SciELO - Scientific Electronic Library Online

 
vol.23 número2Avaliação experimental de um modelo numérico para o processo de redistribuição da água no soloEfeito da adsorção de fosfato em parâmetros físicos e na compressibilidade de solos tropicais índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Revista Brasileira de Ciência do Solo

versão On-line ISSN 1806-9657

Rev. Bras. Ciênc. Solo vol.23 no.2 Viçosa abr./jun. 1999

http://dx.doi.org/10.1590/S0100-06831999000200004 

SEÇÃO I - FÍSICA DO SOLO

 

Compressibilidade de três Latossolos em função da umidade e uso(1)

 

Soil compressibility of three Latosols (oxisols) as a function of moisture and use

 

 

M. K. KondoI; M. S. Dias JuniorII

IEngenheiro-Agrônomo, Pós-graduando do Departamento de Ciência do Solo, UFLA. Caixa Postal 37, CEP 37200-000 Lavras (MG). Bolsista da CAPES
IIEngenheiro-Agrícola, Professor Adjunto do Departamento de Ciência do Solo, UFLA. Bolsista do CNPq

 

 


RESUMO

Por meio do ensaio de compressibilidade, foram estudados os efeitos do manejo e da umidade na pressão de preconsolidação (σp) de três solos: Latossolo Vermelho-Amarelo, Latossolo Roxo e Latossolo Vermelho-Escuro sob cultura anual, mata natural e pastagem, na região de Lavras (MG), em duas profundidades (0-0,03 e 0,27-0,30 m). Para cada condição, foram coletadas cinco amostras indeformadas e uma deformada, com três repetições. As amostras, indeformadas e com diferentes umidades, foram utilizadas no ensaio de compressão uniaxial, obtendo-se as curvas de compressão, das quais foram extraídas as respectivas pressões de preconsolidação. Com as amostras deformadas, determinaram-se os limites de plasticidade e de contração, textura e matéria orgânica. Os modelos de compactação testados foram baseados na pressão de preconsolidação e na umidade do solo. Para uma mesma condição e profundidade, houve diferença significativa entre os valores dos teores de argila e areia nos três solos. Os valores da densidade do solo inicial (Dsi) foram estatisticamente diferentes para todas as condições na mesma profundidade, exceto na camada de 0-0,03 m para a cultura anual. À medida que a umidade do solo aumentou, a pressão de preconsolidação decresceu exponencialmente, indicando uma redução na capacidade de suporte de carga do solo. O LR apresentou, em geral, maior capacidade de suporte de carga do que o LE e LV. Essa maior capacidade de suporte de carga pode estar associada com o seu maior teor de argila e menor teor de areia. A capacidade de suporte de carga na zona de friabilidade variou de 154 a 167 kPa, para o LV; de 77 a 183 kPa, para o LR, e de 77 a 132 kPa, para o LE. As umidades 0,33 a 0,30 kg kg-1, 0,42 a 0,27 kg kg-1, e 0,35 a 0,33 kg kg-1 correspondem à faixa de friabilidade (LP - LC) do LV, LR e LE, respectivamente. O modelo baseado na história de tensão do solo evidenciou o efeito da compactação causada pelas máquinas de preparo do solo na camada de 0,27-0,30 m, para a cultura anual, enquanto, para a pastagem, ocorreu o efeito do pisoteio do gado na camada de 0-0,03 m.

Termos de indexação: curvas de compressão, modelos de compactação, manejo, pressão de preconsolidação.


SUMMARY

Using the compressibility test, the effect of soil management and moisture content on the preconsolidation pressure (σp) of three soils, a Red-Yellow Latosol (LV), a Dusk Red Latosol (LR) and a Dark-Red Latosol (LE) under annual crop, natural forest and pasture, was studied in the area of Lavras (MG) at two depths (0-0.03 and 0.27-0.30 m). For each condition, five undisturbed soil samples and a disturbed one were collected, with three replications. The undisturbed soil samples with different soil moisture content were used in the uniaxial compression test, with compression curves being obtained, from which preconsolidation pressures were extracted. The plasticity and shrinkage limits, texture and organic matter were determined using the disturbed soil samples. The models of compaction tested were based on the preconsolidation pressure and on soil moisture. For the same soil management system and depth, significant difference was observed among the clay and sand content of the three soils. The values of the initial soil bulk density (Dsi) were statistically different for all soil management systems in the same soil depth, except the 0-0.03 m for the annual crop. Increased soil moisture content caused a exponential decrease in the preconsolidation pressure, indicating a reduction in the load support capacity of the soil. The LR had in general higher load support capacity than LE and LV. This higher load support capacity may be associated with its higher clay content and lower sand content. The load support capacity of the friable zone varied from 154 to 167 kPa for LV, 77 to 183 kPa for LR and from 77 to 132 kPa for LE. The soil moisture contents 0.33 to 0.30 kg kg-1, 0.42 to 0.27 kg kg-1, and 0.35 to 0.33 kg kg-1 correspond to the friable zone (LP - LC) of the LV, LR and LE, respectively. The model based on the stress history of the soil evidenced the effect of the compaction caused by the machines in the 0.27-0.30 m layer, for the annual crop, while for the pasture the cattle trampling effect was evidenced in the 0-0.03 m layer.

