Acessibilidade / Reportar erro

Quantificação de pressões críticas para o crescimento das plantas

Quantifying critical pressures for plant growth

Resumos

A compactação, uma das principais causas de degradação dos solos agrícolas, tem sido avaliada por meio de diversos indicadores: (a) de qualidade estrutural do solo para o crescimento das plantas, como o intervalo hídrico ótimo (IHO), e (b) de capacidade de suporte do solo, como a pressão de preconsolidação (σp). Este trabalho foi realizado com o objetivo não só de relacionar o IHO e a σp, mas também de determinar valores de pressões críticas (Pcr) que possam ser aplicados ao solo sem restringir o crescimento das plantas ou provocar a compactação adicional do solo. O estudo foi realizado com amostras de Podzólico Vermelho-Amarelo, cultivado com cana-de-açúcar, no município de Piracicaba (SP). Na camada superficial do solo, foram coletadas trinta e seis amostras com estrutura indeformada para a quantificação do IHO e da σp. A partir do IHO, foi obtido o valor de densidade do solo crítica (Dsc) para o crescimento das plantas. A σp foi linearmente relacionada com a densidade e umidade do solo, permitindo a incorporação dos valores de Dsc e do IHO para a quantificação de Pcr. Os resultados indicaram que a Pcr diminuiu linearmente com o incremento da umidade, variando de 360 kPa a 500 kPa para a faixa de umidade de θ = 0,18 m³ m-3 a θ = 0,12 m³ m-3. O parâmetro proposto permitiu definir pressões máximas que podem ser aplicadas ao solo, para diferentes umidades, sem promover a degradação da qualidade estrutural do solo para o crescimento das plantas.

compactação do solo; pressão de preconsolidação; intervalo hídrico ótimo; pressões críticas


Compaction is one of the main causes of degradation of agricultural soils and it has been evaluated through several indicators of: (a) soil structural quality for crop growth, such as the least limiting water range (LLWR), and (b) load support capacity of the soil, i.e., the preconsolidation pressure (σp). This research was carried out with the objective to relate the LLWR and the σp, as well as to determine critical pressures values that can be applied to the soil without inducing restrictive conditions to plant growth as well as additional soil compaction. The study was conducted with soil samples of a Red-Yellow Podzolic soil (Ultisol) cultivated with sugarcane from Piracicaba, State of São Paulo (Brazil). Thirty six undisturbed soil samples were taken at the superficial layer to quantify the σp and the LLWR. Soil critical bulk density (Dbc) was obtained from the LLWR. The σp was a linear function of the water content and soil bulk density, allowing the incorporation of Dbc and LLWR for quantifying the Pcr. The results indicated that Pcr decreased linearly with soil water content, varying from 360 kPa to 500 kPa for the soil water range from θ = 0,18 m³ m-3 to θ = 0,12 m³ m-3. The results allowed to define values of maximum pressures that can be applied to the soil, for different water contents, without promoting degradation of soil structural quality for plant growth.

soil compaction; preconsolidation pressure; least limiting water range; critical pressure values


SEÇÃO I - FÍSICA DO SOLO

Quantificação de pressões críticas para o crescimento das plantas(1 (1 ) Parte da Tese de Doutorado do primeiro autor, apresentada à Escola Superior de Agricultura Luiz de Queiroz - ESALQ/USP. )

Quantifying critical pressures for plant growth

S. ImhoffI; A. Pires da SilvaII; M. de S. Dias JuniorIII; C. A. TormenaIV

IEngenheiro-Agrônomo, PG do Dep. de Solos e Nutrição de Plantas, Escola Superior de Agricultura Luiz de Queiroz - ESALQ/USP. Av. Pádua Dias 11, Caixa Postal 9, CEP 13418-900 Piracicaba (SP). Bolsista da CAPES. E-mail: scigiave@carpa.ciagri.usp.br

IIEngenheiro-Agrônomo, Ph.D., Dep. de Solos e Nutrição de Plantas, ESALQ/USP. E-mail: apisilva@carpa. ciagri.usp.br

IIIEngenheiro-Agrícola, Ph.D., Dep. de Ciência do Solo, Universidade Federal de Lavras - UFLA. Bolsista do CNPq. E- mail: msouzadj@ufla.br

