected, totaling 1,500 leaves, and also 1 inflorescence per plant, totaling 90 inflorescences. The collected plant organs were stored in plastic containers, identified and taken to the Entomology Laboratory of the Federal University of Western Bahia (UFOB).

Part of the galls were dissected using tweezers and analyzed under a stereomicroscope to identify the associated fauna (Lima and Calado, 2018Lima, V.P., Calado, D.C., 2018. Morphological characterization of insect galls and new records of associated invertebrates in a Cerrado area in Bahia State, Brazil. Braz. J. Biol. 78, 636-643. https://doi.org/10.1590/1519-6984.169502.
https://doi.org/10.1590/1519-6984.169502...
). Larvae and pupae were preserved in 70% alcohol and placed in identified micro tubes. The remaining galls were placed in plastic containers, covered with a fine screen and lined with moistened filter paper to obtain the adult phase, being examined daily until the possible emergence of the adults. The cecidomyids that emerged from the plastic containers were mounted on slides and identified using the keys (Gagné, 1994Gagné, R.J., 1994. The Gall Midges of the Neotropical Region. University Pres, Ithaca.). Inducer mosquitoes and associated fauna were deposited in the collection of the UFOB Entomology Laboratory. Inquilines were identified following Luz and Mendonça Júnior (2019). The identification of the host plant was carried out using an optical microscope, consulting the original description of the species and comparing with specimens from the Herbarium of the Federal University of Western Bahia (UFOB).

Host plant phenology

The phenological events related to M. caerulescens were observed and recorded in the field, using notebooks and a digital camera. The same host plants used to characterize the galls and associated fauna were monitored for studies of phenological events. The observed vegetative and reproductive phenophases were: flowering, when the flowers were open; fructification, when the fruits were present or not; budding, which is the appearance of leaf shoots to the expansion of new leaves and leaf fall (Morellato et al., 1989Morellato, L.P.C., Rodrigues, R.R., Leitao Filho, H.F., Joly, C.A., 1989. Estudo comparativo da fenologia de espécies arbóreas de floresta de altitude e floresta mesofila semidecidua na serra do Japi, Jundiaí, São Paulo (1989). Rev. Bras. Bot. 12, 85-98.). The presence of mature leaves was also assessed.

Results

Gall characterization and associated fauna

We found galls on the stems (Fig. 1a), leaves (Fig. 1b) and inflorescences (Fig. 1c-1d) of M. caerulescens. Stem galls were induced by lepidopterans of the Alucitidae family. Leaf galls and inflorescences were induced by I. brasiliensis belonging to the Cecidomyiidae family. Galls induced by I. brasiliensis had a cylindrical shape, absence of trichomes and variable color according to the senescence stage. The galls were green in the early stages, lilac in the mature stage and brown when senescent. Insect galls have been found to traverse the leaf blade and perianth, expanding from the adaxial to the abaxial surface. Internally, the galls presented only one larval chamber, with one or several larvae of the inducing insect per locule.

Figure 1
Galls induced by I. brasiliensis on M. caerulescens (a) galls on the stem; (b) galls on the leaves and (c-d) galls on the inflorescences found in the Serra da Bandeira, Barreiras, Bahia, Brazil.

Additionally, we noticed other invertebrates associated with the insect galls. The inducers were represented by dipterans and lepidopterans. The parasitoids found belonged to the orders Hymenoptera, while the successors were represented by the orders Collembola¸ Acarina, Coleoptera, Araneae, Hemiptera and Thysanoptera. As for the occurrence of galls on plant organs, the number of galls per organ was variable, with a minimum of 1 (isolated) and a maximum of 20 galls occurring grouped on a single leaf. With regard to galls induced in reproductive structures, we collected 365 flower buds, of which 127 (34.79%) had galls. The presence of gall-inducing insects was observed in buds of different sizes and a variable number of galls per bud, with a minimum of 1 and a maximum of 8.

Phenological characterization of M. caerulescens and gall occurrence

Regarding the vegetative and reproductive phenological events in M. caerulescens, we observed that the presence of leaves was constant in the two years of sampling. Leaf senescence began in May, coinciding with the beginning of the dry season. The percentage of individuals with leaves, buds and fruits was higher in the rainy season in both years, while the flowering period was represented by the months of July to November, with higher averages during the dry season (Fig. 1). Further, we noted that the highest percentage of individuals hosting galls was recorded from December 2019 to February 2020, comprising the rainy season in the Cerrado. Here, we also highlight that in the months of greatest leaf senescence (dry season), I. brasiliensis induced galls on the inflorescences, an event for the first time reported for this species of cecidomyid.

Discussion

Our findings show that I. brasiliensis primarily induce galls on the leaves, however we noticed that during the months with greater leaf senescence of M. caerulescens (dry season), galls were induced on the inflorescences, a pattern never reported in the literature. According to Mani (1964)Mani, M.S., 1964. Ecology of Plant Galls, Monographiae Biologicae. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-6230-4.
https://doi.org/10.1007/978-94-017-6230-...
, nearly 70% of Neotropical galls have preference for leaves, which is similar to other studies, dealing with Iatrophobia galls (Carneiro et al., 2009bCarneiro, M.A.A., Borges, R.A.X., Araújo, A.P.A., Fernandes, G.W., 2009b. Insetos indutores de galhas da porção sul da Cadeia do Espinhaço, Minas Gerais, Brasil. Rev. Bras. Entomol. 53 (4), 570-592. https://doi.org/10.1590/s0085-56262009000400007.
https://doi.org/10.1590/s0085-5626200900...
; Saito and Urso-Guimarães, 2012Saito, V.S., Urso-Guimarães, M.V., 2012. Characterization of galls, insect galls and associated fauna of Ecological Station of Jataí (Luiz Antônio, SP). Biota Neotrop. 12, 99-107. https://doi.org/10.1590/S1676-06032012000300011.
https://doi.org/10.1590/S1676-0603201200...
; Scareli-Santos et al., 2018Scareli-Santos, C., Silva, P.C., Carneiro, A.S., Dantas, S.P., 2018. Galhas em Manihot esculenta Crantz (Euphorbiaceae): avaliação dos impactos na arquitetura e na produtividade da planta Hospedeira. Desafios 5, 51-59.). Here, the stem-inducing insects belonged to the order Lepidoptera (Alucitidae), a result also found by Brito et al. (2018)Brito, G.P., Costa, E.C., Carvalho-Fernandes, S.P., Santos-Silva, J., 2018. Riqueza de galhas de insetos em áreas de Caatinga com diferentes graus de antropização do estado da Bahia, Brasil. Iheringia Sér. Zool. 108, e2018003. https://doi.org/10.1590/1678-4766e2018003.
https://doi.org/10.1590/1678-4766e201800...
and Maia (2006)Maia, V.C., 2006. Galls of Hemiptera, Lepidoptera and Thysanoptera from Central and South America. Publ. Avulsas Mus. Nac. 110, 3-22..