Index terms: soil compression curves, compaction models, soil management, preconsolidation pressure.


 

 

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

 

 

LITERATURA CITADA

AMIR, I.; RAGHAVAN, G.S.V.; MCKYES, E. & BROUGHTON, R.S. Soil compaction as a function of contact pressure and soil moisture. Can. Agric. Eng., 18:54-57, 1976.         [ Links ]

BAILEY, A.C. & JOHNSON, C.E. A soil compaction model for cylindrical stress state. Trans. Am. Sci. Agric. Eng., 32:822-825, 1989.         [ Links ]

BAILEY, A.C.; JOHNSON, C.E. & SCHAFER, R.L. Hydrostatic compaction of agricultural soils. Trans. ASAE, 27:952-995, 1984.         [ Links ]

BAILEY, A.C.; JOHNSON, C.E. & SCHAFER, R.L. A model for agricultural soil compaction. J. Agric. Eng. Res., 33:257-262, 1986.         [ Links ]

BARNES, K.K; CARLETON, W.M.; TAYLOR, H.M.; THROCKMORTON, R.I. & VANDEN BERG, G.E. Compaction of agricultural soils. St. Joseph, American Society of Agricultural Engineers, 1971. 471p. (Monogr.         [ Links ])

BLAKE, G.R. & HARTGE, K.H. Bulk density. In: KLUTE, A., ed. Methods of soil analysis. Parte 1. 2.ed. Madison, ASA/SSSA, 1986. p.363-375. (Agron. Monogr. 9)        [ Links ]

BOUSSINESQ, J. Application des potential à l'etude de l'equilibre et du mouvement des solides elastiques. Paris, Gauthier-Villais, 1985. 30p.         [ Links ]

BOWLES, J.A. Engineering properties of soils and their measurements. 3.ed. New York, McGraw-Hill, 1986. 218p.         [ Links ]

BURT, E.C.; WOOD, R.K. & BAILEY, A.C. Effects of dynamics load on normal soil-tire interfase stresses. Trans. Am. Sci. Agric. Eng., 32:1843-1846, 1989.         [ Links ]

CASAGRANDE, A. The determination of the pre-consolidation load and its pratical significance. In: CONFERENCE ON SOIL MECHANICS AND FOUNDATION ENGINEERING, Cambridge, 1936. Proceedings. Cambridge, ICSMFE, 1936, p.60-64.         [ Links ]

COLLEMAN, G.E. & PERUMPRAL, J.V. The finite element analysis of soil compaction. Trans. Am. Sci. Agric. Eng., 17:856-860, 1974.         [ Links ]

CULLEY, J.L.B. & LARSON, W.E. Susceptibility to compression of a clay loam Haplaquoll. Soil Sci. Soc. Am. J., 51:562-567, 1987.         [ Links ]

DEXTER, A.R. & TANNER, D.W. Time dependence of compressibility for remolded and undisturbed soils. J. Soil Sci., 25:153-164, 1973.         [ Links ]

DIAS JUNIOR, M.S. Compression of three soils under long-term tillage and wheel traffic. East Lansing, Michigan State University, 1994. 114p. (Tese de Doutorado)        [ Links ]

DIAS JUNIOR, M.S. & PIERCE, F.J. A simple procedure for estimating preconsolidation pressure from soil compression curves. Soil Technol., 8:139-151, 1995.         [ Links ]

DIAS JUNIOR, M.S. & PIERCE, F.J. O processo de compactação do solo e sua modelagem. R. Bras. Ci. Solo, 20:175-182, 1996.         [ Links ]