IVEngenheiro-Agrícola, Dr., Departamento de Agronomia, Universidade Estadual de Maringá - UEM. Av Colombo 579, CEP 87030-121 Maringá (PR). E-mail:catormen@uem.br

RESUMO

A compactação, uma das principais causas de degradação dos solos agrícolas, tem sido avaliada por meio de diversos indicadores: (a) de qualidade estrutural do solo para o crescimento das plantas, como o intervalo hídrico ótimo (IHO), e (b) de capacidade de suporte do solo, como a pressão de preconsolidação (σp). Este trabalho foi realizado com o objetivo não só de relacionar o IHO e a σp, mas também de determinar valores de pressões críticas (Pcr) que possam ser aplicados ao solo sem restringir o crescimento das plantas ou provocar a compactação adicional do solo. O estudo foi realizado com amostras de Podzólico Vermelho-Amarelo, cultivado com cana-de-açúcar, no município de Piracicaba (SP). Na camada superficial do solo, foram coletadas trinta e seis amostras com estrutura indeformada para a quantificação do IHO e da σp. A partir do IHO, foi obtido o valor de densidade do solo crítica (Dsc) para o crescimento das plantas. A σp foi linearmente relacionada com a densidade e umidade do solo, permitindo a incorporação dos valores de Dsc e do IHO para a quantificação de Pcr. Os resultados indicaram que a Pcr diminuiu linearmente com o incremento da umidade, variando de 360 kPa a 500 kPa para a faixa de umidade de θ = 0,18 m3 m-3 a θ = 0,12 m3 m-3. O parâmetro proposto permitiu definir pressões máximas que podem ser aplicadas ao solo, para diferentes umidades, sem promover a degradação da qualidade estrutural do solo para o crescimento das plantas.

Termos de indexação: compactação do solo, pressão de preconsolidação, intervalo hídrico ótimo, pressões críticas.

SUMMARY

Compaction is one of the main causes of degradation of agricultural soils and it has been evaluated through several indicators of: (a) soil structural quality for crop growth, such as the least limiting water range (LLWR), and (b) load support capacity of the soil, i.e., the preconsolidation pressure (σp). This research was carried out with the objective to relate the LLWR and the σp, as well as to determine critical pressures values that can be applied to the soil without inducing restrictive conditions to plant growth as well as additional soil compaction. The study was conducted with soil samples of a Red-Yellow Podzolic soil (Ultisol) cultivated with sugarcane from Piracicaba, State of São Paulo (Brazil). Thirty six undisturbed soil samples were taken at the superficial layer to quantify the σp and the LLWR. Soil critical bulk density (Dbc) was obtained from the LLWR. The σp was a linear function of the water content and soil bulk density, allowing the incorporation of Dbc and LLWR for quantifying the Pcr. The results indicated that Pcr decreased linearly with soil water content, varying from 360 kPa to 500 kPa for the soil water range from θ = 0,18 m3 m-3 to θ = 0,12 m3 m-3. The results allowed to define values of maximum pressures that can be applied to the soil, for different water contents, without promoting degradation of soil structural quality for plant growth.

Index terms: soil compaction, preconsolidation pressure, least limiting water range, critical pressure values.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