Insect galls can occur on any host plant organ, from roots to reproductive structures, but they are more common on aerial structures of host plants, especially on the leaves (Santos and Ribeiro, 2016Santos, P.O., Ribeiro, J.E.L.S., 2016. Ocorrência e caracterização de galhas em fragmento de Floresta Estacional Semidecidual em Telêmaco Borba, Paraná, Brasil. Semin. Ciênc. Biol. Saúde 36, 15-24. https://doi.org/10.5433/1679-0367.2015v36n2p15.
https://doi.org/10.5433/1679-0367.2015v3...
; Soares et al., 2021Soares, E.K.S., Oliveira, A.B., Lima, V.P., Calado, D., 2021. Insect galls associated with Copaifera sabulicola J.A.S Costa & L.P Queiroz (Fabaceae): characterization and new records. Rev. Bras. Entomol. 65, e20210107. https://doi.org/10.1590/1806-9665-rbent-2021-0107.
https://doi.org/10.1590/1806-9665-rbent-...
). Scareli-Santos et al. (2018)Scareli-Santos, C., Silva, P.C., Carneiro, A.S., Dantas, S.P., 2018. Galhas em Manihot esculenta Crantz (Euphorbiaceae): avaliação dos impactos na arquitetura e na produtividade da planta Hospedeira. Desafios 5, 51-59. noted that this may be related to the fact that leaves occupy the same environment as most insects and also because it is an organ that is more exposed when compared to others, in addition to presenting high morphological plasticity and its important role for photosynthesis (Mani, 1964Mani, M.S., 1964. Ecology of Plant Galls, Monographiae Biologicae. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-6230-4.
https://doi.org/10.1007/978-94-017-6230-...
; Maia, 2013bMaia, V.C., 2013b. Insect galls of São Tomé das Letras (MG, Brazil). Biota Neotrop. 13, 164-189. https://doi.org/10.1590/S1676-06032013000400017.
https://doi.org/10.1590/S1676-0603201300...
; Santana et al., 2020Santana, C.A.G.S., Costa, E.C., Carvalho-Fernandes, S.P., Santos-Silva, J., 2020. Insect galls and their host plants in gallery forest in Bahia State, Brazil. Braz. J. Bot. 43, 989-998. https://doi.org/10.1007/s40415-020-00641-4.
https://doi.org/10.1007/s40415-020-00641...
).

There are no records of studies towards the induction of galls by Iatrophobia on the inflorescences, which generates a high specificity for M. caerulescens in situations where responsive tissues are available. Studies on alternative plant organ inductions were carried out by Oliveira and Isaias (2009)Oliveira, D.C., Isaias, R.M.S., 2009. Influence of leaflet age in anatomy and possible adaptive values of the midrib gall of Copaifera langsdorffii (Fabaceae: caesalpinioideae). Rev. Biol. Trop. 57, 293-302., where gall-inducing insects induced galls on young and mature leaves. Campos et al. (2010)Campos, P.T., Costa, M.C.D., Isaias, R.M.S., Moreira, A.S.F.P., Oliveira, D.C., Lemos-Filho, J. P., 2010. Phenological relationships between two insect galls and their host plants: Aspidosperma australe and A. spruceanum (Apocynaceae). Acta Bot. Bras. 24, 727-733. https://doi.org/10.1590/S0102-33062010000300016.
https://doi.org/10.1590/S0102-3306201000...
also observed on Copaifera langsdorffi Desf. (Fabaceae) that the inducers laid eggs more frequently on young leaves, however these insects also established themselves on mature leaves. Further, Guedes et al. (2018)Guedes, L.M., Aguilera, N., Ferreira, B.G., Becerra, J., Hernández, V., Isaias, R.M.S., 2018. Anatomical and phenological implications of the relationship between Schinus polygama (Cav.) (Cabrera) and the galling insect Calophya rubra (Blanchard). Plant Biol. 20, 507-515. https://doi.org/10.1111/plb.12696.
https://doi.org/10.1111/plb.12696...
observed on Calophya rubra Blanchard, 1852 that galls are generally induced on the leaves, however when the diapause period takes place, induction occurs on flowers, which implies a suitable period of availability of plant resources. Due to the short duration of the adult stage of gall-inducing insects, females that do not locate suitable structures probably deposit their eggs in non-preferred locations (Campos et al., 2010Campos, P.T., Costa, M.C.D., Isaias, R.M.S., Moreira, A.S.F.P., Oliveira, D.C., Lemos-Filho, J. P., 2010. Phenological relationships between two insect galls and their host plants: Aspidosperma australe and A. spruceanum (Apocynaceae). Acta Bot. Bras. 24, 727-733. https://doi.org/10.1590/S0102-33062010000300016.
https://doi.org/10.1590/S0102-3306201000...
; Weis et al., 1988Weis, A.E., Walton, R., Crego, C.L., 1988. Reactive plant tissue sites and the population biology of gall makers. Annu. Rev. Entomol. 33, 467-486. https://doi.org/10.1146/annurev.en.33.010188.002343.
https://doi.org/10.1146/annurev.en.33.01...
). Studying Rollinia laurifolia Schltdl. (Annonaceae), Gonçalves et al. (2009)Gonçalves, S.J.M.R., Moreira, G.R.P., Isaias, R.M.S., 2009. A unique seasonal cycle in a leaf gall‐inducing insect: the formation of stem galls for dormancy. J. Nat. Hist. 43, 843-854. https://doi.org/10.1080/00222930802615690.
https://doi.org/10.1080/0022293080261569...
observed that the crawlers leave the galls even before the leaves fall and go to the stems, where they induce a second gall morphotype and enter dormancy throughout the dry season. Therefore, we hypothesize that galls induced by Iatrophobia on the inflorescences during leaf senescence might be related to the search for food resources as well as suitable oviposition sites for gall induction, which seems to be a successful survival strategy for the completion of its life cycle.

