Acessibilidade / Reportar erro

FERTILIZER RECOMMENDATION SYSTEM FOR MELON BASED ON NUTRITIONAL BALANCE

SISTEMA DE RECOMENDAÇÃO DE FERTILIZANTES PARA O MELOEIRO COM BASE NO BALANÇO NUTRICIONAL

Abstracts

Melon is one of the most demanding cucurbits regarding fertilization, requiring knowledge of soils, crop nutritional requirements, time of application, and nutrient use efficiency for proper fertilization. Developing support systems for decision-making for fertilization that considers these variables in nutrient requirement and supply is necessary. The objective of this study was parameterization of a fertilizer recommendation system for melon (Ferticalc-melon) based on nutritional balance. To estimate fertilizer recommendation, the system considers the requirement subsystem (REQ), which includes the demand for nutrients by the plant, and the supply subsystem (SUP), which corresponds to the supply of nutrients through the soil and irrigation water. After determining the REQtotal and SUPtotal, the system calculates the nutrient balances for N, P, K, Ca, Mg, and S, recommending fertilizer application if the balance is negative (SUP < REQ), but not if the balance is positive or zero (SUP ≥ REQ). Simulations were made for different melon types (Yellow, Cantaloupe, Galia and Piel-de-sapo), with expected yield of 45 t ha-1. The system estimated that Galia type was the least demanding in P, while Piel-de-sapo was the most demanding. Cantaloupe was the least demanding for N and Ca, while the Yellow type required less K, Mg, and S. As compared to other fertilizer recommendation methods adopted in Brazil, the Ferticalc system was more dynamic and flexible. Although the system has shown satisfactory results, it needs to be evaluated under field conditions to improve its recommendations.

Cucumis melo L; nutrient demand; nutrient supply; modeling


O meloeiro é uma das cucurbitáceas mais exigentes em relação à adubação, requerendo conhecimento sobre solos, exigência nutricional da cultura, época de aplicação e eficiência no uso de nutrientes para uma adubação adequada, assim como sendo necessário o desenvolvimento de sistemas de apoio à decisão para adubação que considere essas variáveis no requerimento e suprimento de nutrientes. O objetivo deste estudo foi a parametrização de um sistema de recomendação de adubação para o meloeiro (Ferticalc-Melão), com base no balanço nutricional. Para estimar a recomendação de adubação, o sistema considera: o subsistema requerimento (REQ), que inclui a demanda de nutriente pela planta; e o subsistema suprimento (SUP), que corresponde ao suprimento de nutrientes pelo solo e pela água de irrigação. Após a determinação do REQtotal e SUPtotal, o sistema calcula o balanço de nutrientes para N, P, K, Ca, Mg e S, recomendando adubar, se o balanço for negativo (SUP < REQ), ou não adubar, para o caso de o balanço ser positivo ou zero (SUP ≥ REQ). Foram feitas simulações para diferentes tipos de melão (Amarelo, Cantaloupe, Gália e Pele-de-sapo), com produtividade estimada de 45 t ha-1. O sistema estimou que o Gália foi o menos exigente em P, enquanto o Pele-de-sapo, o mais exigente. Cantaloupe foi o que menos demandou N e Ca, enquanto o tipo Amarelo requereu menos K, Mg e S. Em comparação com outros métodos de recomendação de adubação adotados no Brasil, o sistema Ferticalc foi mais dinâmico e flexível em suas recomendações. Embora o sistema tenha apresentado resultados satisfatórios, esse precisa ser avaliado no campo para o aprimoramento das suas recomendações.

Cucumis melo L; demanda de nutriente; suprimento de nutriente; modelagem


INTRODUCTION

Melon (Cucumis melo L.) is a leading fresh fruit in Brazilian exports. Its importance increases when taking into account that the main producing areas of the country are located in the semiarid region of northeastern Brazil, promoting economic development by generating employment and income in one of the poorest regions of the country.

Among the cucurbits, the melon crop is the most demanding in relation to fertilization, which requires knowledge of soil, plant nutrient requirements, and fertilizer efficiency, considering the time and mode of application, as well as the amount and source of each nutrient (Faria and Fontes, 2002Faria CMB, Fontes RR. Nutrição e adubação. In: Silva HR, Costa ND, editores. Melão, produção aspectos técnicos. Brasília: Empresa Brasileira de Pesquisa Agropecuária; 2002. p.40-50.).

Currently, fertilizer recommendations for melon in Brazil are mostly based on the use of recommendation tables and soil analysis, or fertilization trials performed by medium and large growers (Crisóstomo et al., 2002Crisóstomo LA, Santos AA, Raij B, Faria CMB, Silva DJ, Fernandes FAM, Santos FJS, Crisóstomo JR, Freitas JAD, Holanda JS, Cardoso JW, Costa ND. Adubação, irrigação, híbridos e práticas culturais para o meloeiro no Nordeste. Fortaleza: Empresa Brasileira de Pesquisa Agropecuária; 2002. (Circular técnica, 14).). However, their use has some limitations, such as geographic restriction, low flexibility, high cost, and the fact that recommendations do not vary according to expected yields or according to nutrient content and buffer capacity of the soil, showing no prospects for future developments.

The use of "nutrient balance systems" as a form of fertilizer recommendation in Brazil began with the cultivation of eucalyptus (Barros et al., 1995Barros NF, Novais RF, Teixeira JL, Fernandes Filho EI. NUTRICALC 2.0 - Sistema para estimar el balance de nutrientes y recomendaciones de fertilizantes para la plantación de eucaliptos. Bosque. 1995;16:129-31.) and was improved by Tomé Junior and Novais (2000)Tomé Junior JB, Novais RF. Utilização de modelos como alternativa às tabelas de recomendação de adubação. Bol Inf Soc Bras Ci Solo. 2000;25:1-8. as an alternative to recommendation tables. These systems already include various crops, such as banana (Oliveira et al., 2005Oliveira FHT, Novais RF, Alvarez V VH, Cantarutti RB. Desenvolvimento de um sistema para recomendação de adubação para a cultura da bananeira. R Bras Ci Solo. 2005;29:131-43.), soybean (Santos et al., 2008Santos FC, Neves JCL, Novais RF, Alvarez V VH, Sediyama CS. Modelagem na recomendação de corretivos e fertilizantes para a cultura da soja. R Bras Ci Solo. 2008;32:1661-74.), pineapple (Silva et al., 2009Silva AP, Alvarez V VH, Souza AP, Neves JCL, Novais RF, Dantas JP. Sistema de recomendação de fertilizantes e corretivos para a cultura do abacaxi - Fertcalc-Abacaxi. R Bras Ci Solo. 2009;33:1269-80.), and coconut (Rosa et al., 2011Rosa GNGP, Novais RF, Alvarez V. VH, Barros NF, Villani EMA. Lime and fertilizer recommendation system for coconut trees. R Ceres. 2011;58:90-9.).

