Acessibilidade / Reportar erro

Caracterização do intervalo hídrico ótimo de um latossolo roxo sob plantio direto

Characterization of the least limiting water range of an oxisol under no-tillage

Resumos

O crescimento do sistema radicular e da parte aérea das plantas é influenciado por vários atributos físicos do solo, com complexas interações que envolvem o potencial da água no solo, o teor de oxigênio e a resistência do solo à penetração das raízes. O Intervalo Hídrico Ótimo (IHO) é um parâmetro físico do solo que incorpora os efeitos do conteúdo de água no solo sobre as variações do potencial mátrico, aeração e resistência mecânica do solo. O IHO não tem sido avaliado em solos tropicais, razão por que o objetivo deste trabalho é o de caracterizá-lo num Latossolo Roxo (Typic Hapludox), cultivado com milho no sistema de plantio direto. Para este fim, foram obtidas, nas posições linha e entrelinha da cultura do milho, 72 amostras de solo com estrutura indeformada, nas quais foram determinadas a curva de retenção de água, a curva de resistência à penetração e a densidade do solo, necessárias à obtenção do limite superior e inferior que definem o IHO. Segundo os resultados, o IHO variou positivamente até a densidade de 1,1 Mg m-3 e negativamente para densidades superiores. A amplitude de variação do IHO foi de 0,0073 até 0,125 m³ m-3. No limite inferior do IHO, em relação ao ponto de murcha, a resistência à penetração foi o fator limitante em 85% das amostras, enquanto a capacidade de campo foi o limite superior em 97% das amostras em relação à porosidade de aeração. As modificações na estrutura do solo, refletidas pela variação na densidade, foram mais sensivelmente descritas pelo IHO do que pela água disponível entre a capacidade de o campo e o ponto de murcha permanente. A resistência à penetração e a porosidade de aeração foram fortemente influenciadas pela densidade do solo; neste solo, a redução nos limites do IHO foi determinada pela variação da resistência do solo. Avaliações suplementares do IHO, em solos tropicais, são necessárias sob condições de ampla variação de textura e manejo.

propriedades físicas do solo; resistência à penetração; densidade do solo; Latossolo Roxo


Soil physical attributes, i. e., soil water potential, soil oxygen, and soil strength, directly affect plant growth. The least limiting water range (LLWR) is the range of soil water content within which plant growth is least limited by water potential, aeration and mechanical resistance and has not been evaluated in tropical soils. The objective of this research was to characterize the LLWR of a Typic Hapludox cropped to corn under no-tillage. Seventy-two undisturbed soil samples were collected at the crop row and interrow. The soil water retention curve and the soil resistance curve were evaluated in order to compute the LLWR. The results indicated that the LLWR varied positively with bulk density up to 1.1 Mg m-3 and negatively for higher densities. The LLWR ranged from 0.0073 to 0.1252 m³ m-3. Soil resistance to penetration was the limiting factor at the dry end of the LLWR in 85% of the samples while field capacity was the limiting factor at the wet end in 97%. Further studies on the LLWR in tropical soils would be relevant under a wide range in texture and management.

soil physical properties; soil density; soil penetration resistance; least limiting water range; Oxisol


SEÇÃO I - FÍSICA DO SOLO

Caracterização do intervalo hídrico ótimo de um latossolo roxo sob plantio direto(1 (1 ) Trabalho desenvolvido no Laboratório de Física de Solos do Departamento de Solos, Escola Superior de Agricultura Luiz de Queiroz - ESALQ/USP. )

Characterization of the least limiting water range of an oxisol under no-tillage

C. A. TormenaI; A. P. SilvaII; P. L. LibardiIII

IProfessor do Departamento de Agronomia, Universidade Estadual de Maringá e Pós-graduando em Solos e Nutrição de Plantas, ESALQ/USP. Laboratório de Física de Solos, Departamento de Solos. Av. Pádua Dias, 11. CEP 13418-900 Piracicaba (SP). E-mail catormen@cca.uem.br