In addition to gall-inducing insects, we observed a diversity of insect fauna associated with galls. These arthropods vary in their eating habits and can be classified as: parasitoids, predators, tenants and successors (Maia, 2001Maia, V.C., 2001. The gall midges (Diptera, Cecidomyiidae) from three restingas of Rio de Janeiro State, Brazil. Rev. Bras. Zool. 18, 583-629. https://doi.org/10.1590/S0101-81752001000200028.
https://doi.org/10.1590/S0101-8175200100...
). The arthropod fauna associated with M. caerulescens galls belonged to eight orders: Acarina, Araneae, Coleoptera, Collembola, Diptera, Hemiptera, Hymenoptera and Thysanoptera. Parasitoids have been considered the most frequent natural enemies of gall-inducing insects in different Brazilian formations (Lima and Calado, 2018Lima, V.P., Calado, D.C., 2018. Morphological characterization of insect galls and new records of associated invertebrates in a Cerrado area in Bahia State, Brazil. Braz. J. Biol. 78, 636-643. https://doi.org/10.1590/1519-6984.169502.
https://doi.org/10.1590/1519-6984.169502...
; Santos et al., 2018Santos, I.M., Lima, V.P., Soares, E.K.S., Paula, M., Calado, D.C., 2018. Insect galls in three species of Copaifera L. (Leguminosae, Caesalpinioideae) occurring sympatrically in a Cerrado area (Bahia, Brazil). Biota Neotrop. 18 (1), e20170356. https://doi.org/10.1590/1676-0611-bn-2017-0356.
https://doi.org/10.1590/1676-0611-bn-201...
; Soares et al., 2021Soares, E.K.S., Oliveira, A.B., Lima, V.P., Calado, D., 2021. Insect galls associated with Copaifera sabulicola J.A.S Costa & L.P Queiroz (Fabaceae): characterization and new records. Rev. Bras. Entomol. 65, e20210107. https://doi.org/10.1590/1806-9665-rbent-2021-0107.
https://doi.org/10.1590/1806-9665-rbent-...
) and were induced by Hymenoptera, considered the order with the highest number of natural enemies of gall inducers (Lima and Calado, 2018Lima, V.P., Calado, D.C., 2018. Morphological characterization of insect galls and new records of associated invertebrates in a Cerrado area in Bahia State, Brazil. Braz. J. Biol. 78, 636-643. https://doi.org/10.1590/1519-6984.169502.
https://doi.org/10.1590/1519-6984.169502...
; Maia, 2013bMaia, V.C., 2013b. Insect galls of São Tomé das Letras (MG, Brazil). Biota Neotrop. 13, 164-189. https://doi.org/10.1590/S1676-06032013000400017.
https://doi.org/10.1590/S1676-0603201300...
). The tenants were represented by cecidomyids, which was observed by Urso-Guimarães et al. (2017)Urso-Guimarães, M.V., Castello, A.C.D., Kataoka, E.Y., Koch, I., 2017. Characterization of entomogen galls from Mato Grosso do Sul, Brazil. Rev. Bras. Entomol. 61, 25-42. https://doi.org/10.1016/j.rbe.2016.08.002.
https://doi.org/10.1016/j.rbe.2016.08.00...
, who recorded the tenant Camptoneuromyia Felt, 1908 (Cecidomyiidae) in galls of M. tripartita in the Cerrado of Mato Grosso do Sul. The successor fauna was composed by Collembola¸ Acarina, Coleoptera, Araneae, Hemiptera and Thysanoptera – represented by the organisms that occupy the gall after being abandoned by the inducers (Maia, 2013aMaia, V.C., 2013a. Galhas de insetos em restingas da região sudeste do Brasil com novos registros. Biota Neotrop. 13, 183-209. https://doi.org/10.1590/S1676-06032013000100021.
https://doi.org/10.1590/S1676-0603201300...
; Mani, 1964Mani, M.S., 1964. Ecology of Plant Galls, Monographiae Biologicae. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-6230-4.
https://doi.org/10.1007/978-94-017-6230-...
).

Regarding the vegetative phenology of M. caerulescens, the senescence phenophase began in the dry season, with few leaves falling over the course of the year (Allem, 2001Allem, A.C., 2001. Three new infraspecific taxa of Manihot (Euphorbiaceae) from the Brazilian Neotropics. Novon 11, 157-165. https://doi.org/10.2307/3393052.
https://doi.org/10.2307/3393052...
). According to Novaes et al. (2020)Novaes, L.R., Calixto, E.S., Oliveira, M.L., Alves-de-Lima, L., Almeida, O., Torezan-Silingardi, H.M., 2020. Environmental variables drive phenological events of anemocoric plants and enhance diaspore dispersal potential: a new wind-based approach. Sci. Total Environ. 730, 139039. https://doi.org/10.1016/j.scitotenv.2020.139039.
https://doi.org/10.1016/j.scitotenv.2020...
, one of the factors related to leaf fall in the dry season is the lower availability of water, presence of wind and increased temperature. In the absence of rain and in the presence of heat and wind, caducity can help the plant to reserve water; otherwise, the release of water vapor into the atmosphere through evapotranspiration may compromise plant vital activities during the dry season (Tomlinson et al., 2013Tomlinson, K.W., Poorter, L., Sterck, F.J., Borghetti, F., Ward, D., de Bie, S., van Langevelde, F., 2013. Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents. J. Ecol. 101, 430-440. https://doi.org/10.1111/1365-2745.12056.
https://doi.org/10.1111/1365-2745.12056...
).