LITERATURA CITADA

Recebido para publicação em fevereiro de 2000

Aprovado em setembro de 2000

  • BENGHOUGH, A.G. & MULLINS, C.E. Mechanical impedance to root growth: a review of experimental techniques and root growth responses. J. Soil Sci., 41:341-358,1990
  • BETZ , C.L.; ALLMARAS, R.R.; COPELAND, S.M. & RANDALL, G.W. Least limiting water range: traffic and long-term tillage influences in a webster soil. Soil Sci. Soc. Am. J., 62:1384-1393, 1998.
  • BLAKE, G.R. & HARTGE, K.H. Bulk density. In: KLUTE, A., ed. Methods of soil analysis: physical and mineralogical methods. 2.ed. Madison, American Society of Agronomy, 1986. p.363-375.
  • BOONE, F.R. & VEEN, B.W. Mechanisms of crop responses to soil compaction. In: SOANE, B.D. & van OUWERKERK, C., eds. Soil compaction in crop production. Amsterdam, Elsevier, 1994. p.237-264.
  • BUSSCHER, W.J. Adjustment of flat-tipped penetrometer resistance data to a common water content. Am. Soc. Agric. Eng., 3:519-524, 1990.
  • BUSSCHER, W.J.; BAUER, P.J.; CAMP, C.R. & SOJKA, R.E. Correction of cone index for soil water content differences in a coastal plain soil. Soil Till. Res., 43:205-217, 1997.
  • CAMPBELL, D.J. Determination and use of soil bulk density in relation to soil compaction. In: SOANE, B.D. & van OUWERKERK, C., eds. Soil compaction in crop production. Amsterdam, Elsevier, 1994. p.113-139.
  • DEXTER, A.R. Advances in characterization of soil structure. Soil Tillage Res., 11:199-238, 1988.
  • DIAS JUNIOR, M.S. Compression of three soils under long-term tillage wheel traffic. East Lansing, Michigan State University, 1994. 114p. (Tese de Doutorado)
  • DIAS JUNIOR, M.S. & PIERCE, F.J. A simple procedure for estimating preconsolidation pressure from soil compression curves. Soil Technol., 8:139-151, 1995.
  • DIAS JUNIOR, M.S. & PIERCE, F.J. O processo de compactação do solo e sua modelagem. R. Bras. Ci. Solo, 20:175-182, 1996.
  • DIAS JUNIOR, M.S.; FERREIRA, M.M.; FONSECA, S.; SILVA, A.R. & FERREIRA, D.F. Avaliação quantitativa da sustentabilidade estrutural dos solos em sistemas florestais na região de Aracruz-ES. R. Árv., 23:371-380, 1999.
  • GEE, G.W. & BAUDER, J.W. Particle-size analysis. In: KLUTE, A., ed. Methods of soil analysis: physical and mineralogical methods. 2.ed. Madison, American Society of Agronomy, 1986. p.383-411.
  • GRABLE, A.R. & SIEMER, E.G. Effects of bulk density, aggregate size and soil water suction on oxygen diffusion, redox potential and elongation of corn roots. Soil Sci. Soc. Am. Proc., 32:180-186, 1968.
  • GUÉRIF, J. Effects of compaction on soil strength parameters. In: SOANE, B.D. & van OUWERKERK, C., eds. Soil compaction in crop production. Amsterdam, Elsevier, 1994. p.191-214.
  • GUPTA, S.C. & ALLMARAS, R.R. Models to assess the susceptibility of soils to excessive compaction. Adv. Soil Sci., 6:65-100, 1987.
  • HAISE, H.R.; HAAS, H.J. & JENSEN, L.R. Soil moisture studies of some Great Plain soils: II. Field capacity as related to 1/3-atmosphere percentage and "minimum point"as related to 15- and 26-atmosphere percentages. Soil Sci. Soc, Am. Proc., 34:20-25, 1955.
  • HAKANSSON, I. A method for characterizing the state of compactness of the plough layer. Soil Till. Res., 16:105-120, 1990.
  • HAKANSSON, I.; VOORHEES, W.B. & RILEY, H. Vehicle and wheel factors influencing soil compaction and crop response in different traffic regimes. Soil Till. Res., 11:239-282, 1988.
  • HAKANSSON, I. & VOORHEES, W.B. Soil compaction. In: LAL, R.; BLUM, W.H.; VALENTINE, C. & STEWARD, B.A., eds. Methods for assessment of soil degradation. Advances in soil science. Boca Raton, CRS Press, 1998. p.167-179.
  • HORN, R. & LEBERT, M. Soil compactability and compressibility. In: SOANE, B.D. & van OUWERKERK, C., eds. Soil compaction in crop production. Amsterdam, Elsevier, 1994. p.45-69.
  • KAYOMBO, B. & LAL, R. Responses of tropical crops to soil compaction. In: SOANE, B.D. & van OUWERKERK, C., eds. Soil compaction in crop production. Amsterdam, Elsevier, 1994. p.287-316.