IIProfessor do Departamento de Ciência do Solo, ESALQ/USP. Bolsista do CNPq

IIIProfessor do Departamento de Física, ESALQ/USP. Bolsista do CNPq

RESUMO

O crescimento do sistema radicular e da parte aérea das plantas é influenciado por vários atributos físicos do solo, com complexas interações que envolvem o potencial da água no solo, o teor de oxigênio e a resistência do solo à penetração das raízes. O Intervalo Hídrico Ótimo (IHO) é um parâmetro físico do solo que incorpora os efeitos do conteúdo de água no solo sobre as variações do potencial mátrico, aeração e resistência mecânica do solo. O IHO não tem sido avaliado em solos tropicais, razão por que o objetivo deste trabalho é o de caracterizá-lo num Latossolo Roxo (Typic Hapludox), cultivado com milho no sistema de plantio direto. Para este fim, foram obtidas, nas posições linha e entrelinha da cultura do milho, 72 amostras de solo com estrutura indeformada, nas quais foram determinadas a curva de retenção de água, a curva de resistência à penetração e a densidade do solo, necessárias à obtenção do limite superior e inferior que definem o IHO. Segundo os resultados, o IHO variou positivamente até a densidade de 1,1 Mg m-3 e negativamente para densidades superiores. A amplitude de variação do IHO foi de 0,0073 até 0,125 m3 m-3. No limite inferior do IHO, em relação ao ponto de murcha, a resistência à penetração foi o fator limitante em 85% das amostras, enquanto a capacidade de campo foi o limite superior em 97% das amostras em relação à porosidade de aeração. As modificações na estrutura do solo, refletidas pela variação na densidade, foram mais sensivelmente descritas pelo IHO do que pela água disponível entre a capacidade de o campo e o ponto de murcha permanente. A resistência à penetração e a porosidade de aeração foram fortemente influenciadas pela densidade do solo; neste solo, a redução nos limites do IHO foi determinada pela variação da resistência do solo. Avaliações suplementares do IHO, em solos tropicais, são necessárias sob condições de ampla variação de textura e manejo.

Termos de indexação: propriedades físicas do solo, resistência à penetração, densidade do solo, Latossolo Roxo.

SUMMARY

Soil physical attributes, i. e., soil water potential, soil oxygen, and soil strength, directly affect plant growth. The least limiting water range (LLWR) is the range of soil water content within which plant growth is least limited by water potential, aeration and mechanical resistance and has not been evaluated in tropical soils. The objective of this research was to characterize the LLWR of a Typic Hapludox cropped to corn under no-tillage. Seventy-two undisturbed soil samples were collected at the crop row and interrow. The soil water retention curve and the soil resistance curve were evaluated in order to compute the LLWR. The results indicated that the LLWR varied positively with bulk density up to 1.1 Mg m-3 and negatively for higher densities. The LLWR ranged from 0.0073 to 0.1252 m3 m-3. Soil resistance to penetration was the limiting factor at the dry end of the LLWR in 85% of the samples while field capacity was the limiting factor at the wet end in 97%. Further studies on the LLWR in tropical soils would be relevant under a wide range in texture and management.

Index terms: soil physical properties, soil density, soil penetration resistance, least limiting water range, Oxisol.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

LITERATURA CITADA

ALLMARAS, R.R. & LOGSDON, S.D. Soil structural influences on root zone and rizosphere. In: BOX Jr., J.E. & HAMMOND, L.C., eds. Rhizosphere dynamics. Washington, D.C.; AAAS, 1990. p.8-54.

ARCHER, J.R. & SMITH, P.D. The relation between bulk density, available water capacity and air capacity of soils. J. Soil Sci., 23:475-480, 1972.

BENGHOUGH, A.G. & MULLINS, C.E. Mechanical impedance to root growth: a review of experimental techniques and root growth responses. J. Soil Sci., 41:341- 358, 1990.

BLAKE, G.R. & HARTGE, K.H. Bulk Density. In: KLUTE, A., ed. Methods of soil analisys - physical and mineralogical methods. 2.ed. Madison, ASA - SSSA, 1986. p.363-375.

BOONE, F.R. Wheater and other enviromental factors influencing crop responses to tillage and traffic. Soil Till., Res., 11:283-324, 1988.

BOONE, F.R.; van der WERF, H.M.G.; KROESBERGEN, B.; TEN HAAG, B.A. & BOERS, A. The effect of compaction of arable layer in a sandy soils on the growth of maize for silage. I. Critical potentials in relation to soil aeration and mechanical impedance. Neth. J. Agric. Res., 34:155-171, 1986.

BOONE, F.R.; van der WERF, H.M.G.; KROESBERGEN, B.; TEN HAG, B.A. & BOERS, A. The effect of compaction of the arable layer in sandy soils on the growth of maize for silage. II. Soil conditions and plant growth. Neth. J. Agric. Res., 35:113-128, 1987.

BRADFORD, J.M. Penetrability. In: KLUTE, A., ed. Methods of soil analisys - physical and mineralogical methods. 2 ed. Madison, ASA - SSSA. 1986. p.463-478.

BUSSCHER, W.J. Adjustment of flat-tipped penetrometer resistance data to a commom water content. Trans. Am. Soc. Agric. Eng., 33:519-524, 1990.

CARTER, M.R. Temporal variability of soil macroporosity in a fine sandy loam under mouldboard ploughing and direct drilling. Soil Till. Res., 12:37-51, 1988.

CASSEL, D.K. & NIELSEN, D.R. Field capacity and available water capacity. In: KLUTE, A., ed. Methods of soil analysis. 2 ed. Madison, ASA - SSSA, 1986. p.901-926.

DAVIES, W.J. & ZANGH, J. Root signals and the regulation of growth and development of plants in drying soil. Ann. Rev. Plant Physiol. Plant Mol. Biol., 42:55-76, 1991.

DEXTER, A.R. Advancs in characterization of soil structure. Soil Till., Res., 11:199-238, 1988.

DEXTER, A.R. & YOUNGS, I.M. Soil physic toward 2000. Soil Till. Res., 24:101-106, 1992.

EAVIS, B.W. Soil physical condition affecting seedlling root growth. I. Mechanical impedance, aeration and moisture availability and moisture levels in a sandy loam soil. Plant Soil, 36:613-622, 1972.

EHLERS, W.W.; KOPKE, F.; HESSE, F. & BOHM,W. Penetration resistance and growth root of oats in tilled and untiled loess soil. Soil Till. Res., 3:261-275, 1983.

GRABLE, A.R. & SIEMER, E.G. Effects of bulk density, aggregate size, and soil water suction on oxygen diffusion, redox potential and elongation of corns roots. Soil Sci. Soc. Am. Proc. 32:180-186, 1968.

GUPTA, S.C. & LARSON, W.E. Estimating soil water characteristics from size distribution, organic carbon and bulk density. Water Res. Res., 15:1633-1635, 1979.

HAISE, H.R.; HAAS, H.J. & JENSEN, L.R. Soil misture studies of some great plains soils. II. Field capacity as related tp 1/3-atmosphere percentage, and "minimum point"as related to 15- and 26- atmosphere percentage.Soil Sci. Soc. Proc., 34:20-25, 1955.

HAMBLIN, A.P. The influence of soil structure on water movement, crop root growth and water uptake. Adv. Agron., 38:95-158, 1985.

HILL, R.L.; HORTON, R. & CRUSE, R.M. Tillage effects on soil water retention and pore size distributtion of two mollissols. Soil Sci. Soc. Am. J., 49:1264-1270, 1985.

KAY, B.D. Rates of changes of soil structure under different cropping systems. Adv. Soil Sci., 12:1-51, 1990.

KERTZMAN, F.F. Modificações na estrutura e no comportamento de um latossolo roxo provocadas pela compactação do solo. São Paulo, Universidade de São Paulo, 1996. 190p. (Tese de Doutorado)

KLUTE, A. Water retention: laboratory methods. In: KLUTE, A. ed. Methods of soil analisys - physical and mineralogical methods. 2 ed. Madison, ASA - SSSA, 1986. p.635-660.

LETEY, J. Relationship between soil physical properties and crop production. Adv. Soil Sci., 1:277-294. 1985.

MASLE, A. & PASSIOURA, J.B. Effect of soil strength on the growth of young wheat plants. Aust. J. Plant. Physiol., 14:634-656, 1987.

MATERECHERA, S.A.; DEXTER, A.R. & ALSTON, A.M. Penetration of very strong soils by seedling of different plant species. Plant Soil, 135:31-41, 1991.

MIRREH, H.F. & KETCHENSON, J.W. Influence of soil bulk density and matric pressure on soil resistance to penetration. Can. J. Soil Sci., 52:477-483, 1972.

ORELLANA, J.A.; PILATTI, M.A.& GRENÓN, D.A. Soil quality: an approach to physical state assessment. J. Sustain. Agric., 9:91-108, 1997.

PASSIOURA, J.B. & GARDNER, P.A. Control of leaf expansion in wheat seedlings growing in drying soil. Aust. J. Plant Physiol., 17:149-157, 1990.

PHENE, C.J. & BEALE, O.W. High-frequency irrigation for water nutrient management in humid regions. Soil Sci. Soc. Am. J., 40:430-436, 1976.

RAWLS, W.J.; BRAKENSIEK, D.L. & SAXTON, K.E. Estimation of soil water properties. Trans. Am. Soc. Agric. Eng., 35:1316-1320, 1982.

REEVE, M.J., SMITH, P.D. & THOMASSON, A.J. The effect of density on water retention properties of field soils. J. Soil Sci., 24:355-367, 1973.

REICHARDT, K. Capacidade de campo. R. Bras. Ci. Solo, 12:211-216, 1988.

RICHARDS, L.A. & WEAVER, L.R. Fifteen atmosphere percentage as related to the permanent wiltin point. Soil Sci., 56:331-339, 1944.

RITCHIE, J.T. Soil water availability. Plant Soil, 58:327-338, 1981.

SAAD, A.M. Apoio tecnológico à agricultura irrigada no município de Guaíra, SP. São Paulo, Instituto de Pesquisas Tecnológicas, 1987. 59p. (IPT, Publicação, 1746).

SAS INSTITUTE. SAS/Stat procedure guide for personal computers. 5.ed. Bary, 1991.

SAVAGE, M.J.; RITCHIE, J.T.; BLAND, W.L. & DUGAS, W.A. Lower limit of soil water availability. Agron. J., 88:844-651, 1996.

SILVA, A.P. & KAY, B.D. Estimating the least limiting water range of soil from properties and management. Soil Sci. Soc. Am. J., 61:877-883, 1997a.

SILVA, A.P. & KAY, B.D. Effect of soil water content variation on the least limiting water range. Soil Sci. Soc. Am. J., 61:884-888, 1997b.

SILVA, A.P.; KAY, B.D. & PERFECT, E. Characterization of the least limiting water range. Soil Sci. Soc. Am. J., 58:1775-1781, 1994.

SMEDEMA, L.K. Drainage performance and soil management. Soil Technol., 6:183-189, 1993.

SMITH, C.W.; JOHNSTON, M.A. & LORENZ, S. The effect of soil compaction and soil physical properties on the mechanical resistance of south african forestry soils. Geoderma, 78:93-111, 1997.

STIRZAKER, R.J.; PASSIOURA, J.B. & WILMS, Y. Soil structure and plant growth: impact of bulk density and biopores. Plant Soil, 185:151-162, 1996.

TAYLOR, H.M.; ROBERSON, G.M. & PARKER Jr., J.J. Soil strength-root penetration relations to medium to coarse-textured soil materials. Soil Sci., 102:18-22, 1966.

TOPP, G.C. & ZEBTCHUK, W. The determination of soil water desortion curves for soil cores. Can. J. Soil Sci., 59:19-26, 1979.

TOPP, G.C.; GALGANOV, Y.T.; WIRES, K.C. & CULLEY, J.L.B. Non limiting water range (NLWR): an approach for assessing soil structure. - Soil Quality Evaluation Program. Ottawa, Agriculture and Agri-Food Canada, 1994. 36p. (Techinical report, 2)

Van den BERG, M.; KLAMT, E.; van REUWIJK, L.P. & SOMBROEK, W.G. Pedotransfers functions for the estimation of moisture retention characteristics of Ferralsols and related soils. Geoderma, 78:161-180, 1997.

VIEHMEYER, F.J. & HENDRICKSON, A.H. Soil moisture conditions in relation to plant growth. Plant Physiol., 2:71-78, 1927.

WILLIANS, J.; ROSS, P. & BRISTOW, K. Prediction of Campbell water retention from texture, structure and organic matter. In: van GENUCHTEN, M. Th. & LUND, L.J., eds. Indirect methods for estimating the hydraulics properties of unsaturated soils. Riverside, University of California, 1993. p.427-441.

Recebido para publicação em janeiro

Aprovado em agosto de 1998

  • ALLMARAS, R.R. & LOGSDON, S.D. Soil structural influences on root zone and rizosphere. In: BOX Jr., J.E. & HAMMOND, L.C., eds. Rhizosphere dynamics. Washington, D.C.; AAAS, 1990. p.8-54.
  • ARCHER, J.R. & SMITH, P.D. The relation between bulk density, available water capacity and air capacity of soils. J. Soil Sci., 23:475-480, 1972.
  • BENGHOUGH, A.G. & MULLINS, C.E. Mechanical impedance to root growth: a review of experimental techniques and root growth responses. J. Soil Sci., 41:341- 358, 1990.
  • BLAKE, G.R. & HARTGE, K.H. Bulk Density. In: KLUTE, A., ed. Methods of soil analisys - physical and mineralogical methods. 2.ed. Madison, ASA - SSSA, 1986. p.363-375.
  • BOONE, F.R. Wheater and other enviromental factors influencing crop responses to tillage and traffic. Soil Till., Res., 11:283-324, 1988.
  • BOONE, F.R.; van der WERF, H.M.G.; KROESBERGEN, B.; TEN HAAG, B.A. & BOERS, A. The effect of compaction of arable layer in a sandy soils on the growth of maize for silage. I. Critical potentials in relation to soil aeration and mechanical impedance. Neth. J. Agric. Res., 34:155-171, 1986.
  • BOONE, F.R.; van der WERF, H.M.G.; KROESBERGEN, B.; TEN HAG, B.A. & BOERS, A. The effect of compaction of the arable layer in sandy soils on the growth of maize for silage. II. Soil conditions and plant growth. Neth. J. Agric. Res., 35:113-128, 1987.
  • BRADFORD, J.M. Penetrability. In: KLUTE, A., ed. Methods of soil analisys - physical and mineralogical methods. 2 ed. Madison, ASA - SSSA. 1986. p.463-478.
  • BUSSCHER, W.J. Adjustment of flat-tipped penetrometer resistance data to a commom water content. Trans. Am. Soc. Agric. Eng., 33:519-524, 1990.
  • CARTER, M.R. Temporal variability of soil macroporosity in a fine sandy loam under mouldboard ploughing and direct drilling. Soil Till. Res., 12:37-51, 1988.
  • CASSEL, D.K. & NIELSEN, D.R. Field capacity and available water capacity. In: KLUTE, A., ed. Methods of soil analysis. 2 ed. Madison, ASA - SSSA, 1986. p.901-926.
  • DAVIES, W.J. & ZANGH, J. Root signals and the regulation of growth and development of plants in drying soil. Ann. Rev. Plant Physiol. Plant Mol. Biol., 42:55-76, 1991.
  • DEXTER, A.R. Advancs in characterization of soil structure. Soil Till., Res., 11:199-238, 1988.
  • DEXTER, A.R. & YOUNGS, I.M. Soil physic toward 2000. Soil Till. Res., 24:101-106, 1992.
  • EAVIS, B.W. Soil physical condition affecting seedlling root growth. I. Mechanical impedance, aeration and moisture availability and moisture levels in a sandy loam soil. Plant Soil, 36:613-622, 1972.
  • EHLERS, W.W.; KOPKE, F.; HESSE, F. & BOHM,W. Penetration resistance and growth root of oats in tilled and untiled loess soil. Soil Till. Res., 3:261-275, 1983.
  • GRABLE, A.R. & SIEMER, E.G. Effects of bulk density, aggregate size, and soil water suction on oxygen diffusion, redox potential and elongation of corns roots. Soil Sci. Soc. Am. Proc. 32:180-186, 1968.
  • GUPTA, S.C. & LARSON, W.E. Estimating soil water characteristics from size distribution, organic carbon and bulk density. Water Res. Res., 15:1633-1635, 1979.
  • HAISE, H.R.; HAAS, H.J. & JENSEN, L.R. Soil misture studies of some great plains soils. II. Field capacity as related tp 1/3-atmosphere percentage, and "minimum point"as related to 15- and 26- atmosphere percentage.Soil Sci. Soc. Proc., 34:20-25, 1955.
  • HAMBLIN, A.P. The influence of soil structure on water movement, crop root growth and water uptake. Adv. Agron., 38:95-158, 1985.
  • HILL, R.L.; HORTON, R. & CRUSE, R.M. Tillage effects on soil water retention and pore size distributtion of two mollissols. Soil Sci. Soc. Am. J., 49:1264-1270, 1985.
  • KAY, B.D. Rates of changes of soil structure under different cropping systems. Adv. Soil Sci., 12:1-51, 1990.
  • KERTZMAN, F.F. Modificações na estrutura e no comportamento de um latossolo roxo provocadas pela compactação do solo. São Paulo, Universidade de São Paulo, 1996. 190p. (Tese de Doutorado)
  • KLUTE, A. Water retention: laboratory methods. In: KLUTE, A. ed. Methods of soil analisys - physical and mineralogical methods. 2 ed. Madison, ASA - SSSA, 1986. p.635-660.
  • LETEY, J. Relationship between soil physical properties and crop production. Adv. Soil Sci., 1:277-294. 1985.
  • MASLE, A. & PASSIOURA, J.B. Effect of soil strength on the growth of young wheat plants. Aust. J. Plant. Physiol., 14:634-656, 1987.
  • MATERECHERA, S.A.; DEXTER, A.R. & ALSTON, A.M. Penetration of very strong soils by seedling of different plant species. Plant Soil, 135:31-41, 1991.
  • MIRREH, H.F. & KETCHENSON, J.W. Influence of soil bulk density and matric pressure on soil resistance to penetration. Can. J. Soil Sci., 52:477-483, 1972.
  • ORELLANA, J.A.; PILATTI, M.A.& GRENÓN, D.A. Soil quality: an approach to physical state assessment. J. Sustain. Agric., 9:91-108, 1997.
  • PASSIOURA, J.B. & GARDNER, P.A. Control of leaf expansion in wheat seedlings growing in drying soil. Aust. J. Plant Physiol., 17:149-157, 1990.
  • PHENE, C.J. & BEALE, O.W. High-frequency irrigation for water nutrient management in humid regions. Soil Sci. Soc. Am. J., 40:430-436, 1976.
  • RAWLS, W.J.; BRAKENSIEK, D.L. & SAXTON, K.E. Estimation of soil water properties. Trans. Am. Soc. Agric. Eng., 35:1316-1320, 1982.
  • REEVE, M.J., SMITH, P.D. & THOMASSON, A.J. The effect of density on water retention properties of field soils. J. Soil Sci., 24:355-367, 1973.