The budding phenophase was more frequent in the rainy season (Allem, 2001Allem, A.C., 2001. Three new infraspecific taxa of Manihot (Euphorbiaceae) from the Brazilian Neotropics. Novon 11, 157-165. https://doi.org/10.2307/3393052.
https://doi.org/10.2307/3393052...
). According to Araújo and Santos (2009)Araújo, W.S., Santos, B.B., 2009. Efeitos da sazonalidade e do tamanho da planta hospedeira na abundância de galhas de Cecidomyiidae (Diptera) em Piper arboreum (Piperaceae). Rev. Bras. Entomol. 53, 300-303. https://doi.org/10.1590/S0085-56262009000200014.
https://doi.org/10.1590/S0085-5626200900...
, leaf sprouting provides greater availability of resources, thus favoring the colonization of gall-inducing insects and increasing the abundance of galls. Fully developed leaves were present in the dry and rainy seasons, but less so at the end of the dry season, when leaf senescence and leaf budding occur. Novaes et al. (2020)Novaes, L.R., Calixto, E.S., Oliveira, M.L., Alves-de-Lima, L., Almeida, O., Torezan-Silingardi, H.M., 2020. Environmental variables drive phenological events of anemocoric plants and enhance diaspore dispersal potential: a new wind-based approach. Sci. Total Environ. 730, 139039. https://doi.org/10.1016/j.scitotenv.2020.139039.
https://doi.org/10.1016/j.scitotenv.2020...
observed this pattern in the Cerrado for Aspidosperma tomentosum Mart. & Zucc. (Apocynaceae), Dalbergia miscolobium Benth. (Fabaceae) and Peixotoa tomentosa A.Juss. (Malpighiaceae). According to Yukawa (2000)Yukawa, J., 2000. Synchronization of gallers with host plant phenology. Popul. Ecol. 42, 105-113. https://doi.org/10.1007/PL00011989.
https://doi.org/10.1007/PL00011989...
, the gall-inducing insects that attack young leaves are more sensitive to the phenological variation of the plant when compared to those that feed on mature leaves, thus, the time and place of oviposition are crucial for the well-developed development of galls (Fagundes et al., 2018Fagundes, M., Xavier, R.C.F., Faria, M.L., Lopes, L.G.O., Cuevas-Reyes, P., Reis-Junior, R., 2018. Plant phenological asynchrony and community structure of gall-inducing insects associated with a tropical tree species. Ecol. Evol. 8, 10687-10697. https://doi.org/10.1002/ece3.4477.
https://doi.org/10.1002/ece3.4477...
). The fruiting phenophase extended from the end of the dry season to the rainy season, comprising a long period of time. This fruit adaptation probably occurs to increase the chances of seeds ripening and thus dispersing in a period when wind conditions are favorable to dispersal, which can increase reproductive success (Novaes et al., 2020Novaes, L.R., Calixto, E.S., Oliveira, M.L., Alves-de-Lima, L., Almeida, O., Torezan-Silingardi, H.M., 2020. Environmental variables drive phenological events of anemocoric plants and enhance diaspore dispersal potential: a new wind-based approach. Sci. Total Environ. 730, 139039. https://doi.org/10.1016/j.scitotenv.2020.139039.
https://doi.org/10.1016/j.scitotenv.2020...
). Flowering of M. caerulescens was more frequent in the dry season. Flowering in the dry season can be an adaptation to provide floral resources at a time when this product is scarce, increasing the chances of attracting pollinators and herbivorous insects (Novaes et al., 2020Novaes, L.R., Calixto, E.S., Oliveira, M.L., Alves-de-Lima, L., Almeida, O., Torezan-Silingardi, H.M., 2020. Environmental variables drive phenological events of anemocoric plants and enhance diaspore dispersal potential: a new wind-based approach. Sci. Total Environ. 730, 139039. https://doi.org/10.1016/j.scitotenv.2020.139039.
https://doi.org/10.1016/j.scitotenv.2020...
). Thus, flowering in the dry season can be advantageous, as it reduces florivory and increases pollinator activity (Silva et al., 2017Silva, E.M., Oliveira, U., Cardoso, E., Roelis, B., Rossi, A.A., 2017. Fenologia reprodutiva e biologia floral de Palicourea racemosa (aubl.) borhidi (rubiaceae) em um fragmento florestal no município de Alta Floresta, Mato grosso, Brasil. Encicl. Biosf. 14, 986-994.).

Gall infestation on M. caerulescens occurred in both seasons, with the highest occurrence concentrated in the rainy season for both years. Scareli-Santos et al. (2018)Scareli-Santos, C., Silva, P.C., Carneiro, A.S., Dantas, S.P., 2018. Galhas em Manihot esculenta Crantz (Euphorbiaceae): avaliação dos impactos na arquitetura e na produtividade da planta Hospedeira. Desafios 5, 51-59. described leaf gall infestation on Manihot esculenta Crantz (Euphorbiaceae), and evaluated the impacts on plant architecture and productivity in a cultivated area in the state of Tocantins. They observed that gall infestation was significantly higher in the rainy season. Similar results were also obtained by Araújo and Santos (2009)Araújo, W.S., Santos, B.B., 2009. Efeitos da sazonalidade e do tamanho da planta hospedeira na abundância de galhas de Cecidomyiidae (Diptera) em Piper arboreum (Piperaceae). Rev. Bras. Entomol. 53, 300-303. https://doi.org/10.1590/S0085-56262009000200014.
https://doi.org/10.1590/S0085-5626200900...
who studied the abundance of galls on Piper arboreum Aubl. (Piperaceae) and found that the highest infestation occurred in the rainy season. One of the factors that could justify this pattern is that rain prevents the vegetation from drying out and becoming deciduous, making the environment more favorable to the development and survival of herbivorous insects, as well as favoring the growth of young leaves, which allows for a greater occurrence of oviposition (Araújo and Santos, 2009Araújo, W.S., Santos, B.B., 2009. Efeitos da sazonalidade e do tamanho da planta hospedeira na abundância de galhas de Cecidomyiidae (Diptera) em Piper arboreum (Piperaceae). Rev. Bras. Entomol. 53, 300-303. https://doi.org/10.1590/S0085-56262009000200014.
https://doi.org/10.1590/S0085-5626200900...
; Oliveira and Scareli-Santos, 2018Oliveira, F.G.S., Scareli-Santos, C., 2018. Infestação por galhas foliares em Ouratea spectabilis (Mart. ex Engl.) Engl. (Ochnaceae) e sua relação com os teores de açúcares. Desafios 5, 20-29. https://doi.org/10.20873/uft.2359-3652.2018v5nEspecialp20.
https://doi.org/10.20873/uft.2359-3652.2...
).