DUNCAN, J.M. & CHANG, C.Y. Nonlinear analysis of stresses and strain in soil. J. Soil Mech. Found. Div., Proc. Am. Soc. Civil Eng., 96:1629-1653, 1970.         [ Links ]

FRÖHLICH, O.K. Druckverteilung im baugrunde. Wien, Springer, 1934. 179p.         [ Links ]

GEE, G.W. & BAUDER, J.W. Particle size analysis. KLUTE, A., ed. Methods of soil analysis. Parte 1. 2.ed. Madison, ASA/SSSA, 1986. p.383-411.         [ Links ]

GILL, W.R. & vanden BERG, G.E. Soil dynamic in tillage and traction. Washington, USDA-ARS, 1968. p.355-362. (Agric. Handbook, 316)        [ Links ]

GRISSO, R.D.; JOHNSON, C.E. & BAILEY, A.C. Soil compaction by continuous deviatoric stress. Trans. Am. Sci. Agric. Eng., 30:1293-1301, 1987.         [ Links ]

GUPTA, S.C. & ALLMARAS, R.R. Models to access the susceptibility of soil to excessive compaction. Adv. Soil Sci., 6:65-100, 1987.         [ Links ]

GUPTA, S.C. & LARSON, W.E. Modeling soil mechanical behavior during tillage. In: UNGER, P.W.; VAN DOREN Jr., D.M.; WHISLER, F.D. & SKIDMORE, E.L. (eds.). Predicting tillage effects on soil physical properties and process. Madison, American Society of Agronomy, 1982. p.151-178. (Spec. Pub., 44).         [ Links ]

GUPTA, S.C. & RAPER, R.L. Prediction of soil compaction under vehicles. In: SOANE, B.D. & van OUWERKERK, C., eds. Soil compaction in crop production. Amsterdam, Elsevier, 1994. p.71-90.         [ Links ]

GUPTA, S.C.; HADAS, A. & SCHAFER. R.L. Modeling soil mechanical behavior during compaction. In: LARSON, W.E.; BLAKE, G.R.; ALLMARAS, R.R.; VOORHEES, W.B. & GUPTA, S.C., eds. Mechanics and related process in structured agricultural soils. Dordrecht, Kluwer Academic, 1989. p.137-152.         [ Links ]

GUPTA, S.C.; HADAS, A.; VOORHEES, W.B.; WOLF, D.; LARSON, W.E. & SCHNEIDER, E.C. Development of quids for estimating the ease of compaction of world soils. Bet Dagan, Israel, Research Report, Binational Agric. Res. Development, University of Minnesota, 1985. 178p.         [ Links ]

HILLEL, D. Introduction to soil physics. San Diego, Academic Press, 1982. 365p.         [ Links ]

HOLTZ, R.D. & KOVACS, W.D. An introduction to geotechnical engineering. Englewood Cliffs, Prentice-Hall, 1981. 733p.         [ Links ]

HORN, R. Compressibility of arable land. Catena Sup., 11:53-71, 1988.         [ Links ]

KASSA, Z. Pore water pressure and some associated mechanical responses to uniaxial stress in structured agricultural soils. St. Paul, University of Minnesota, 1992. 80p. (Tese de Mestrado)        [ Links ]

KOOLEN, A.J. & KUIPERS, H. Agricultural soil mechanics. New York, Springer, 1983. 241p.         [ Links ]

LARSON, W.E. & GUPTA, S.C. Estimating critical stress in unsaturated soils from changes in pore water pressure during confined compression. Soil Sci. Soc. Am. J., 44:1127-1132, 1980.         [ Links ]

LARSON, W.E.; BLAKE, G.R.; ALLMARAS, R.R.; VOORHEES, W.B. & GUPTA, S.C. Mechanics and related processes in structured agricultural soils. Dordrecht, Kluwer Academic, 1989. 273p. (Nato Applied Science, 172)        [ Links ]

LARSON, W.E.; GUPTA, S.C. & USECHE, R.A. Compression of agricultural soils from eight soils orders. Soil Sci. Soc. Am. J., 44:450-457, 1980.         [ Links ]

LEBERT, M. & HORN, R. A method to predict the mechanical strength of agricultural soils. Soil Tillage. Res., 19:274-286, 1991.         [ Links ]

LEONARDS, G.A. Foundation engineering. New York, McGraw-Hill, 1962. 1136p        [ Links ]