  • REICHARDT, K. Capacidade de campo. R. Bras. Ci. Solo, 12:211-216, 1988.
  • RICHARDS, L.A. & WEAVER, L.R. Fifteen atmosphere percentage as related to the permanent wiltin point. Soil Sci., 56:331-339, 1944.
  • RITCHIE, J.T. Soil water availability. Plant Soil, 58:327-338, 1981.
  • SAAD, A.M. Apoio tecnológico à agricultura irrigada no município de Guaíra, SP. São Paulo, Instituto de Pesquisas Tecnológicas, 1987. 59p. (IPT, Publicação, 1746).
  • SAS INSTITUTE. SAS/Stat procedure guide for personal computers. 5.ed. Bary, 1991.
  • SAVAGE, M.J.; RITCHIE, J.T.; BLAND, W.L. & DUGAS, W.A. Lower limit of soil water availability. Agron. J., 88:844-651, 1996.
  • SILVA, A.P. & KAY, B.D. Estimating the least limiting water range of soil from properties and management. Soil Sci. Soc. Am. J., 61:877-883, 1997a.
  • SILVA, A.P. & KAY, B.D. Effect of soil water content variation on the least limiting water range. Soil Sci. Soc. Am. J., 61:884-888, 1997b.
  • SILVA, A.P.; KAY, B.D. & PERFECT, E. Characterization of the least limiting water range. Soil Sci. Soc. Am. J., 58:1775-1781, 1994.
  • SMEDEMA, L.K. Drainage performance and soil management. Soil Technol., 6:183-189, 1993.
  • SMITH, C.W.; JOHNSTON, M.A. & LORENZ, S. The effect of soil compaction and soil physical properties on the mechanical resistance of south african forestry soils. Geoderma, 78:93-111, 1997.
  • STIRZAKER, R.J.; PASSIOURA, J.B. & WILMS, Y. Soil structure and plant growth: impact of bulk density and biopores. Plant Soil, 185:151-162, 1996.
  • TAYLOR, H.M.; ROBERSON, G.M. & PARKER Jr., J.J. Soil strength-root penetration relations to medium to coarse-textured soil materials. Soil Sci., 102:18-22, 1966.
  • TOPP, G.C. & ZEBTCHUK, W. The determination of soil water desortion curves for soil cores. Can. J. Soil Sci., 59:19-26, 1979.
  • TOPP, G.C.; GALGANOV, Y.T.; WIRES, K.C. & CULLEY, J.L.B. Non limiting water range (NLWR): an approach for assessing soil structure. - Soil Quality Evaluation Program. Ottawa, Agriculture and Agri-Food Canada, 1994. 36p. (Techinical report, 2)
  • Van den BERG, M.; KLAMT, E.; van REUWIJK, L.P. & SOMBROEK, W.G. Pedotransfers functions for the estimation of moisture retention characteristics of Ferralsols and related soils. Geoderma, 78:161-180, 1997.
  • VIEHMEYER, F.J. & HENDRICKSON, A.H. Soil moisture conditions in relation to plant growth. Plant Physiol., 2:71-78, 1927.
  • WILLIANS, J.; ROSS, P. & BRISTOW, K. Prediction of Campbell water retention from texture, structure and organic matter. In: van GENUCHTEN, M. Th. & LUND, L.J., eds. Indirect methods for estimating the hydraulics properties of unsaturated soils. Riverside, University of California, 1993. p.427-441.
  • (1
    ) Trabalho desenvolvido no Laboratório de Física de Solos do Departamento de Solos, Escola Superior de Agricultura Luiz de Queiroz - ESALQ/USP.
  • Datas de Publicação

    • Publicação nesta coleção
      07 Out 2014
    • Data do Fascículo
      Dez 1998

    Histórico

    • Recebido
      Jan 1998
    • Aceito
      Ago 1998
    Sociedade Brasileira de Ciência do Solo Secretaria Executiva , Caixa Postal 231, 36570-000 Viçosa MG Brasil, Tel.: (55 31) 3899 2471 - Viçosa - MG - Brazil
    E-mail: sbcs@ufv.br