Despite several studies corroborating this hypothesis, this pattern is not always observed. Luz et al. (2012)Luz, G.R., Fernandes, G.W., Silva, J.O., Neves, F.S., Fagundes, M., 2012. Insect galls in xeric and mesic habitats in a Cerrado-Caatinga transition in northern Minas Gerais, Brazil. Neotrop. Biol. Conserv. 7, 171-187. https://doi.org/10.4013/nbc.2012.73.04.
https://doi.org/10.4013/nbc.2012.73.04...
recorded higher rates of galls in the dry season, in xeric environments (Cerrado and Dry Forest), mainly induced by insects of the order Diptera (Cecidomyiidae). Santos et al. (2018)Santos, I.M., Lima, V.P., Soares, E.K.S., Paula, M., Calado, D.C., 2018. Insect galls in three species of Copaifera L. (Leguminosae, Caesalpinioideae) occurring sympatrically in a Cerrado area (Bahia, Brazil). Biota Neotrop. 18 (1), e20170356. https://doi.org/10.1590/1676-0611-bn-2017-0356.
https://doi.org/10.1590/1676-0611-bn-201...
found that the morphotypes of the three species of the genus Copaifera L. (Fabaceae) were more abundant in the dry season. Oliveira and Scareli-Santos (2018)Oliveira, F.G.S., Scareli-Santos, C., 2018. Infestação por galhas foliares em Ouratea spectabilis (Mart. ex Engl.) Engl. (Ochnaceae) e sua relação com os teores de açúcares. Desafios 5, 20-29. https://doi.org/10.20873/uft.2359-3652.2018v5nEspecialp20.
https://doi.org/10.20873/uft.2359-3652.2...
observed gall infestation on Ouratea spectabilis (Mart.) Engl. (Ochnaceae), and showed that the leaves had a higher infestation in the dry season. According to Araújo and Santos (2009)Araújo, W.S., Santos, B.B., 2009. Efeitos da sazonalidade e do tamanho da planta hospedeira na abundância de galhas de Cecidomyiidae (Diptera) em Piper arboreum (Piperaceae). Rev. Bras. Entomol. 53, 300-303. https://doi.org/10.1590/S0085-56262009000200014.
https://doi.org/10.1590/S0085-5626200900...
and Oliveira and Scareli-Santos (2018)Oliveira, F.G.S., Scareli-Santos, C., 2018. Infestação por galhas foliares em Ouratea spectabilis (Mart. ex Engl.) Engl. (Ochnaceae) e sua relação com os teores de açúcares. Desafios 5, 20-29. https://doi.org/10.20873/uft.2359-3652.2018v5nEspecialp20.
https://doi.org/10.20873/uft.2359-3652.2...
, this behavior may be related to water scarcity, as they provide physiological and hormonal changes in the plant, thus altering metabolism and development and consequently makes them more susceptible to herbivory.

The richness and abundance of free-living herbivorous insects are influenced by temperature, humidity and precipitation (Araújo and Santos, 2009Araújo, W.S., Santos, B.B., 2009. Efeitos da sazonalidade e do tamanho da planta hospedeira na abundância de galhas de Cecidomyiidae (Diptera) em Piper arboreum (Piperaceae). Rev. Bras. Entomol. 53, 300-303. https://doi.org/10.1590/S0085-56262009000200014.
https://doi.org/10.1590/S0085-5626200900...
). According to the hygrothermal stress hypothesis (Fernandes and Price, 1988Fernandes, G.W., Price, P.W., 1988. Biogeographical gradients in galling species richness. Oecologia 76, 161-167. https://doi.org/10.1007/BF00379948.
https://doi.org/10.1007/BF00379948...
), gall-inducing insects are more abundant in xeric environments (high temperatures, low humidity and nutrient-poor soils) than in mesic environments (low temperatures, high humidity and nutrient-rich soils). Therefore, the xeric environments that harbor plant species from the Cerrado have large concentrations of defense compounds such as tannin, which provide gall-inducing defenses against predators and pathogens (Fernandes and Price, 1988Fernandes, G.W., Price, P.W., 1988. Biogeographical gradients in galling species richness. Oecologia 76, 161-167. https://doi.org/10.1007/BF00379948.
https://doi.org/10.1007/BF00379948...
; Luz et al., 2012Luz, G.R., Fernandes, G.W., Silva, J.O., Neves, F.S., Fagundes, M., 2012. Insect galls in xeric and mesic habitats in a Cerrado-Caatinga transition in northern Minas Gerais, Brazil. Neotrop. Biol. Conserv. 7, 171-187. https://doi.org/10.4013/nbc.2012.73.04.
https://doi.org/10.4013/nbc.2012.73.04...
; Coelho et al., 2017Coelho, M.S., Carneiro, M.A.A., Branco, C.A., Borges, R.A.X., Fernandes, G.W., 2017. Galling insects of the Brazilian Páramos: species richness and composition along high-altitude grasslands. Environ. Entomol. 46, 1243-1253. https://doi.org/10.1093/ee/nvx147.
https://doi.org/10.1093/ee/nvx147...
).

In conclusion, although short-term gall inventories help us understand and estimate the diversity of gall-inducing insects, long-term assessments similar to this one allows us to better understand ecological patterns of gall inducers. Throughout our two-year evaluation, we clearly noticed that I. brasiliensis induced galls preferentially on the leaves, however, during the months of greatest senescence peaks in the dry season, galls were induced on the inflorescences. This pattern is reported for the first time here in our study, and reinforces the need for long-term and specific assessments of interactions between host plants and gall-inducing inducers.