  • KLUTE, A. Water retention: laboratory methods. In: KLUTE, A., ed. Methods of soil analysis: physical and mineralogical methods. 2.ed. Madison, American Society of Agronomy, 1986. p.635-660.
  • KONDO, M.K. & DIAS JUNIOR, M.S. Efeito do manejo e da umidade no comportamento compressivo de três Latossolos. R. Bras. Ci. Solo, 23:497-506, 1999a.
  • KONDO, M.K. & DIAS JUNIOR, M.S. Estimativa do efeito do uso e da umidade do solo sobre a compactação adicional de três Latossolos. R. Bras. Ci. Solo, 23:773-782, 1999b.
  • LARSON, W.E. & GUPTA, S.C. Estimating critical stress in unsaturated soils from changes in pore water pressure during confined compression. Soil Sci. Soc. Am. J., 44:1127-1132, 1980.
  • LARSON, W.E.; GUPTA, S.C. & USECHE, R.A. Compression of agricultural soils from eight soil orders. Soil Sci. Soc. Am. J., 44:450-457, 1980.
  • LEBERT, M. & HORN, R. A method to predict the mechanical strength of agricultural soils. Soil Till. Res., 19:275-286, 1991.
  • LETEY, J. Relationship between soil physical properties and crop production. Adv. Soil Sci., 1:277-294, 1985.
  • MATERECHERA, S.A.; DEXTER, A.R. & ALSTON, A.M. Penetration of very strong soils by seedling roots of different plant species. Plant Soil, 135:31-41, 1991.
  • MCBRIDE, R.A. & JOOSSE, P.J. Overconsolidation in agricultural soils: II. Pedotransfer functions for estimating preconsoli-dation stress. Soil Sci. Soc. Am. J., 60:373-380, 1996.
  • REINERT, D.J. Soil structural form and stability inducted by tillage in a typic Hapludalf. East Lansing, Michigan State University, 1990. 128p. (Tese de Doutorado)
  • RICHARDS, L.A. & WEAVER, L.R. Fifteen atmosphere percentage as related to the permanent wilting point. Soil Sci., 56:331-339, 1944.
  • RÖMKENS, M.K. & MILLER, R.D. Predicting root size and frequency from one-dimensional consolidation data- A mathematical model. Plant Soil, 35:237-248, 1971.
  • ROSS, P.J.; WILLIANS, J. & BRISTOW, K.L. Equations for extending water-retention curves to drynees. Soil Sci. Soc. Am. J., 55:923-927, 1991.
  • SILVA, A.P.; KAY, B.D. & PERFECT, E. Characterization of the least limiting water range. Soil Sci. Soc. Am. J., 58:1775-1781, 1994.
  • SILVA, A.P. & KAY, B.D. Estimating the least limiting water range of soil from properties and management. Soil Sci. Soc. Am. J., 61:877-883, 1997a.
  • SILVA, A.P. & KAY, B.D. Effect of soil water content variation on the least limiting water range. Soil Sci. Soc. Am. J., 61:884-888, 1997b.
  • SILVA, A.P.; KAY, B.D. & PERFECT, E. Management versus inherent soil properties effects on bulk density and relative compaction. Soil Till. Res., 44:81-93, 1997.
  • SAS INSTITUTE. SAS/STAT procedure guide for personal computers. 5ed. Cary, NC. 1991.
  • TAYLOR, D.W. Fundamentals of soil mechanics. New York, John Wiley & Sons, 1948. 770p.
  • TAYLOR, H.M.; ROBERSON, G.M. & PARKER JR., J.J. Soil strength-root penetration relations to medium to coarse-textured soil materials. Soil Sci., 102:18-22, 1966.
  • TORMENA, C.A.; SILVA, A.P. & LIBARDI, P.L. Caracterização do intervalo hídrico ótimo de um Latossolo Roxo sob plantio direto. R. Bras. Ci. Solo, 22:573-581, 1998.
  • VEENHOF, D.W. & MCBRIDE, R.A. Overconsolidation in agricultural soils: I. Compression and consolidation behavior of remolded and structured soils. Soil Sci. Soc. Am. J., 60:362-373, 1996.
  • WEAICH, K.; CASS, A. & BRISTOW, K.L. Use of a penetration resistance characteristic to predict soil strenght development during drying. Soil Till. Res., 25:149-166, 1992.
  • (1
    ) Parte da Tese de Doutorado do primeiro autor, apresentada à Escola Superior de Agricultura Luiz de Queiroz - ESALQ/USP.
  • Datas de Publicação

    • Publicação nesta coleção
      03 Out 2014
    • Data do Fascículo
      Mar 2001

    Histórico

    • Recebido
      Fev 2000
    • Aceito
      Set 2000
    Sociedade Brasileira de Ciência do Solo Secretaria Executiva , Caixa Postal 231, 36570-000 Viçosa MG Brasil, Tel.: (55 31) 3899 2471 - Viçosa - MG - Brazil
    E-mail: sbcs@ufv.br