Thus, the aim of this study was to parameterize a fertilizer recommendation system for melon (Ferticalc-melon) based on crop nutrient requirements and nutrient supply through the soil and irrigation water as an alternative to current forms of fertilizer recommendation for this crop.

MATERIAL AND METHODS

System development

The Ferticalc-melon model is divided into two subsystems: the requirement subsystem (REQ) and supply subsystem (SUP). The REQ represents nutrient demand by the plant to achieve a given yield, considering its efficiency in taking up the nutrients applied, as well as a rate that meets the criteria of "sustainability" for potassium, whereas the SUP corresponds to the supply of nutrients by the soil and irrigation water.

Requirement subsystem

The REQ subsystem was determined as shown in figure 1. Initially, the expected yield was established considering the genetic potential of the melon types. The yield values used were 15.0, 22.5, 30.0, 37.5, and 45.0 t ha-1 for Yellow, Cantaloupe, Galia, and Piel-de-sapo types, with populations of 12,500, 16,666, 13,513, and 13,513 plants per hectare, respectively.

Figure 1
Flowchart used by generic Ferticalc-melon to estimate nutrient application for melon.

After establishing the expected yield (YIELD), it was converted into fruit dry matter (FDM), considering that FDM corresponds to 6 % of fresh fruit weight on average (Equation 1). From this, the system estimated the amount of nutrients in the fruits (A_NutFru) necessary to obtain the projected yield through division between FDM and the coefficient of biological utilization in the fruit (CBU_Fru) in kg kg-1 of each nutrient (Equation 2).

where FDM, YIELD, A_NutFru, are in kg ha-1; and CBU_Fru is an efficiency ratio that indicates the ability of the plant to convert the nutrient taken up into fruit dry matter in kg kg-1.

The average values of CBU_Fru were obtained from the literature as shown in table 1. After determining the A_NutFru, the nutrient content of the plant (NutCPl) was estimated in kg ha-1 by dividing the A_NutFru by the nutrient harvest index (NutHI), which is expressed in kg kg-1. The nutrient harvest index refers to the ratio between the nutrient accumulated in the organ exported (fruit) and the nutrient accumulated in the whole plant. In this case, all organs were considered, except for the roots, due to lack of data. The values used in the present version of Ferticalc-melon are also shown in table 1.

Table 1
Coefficient of biological utilization in fruit (CBU_Fru) and the nutrient harvest index (NutHI) for different melon types used in Ferticalc-melon

To determine the nutrient requirements of the plant, it is necessary to consider the recovery rate of the nutrient for the plant (RRNutPl) since the plant does not take up 100 % of the nutrient applied via fertilizer, due to factors such as losses and reactions with the soil (Santos et al., 2008Santos FC, Neves JCL, Novais RF, Alvarez V VH, Sediyama CS. Modelagem na recomendação de corretivos e fertilizantes para a cultura da soja. R Bras Ci Solo. 2008;32:1661-74.). The recovery rate was determined according to equation 3:

where NACF and NACNF correspond to the nutrient absorbed by the crop fertilized and not fertilized, respectively, both in kg ha-1, while ANA refers to the amount of nutrient applied in kg ha-1.

Because of the difficulty in obtaining experimentally derived RRNutPl for melon, in the first version of the model we used values obtained for crops previously included in the Ferticalc system (Table 2). It should be noted that the values displayed are used as minimum values, given that, in practice, it is expected that RRNutPl values for melon are probably higher, due to the fact that most melon crops in Brazil are fertigated, which increases the efficiency of plant nutrient uptake.

Table 2
Recovery rate of the nutrient by the plant (RRNutPl) for melons in percentage of different nutrients adopted by Ferticalc-melon(1)

For the nutrient P, the RRNutPl values used by Ferticalc-melon (Table 2) consider the soil buffering capacity, based on the study carried out by Muniz (1983)Muniz AS. Disponibilidade de fósforo avaliada por extratores químicos e pelo crescimento de soja (Glycine max (L.) Merrill) em amostras de solos com diferentes valores do fator capacidade. [dissertação] Viçosa, MG: Universidade Federal de Viçosa; 1983. for soybean and adapted by Santos et al. (2008)Santos FC, Neves JCL, Novais RF, Alvarez V VH, Sediyama CS. Modelagem na recomendação de corretivos e fertilizantes para a cultura da soja. R Bras Ci Solo. 2008;32:1661-74., with application of a soluble source of phosphate. However, it is necessary to make corrections for in-furrow fertilizer applications (RRNutPl_Ps) since the equation (Table 2) corresponds to P broadcast application. Based on this, we used the correction factor (CF) calculated by using the remaining phosphorus (P-rem) based on Santos et al. (2008)Santos FC, Neves JCL, Novais RF, Alvarez V VH, Sediyama CS. Modelagem na recomendação de corretivos e fertilizantes para a cultura da soja. R Bras Ci Solo. 2008;32:1661-74. and then determined the RRNutPl_Ps corrected for the furrow, according to equations 4 and 5:

where P-rem is in mg L-1, and RRNutPl_Ps and RRNutPl_P are in %.

The total requirement of each nutrient by the plant (TRNutPl) to achieve the expected yield was obtained using the relationship between the NutCPl and the RRNutPl (Equation 6), considering that 80 % of the roots are in the 0-20 cm layer (ELNA), which is the effective layer of nutrient availability. For potassium, the TRNutPl used an extra rate, called the sustainability requirement (Sus_ReqK), which is the total amount of K exported by the crop (TAK_NutFru), i.e., 100 % of the K content in the fruit, corrected for the recovery rate for K in the plant (CRR_Pl_K), according to equation 7.

where TRNutPl, NutCPl, Sus_ReqK, and TAK_NutFru are in kg ha-1; and RRNutPl, ELNA, and CRR_Pl_K are expressed in %.

The sustainability rate seeks to prevent nutrient depletion in the soil over time and ensure a minimum yield in subsequent crops (Cantarutti et al., 2007Cantarutti RB, Barros NF, Martinez HEP, Novais RF. Avaliação da fertilidade do solo e recomendação de fertilizantes. In: Novais RF, Alvarez V VH, Barros NF, Fontes RLFF, Cantarutti RB, Neves JCL, editores. Fertilidade do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2007. p.645-737.). The total requirement of plant K (TRNutPl_K) is obtained as follows.

where TRNutPl_K is expressed in kg ha-1.

Supply subsystem

The SUP subsystem refers to the nutrients provided by soil and irrigation water. For crops covered by the system previously, SUP accounts for the nutrient supply from liming (pineapple and soybean), crop residues or organic waste (pineapple, banana, and soybean), and organic matter (pineapple). These supplies may vary depending on the crop and are suitable for some crops and not for others. Furthermore, there is a possibility of other manners of supplying nutrients, e.g., melon, in which supplying of nutrients may be by irrigation water.

The supply of nutrients from the soil (SUPsoil) was obtained from the nutrient contents present in the soil analysis as follows:

where NC_SA, RRSExt, and CSL are the nutrient content from soil analysis (mg dm-3), the recovery rate of the soil extractor (%) as in table 3, and the contribution of the soil layer in the supply of nutrients (dm), respectively. The SUPsoil is expressed in kg ha-1, for N, the value is zero.

Table 3
Recovery rate of the nutrient by extractors adopted by Ferticalc-melon

With respect to RRSExt, the Ferticalc-melon system considers the following extractors in chemical soil analyses (Table 3): Mehlich-1 or Resin for P and K, KCl for Ca and Mg, and Ca(H2PO4)2 in HOAc for S. For P, extracted by Mehlich-1 and Resin, the system takes into account the buffer capacity factor. For the other nutrients, we use fixed rates because they are not greatly influenced by buffering capacity.

To determine the amount of nutrient supplied by the soil, chemical and physical analysis of two melon-producing regions were considered, with values adapted from Lima (2001)Lima AA. Absorção e eficiência de utilização de nutrientes por híbridos de melão (Cucumis melo L.) [dissertação]. Fortaleza: Universidade Federal do Ceará; 2001., Dantas (2007)Dantas DJ. Avaliação de híbridos de melão cantaloupe [dissertação]. Mossoró: Universidade Federal do Semi-Árido; 2007., Diniz et al. (2007)Diniz SF, Bastos FOM, Lima RHC, Jumenez Rueda, JR. Fontes de potássio não trocáveis e potássio total em quatro solos do estado do Ceará. Geociências. 2007;26:379-86., and Costa et al. (2011)Costa SC, Soares AA, Sediyama GC, Viana TVA, Moreira FVO. Variação de parâmetros físicos e químicos de frutos em bananeira ‘pacovan' submetida a diferentes lâminas de irrigação e doses de potássio na Chapada do Apodi - Limoeiro do Norte, CE. Irriga. 2011;16:82-92. (Table 4). The first soil sample corresponds to an Inceptisol Ustept with higher pH, representative of melon-producing areas of the Apodi Plateau in the States of Ceará and Rio Grande do Norte, Brazil (SA-I). The second soil sample was an Entisol Psamment with lower pH, characteristic of areas of the Lower Basin of the Vale do São Francisco in the States of Bahia and Pernambuco, Brazil (SA-II).

Table 4
Chemical and physical soil analysis used for fertilization recommendations by the Ferticalc-melon system

To determine the nutrient amounts supplied by irrigation water (SUPwater), the system considers K, Ca, and Mg using equation 10 (Paula, 2007Paula JAA. Desenvolvimento e verificação de sistema computacional para cálculo de adubação/fertirrigação em melão e melancia [dissertação]. Mossoró: Universidade Federal do Semi-Árido; 2007.). Another important nutrient that could be considered as supplied by irrigation water would be the NO3-N ion; however, for the first version of the system, it will not be considered because its quantification is not common in chemical analyses of water for irrigation purposes.

where DWA, CNW, and AW represent the depth of water applied to the crop (mm), the content of nutrient or ions in the irrigation water (mmolc L-1), and the atomic weight of each element or ion contained in the water, respectively.

The SUPwater represents the supply of K, Ca, and Mg nutrients in kg ha-1, while for other macro and micronutrients, the value equals zero. Equation 11 was used to calculate DWA (Paula, 2007Paula JAA. Desenvolvimento e verificação de sistema computacional para cálculo de adubação/fertirrigação em melão e melancia [dissertação]. Mossoró: Universidade Federal do Semi-Árido; 2007.):

where AWD and LLC refer to the average water depth applied daily to the crop (mm d-1) and the crop cycle (day), respectively.

For the first version of Ferticalc-melon, the user will choose to use or not the amount of nutrients present in the irrigation water (Table 5). If the user chooses to use it, the system will initially assume an average DWA of 400 mm, typically used in melon-producing regions of the Northeast of Brazil. In the future, Ferticalc-melon versions will be more dynamic because the system will indicate the exact amount of water to be applied daily through irrigation, based on the evapotranspiration of the previous day. Thus, by the end of the cycle, the amount of nutrient applied through irrigation water will be calculated more precisely.

Table 5
Water chemical analysis used for fertilizer recommendation by Ferticalc-melon system

After determination of the SUP and REQ subsystems, the results are used in the Nutritional Balance (NB), in kg ha-1, as in equation 12. If the balance is positive or zero (SUP ≥ REQ), the application of fertilizers is not recommend; if it is negative (SUP < REQ), fertilizer application is recommended. For P and K nutrients, the recommendations were converted to P2O5 and K2O, using the factors 2.29 and 1.20, respectively.

Having established the total amount of nutrients required for a given yield and melon type, the system recommends pre-planting rates for N, P, and K, and the partitioning of these and Ca, Mg, and S to be applied in topdressing, based on the nutrient uptake pattern of the crop.

Application system

The Ferticalc-melon proposes specific application of fertilizer in pre-planting and topdressing for each melon type. Based on field experiments, we created a database tabulated on spreadsheets in Excel®, with information about the pre-planting and topdressing of fertilization used in melon varieties and their yields, stratified for each melon type, with yield greater than or equal to 30 t ha-1. Then we verified the total amount of N, P, and K applied to pre-planting and topdressing, and the arithmetic average was obtained for each type (Table 6).

Table 6
Ferticalc-melon recommendations for relative application of nutrients in pre-planting and topdressing based on total recommendations

The choice of which pattern of fertilizer distribution between pre-planting and topdressing is made by the user, according to that which best fits the site conditions. Pre-planting fertilization (Table 6) should be applied in a single rate in the furrow before sowing or transplanting, while topdressing should be divided throughout the crop cycle.

According to Fontes and Lima (1993)Fontes RR, Lima JA. Nutrição mineral e adubação do pepino e da abóbora. In: Ferreira E, Castellane PD, Cruz MCP, editores. Nutrição e adubação de hortaliças. Piracicaba: Potafos; 1993. p.281-300., the nutrient uptake pattern by the plant is an indispensable tool for fertilizer management in crops because it shows the amount of nutrient taken up throughout the crop cycle. Thus, based on nutrient uptake patterns by melon from experiments carried out by Prata (1999)Prata EB. Acumulação de biomassa e absorção de nutrientes por híbridos de meloeiro (Cucumis melo L.) [dissertação]. Fortaleza: Universidade Federal do Ceará; 1999., Silva Junior (2005)Silva Junior, MJ. Crescimento e absorção de macronutrientes pelo meloeiro fertirrigado com diferentes doses de nitrogênio e potássio [dissertação]. Campina Grande: Universidade Federal de Campina Grande; 2005., and Damasceno (2011)Damasceno APAB. Produção, crescimento e marcha de absorção de nutrientes do melão cantaloupe tipo "Harper" fertirrigado com doses de N e K [dissertação]. Mossoró: Universidade Federal do Semi-Árido; 2011., the Ferticalc-melon system proposes topdressing distribution of N, P, K, Ca, Mg, and S to be distributed via fertigation according to tables 7 and 8.

Table 7
Ferticalc-melon recommendations for relative distribution of nitrogen, phosphorus and potassium nutrients in topdressing (fertigation)(1)

Table 8
Ferticalc-melon recommendations for relative distribution of Ca, Mg, and S nutrients in topdressing (fertigation)(1)

Due to the lack of specific data for nutrients Ca, Mg, and S in the studies of Montag (1999)Montag UJ. Fertigation in Israel. Publishing in IFA, Agricultural Conference on Managing Plant Nutrition, Barcelona: 1999. Accessed: Feb. 22, 2012. Available: http://www.fertilizer.org/ifacontent/download/5447/85880/version/1/file/20.pdf.
http://www.fertilizer.org/ifacontent/dow...
and Crisóstomo et al. (2002)Crisóstomo LA, Santos AA, Raij B, Faria CMB, Silva DJ, Fernandes FAM, Santos FJS, Crisóstomo JR, Freitas JAD, Holanda JS, Cardoso JW, Costa ND. Adubação, irrigação, híbridos e práticas culturais para o meloeiro no Nordeste. Fortaleza: Empresa Brasileira de Pesquisa Agropecuária; 2002. (Circular técnica, 14)., the system uses only the nutrient uptake pattern presented by Prata (1999)Prata EB. Acumulação de biomassa e absorção de nutrientes por híbridos de meloeiro (Cucumis melo L.) [dissertação]. Fortaleza: Universidade Federal do Ceará; 1999. to generate recommendations for distribution of nutrients throughout the cycle for each melon type (Table 8).

RESULTS

Simulations for fertilizer recommendation

The recommendations generated by Ferticalc-melon considers a total fruit yield of 45 t ha-1 for all melon types, and soil with 44 mg L-1 P-rem, with fertilizer application being distributed in pre-planting and topdressing according to tables 6, 7 and 8.

Under the same conditions, the system simulates different recommendations for the melon types, showing that the nutritional requirement varies with the genetic material used (Table 9). The system recommends 121, 79, 149, and 128 kg ha-1 of N to obtain a yield of 45 t ha-1 for Yellow, Cantaloupe, Galia, and Piel-de-sapo types, respectively.

Table 9
Ferticalc-melon recommendations for total nutrient application and distribution in pre-planting and topdressing (fertigation) considering a yield of 45 t ha-1

With respect to P, the system simulated rates of 50, 77, 31, and 166 kg ha-1 and 56, 83, 38, and 172 kg ha-1 of P2O5 for Yellow, Cantaloupe, Galia, and Piel-de-sapo types in SA-I and SA-II soils, respectively (Table 9).

For K, considering that the nutrient supply by the soil and irrigation water was greater than the crop requirement in SA-I, the system simulated only for the SA-II soil (Table 9). The recommendations were 168, 301, 195, and 527 kg ha-1 of K2O by considering the supply by irrigation water, and 175, 309, 202, and 535 kg ha-1 of K2O, without considering that supply for Yellow, Cantaloupe, Galia, and Piel-de-sapo types, respectively.

The system did not recommend Ca and Mg fertilization for the SA-I soil given the high levels of those nutrients in the soil and irrigation water, but it recommended fertilization for SA-II soil. For Ca, the system recommended 6 and 232 kg ha-1 for Yellow and Piel-de-sapo types, respectively, considering the supply from the irrigation water. That shows that Piel-de-sapo has a greater Ca requirement than the other types, which is shown by its low CBU (Table 1). Without considering the supply of nutrients by irrigation water, the recommendations were 54, 5, 38, and 280 kg ha-1 of Ca for Yellow, Cantaloupe, Galia, and Piel-de-sapo types, respectively.

For Mg, under consideration of the supply from irrigation water, the system recommended fertilization only for the Galia type, with 15 kg ha-1. Without considering the Mg supply by irrigation water, the rate increased to 20 kg ha-1. For the Cantaloupe type, the system recommended the application of 3 kg ha-1 of Mg only when not considering supply from irrigation water.

Recommendations for S application were only for SA-II soil, with values of 65, 105, 67, and 80 kg ha-1 of SO4 for Yellow, Cantaloupe, Galia, and Piel-de-sapo types, respectively.

In addition to recommending the required amount of each nutrient, the system proposes the distribution of the amount to be applied between pre-planting and topdressing (Table 9). For distribution in topdressing by fertigation, the example of recommendations for the Yellow type was used (Table 10).

Table 10
Ferticalc-melon recommendations for nutrient distribution in topdressing (fertigation) for Yellow type considering a yield of 45 t ha-1

The practice of fertigation is extremely important because it keeps the soil fertility at adequate levels throughout the crop cycle. The continuous supply of fertilizer meets the needs of the plant and maximizes nutrient absorption, with gains in yield and quality (Mohammad and Zuraiqi, 2002Mohammad MJ, Zuraiqi S. Enhancement of yield and nitrogen and water use efficiencies by nitrogen drip-fertigation of garlic. J Plant Nutr. 2002;26:1749-66.). To achieve that, it is recommended that the total amount suggested be divided into daily fertigations, providing the plants with small amounts of readily absorbable nutrients, avoiding waste and applications higher than plant demand.

Comparison of Ferticalc-melon with other recommendation methods

The recommendations generated by the system were compared with current forms of recommendation for melon (Table 11). The Table shows the recommendations for the states of Ceará (UFC, 1993Universidade Federal do Ceará - UFC. Recomendações de adubação e calagem para o estado do Ceará. Fortaleza; 1993.) and Pernambuco (Cavalcanti et al., 1998), the recommendations from Embrapa (Crisóstomo et al., 2002Crisóstomo LA, Santos AA, Raij B, Faria CMB, Silva DJ, Fernandes FAM, Santos FJS, Crisóstomo JR, Freitas JAD, Holanda JS, Cardoso JW, Costa ND. Adubação, irrigação, híbridos e práticas culturais para o meloeiro no Nordeste. Fortaleza: Empresa Brasileira de Pesquisa Agropecuária; 2002. (Circular técnica, 14).), and the average fertilization used for each melon type by different growers of the Apodi Plateau (GAP), as reported during a survey in the cities of Quixeré, CE, and Baraúna and Mossoró, RN, in the Northeast Region of Brazil in the years 2011 and 2012.

Table 11
Comparison of Ferticalc-melon nutrient recommendations with other methods currently used for fertilizer recommendation, considering a yield of 45 t ha-1

In the case of N, the system made recommendations similar to Crisóstomo et al. (2002)Crisóstomo LA, Santos AA, Raij B, Faria CMB, Silva DJ, Fernandes FAM, Santos FJS, Crisóstomo JR, Freitas JAD, Holanda JS, Cardoso JW, Costa ND. Adubação, irrigação, híbridos e práticas culturais para o meloeiro no Nordeste. Fortaleza: Empresa Brasileira de Pesquisa Agropecuária; 2002. (Circular técnica, 14). for the Yellow and Piel-de-sapo types, but showed considerable differences for Cantaloupe and Galia. This is because the system is dynamic, recommending different rates of a determined nutrient for different melon types, considering the same expected yield. This flexibility is not possible with fertilizer recommendation tables.

The recommendations for P2O5 suggested by the system were lower than those generated by other methods for Yellow, Cantaloupe, and Galia types (Table 11). For the Piel-de-sapo type, the P2O5 rate was less than that recommended by Crisóstomo et al. (2002)Crisóstomo LA, Santos AA, Raij B, Faria CMB, Silva DJ, Fernandes FAM, Santos FJS, Crisóstomo JR, Freitas JAD, Holanda JS, Cardoso JW, Costa ND. Adubação, irrigação, híbridos e práticas culturais para o meloeiro no Nordeste. Fortaleza: Empresa Brasileira de Pesquisa Agropecuária; 2002. (Circular técnica, 14). and the average rate applied by GAP.

The system recommended the application of K2O only to the SA-II soil, as in Examples 3 and 4 (Table 11), showing similarities to the tables for the states of Ceará and Pernambuco for the Yellow type and to the recommendation of Crisóstomo et al. (2002)Crisóstomo LA, Santos AA, Raij B, Faria CMB, Silva DJ, Fernandes FAM, Santos FJS, Crisóstomo JR, Freitas JAD, Holanda JS, Cardoso JW, Costa ND. Adubação, irrigação, híbridos e práticas culturais para o meloeiro no Nordeste. Fortaleza: Empresa Brasileira de Pesquisa Agropecuária; 2002. (Circular técnica, 14). for the Cantaloupe type. In Examples 1 and 2, the system did not recommend fertilization with K2O, while the other methods recommended high K2O rates.

For Ca, Mg, and SO4, the results were compared only with the amounts used by GAP due to the absence of recommendations from other methods. The system does not recommend use of Ca for SA-I soil, given the high content both in the soil and in irrigation water. Even so, GAP still recommends application at 11, 83, and 49 kg ha-1 of Ca for Yellow, Cantaloupe, and Galia, respectively.

For the SA-II soil, in example 3 (Table 11), the system recommended 6 and 232 kg ha-1 of Ca for Yellow and Piel-de-sapo, respectively. In example 4, the demand increased to 54, 5, 38, and 280 kg ha-1 of Ca for Yellow, Cantaloupe, Galia, and Piel-de-sapo, respectively.

For Mg, only 3 kg ha-1 was recommended for Cantaloupe in SA-II in example 4, and 15 and 20 kg ha-1 for Galia in examples 3 and 4, respectively. However GAP recommends application of 7, 20, 17, and 3 kg ha-1 for Yellow, Cantaloupe, Galia, and Piel-de-sapo, respectively.

Since S content is low in the SA-II soil, the Ferticalc-melon recommended 65, 105, 67, and 80 kg ha-1 of SO4 . However for SA-I soil, for which the system does not recommend S fertilization, GAP are applying an average of 23, 46, 45, and 92 kg ha-1 of SO4 for Yellow, Cantaloupe, Galia, and Piel-de-sapo, respectively.

DISCUSSION

Requirement subsystem

In determination of TRNutPl, the RRNutPl and Sus_ReqK are two fundamental indexes to be obtained, especially RRNutPl for melon for which, due to the absence of specific data, values of other crops were adjusted for the first version of Ferticalc-melon. Therefore, research with melon is of utmost importance for specific data on RRNutPl of macronutrients, addressing mainly P and S, thereby providing subsidies for future versions of the system.

In regard to Sus_ReqK, the sustainability requirement was used only for K. Although subject to leaching losses, K may accumulate in the soil, becoming available for subsequent crops. In addition required in large quantities by the melon crop.

For the other nutrients, we chose not to use a sustainability rate, for several reasons. In the case of N, due to its dynamics in the soil, it is not possible to ensure that rates above plant requirements will be available for subsequent crops. Climatic factors and soil properties may influence the loss of nitrogen, in addition to the fact that under tropical conditions, nitrogen fertilization has low efficiency (Baligar and Bennett, 1986Baligar VC, Bennett OL. Outlook on fertilizer use efficiency in the tropics. Fert Res. 1986;10:83-96.; Sommer and Hutchings, 2001Sommer SG, Hutchings NJ. Ammonia emission from field applied manure and its reduction - invited paper. Eur J Agron. 2001;15:1-15; Martines et al., 2010Martines AM, Nogueira MA, Santos CA, Nakatani AS, Andrade CA, Coscione AR, Cantarella H, Sousa JP, Cardoso EJBN. Ammonia volatilization in soil treated with tannery sludge. Biores Technol. 2010;101:4690-6.).

Typical tropical soils are naturally low in P, with high phosphate fixation capacity. Phosphorus applications to soil above the P required by the plant are unviable, due to the difficulty of the soil in providing this nutrient to subsequent crops, reducing the efficiency of phosphate fertilizers (Nziguheba et al., 2002Nziguheba G, Merckx R, Palm CA. Soil phosphorus dynamics and maize response to different rates of phosphorus fertilizer applied to an Acrisol in western Kenya. Plant Soil. 2002;243:1-10.; Simpson et al., 2011Simpson RJ, Oberson A, Culvenor RA, Ryan MH, Veneklaas EJ, Lambers H, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Richardson AE. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil, 2011;349:89-120.). The Ca and Mg nutrients are applied in liming.

As for S, the sustainability rate could be used, however, information on S is still incipient, and absence of this information does not compromise the system since the crop will receive the required amount of this nutrient from other fertilizers containing S commonly used in the cultivation of melon.

Supply subsystem

The Ferticalc system, more precisely the SUP subsystem, generally use liming, crop residues, and organic matter as a nutrient supply in crops, previously contemplated by the system. However, they will not be used in Ferticalc-melon because this system uses liming as an indirect supply of Ca and Mg to neutralize toxic Al, and increase nutrient availability and base saturation, improving the chemical characteristics of the soil. The crop residues of melon are generally removed to avoid phytosanitary problems after harvest of melon fruit (Seebold et al., 2009Seebold K, Coolong T, Jones T, Strang J, Bessin R, Kaiser C. An IPM scouting guide for common problems of cucurbit crops in Kentucky. Kentucky: University of Kentucky Cooperative Extension; 2009. Accessed: May 15 2012. Available at: http://www.ca.uky.edu/agc/pubs/id/id91/id91.pdf.
http://www.ca.uky.edu/agc/pubs/id/id91/i...
). Crops in general have low efficiency in the use of N from organic matter, due to the lack of synchronization between its release and plant demand, especially in short cycle crops (Kramer et al., 2002Kramer AW, Doane TA, Horwath WR, van Kessel, C. Combining fertilizer and organic inputs to synchronize N supply in alternative cropping systems in California. Agric Ecosyst Environ. 2002;91:233-43.). Its supply was considered relatively small compared to that required by the crop in soils of the Brazilian Northeast (Tiessen et al., 2001Tiessen H, Sampaio EVSB, Salcedo IH. Organic matter turnover and management in low input agriculture of NE Brazil. Nutr Cycl Agroecosyst. 2001;61:99-103.).

Simulations in fertilizer recommendation

Assessing the effects of N and K on fruit yield and quality in Yellow melon, Coelho et al. (2001)Coelho EF, Sousa VF, Souza VAB, Melo FB. Efeito de níveis de N e K aplicados por gotejamento na cultura do meloeiro (Cucumis melo L.) em solo arenoso. Ci Agrotec. 2001;25:23-30. obtained fruit yields of 35.8, 40.8, 51.2, and 55.0 t ha-1 at application rates of 0, 60, 120, and 180 kg ha-1 of N, respectively, with the authors recommending the rate of 120 kg ha-1. For K2O, no response was observed. The response for both N and K as obtained by these authors was similar to that estimated by Ferticalc-melon, which recommended 121 kg ha-1 of N and non-application of K2O.

For the Piel-de-sapo melon type, Dutra (2005)Dutra I. Produtividade e qualidade de frutos de melão Pele-de-sapo em função de diferentes níveis de irrigação e adubações nitrogenada e potássica [tese]. Botucatu: Universidade Estadual Paulista; 2005. evaluated the effect of N and K rates, obtaining a fruit yield of 37.4 t ha-1 with 149 kg ha-1 of N. The author did not observe response to K rates. Note that this study was conducted under soil conditions similar to the SA-I soil, for which the system does not recommend K2O application.

Studying increasing K2O rates (0, 60, 120, 180, and 240 kg ha-1) for the Yellow and Cantaloupe types, Bardiviesso (2011) obtained a maximum yield of 45.7 t ha-1 with a rate of 137 kg ha-1 for the Yellow type and 39.4 t ha-1 for the Cantaloupe. The optimum rate obtained by the author was similar to that estimated by the Ferticalc-melon system for the Yellow type, considering the SA-II soil with fertigation.

By comparing the K2O rates with other methods, using the Yellow type as an example, it may be observed that the system recommends fertilization only in examples 3 and 4, with applications of 168 and 175 kg ha-1, respectively (Table 11). These recommendations are similar to the recommendations for the States of Ceará (180 kg ha-1) and Pernambuco (160 kg ha-1) and unlike the rates recommended by Crisóstomo et al. (2002)Crisóstomo LA, Santos AA, Raij B, Faria CMB, Silva DJ, Fernandes FAM, Santos FJS, Crisóstomo JR, Freitas JAD, Holanda JS, Cardoso JW, Costa ND. Adubação, irrigação, híbridos e práticas culturais para o meloeiro no Nordeste. Fortaleza: Empresa Brasileira de Pesquisa Agropecuária; 2002. (Circular técnica, 14)., which, in addition to presenting high K2O rates (300 kg ha-1), does not make any distinction between Examples 1, 2, 3, and 4, while the GAP recommends 236 kg ha-1 of K2O for examples 1 and 2.

According to the Ferticalc-melon system, the rates found in Crisóstomo et al. (2002)Crisóstomo LA, Santos AA, Raij B, Faria CMB, Silva DJ, Fernandes FAM, Santos FJS, Crisóstomo JR, Freitas JAD, Holanda JS, Cardoso JW, Costa ND. Adubação, irrigação, híbridos e práticas culturais para o meloeiro no Nordeste. Fortaleza: Empresa Brasileira de Pesquisa Agropecuária; 2002. (Circular técnica, 14). and GAP are unnecessary. It is important to note that Crisóstomo et al. (2002)Crisóstomo LA, Santos AA, Raij B, Faria CMB, Silva DJ, Fernandes FAM, Santos FJS, Crisóstomo JR, Freitas JAD, Holanda JS, Cardoso JW, Costa ND. Adubação, irrigação, híbridos e práticas culturais para o meloeiro no Nordeste. Fortaleza: Empresa Brasileira de Pesquisa Agropecuária; 2002. (Circular técnica, 14)., for example, recommend the same K2O rate for all melon types under four different situations. However, the tables, even with some drawbacks, make different recommendations for SA-I and SA-II, showing how different these soils are.

From this, one can see that the system is a good alternative for melon growers as a tool to assist them by providing more precise and scientifically established fertilizer recommendations, taking characteristics such as melon type and yield, nutrient supply by soil and irrigation water, and the effect of the buffering capacity of the soil into account.

As previously described, the P2O5 recommendations were generally lower for most melon types evaluated when compared with other methods, with the exception of the Piel-de-sapo type. This may indicate that the system needs adjustments in P recommendation in particular, or, otherwise, that P2O5 rates currently in use might be above crop demands. Therefore, it is important to perform calibration and validation in the field for the rates recommended by Ferticalc-melon in order to assist in possible adjustments, thus contributing to improvement of the system.

Analyzing the system recommendations for Ca, Mg and SO4 nutrients, a big difference may be observed in recommendations for different melon types, particularly Ca recommendations (Table 11). This shows that there is a great variation in demand for this nutrient by different genetic materials, and the system is sensitive to this. This sensitivity is related to the continuous variations of the recommendations generated by the Ferticalc-melon system depending on expected yield, nutrient contents in the plant, and the soil buffer capacity for nutrients. These variations do not occur, for example, with recommendation tables that establish fixed rates of nutrients depending on the nutrient content in the soil, but that do not take expected yield into account (Silva et al., 2009Silva AP, Alvarez V VH, Souza AP, Neves JCL, Novais RF, Dantas JP. Sistema de recomendação de fertilizantes e corretivos para a cultura do abacaxi - Fertcalc-Abacaxi. R Bras Ci Solo. 2009;33:1269-80.).

CONCLUSIONS

The Ferticalc-melon system is a useful tool for fertilizer recommendation for the melon crop, with the advantage that recommendations vary depending on the melon type, expected yield, and nutrient content in the soil and irrigation water, as well as taking the buffering capacity of the soil into account.

The system which has been developed has great prospects for optimizing fertilizer use in the melon crop. However, it requires more specific crop data to improve it, and it is important to perform field validation under different situations so as to generate more precise and specific recommendations for different scenarios.

ACKNOWLEDGMENTS

We wish to thank the Universidade Federal do Ceará and the Universidade Federal de Viçosa for technical support during development of this study. Our thanks to the CNPq for the scholarship granted and to the CAPES for the possibility of developing part of the dissertation at UFV through the National Program of Academic Cooperation (Procad).

REFERENCES

  • Araújo Junior BB. Índice de colheita para dois híbridos de meloeiro cultivados com cobertura plástica [monografia]. Mossoró: Universidade Federal do Semi-Árido; 2008.
  • Baligar VC, Bennett OL. Outlook on fertilizer use efficiency in the tropics. Fert Res. 1986;10:83-96.
  • Bardiviesso DM, Maruyama WI, Rezende WE, Pessato LE, Pereira ACB, Modesto JH. Doses de potássio na produção de dois cultivares de melão (Cucumis melo L.). In: Anais do 7º Encontro de Iniciação Científica, 2011. Dourados. Dourados: Universidade Estadual de Mato Grosso do Sul; 2011.
  • Barros NF, Novais RF, Teixeira JL, Fernandes Filho EI. NUTRICALC 2.0 - Sistema para estimar el balance de nutrientes y recomendaciones de fertilizantes para la plantación de eucaliptos. Bosque. 1995;16:129-31.
  • Belfort CC, Haag H, Matsumoto T, Carmello QAC, Santos JWC. Nutrição mineral de hortaliças LXX: acumulação de matéria seca e recrutamento de macronutrientes pelo melão (Cucumis melo L. cv. Valenciano Amarelo CAC) cultivado em Latossolo Vermelho-Amarelo em Presidente Venceslau, SP. Anais EALQ. 1986;43:159-218.
  • Cantarutti RB, Barros NF, Martinez HEP, Novais RF. Avaliação da fertilidade do solo e recomendação de fertilizantes. In: Novais RF, Alvarez V VH, Barros NF, Fontes RLFF, Cantarutti RB, Neves JCL, editores. Fertilidade do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2007. p.645-737.
  • Cavalcanti FJA. coordenador. Recomendações de adubação para o Estado de Pernambuco - 2ª aproximação. 2ª ed. Recife: Instituto Agronômico de Pernambuco; 1998.
  • Coelho EF, Sousa VF, Souza VAB, Melo FB. Efeito de níveis de N e K aplicados por gotejamento na cultura do meloeiro (Cucumis melo L.) em solo arenoso. Ci Agrotec. 2001;25:23-30.
  • Cordeiro GG. Qualidade de água para fins de irrigação (conceitos básicos e práticos). Petrolina: Empresa Brasileira de Pesquisa Agropecuária; 2001. (Documentos, 167).
  • Costa SC, Soares AA, Sediyama GC, Viana TVA, Moreira FVO. Variação de parâmetros físicos e químicos de frutos em bananeira ‘pacovan' submetida a diferentes lâminas de irrigação e doses de potássio na Chapada do Apodi - Limoeiro do Norte, CE. Irriga. 2011;16:82-92.
  • Crisóstomo LA, Santos AA, Raij B, Faria CMB, Silva DJ, Fernandes FAM, Santos FJS, Crisóstomo JR, Freitas JAD, Holanda JS, Cardoso JW, Costa ND. Adubação, irrigação, híbridos e práticas culturais para o meloeiro no Nordeste. Fortaleza: Empresa Brasileira de Pesquisa Agropecuária; 2002. (Circular técnica, 14).
  • Damasceno APAB. Produção, crescimento e marcha de absorção de nutrientes do melão cantaloupe tipo "Harper" fertirrigado com doses de N e K [dissertação]. Mossoró: Universidade Federal do Semi-Árido; 2011.
  • Dantas DJ. Avaliação de híbridos de melão cantaloupe [dissertação]. Mossoró: Universidade Federal do Semi-Árido; 2007.
  • Dantas MSM. Produção e qualidade de híbridos de melão pele de sapo em duas densidades de plantio [monografia] Mossoró: Universidade Federal do Semi-Árido; 2008.
  • Diniz SF, Bastos FOM, Lima RHC, Jumenez Rueda, JR. Fontes de potássio não trocáveis e potássio total em quatro solos do estado do Ceará. Geociências. 2007;26:379-86.
  • Duarte SR. Alterações na nutrição mineral do meloeiro em função da salinidade da água de irrigação [dissertação]. Campina Grande: Universidade Federal de Campina Grande; 2002.
  • Dutra I. Produtividade e qualidade de frutos de melão Pele-de-sapo em função de diferentes níveis de irrigação e adubações nitrogenada e potássica [tese]. Botucatu: Universidade Estadual Paulista; 2005.
  • Faria CMB, Fontes RR. Nutrição e adubação. In: Silva HR, Costa ND, editores. Melão, produção aspectos técnicos. Brasília: Empresa Brasileira de Pesquisa Agropecuária; 2002. p.40-50.
  • Fernandes, D. Interferência de plantas daninhas na produção e qualidade de frutos de melão nos sistemas de plantio direto e convencional [dissertação]. Mossoró: Universidade Federal do Semi-Árido; 2010.
  • Fontes RR, Lima JA. Nutrição mineral e adubação do pepino e da abóbora. In: Ferreira E, Castellane PD, Cruz MCP, editores. Nutrição e adubação de hortaliças. Piracicaba: Potafos; 1993. p.281-300.
  • Freire FJ. Sistema para cálculo do balanço nutricional e recomendação de corretivos e fertilizantes para cana-de-açúcar [tese]. Viçosa, MG: Universidade Federal de Viçosa; 2001.
  • Gerhardt MA. Manejo de irrigação do melão cantalupensis no Semi-Árido [tese]. Mossoró: Universidade Federal do Semi-Árido; 2007.
  • Gurgel MT, Gheyi HR, Oliveira FHT, Fernandes PD, Silva FV. Nutrição de cultivares de meloeiro irrigadas com águas de baixa e alta salinidade. R Caatinga. 2008;21:36-43.
  • Gurgel MT, Uyeda CA, Gheyi HR, Oliveira FHT, Fernandes PD, Silva FV. Crescimento de meloeiro sob estresse salino e doses de potássio. R Bras Eng Agríc Amb. 2010;14:3-10.
  • Kano C. Extrações de nutrientes pelo meloeiro rendilhado cultivado em ambiente protegido com adição de potássio e CO2 na água de irrigação [tese]. Piracicaba: Escola Superior de Agricultura Luis de Queiroz; 2002.
  • Kramer AW, Doane TA, Horwath WR, van Kessel, C. Combining fertilizer and organic inputs to synchronize N supply in alternative cropping systems in California. Agric Ecosyst Environ. 2002;91:233-43.
  • Lima AA. Absorção e eficiência de utilização de nutrientes por híbridos de melão (Cucumis melo L.) [dissertação]. Fortaleza: Universidade Federal do Ceará; 2001.
  • Martines AM, Nogueira MA, Santos CA, Nakatani AS, Andrade CA, Coscione AR, Cantarella H, Sousa JP, Cardoso EJBN. Ammonia volatilization in soil treated with tannery sludge. Biores Technol. 2010;101:4690-6.
  • Medeiros JF, Lisboa RA, Oliveira M, Silva Junior MJ, Alves LP. Caracterização das águas subterrâneas usadas para irrigação na área produtora de melão da Chapada do Apodi. R Bras Eng Agríc Amb. 2003;7:469-72.
  • Mohammad MJ, Zuraiqi S. Enhancement of yield and nitrogen and water use efficiencies by nitrogen drip-fertigation of garlic. J Plant Nutr. 2002;26:1749-66.
  • Montag UJ. Fertigation in Israel. Publishing in IFA, Agricultural Conference on Managing Plant Nutrition, Barcelona: 1999. Accessed: Feb. 22, 2012. Available: http://www.fertilizer.org/ifacontent/download/5447/85880/version/1/file/20.pdf.
    » http://www.fertilizer.org/ifacontent/download/5447/85880/version/1/file/20.pdf
  • Mota JCA. Determinação de fertilização no cultivo de melão (Cucumis melo L.) [monografia]. Mossoró: Universidade Federal do Semi-Árido; 1999.
  • Muniz AS. Disponibilidade de fósforo avaliada por extratores químicos e pelo crescimento de soja (Glycine max (L.) Merrill) em amostras de solos com diferentes valores do fator capacidade. [dissertação] Viçosa, MG: Universidade Federal de Viçosa; 1983.
  • Nogueira LS. Produção e qualidade de melão tipo gália irrigado com águas salinas [monografia]. Mossoró: Universidade Federal do Semi-Árido; 2010.
  • Nziguheba G, Merckx R, Palm CA. Soil phosphorus dynamics and maize response to different rates of phosphorus fertilizer applied to an Acrisol in western Kenya. Plant Soil. 2002;243:1-10.
  • Oliveira DS. Alteração de características de salinidade do solo em duas áreas de produção de melão [dissertação]. Mossoró: Universidade Federal do Semi-Árido; 2010.
  • Oliveira FHT. Sistema para recomendação de calagem e adubação para a cultura da bananeira [dissertação]. Viçosa, MG: Universidade Federal de Viçosa; 2002.
  • Oliveira FHT, Novais RF, Alvarez V VH, Cantarutti RB. Desenvolvimento de um sistema para recomendação de adubação para a cultura da bananeira. R Bras Ci Solo. 2005;29:131-43.
  • Paula JAA. Desenvolvimento e verificação de sistema computacional para cálculo de adubação/fertirrigação em melão e melancia [dissertação]. Mossoró: Universidade Federal do Semi-Árido; 2007.
  • Pereira FAL. Tolerância de cultivares de melão à salinidade [dissertação]. Mossoró: Universidade Federal do Semi-Árido; 2010.
  • Possamai J.M. Sistema de recomendação de corretivos e fertilizantes para a cultura do algodoeiro. [teses]. Viçosa, MG: Universidade Federal de Viçosa; 2003.
  • Prata EB. Acumulação de biomassa e absorção de nutrientes por híbridos de meloeiro (Cucumis melo L.) [dissertação]. Fortaleza: Universidade Federal do Ceará; 1999.
  • Prezotti LC. Sistema para recomendação de corretivos e de fertilizantes para a cultura do café arábica [tese]. Viçosa, MG: Universidade Federal de Viçosa; 2001.
  • Rodrigues LD. Avaliação do crescimento de melão Pele-de-sapo irrigado com águas salinas [monografia]. Mossoró: Universidade Federal do Semi-Árido; 2008.
  • Rosa GNGP. Sistema de recomendação de corretivos e fertilizantes para a cultura do coqueiro. [dissertação] Viçosa, MG: Universidade Federal de Viçosa; 2002.
  • Rosa GNGP, Novais RF, Alvarez V. VH, Barros NF, Villani EMA. Lime and fertilizer recommendation system for coconut trees. R Ceres. 2011;58:90-9.
  • Santos Junior, H. Interação genótipo x ambiente e adaptabilidade e estabilidade de híbridos de melão Gália [dissertação]. Mossoró: Universidade Federal do Semi-Árido; 2007.
  • Santos FC, Neves JCL, Novais RF, Alvarez V VH, Sediyama CS. Modelagem na recomendação de corretivos e fertilizantes para a cultura da soja. R Bras Ci Solo. 2008;32:1661-74.
  • Seebold K, Coolong T, Jones T, Strang J, Bessin R, Kaiser C. An IPM scouting guide for common problems of cucurbit crops in Kentucky. Kentucky: University of Kentucky Cooperative Extension; 2009. Accessed: May 15 2012. Available at: http://www.ca.uky.edu/agc/pubs/id/id91/id91.pdf.
    » http://www.ca.uky.edu/agc/pubs/id/id91/id91.pdf
  • Silva Junior, MJ. Crescimento e absorção de macronutrientes pelo meloeiro fertirrigado com diferentes doses de nitrogênio e potássio [dissertação]. Campina Grande: Universidade Federal de Campina Grande; 2005.
  • Silva AP, Alvarez V VH, Souza AP, Neves JCL, Novais RF, Dantas JP. Sistema de recomendação de fertilizantes e corretivos para a cultura do abacaxi - Fertcalc-Abacaxi. R Bras Ci Solo. 2009;33:1269-80.
  • Simpson RJ, Oberson A, Culvenor RA, Ryan MH, Veneklaas EJ, Lambers H, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Richardson AE. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil, 2011;349:89-120.
  • Sommer SG, Hutchings NJ. Ammonia emission from field applied manure and its reduction - invited paper. Eur J Agron. 2001;15:1-15
  • Temóteo, A.S. Eficiência de utilização de nitrogênio e potássio pelo melão Pele-de-sapo fertirrigado em diferentes lâminas de irrigação [dissertação]. Mossoró: Universidade Federal do Semi-Árido; 2006.
  • Tiessen H, Sampaio EVSB, Salcedo IH. Organic matter turnover and management in low input agriculture of NE Brazil. Nutr Cycl Agroecosyst. 2001;61:99-103.
  • Tomaz HVQ. Manejo de plantas daninhas crescimento e produtividade do meloeiro em sistemas de plantio direto e convencional [dissertação]. Mossoró: Universidade Federal do Semi-Árido; 2008.
  • Tomé Junior JB, Novais RF. Utilização de modelos como alternativa às tabelas de recomendação de adubação. Bol Inf Soc Bras Ci Solo. 2000;25:1-8.
  • Universidade Federal do Ceará - UFC. Recomendações de adubação e calagem para o estado do Ceará. Fortaleza; 1993.

Publication Dates

  • Publication in this collection
    Mar-Apr 2015

History

  • Received
    1 Apr 2014
  • Accepted
    23 Dec 2014
Sociedade Brasileira de Ciência do Solo Secretaria Executiva , Caixa Postal 231, 36570-000 Viçosa MG Brasil, Tel.: (55 31) 3899 2471 - Viçosa - MG - Brazil
E-mail: sbcs@ufv.br