Acknowledgments

We thank the Federal University of Western Bahia (UFOB) for the structure provided and the Bahia State Research Support Foundation (FAPESB) for the master's scholarship to A.T.B.S. (Term of grant BOL2340/2019).

References

  • Allem, A.C., 2001. Three new infraspecific taxa of Manihot (Euphorbiaceae) from the Brazilian Neotropics. Novon 11, 157-165. https://doi.org/10.2307/3393052
    » https://doi.org/10.2307/3393052
  • Araújo, W., 2013. A importância de fatores temporais para a distribuição de insetos herbívoros em sistemas Neotropicais. Rev. Biol. 10, 1-7. https://doi.org/10.7594/revbio.10.01.01
    » https://doi.org/10.7594/revbio.10.01.01
  • Araújo, W.S., Santos, B.B., 2009. Efeitos da sazonalidade e do tamanho da planta hospedeira na abundância de galhas de Cecidomyiidae (Diptera) em Piper arboreum (Piperaceae). Rev. Bras. Entomol. 53, 300-303. https://doi.org/10.1590/S0085-56262009000200014
    » https://doi.org/10.1590/S0085-56262009000200014
  • Araújo, W.S., Moreira, L.T., Falcão, L.A.D., Borges, M.A.Z., Fagundes, M., Faria, M.L., Guilherme, F.A.G., 2019. Superhost plants alter the structure of plant–galling insect networks in Neotropical Savannas. Plants 8, 369. https://doi.org/10.3390/plants8100369
    » https://doi.org/10.3390/plants8100369
  • Bourg, A., Hanson, P., 2014. Host specificity of gall midges (Diptera: Cecidomyiidae) on ten species of Inga (Fabaceae). In: Fernandes, G.W., Santos, J.C. (Eds.), Neotropical Insect Galls. Springer, Dordrecht, pp. 151-161. https://doi.org/10.1007/978-94-017-8783-3_10
    » https://doi.org/10.1007/978-94-017-8783-3_10
  • Brito, G.P., Costa, E.C., Carvalho-Fernandes, S.P., Santos-Silva, J., 2018. Riqueza de galhas de insetos em áreas de Caatinga com diferentes graus de antropização do estado da Bahia, Brasil. Iheringia Sér. Zool. 108, e2018003. https://doi.org/10.1590/1678-4766e2018003
    » https://doi.org/10.1590/1678-4766e2018003
  • Campos, P.T., Costa, M.C.D., Isaias, R.M.S., Moreira, A.S.F.P., Oliveira, D.C., Lemos-Filho, J. P., 2010. Phenological relationships between two insect galls and their host plants: Aspidosperma australe and A. spruceanum (Apocynaceae). Acta Bot. Bras. 24, 727-733. https://doi.org/10.1590/S0102-33062010000300016
    » https://doi.org/10.1590/S0102-33062010000300016
  • Carneiro, M.A.A., Branco, C.S.A., Braga, C.E.D., Almada, E.D., Costa, M.B.M., Maia, V.C., Fernandes, G.W., 2009a. Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Rev. Bras. Entomol. 53 (4), 365-378. https://doi.org/10.1590/s0085-56262009000300010
    » https://doi.org/10.1590/s0085-56262009000300010
  • Carneiro, M.A.A., Borges, R.A.X., Araújo, A.P.A., Fernandes, G.W., 2009b. Insetos indutores de galhas da porção sul da Cadeia do Espinhaço, Minas Gerais, Brasil. Rev. Bras. Entomol. 53 (4), 570-592. https://doi.org/10.1590/s0085-56262009000400007
    » https://doi.org/10.1590/s0085-56262009000400007
  • Coelho, M.S., Carneiro, M.A.A., Branco, C.A., Borges, R.A.X., Fernandes, G.W., 2017. Galling insects of the Brazilian Páramos: species richness and composition along high-altitude grasslands. Environ. Entomol. 46, 1243-1253. https://doi.org/10.1093/ee/nvx147
    » https://doi.org/10.1093/ee/nvx147
  • Cornell, H.V., 1989. Endophage-ectophage ratios and plant defense. Evol. Ecol. 3, 64-76. https://doi.org/10.1007/BF02147932
    » https://doi.org/10.1007/BF02147932
  • Fagundes, M., Xavier, R.C.F., Faria, M.L., Lopes, L.G.O., Cuevas-Reyes, P., Reis-Junior, R., 2018. Plant phenological asynchrony and community structure of gall-inducing insects associated with a tropical tree species. Ecol. Evol. 8, 10687-10697. https://doi.org/10.1002/ece3.4477
    » https://doi.org/10.1002/ece3.4477
  • Fagundes, M., Barbosa, E.M., Oliveira, J.B.B.S., Brito, B.G.S., Freitas, K.T., Freitas, K.F., Reis-Junior, R., 2019. Galling inducing insects associated with a tropical shrub: the role of resource concentration and species interactions. Ecol. Austral 29, 12-19. https://doi.org/10.25260/EA.19.29.1.0.751
    » https://doi.org/10.25260/EA.19.29.1.0.751
  • Fernandes, G.W., Price, P.W., 1988. Biogeographical gradients in galling species richness. Oecologia 76, 161-167. https://doi.org/10.1007/BF00379948
    » https://doi.org/10.1007/BF00379948
  • Gagné, R.J., 1994. The Gall Midges of the Neotropical Region. University Pres, Ithaca.
  • Gonçalves, S.J.M.R., Moreira, G.R.P., Isaias, R.M.S., 2009. A unique seasonal cycle in a leaf gall‐inducing insect: the formation of stem galls for dormancy. J. Nat. Hist. 43, 843-854. https://doi.org/10.1080/00222930802615690
    » https://doi.org/10.1080/00222930802615690
  • Guedes, L.M., Aguilera, N., Ferreira, B.G., Becerra, J., Hernández, V., Isaias, R.M.S., 2018. Anatomical and phenological implications of the relationship between Schinus polygama (Cav.) (Cabrera) and the galling insect Calophya rubra (Blanchard). Plant Biol. 20, 507-515. https://doi.org/10.1111/plb.12696
    » https://doi.org/10.1111/plb.12696
  • Isaias, R.M.S., Carneiro, R.G.S., Oliveira, D.C., Santos, J.C., 2013. Illustrated and annotated checklist of Brazilian gall morphotypes. Neotrop. Entomol. 42, 230-239. https://doi.org/10.1007/s13744-013-0115-7
    » https://doi.org/10.1007/s13744-013-0115-7
  • Kuchenbecker, J., Fagundes, M., 2018. Diversity of insects associated with two common plants in the Brazilian Cerrado: responses of two guilds of herbivores to bottom-up and top-down forces. Eur. J. Entomol. 115, 354-363. https://doi.org/10.14411/eje.2018.035
    » https://doi.org/10.14411/eje.2018.035
  • Lima, V.P., Calado, D.C., 2018. Morphological characterization of insect galls and new records of associated invertebrates in a Cerrado area in Bahia State, Brazil. Braz. J. Biol. 78, 636-643. https://doi.org/10.1590/1519-6984.169502
    » https://doi.org/10.1590/1519-6984.169502
  • Luz, F.A., Mendonça Júnior, M.S., 2019. Guilds in insect galls: who is who. Fla. Entomol. 102, 207-210. https://doi.org/10.1653/024.102.0133
    » https://doi.org/10.1653/024.102.0133
  • Luz, G.R., Fernandes, G.W., Silva, J.O., Neves, F.S., Fagundes, M., 2012. Insect galls in xeric and mesic habitats in a Cerrado-Caatinga transition in northern Minas Gerais, Brazil. Neotrop. Biol. Conserv. 7, 171-187. https://doi.org/10.4013/nbc.2012.73.04
    » https://doi.org/10.4013/nbc.2012.73.04
  • Maia, V.C., 2001. The gall midges (Diptera, Cecidomyiidae) from three restingas of Rio de Janeiro State, Brazil. Rev. Bras. Zool. 18, 583-629. https://doi.org/10.1590/S0101-81752001000200028
    » https://doi.org/10.1590/S0101-81752001000200028
  • Maia, V.C., 2006. Galls of Hemiptera, Lepidoptera and Thysanoptera from Central and South America. Publ. Avulsas Mus. Nac. 110, 3-22.
  • Maia, V.C., 2013a. Galhas de insetos em restingas da região sudeste do Brasil com novos registros. Biota Neotrop. 13, 183-209. https://doi.org/10.1590/S1676-06032013000100021
    » https://doi.org/10.1590/S1676-06032013000100021
  • Maia, V.C., 2013b. Insect galls of São Tomé das Letras (MG, Brazil). Biota Neotrop. 13, 164-189. https://doi.org/10.1590/S1676-06032013000400017
    » https://doi.org/10.1590/S1676-06032013000400017
  • Mani, M.S., 1964. Ecology of Plant Galls, Monographiae Biologicae. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-6230-4
    » https://doi.org/10.1007/978-94-017-6230-4
  • Martini, V.C., Moreira, A.S.F.P., Kuster, V.C., Oliveira, D.C., 2019. Galling insects as phenotype manipulators of cell wall composition during the development of galls induced on leaves of Aspidosperma tomentosum (Apocynaceae). S. Afr. J. Bot. 127, 226-233. https://doi.org/10.1016/j.sajb.2019.09.006
    » https://doi.org/10.1016/j.sajb.2019.09.006
  • Menezes, J.B., Lima, V.P., Calado, D.C., 2023. Insect galls from the Serra da Bandeira (Barreiras, Western Bahia, Brazil). Biota Neotrop. 23, e20231527. https://doi.org/10.1590/1676-0611-bn-2023-1527
    » https://doi.org/10.1590/1676-0611-bn-2023-1527
  • Miller, D.G., Raman, A., 2019. Host–plant relations of gall-inducing insects. Ann. Entomol. Soc. Am. 112, 1-19. https://doi.org/10.1093/aesa/say034
    » https://doi.org/10.1093/aesa/say034
  • Morellato, L.P.C., Rodrigues, R.R., Leitao Filho, H.F., Joly, C.A., 1989. Estudo comparativo da fenologia de espécies arbóreas de floresta de altitude e floresta mesofila semidecidua na serra do Japi, Jundiaí, São Paulo (1989). Rev. Bras. Bot. 12, 85-98.
  • Nascimento, D.T.F., Novais, G.T., 2020. Clima do Cerrado: dinâmica atmosférica e características, variabilidades e tipologias climáticas. Élisée Rev. Geogr. UEG 9, e922021.
  • Novaes, L.R., Calixto, E.S., Oliveira, M.L., Alves-de-Lima, L., Almeida, O., Torezan-Silingardi, H.M., 2020. Environmental variables drive phenological events of anemocoric plants and enhance diaspore dispersal potential: a new wind-based approach. Sci. Total Environ. 730, 139039. https://doi.org/10.1016/j.scitotenv.2020.139039
    » https://doi.org/10.1016/j.scitotenv.2020.139039
  • Oliveira, D.C., Isaias, R.M.S., 2009. Influence of leaflet age in anatomy and possible adaptive values of the midrib gall of Copaifera langsdorffii (Fabaceae: caesalpinioideae). Rev. Biol. Trop. 57, 293-302.
  • Oliveira, F.G.S., Scareli-Santos, C., 2018. Infestação por galhas foliares em Ouratea spectabilis (Mart. ex Engl.) Engl. (Ochnaceae) e sua relação com os teores de açúcares. Desafios 5, 20-29. https://doi.org/10.20873/uft.2359-3652.2018v5nEspecialp20
    » https://doi.org/10.20873/uft.2359-3652.2018v5nEspecialp20
  • Pinheiro, F., Diniz, I.R., Coelho, D., Bandeira, M.P.S., 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol. 27, 132-136. https://doi.org/10.1046/j.1442-9993.2002.01165.x
    » https://doi.org/10.1046/j.1442-9993.2002.01165.x
  • Price, P.W., 2005. Adaptive radiation of gall-inducing insects. Basic Appl. Ecol. 6, 413-421. https://doi.org/10.1016/j.baae.2005.07.002
    » https://doi.org/10.1016/j.baae.2005.07.002
  • Raman, A., 1991. Cecidogenesis of leaf galls on Syzygium cumini (L.) Skeels (Myrtaceae) induced by Trioza jambolanae Crawford (Homoptera: psylloidea). J. Nat. Hist. 25, 653-663. https://doi.org/10.1080/00222939100770421
    » https://doi.org/10.1080/00222939100770421
  • Ramos, L.F., Solar, R.R.C., Santos, H.T., Fagundes, M., 2019. Variation in community structure of gall‐inducing insects associated with a tropical plant supports the hypothesis of competition in stressful habitats. Ecol. Evol. 9, 13919-13930. https://doi.org/10.1002/ece3.5827
    » https://doi.org/10.1002/ece3.5827
  • Saito, V.S., Urso-Guimarães, M.V., 2012. Characterization of galls, insect galls and associated fauna of Ecological Station of Jataí (Luiz Antônio, SP). Biota Neotrop. 12, 99-107. https://doi.org/10.1590/S1676-06032012000300011
    » https://doi.org/10.1590/S1676-06032012000300011
  • Santana, C.A.G.S., Costa, E.C., Carvalho-Fernandes, S.P., Santos-Silva, J., 2020. Insect galls and their host plants in gallery forest in Bahia State, Brazil. Braz. J. Bot. 43, 989-998. https://doi.org/10.1007/s40415-020-00641-4
    » https://doi.org/10.1007/s40415-020-00641-4
  • Santos, I.M., Lima, V.P., Soares, E.K.S., Paula, M., Calado, D.C., 2018. Insect galls in three species of Copaifera L. (Leguminosae, Caesalpinioideae) occurring sympatrically in a Cerrado area (Bahia, Brazil). Biota Neotrop. 18 (1), e20170356. https://doi.org/10.1590/1676-0611-bn-2017-0356
    » https://doi.org/10.1590/1676-0611-bn-2017-0356
  • Santos, P.O., Ribeiro, J.E.L.S., 2016. Ocorrência e caracterização de galhas em fragmento de Floresta Estacional Semidecidual em Telêmaco Borba, Paraná, Brasil. Semin. Ciênc. Biol. Saúde 36, 15-24. https://doi.org/10.5433/1679-0367.2015v36n2p15
    » https://doi.org/10.5433/1679-0367.2015v36n2p15
  • Santos-Silva, J., Araujo, T.J., 2020. Are Fabaceae the principal super-hosts of galls in Brazil? An. Acad. Bras. Cienc. 92, e20181115. https://doi.org/10.1590/0001-3765202020181115
    » https://doi.org/10.1590/0001-3765202020181115
  • Scareli-Santos, C., Silva, P.C., Carneiro, A.S., Dantas, S.P., 2018. Galhas em Manihot esculenta Crantz (Euphorbiaceae): avaliação dos impactos na arquitetura e na produtividade da planta Hospedeira. Desafios 5, 51-59.
  • Silva, E.M., Oliveira, U., Cardoso, E., Roelis, B., Rossi, A.A., 2017. Fenologia reprodutiva e biologia floral de Palicourea racemosa (aubl.) borhidi (rubiaceae) em um fragmento florestal no município de Alta Floresta, Mato grosso, Brasil. Encicl. Biosf. 14, 986-994.
  • Soares, E.K.S., Oliveira, A.B., Lima, V.P., Calado, D., 2021. Insect galls associated with Copaifera sabulicola J.A.S Costa & L.P Queiroz (Fabaceae): characterization and new records. Rev. Bras. Entomol. 65, e20210107. https://doi.org/10.1590/1806-9665-rbent-2021-0107
    » https://doi.org/10.1590/1806-9665-rbent-2021-0107
  • Stone, G.N., Schönrogge, K., 2003. The adaptive significance of insect gall morphology. Trends Ecol. Evol. 18, 512-522. https://doi.org/10.1016/S0169-5347(03)00247-7
    » https://doi.org/10.1016/S0169-5347(03)00247-7
  • Thompson, K., Gilbert, F., 2014. Phenological synchrony between a plant and a specialised herbivore. Basic Appl. Ecol. 15, 353-361. https://doi.org/10.1016/j.baae.2014.05.003
    » https://doi.org/10.1016/j.baae.2014.05.003
  • Tomlinson, K.W., Poorter, L., Sterck, F.J., Borghetti, F., Ward, D., de Bie, S., van Langevelde, F., 2013. Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents. J. Ecol. 101, 430-440. https://doi.org/10.1111/1365-2745.12056
    » https://doi.org/10.1111/1365-2745.12056
  • Urso-Guimarães, M.V., Castello, A.C.D., Kataoka, E.Y., Koch, I., 2017. Characterization of entomogen galls from Mato Grosso do Sul, Brazil. Rev. Bras. Entomol. 61, 25-42. https://doi.org/10.1016/j.rbe.2016.08.002
    » https://doi.org/10.1016/j.rbe.2016.08.002
  • Weis, A.E., Walton, R., Crego, C.L., 1988. Reactive plant tissue sites and the population biology of gall makers. Annu. Rev. Entomol. 33, 467-486. https://doi.org/10.1146/annurev.en.33.010188.002343
    » https://doi.org/10.1146/annurev.en.33.010188.002343
  • Yukawa, J., 2000. Synchronization of gallers with host plant phenology. Popul. Ecol. 42, 105-113. https://doi.org/10.1007/PL00011989
    » https://doi.org/10.1007/PL00011989

Edited by

Associate Editor:

Gustavo Graciolli

Publication Dates

  • Publication in this collection
    05 Jan 2024
  • Date of issue
    2023

History

  • Received
    22 July 2023
  • Accepted
    26 Nov 2023
Sociedade Brasileira De Entomologia Caixa Postal 19030, 81531-980 Curitiba PR Brasil , Tel./Fax: +55 41 3266-0502 - São Paulo - SP - Brazil
E-mail: sbe@ufpr.br