McNABB, D.H. & BOERSMA, L. Evaluation of the relationship between compressibility and shear strength of Andisols. Soil Sci. Soc. Am. J., 57:923-929, 1993.         [ Links ]

McNABB, D.H. & BOERSMA, L. Nonlinear model for compressibility of party saturated soils. Soil Sci. Soc. Am. J., 60:333-341, 1996.         [ Links ]

O'SULLIVAN, M.F. Uniaxial compaction effects on soil physical properties in relation to soil type, and cultivation. Soil Tillage Res., 24:257-269, 1992.         [ Links ]

PERUMPRAL, J.V.; LIJEDAHL, J.B. & PERLOFF, W.H. The finite element method for predicting stress distribution and soil deformation under a tractor tire. St. Joseph, American Society Agruculture Engineering. 1969. (ASAE paper, 69-680)        [ Links ]

PERUMPRAL, J.V.; LIJEDAHL, J.B. & PERLOFF, W.H. The finite element method for predicting stress distribution and soil deformation under a tractive device. Trans. Am. Sci. Agric. Eng., 14:1184-1188, 1971.         [ Links ]

POLLOCK Jr., D.; PERUMPRAL, J.V. & KUPPUSAMY, T. Finite element analysis of multipass effects of vehicles on soil compaction. Trans. Am. Sci. Agric. Eng., 29:45-50, 1986.         [ Links ]

RAIJ, B. van & QUAGGIO, J.A. Métodos de análise de solo para fins de fertilidade. Campinas, Instituto Agronômico, 1983. (Boletim Técnico, 81)        [ Links ]

RAPER, R.L. & ERBACH, D.C. Prediction of soil stresses using the finite element method. Trans. Am. Sci. Agric. Eng., 33:725-730, 1990a.         [ Links ]

RAPER, R.L. & ERBACH, D.C. Effect of variable linear elastic parameters on finite element prediction of compaction. Trans. Am. Sci. Agric. Eng., 33:731-736, 1990b.         [ Links ]

RÖMKENS, M.J.M. & MILLER, R.D. Predicting root size and frequency from one-dimensional consolidation data - A mathematical model. Plant Soil, 35:337-248, 1971.         [ Links ]

SHAFER, R.L.; BAILEY, A.C.; JOHNSON, C.E. & RAPER, R.L. A rationale for modeling soil compaction behavior: An engineering mechanics approach. Trans. Am. Sci. Agric. Eng., 34:1609-1617, 1991.         [ Links ]

SMITH, C.W.; JOHNSTON, M.A. & LORENTZ, S. Assessing the compaction susceptibility of South African forestry soils. I. The effect of soil type, water content and applied pressure on uni-axial compaction. Soil Tillage Res., 41:53-73, 1997.         [ Links ]

SOANE, B.D. & van OUWERKERK, C. Soil compaction in crop production. Amsterdam, Elsevier, 1994. 660p.         [ Links ]

SOEHNE, W.H. Fundamentals of pressure distribution and soil compaction under tractors tires. J. Agric. Eng., Pannagar, p.276-291, 1958.         [ Links ]

SOWERS, G.F. Consistency. In: BLACK, C.A., ed. Methods of soil analysis. Madison, ASA, 1965. p.391-399.         [ Links ]

STONE, J.A. & LARSON, W.E. Rebound of five one-dimensionally compressed unsaturated granular soils. Soil Sci. Soc. Am. J., 44:819-822, 1980.         [ Links ]

TRABBIC, G.W.; LASK, K.V. & BUCHELE, W.F. Measurement of soil-tire interfase pressures. Agric. Eng., 40:678-681, 1959        [ Links ]

Vanden AKKER, J.J.H. & van WIJK, A.L.M. A model to predict subsoil compaction due to field traffic. In: MONNIER, G. & GOSS, M.J. eds. Soil structure and regeneration. Rotterdam, 1987. p.69-84.         [ Links ]

VEENHOF, D.W. & McBRIDE, R.A. Overconsolidation in agricultural soils: I. Compression and consolidation behavior of remolded and structured soils. Soil Sci. Soc. Am. J., 60:362-373, 1996.         [ Links ]

 

 

Recebido para publicação em abril de 1998
Aprovado em dezembro de 1998

 

 

(1) Parte da Tese de Mestrado do primeiro autor, apresentada ao Departamento de Ciência do Solo, Universidade Federal de Lavras - UFLA. Projeto financiado pelo CNPq.

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons