Acessibilidade / Reportar erro

Reclamation of a Degraded Coal-Mining Area with Perennial Cover Crops

ABSTRACT:

Studies addressing the potential of grass roots in improving the structural quality of constructed minesoils are not frequent in the literature, although they are essential for understanding the re-establishment of soil functions in the environment. The objective of this study was to quantify the root attributes of the species Urochloa humidicola, Panicum maximum, and Urochloa brizantha and relate them to the physical properties of a constructed minesoil in reclamation of an area degraded by coal mining. The study was performed in a field experiment in a coal mining area located in southern Brazil. Soil samples were collected, five years after experiment installation, to determine bulk density, macroporosity, distribution of water stable aggregates expressed in different size classes, mean weight diameter of water stable aggregates, and organic carbon content, as well as for chemical characterization. Root sampling was performed by the monolith method to a depth of 0.30 m. Results confirm the hypothesis that the root system of the perennial grasses studied positively contributes to recovery of the constructed minesoil in the 0.00-0.10 m layer after 58 months of revegetation. The higher percentage of large aggregates, higher bulk density, and lower macroporosity in the subsurface indicate the presence of degraded layers, negatively influencing the development of the grass root system. Urochloa brizantha exhibited the largest root matter in the surface layer, influencing the breakdown of the large and cohesive aggregates, transforming them into smaller crumbly aggregates. In the 0.10-0.20 m layer, Urochloa humidicola showed greater volume and root length in relation to other species; nevertheless, changes in soil physical properties were not observed, showing that the time span of the root growth of the species was not sufficient to provide improvements in the subsurface layers.

Keywords:
minesoil; monoliths; compaction

INTRODUCTION

A vital component in exploitation of mineral resources is recovery of areas that have been degraded by the mining process, especially in the case of surface mining, which has major impacts on soil and landscape (Yada et al., 2015Yada MM, Mingotte FLC, Melo WJ, Melo GP, Melo VP, Longo RM, Ribeiro AÍ. Atributos químicos e bioquímicos em solos degradados por mineração de estanho e em fase de recuperação em ecossistema amazônico. Rev Bras Cienc Solo . 2015;39:714-24. doi:10.1590/01000683rbcs20140499
https://doi.org/10.1590/01000683rbcs2014...
) due to the removal of vegetation cover and layers of soil and underlying rocks (Mukhopadhyay et al., 2013Mukhopadhyay S, Maiti SK, Masto RE. Use of Reclaimed Mine Soil Index (RMSI) for screening of tree species for reclamation of coal mine degraded land. Ecol Eng . 2013;57:133-42. doi:10.1016/j.ecoleng.2013.04.017
https://doi.org/10.1016/j.ecoleng.2013.0...
), resulting in total change of the soil profile (Stumpf et al., 2014Stumpf L, Pauletto EA, Fernandes FF, Suzuki LEAS, Silva TS, Pinto LFS, Lima CLR. Perennial grasses for recovery of the aggregation capacity of a reconstructed soil in a coal mining area in southern Brazil. Rev Bras Cienc Solo . 2014;38:327-35. doi:10.1590/S0100-06832014000100033
https://doi.org/10.1590/S0100-0683201400...
).

Topographic recomposition and construction of a new soil profile results in a much different environment than the original soil. A constructed minesoil is usually compacted by excessive machine traffic, which results in inadequate physical conditions for plant growth and development (Lunardi Neto et al., 2008Lunardi Neto A, Albuquerque JA, De Almeida JA, Mafra ÁL, Medeiros JC, Alberton A. Atributos físicos do solo em área de mineração de carvão influenciados pela correção da acidez, adubação orgânica e revegetação. Rev Bras Cienc Solo . 2008;32:1379-88. doi:10.1590/S0100-06832008000400002
https://doi.org/10.1590/S0100-0683200800...
; Wick et al., 2009Wick AF, Ingram LJ, Stahl PD. Aggregate and organic matter dynamics in reclaimed soils as indicated by stable carbon isotopes. Soil Biol Biochem. 2009;41:201-9. doi:10.1016/j.soilbio.2008.09.012
https://doi.org/10.1016/j.soilbio.2008.0...
; Sheoran et al., 2010Sheoran V, Sheoran AS, Poonia P. Soil reclamation of abandoned mine land by revegetation: a review. Int J Soil Sedim Water. 2010;3:2-13.; Borůvka et al., 2012Borůvka L, Kozák J, Mühlhanselová M, Donátová H, Nikodem A, Němeček K. Effect of covering with natural topsoil as a reclamation measure on brown-coal mining dumpsites. J Geochem Explor. 2012;113:118-23. doi:10.1016/j.gexplo.2011.11.004
https://doi.org/10.1016/j.gexplo.2011.11...
; Stumpf et al., 2014Stumpf L, Pauletto EA, Fernandes FF, Suzuki LEAS, Silva TS, Pinto LFS, Lima CLR. Perennial grasses for recovery of the aggregation capacity of a reconstructed soil in a coal mining area in southern Brazil. Rev Bras Cienc Solo . 2014;38:327-35. doi:10.1590/S0100-06832014000100033
https://doi.org/10.1590/S0100-0683201400...
; Sena et al., 2015Sena K, Barton C, Hall S, Angel P, Agouridis C, Warner R. Influence of spoil type on afforestation success and natural vegetative recolonization on a surface coal mine in Appalachia, United States. Rest Ecol. 2015;23:131-8. doi:10.1111/rec.12164
https://doi.org/10.1111/rec.12164...
), as well as a decrease in the biodiversity of soil fauna (Oliveira Filho et al., 2014Oliveira Filho LCI, Baretta D, Santos JCP. Influência dos processos de recuperação do solo após mineração de carvão sobre a mesofauna edáfica em Lauro Müller, Santa Catarina, Brasil. Biotemas. 2014;27:69-77. doi:10.5007/2175-7925.2014v27n2p69
https://doi.org/10.5007/2175-7925.2014v2...
) and carbon losses due to mechanical mixing of soil horizons (A, B, and/or C) during the operations of removal, transport, and placement of the soil (Ussiri and Lal, 2005Ussiri DA, Lal R. Carbon sequestration in reclaimed minesoils. Crit Rev Plant Sci. 2005;24:151-65. doi:10.1080/07352680591002147
https://doi.org/10.1080/0735268059100214...
; Leal et al., 2015Leal OA, Castilhos RMV, Pauletto EA, Pinto LFS, Pillon CN, Penning LH, Santos DC. Organic matter fractions and quality of the surface layer of a constructed and vegetated soil after coal mining. II - Physical compartments and carbon management index. Rev Bras Cienc Solo . 2015;39:895-902. doi:10.1590/01000683rbcs20140784
https://doi.org/10.1590/01000683rbcs2014...
). In addition to these impacts, in mine waste piles derived from coal processing (usually enriched in pyrite), the process of soil aggregation and structuring by the root system of cover crops can promote input of oxygen and water and increase the development of acid mine drainage in the reclaimed area (Quiñones et al., 2008Quiñones ORG, Inda AV, Giasson E, Bissani CA, Dick DP. Características de solos construídos após mineração de carvão relacionada ao processo de construção e a composição do material utilizado. Cienc Rural . 2008;38:1564-71. doi:10.1590/S0103-84782008000600012
https://doi.org/10.1590/S0103-8478200800...
; Campaner and Luiz-Silva, 2009Campaner VP, Luiz-Silva W. Processos físico-químicos em drenagem ácida de mina em mineração de carvão no sul do Brasil. Quim Nova. 2009;32:146-52. doi:10.1590/S0100-40422009000100028
https://doi.org/10.1590/S0100-4042200900...
; Costa and Zocche, 2009Costa S, Zocche JJ. Fertilidade de solos construídos em áreas de mineração de carvão na região sul de Santa Catarina. Rev Árvore. 2009;33:665-74. doi:10.1590/S0100-67622009000400009
https://doi.org/10.1590/S0100-6762200900...
; Inda et al., 2010Inda AV, Quinõnes ORG, Giassoni E, Bissani CA, Dick DP, Nascimento PC. Atributos químicos relacionados ao processo de sulfurização em solos construídos após mineração de carvão. Cienc Rural. 2010;40:1060-7. doi:10.1590/S0103-84782010000500010
https://doi.org/10.1590/S0103-8478201000...
; Daniels and Zipper, 2010Daniels WL, Zipper CE. Creation and management of productive mine soils: Powell River Project. [internet] .Virginia: Virginia State University; 2010 [accessed on: 05 Nov 2015]. Available at: Available at: http://pubs.ext.vt.edu/460/460-121/460-121_pdf .
http://pubs.ext.vt.edu/460/460-121/460-1...
; Moura, 2014Moura AJ. Microrganismos endofíticos associados à planta de ambientes impactados e não impactados pela drenagem ácida de mina de carvão (DAM) [dissertação]. Florianópolis: Universidade Federal de Santa Catarina; 2014. )

Reclamation of a mined area should return a degraded ecosystem to a non-degraded condition, which may be different from the original environment (Ibama, 2011). In the case of constructed minesoils, recovery of the ecosystem occurs through revegetation by the addition of organic material and consequent improvements in soil physical, chemical, and biological properties, which should result in increased stability of aggregates and reduced erosion (Akala and Lal, 2001Akala VA, Lal R. Soil organic carbon pools and sequestration rates in reclaimed minesoils in Ohio. J Environ Qual. 2001;30:2098-104. doi:10.2134/jeq2001.2098
https://doi.org/10.2134/jeq2001.2098...
; Sourkova et al., 2005Sourkova M, Frouz J, Fettweis U, Bens OH, Santruckova H. Soil development and properties of microbial biomass succession in reclaimed post mining sites near Sokolov (Czech Republic) and near Cottbus (Germany). Geoderma. 2005;129:73-80. doi:10.1016/j.geoderma.2004.12.032
https://doi.org/10.1016/j.geoderma.2004....
; Onweremadu, 2007Onweremadu EU. Chronosequential pedon development on a mined landscape. J Am Sci. 2007;3:16-22.; Zhao et al., 2013Zhao Z, Shahrour I, Bai Z, Fan W, Feng L, Li H. Soils development in opencast coal mine spoils reclaimed for 1-13 years in the West-Northern Loess Plateau of China. Eur J Soil Biol. 2013;55:40-6. doi:10.1016/j.ejsobi.2012.08.006
https://doi.org/10.1016/j.ejsobi.2012.08...
; Mukhopadhyay et al., 2014Mukhopadhyay S, Maiti SK, Masto RE. Development of mine soil quality index (MSQI) for evaluation of reclamation success: A chronosequence study. Ecol Eng. 2014;71:10-20. doi:10.1016/j.ecoleng.2014.07.001
https://doi.org/10.1016/j.ecoleng.2014.0...
; Zhang et al., 2015Zhang L, Jinmanwang W, Bai Z, Chunjuan LV. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena. 2015;128:44-53. doi:10.1016/j.catena.2015.01.016
https://doi.org/10.1016/j.catena.2015.01...
). On the other hand, if soil properties are modified by the presence of plant roots (Gregory, 2006Gregory P. Plant roots: Growth, activity and interaction with soils. Oxford: Blackwell Publishing; 2006.) the quality of these properties can also influence their development (Lima et al., 2013Lima RP, León MJ, Silva AR. Compactação do solo de diferentes classes texturais em áreas de produção de cana-de-açúcar. Rev Ceres. 2013;60:16-20. doi:10.1590/S0034-737X2013000100003
https://doi.org/10.1590/S0034-737X201300...
).

The study of the root system of plants in the field is helpful to agronomic science because it quantifies the changes imposed on the soil physical environment through their growth and continuous renewal (Neves and Medina, 1999Neves CSVJ, Medina CC. Distribuição de raízes de citrus em Latossolo Roxo. In: Anais do Workshop sobre sistema radicular: Metodologias e estudo de casos; 1999; Aracaju. Aracaju: Embrapa-Tabuleiros Costeiros; 1999. p.153-66.; Lima et al., 2012Lima VMP, Oliveira GC, Serafim NE, Curi N, Evangelista AR. Intervalo hídrico ótimo como indicador de melhoria da qualidade estrutural em Latossolo degradado. Rev Bras Cienc Solo . 2012;36:71-8. doi:10.1590/S0100-06832012000100008
https://doi.org/10.1590/S0100-0683201200...
). However, studies addressing the potential for grass roots in changing the structural quality of minesoils are lacking.

Over the past 30 years, grasses of the Urochloa genus have achieved great economic importance in Brazil (Valle et al., 2009Valle CB, Jank L, Resende RMS. O melhoramento de forrageiras tropicais no Brasil. Rev Ceres . 2009;56:460-72.); when used in a crop-livestock integration system (Santos et al., 2015Santos FLS, Melo WRF, Coelho PHM, Benett CGS, Dotto MC. Crescimento inicial de espécies de Urochloa em função da profundidade de semeadura. Rev Agric Neotrop. 2015;2:1-6.), they promote soil structuring due to their abundant root system (Salton and Tomazi, 2014Salton JC, Tomazi M. Sistema radicular de plantas e qualidade do solo. Dourados: Embrapa Agropecuária Oeste; 2014. (Comunicado técnico, 198).; Marchini et al., 2015Marchini DC, Ling TGC, Alves MC, Crestana S, Souto Filho SN, Arruda OG. Matéria orgânica, infiltração e imagens tomográficas de Latossolo em recuperação sob diferentes tipos de manejo. Rev Bras Eng Agríc Amb. 2015;19:574-80. doi:10.1590/1807-1929/agriambi.v19n6p574-580
https://doi.org/10.1590/1807-1929/agriam...
).

Urochloa brizantha is a tropical perennial grass, with a stoloniferous, fasciculated, and fast-growing root system, adapted for clay to sandy loam textured soils, showing medium to low tolerance to drought and to lower fertility conditions, preferring soils with pH from 5 to 7.5 (Cook et al., 2012Cook BG, Pengelly BC, Brown SD, Donnelly JL, Eagles DA, Franco MA, Hanson J, Mullen BF, Patridge IJ, Peters M, Schultze-kraft R. Tropical Forages: an interactive selection tool. [internet]. 2012. [accessed on: 19 May 2016]. Available at: Available at: http://www. tropicalforages.info/ .
http://www. tropicalforages.info/...
). Urochloa humidicola is also a perennial plant with large leaf matter and long creeping stolons; it is considered the most stoloniferous among the Urochloas and provides excellent coverage for soil protection (Lorenzi, 2000Lorenzi H. Plantas daninhas do Brasil - terrestres, aquáticas, parasitas e tóxicas. 3a ed. Nova Odessa: Instituto Plantarum; 2000.). In the past 15 years, the Panicum genus of grasses has also achieved great economic importance in Brazil (Macedo et al., 2013Macedo MCM, Zimmer AH, Kichel NA, Almeida RG, Araujo AR. Degradação de pastagens, alternativas de recuperação e renovação, e formas de mitigação. In: Encontro de Adubação de Pastagens da Scot Consultoria. Ribeirão Preto: Scot Consultoria; 2013. p.158-81.). Panicum maximum cv. Tanzania grass has high forage production, with rapid establishment and regrowth because of its root system, and can be used as a promoter of improvement in soil structural quality at deeper layers (Bogdan, 1977Bogdan AV. Tropical pasture and fodder plants - grasses and legumes. London/New York: Longman Group; 1977.). These plants therefore have great potential for recovering areas degraded by mining.

The hypothesis is, due to their root system, perennial grasses are effective in the recovery of physical properties of soils degraded by mining. Therefore, the objective of this study was to quantify the root attributes of Urochloa humidicola, Panicum maximum, and Urochloa brizantha and relate them to the physical properties of a constructed minesoil in a coal mining area.

MATERIALS AND METHODS

Study area

The study was conducted in a field experiment in a coal mining area under concession of Riograndense Mining Company (Companhia Riograndense de Mineração - CRM), located in Candiota, RS, with geographical coordinates of 31° 33' 56" S and 53° 43' 30" W.

The main steps involved in (surface) strip mining of coal and subsequent topographic recomposition include: a) removal of the A, B, and/or C horizons of the original soil, which are transported by truck to cover the topographically leveled overburden piles; b) removal of overburden rocks through a high-capacity excavator (dragline); c) extraction of coal seams; d) deposition of the overburden rocks to fill the previous stripped area, which produces cone shaped piles that are leveled by bulldozers for topographic recomposition; and e) deposition of topsoil (natural soil A and/or B horizons removed in step a) to finish topographic restoration of the area, thus creating the "constructed" minesoil.

It is important to note that the coal is not processed in the Candiota Mine but is burned directly in its raw condition. Therefore, there is no generation of waste piles; contamination by pyrite in the constructed minesoil comes from pyrite-bearing rocks (sandstone and carboniferous shales) and unused low rank coal seams that are present in the overburden.

The soil in the study area was constructed in early 2003. A topsoil layer with average thickness of 0.40 m was placed on the overburden, with predominance of Argissolo Vermelho Eutrófico típico (Santos et al., 2013Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Oliveira JB, Coelho MR, Lumbreras JF, Cunha TJF. Sistema brasileiro de classificação de solos. 3a ed. Rio de Janeiro: Embrapa Solos ; 2013.), a Rodic Lixisol (WRB, 2014) in a B horizon with a clay textural class (Table 1).

Before setting up the experiment, the soil was chiseled with a bulldozer to a depth of approximately 0.15 m, because of severe compaction caused by intense movement of machinery (trucks loaded with about 20 Mg of topsoil and Caterpillar model D8T bulldozers with 38 Mg weight, 259 kW gross power, length and width of track on the ground of 3.20 and 0.56 m per shoe, respectively, and ground contact area of 3.6 m2). Afterwards, the area received dolomitic limestone equivalent to 10.4 Mg ha-1 effective calcium carbonate rating and 900 kg ha-1 NPK 5-20-20 fertilizer, based on results obtained from soil analysis.

The experiment was set up between September/October 2007 in 20 m2 plots in a randomized block design with four replications. The species analyzed in this study were Urochloa humidicola, Panicum maximum, and Urochloa brizantha. In order to evaluate the changes resulting from the soil construction and the approximate time of recovery of soil properties, a natural soil under native vegetation was used as reference, located near the excavated strip at the time (in 2010), whose properties were determined in a previous study by Reis et al. (2014Reis DA, Lima CLR, Pauletto EA. Resistência tênsil de agregados e compressibilidade de um solo construído com plantas de cobertura em área de mineração de carvão em Candiota, RS. Rev Bras Cienc Solo . 2014;38:669-78. doi:10.1590/S0100-06832014000200031
https://doi.org/10.1590/S0100-0683201400...
).

Table 1
Soil particle size in the 0.00-0.10, 0.10-0.20, and 0.20-0.30 m soil layers after 58 months of revegetation

Soil sampling and physical and chemical analysis

In July 2012 (about 5 years after experiment installation), 36 disturbed topsoil samples were collected in the 0.00-0.10, 0.10-0.20, and 0.20-0.30 m soil layers (four blocks × three treatments × one replication per plot × three layers) for determination of the distribution of water-stable aggregates expressed in different size classes and the mean weight diameter of water-stable aggregates (MWD), as well as for determination of soil chemical properties and organic carbon (OC) content. For the water-stable aggregates, part of the soil samples were placed on a wooden tray and air dried at room temperature in the shade until the moisture reached the friability point, at which time the soil was manually broken along the natural planes of weakness to obtain the natural aggregates, passed in a sieve with mesh size of 9.52 mm, and then air dried for two weeks. The other part, for chemical characterization, was air dried, ground, and passed in a sieve with mesh size of 2.00 mm.

The sample for water-stable aggregates was divided into four subsamples of about 50 g each, one was used to determine soil moisture content, and the other three were wet sieved, following the method described by Kemper and Rosenau (1986Kemper WD, Rosenau RC. Aggregate stability and size distribution. In: Klute A, editor. Methods of soil analysis. Wisconsin: American Society of Agronomy; 1986. Pt 1. p.425-42.), adapted by Palmeira et al. (1999Palmeira PRT, Pauletto EA, Teixeira CFA, Gomes AS, Silva JB. Agregação de um Planossolo submetido a diferentes sistemas de cultivo. Rev Bras Cienc Solo . 1999;23:189-95. doi:10.1590/S0100-06831999000200001
https://doi.org/10.1590/S0100-0683199900...
). The intervals of the aggregate classes were C1: 4.76-9.52 mm, C2: 2.00-4.76 mm, C3: 1.00-2.00 mm, C4: 0.25-1.00 mm, C5: 0.105-1.00 mm, and C6: <0.105 mm. From these, the aggregates were separated into macroaggregates (>0.25 mm) and microaggregates (<0.25 mm), according to Tisdall and Oades (1982Tisdall JM, Oades JM. Organic matter and water-stable aggregates in soil. Eur J Soil Sci. 1982;33:141-63. doi:10.1111/j.1365-2389.1982.tb01755.x
https://doi.org/10.1111/j.1365-2389.1982...
).

For chemical characterization and OC content, the following properties were determined: pH in water at the ratio of 1:1 (soil:water); Ca2+, Mg2+, and Al3+ extracted by 1 mol L-1 KCl and determined by atomic absorption spectrophotometer (Ca and Mg) and by titration with NaOH (Al); available K content was measured by the Mehlich-1 method and analyzed by flame photometry; and potential acidity (H+Al) as extracted by calcium acetate and determined by titration with NaOH. Based on the results of analysis, cation exchange capacity (CEC), base saturation (V), and aluminum saturation (m) were calculated according to Donagema et al. (2011Donagema GK, Campos DVB, Calderano SB, Teixeira WG, Viana JHM, organizadores. Manual de métodos de análise do solo. 2a ed. rev. Rio de Janeiro: Embrapa Solos; 2011.). Organic carbon (OC) was determined by the Walkley-Black combustion method according to Tedesco et al. (1995Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ. Análise de solo, plantas e outros materiais. 2a ed. Porto Alegre: UFRGS; 1995.).

Undisturbed topsoil samples (72) were collected in the 0.00-0.10, 0.10-0.20, and 0.20-0.30 m layers (four blocks × three treatments × two replications per plot × three layers) with stainless steel cylinders (0.050 m height and 0.047 m diameter) for determination of soil bulk density and porosity, according to Donagema et al. (2011Donagema GK, Campos DVB, Calderano SB, Teixeira WG, Viana JHM, organizadores. Manual de métodos de análise do solo. 2a ed. rev. Rio de Janeiro: Embrapa Solos; 2011.).

Through the equation BDcRest = 1.86 - 0.00071 clay, developed by Reichert et al. (2009Reichert JM, Suzuki LEAS, Reinert DJ, Horn R, Håkansson I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Till Res . 2009;102:242-54. doi:10.1016/j.still.2008.07.002
https://doi.org/10.1016/j.still.2008.07....
), the bulk density of the soil restrictive for root growth for the different layers under study was estimated.

Root sampling

Root sampling was performed in July 2012 by the monolith method (Böhm, 1979Böhm W. Methods of studying root systems. New York: Ecological Studies; 1979.), using a nail-board (0.40 m length × 0.30 m height × 0.035 m wide), for a total of 12 nail-boards (four replicates per treatment).

After collection, the monoliths were packed with plastic film and brought to the laboratory for washing and the root separation procedure. Washing consisted of soaking the plate for 24 h in 0.2 mol L-1 NaOH solution for soil dispersion and to facilitate cleaning the roots via running water or soft water jets to remove soil from the board. After the washing process, the roots along the board were separated by layers (from 0.00-0.10, 0.10-0.20, and 0.20-0.30 m), cut, and washed on a 1 mm sieve, stored in plastic bags, and refrigerated to a temperature of 2 °C. Subsequently, the roots were scanned on a HP Scanjet 3570C scanner for determination of root volume, length, area, and diameter through the SAFIRA Software. After scanning, the roots were dried at 65 °C for a period of 72 h to obtain dry root matter. The root density of each layer was calculated by the ratio of root dry matter to the soil volume.

Statistical data analysis

The data were analyzed to verify normal distribution and normality assumption of data using the Kolmogorov-Smirnov test. As the assumptions were met, the data were subjected to analysis of variance by the F test at a significance level of 5 %. When the treatment effect was significant, means were compared by the Tukey test (p<0.05). Statistical analyses were performed for each soil layer independently by means of Sigmaplot software (Sigmaplot, 2004).

Considering that the reference soil (natural soil under native vegetation) was not part of the experimental design, this treatment was not included in the statistical analysis.

RESULTS AND DISCUSSION

Chemical characterization of the constructed minesoil revegetated by grasses (Table 2) shows the effect of liming and fertilization in 2003, mainly in the 0.00-0.10 m layer. According to CQFSRS/SC (2004), the pH is above the reference value for summer perennial grasses (pH>5.5), the Ca2+ and Mg2+ contents are high (>4.0 cmolc kg-1 and >1.0 cmolc kg-1, respectively), K content is high (61-120 mg kg-1) to very high (>120 mg kg-1), base saturation is high (V >80 %), and Al saturation is very low (m <1%) to low (1-10 %) in the 0.00-0.10 m layer. In the 0.10-0.20 m soil layer, pH is close to the reference value, the Ca and Mg levels are high, the K content is average (41-60 mg kg-1) to high (61-120 mg kg-1), base saturation is low (45-64 %) to medium (65-80 %), and aluminum saturation is average (10.1 to 20 %) to high (>20 %). However, the chemical condition in the 0.20-0.30 m soil layer (low pH, low base saturation, and high Al saturation) indicates that not only did the incorporation of lime not reach this layer but that there is also the possible occurrence of acid mine drainage in a few replications of the collected monoliths, which reached the overburden layer (Table 3).

In general, the chemical conditions of the constructed minesoil are adequate for root growth to a depth of 0.20 m (Table 2); however, all the evaluated grasses showed reductions in their root attributes below the 0.00-0.10 m layer (Table 4).

Rooting depth is an important indicator of soil quality (Libardi and Jong van Lier, 1999Libardi LL, Jong van Lier Q. Atuação dos fatores físicos do solo no desenvolvimento do sistema radicular. In: Anais do Workshop sobre Sistema Radicular: Metodologias e Estudo de Casos; 1999; Aracaju. Aracaju: Embrapa-TabuleirosCosteiros; 1999. p.47-56.) and the global average of rooting of grasses is 44 % root mass concentrated in the

Table 2
Chemical characterization of the constructed minesoil revegetated with grasses in the 0.00-0.10, 0.10-0.20, and 0.20-0.30 m layers, after 58 months

0-00-0.10 m layer and 75 % in the 0.00-0.30 m layer (Jackson et al., 1996Jackson RB, Canadel J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. A global analysis of root distributions for terrestrial biomes. Oceologia. 1996;108:389-411. doi:10.1007/BF00333714
https://doi.org/10.1007/BF00333714...
; Peek et al., 2005Peek MS, Leffler AJ, Ivans CY, Ryel RJ, Caldwell MM. Fine root distribution and persistence under field conditions of three co-occurring Great Basin species of different life form. New Phytol. 2005;165:171-80. doi:10.1111/j.1469-8137.2004.01186.x
https://doi.org/10.1111/j.1469-8137.2004...
). In the present study, the root mass (RM) concentration ranged from 66 to 81 % in the 0.00-0.10 m layer, decreasing to 13-28 % in the 0.10-0.20 m layer, and from 6 to 10 % in the 0.20-0.30 m layer, after 58 months of revegetation (Table 4). Therefore, the values of root growth observed in the constructed minesoil under study are not simply expressing a feature of the roots of most grasses, but are indicating the inadequate physical conditions below the 0.00-0.10 m layer, as shown by the values of macroporosity (Ma) (<0.10 m3 m-3) and bulk density (BD) (>1.40 Mg m-3) (Table 5), considered restrictive to root development for most crops in clay soils (Reichert et al., 2003Reichert JM, Reinert JD, Braida JA. Qualidade dos solos e sustentabilidade dos sistemas agrícolas. Cienc Amb. 2003;27:29-48.; Girardelo et al., 2011Girardelo VC, Amado TJC, Nicoloso RS, Hörbe TAN, Ferreira AO, Tabaldi FM, Lanzanova ME. Alterações nos atributos físicos de um Latossolo Vermelho sob plantio direto induzidas por diferentes tipos de escarificadores e o rendimento da soja. Rev Bras Cienc Solo . 2011;35:2115-26. doi:10.1590/S0100-06832011000600026
https://doi.org/10.1590/S0100-0683201100...
; Baquero et al., 2012Baquero JE, Ralisch R, Medina CC, Tavares Filho J, Guimarães MF. Soil physical properties and sugarcane root growth in a red Oxissol. Rev Bras Cienc Solo. 2012;36:63-70. doi:10.1590/S0100-06832012000100007
https://doi.org/10.1590/S0100-0683201200...
).

In compacted soils, soil BD increases and Ma decreases (Reichert et al., 2007Reichert JM, Suzuki LEAS, Reinert DJ. Compactação do solo em sistemas agropecuários e florestais: identificação, efeitos, limites críticos e mitigação. Tópicos Cienc Solo. 2007;5:49-134.), directly influencing root growth (Silva et al., 2014Silva FR, Albuquerque JA, Costa A. Crescimento inicial da cultura da soja em Latossolo Bruno com diferentes graus de compactação. Rev Bras Cienc Solo . 2014;38:1731-9. doi:10.1590/S0100-06832014000600008
https://doi.org/10.1590/S0100-0683201400...
). In this study, the presence of a compacted layer, and its consequent influence on reducing the root growth of the species, is apparent when analyzing the restrictive density to the roots (BDcRest) in the different layers of the constructed minesoil (Table 6).

The soil BD exhibited by the different treatments of species ranged from 1.28 to 1.37 Mg m-3 in the 0.00-0.10 m layer (Table 5), thus less than BDcRest (Table 6) calculated by the Reichert et al. (2009Reichert JM, Suzuki LEAS, Reinert DJ, Horn R, Håkansson I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Till Res . 2009;102:242-54. doi:10.1016/j.still.2008.07.002
https://doi.org/10.1016/j.still.2008.07....
) equation. In contrast, in the 0.10-0.20 and 0.20-0.30 m layers, the BDcRest were equal to or lower than the BD exhibited by the soil in the different treatments after 58 months of revegetation, except for the U. brizantha treatment, which exhibited BD of 1.52 Mg m-3 in the 0.10-0.20 m layer and 1.42 Mg m-3 in the 0.20-0.30 m layer (Table 5).

Table 3
Thickness of the topsoil layer and presence of overburden in the different blocks and treatments to a soil depth of 0.30 m

Table 4
Root density (RD), root volume (RV), root length (RL), and mean root diameter (MRD) of the three grasses in the 0.00-0.10, 0.10-0.20, and 0.20-0.30 m layers of the constructed minesoil after 58 months of the experiment
Table 5
Macro- and microaggregates, soil bulk density (BD), macroporosity (Ma), and organic carbon (OC) in the 0.00-0.10, 0.10-0.20, and 0.20-0.30 m layers of the constructed minesoil 58 months after revegetation, and their differences in comparison to the reference soil (natural soil under native vegetation)

Table 6
Estimated critical values of soil bulk density for root growth (BDc Rest) for the 0.00-0.10, 0.10-0.20, and 0.20-0.30 m layers of the constructed mine soil revegetated by grasses using the equation of Reichert et al. (2009Bogdan AV. Tropical pasture and fodder plants - grasses and legumes. London/New York: Longman Group; 1977.)

In addition to reduction of root growth in species, and higher soil BD and lower soil Ma, in general, a higher percentage of macroaggregates is observed in the 0.10-0.20 m layer than in the 0.00-0,10 m soil layer (Table 5). The highest percentage of macroaggregates refers to large, cohesive, and sharp-edged aggregates present in the 0.10-0.20 m layer, whereas aggregates in the 0.00-0.10 m layer were less cohesive and more round-shaped, as perceived by visual observation and manipulation of aggregates during sample preparation, corresponding to "anthropogenic" and "pedogenic" aggregates, respectively, according to Reichert et al. (2016Reichert JM, Rosa VT, Vogelmann ES, Rosa DP, Horn R, Reinert DJ, Sattler A, Denardin JE. Conceptual framework for capacity and intensity physical soil properties affected by short and long-term (14 years) continuous no-tillage and controlled traffic S. Soil Till Res. 2016;158:123-36. doi:10.1016/j.still.2015.11.010
https://doi.org/10.1016/j.still.2015.11....
).

Greater soil aggregate cohesion, due to agricultural mechanization, was observed by Silva and Mielniczuk (1998Silva IF, Mielniczuk J. Sistemas de cultivo e características do solo afetando a estabilidade de agregados. Rev Bras Cienc Solo . 1998;22:311-17. doi:10.1590/S0100-06831998000200017
https://doi.org/10.1590/S0100-0683199800...
). In the constructed minesoil, the aggregation results are likely also derived from soil particle cohesion, due to intense machine traffic carried out in soil construction, as already discussed by Stumpf et al. (2014Stumpf L, Pauletto EA, Fernandes FF, Suzuki LEAS, Silva TS, Pinto LFS, Lima CLR. Perennial grasses for recovery of the aggregation capacity of a reconstructed soil in a coal mining area in southern Brazil. Rev Bras Cienc Solo . 2014;38:327-35. doi:10.1590/S0100-06832014000100033
https://doi.org/10.1590/S0100-0683201400...
). This type of condition was also reported in minesoils by Sencindiver and Ammons (2000Sencindiver JC, Ammons JT. Minesoil genesis and classification. In: Barnhisel RI, Daniels WL, Darmody RG, editors. Reclamation of drastically disturbed lands. Madison: American Society Agronomy; 2000. p.12-85. ) and in agricultural soils by Voorhees (1983Voorhees WB. Relative effectiveness of tillage and natural forces in alleviating wheel-induced soil compaction. Soil Sci Soc Am J. 1983;47:129-33. doi:10.2136/sssaj1983.03615995004700010026x
https://doi.org/10.2136/sssaj1983.036159...
), Carpenedo and Mielniczuk (1990Carpenedo V, Mielniczuck J. Estado de agregação e qualidade de agregados de Latossolos Roxos submetidos a diferentes sistemas de manejo. Rev Bras Cienc Solo . 1990;14:99-105.), Topp et al. (1997Topp GC, Reynolds WD, Cokk FJ, Kirby JM, Carter MR. Physical attributes of soil quality. In: Gregorich EG, Carter MR, editors. Soil quality for crop production and ecosystem health. New York: Elsevier; 1997. p.21-58.), Bergamin et al. (2010Bergamin AC, Vitorino ACT, Franchini JC, Souza CMA, Souza FR. Compactação em um Latossolo Vermelho distroférrico e suas relações com o crescimento radicular do milho. Rev Bras Cienc Solo . 2010;34:681-91. doi:10.1590/S0100-06832010000300009
https://doi.org/10.1590/S0100-0683201000...
), and Conte et al. (2011Conte O, Wesp CL, Anghinoni I, Carvalho PCF, Levien R, Nabinger C. Densidade, agregação e frações de carbono de um Argissolo sob pastagem natural submetida a níveis de ofertas de forragem por longo tempo. Rev Bras Cienc Solo . 2011;35:579-87. doi:10.1590/S0100-06832011000200027
https://doi.org/10.1590/S0100-0683201100...
).The soil used in recomposition of the mined area can reach its final construction stage in varying degrees of disintegration and compaction (Akala and Lal, 2001Akala VA, Lal R. Soil organic carbon pools and sequestration rates in reclaimed minesoils in Ohio. J Environ Qual. 2001;30:2098-104. doi:10.2134/jeq2001.2098
https://doi.org/10.2134/jeq2001.2098...
), and the use of machines at soil moisture close to the plastic limit is the main factor that causes compaction, since water reduces cohesion and acts as a lubricant between soil particles, allowing sliding and packing of particles when the soil is subjected to some sort of pressure (Luciano et al., 2012Luciano RV, Albuquerque JA, Costa AD, Batistella B, Warmling MT. Physical attributes related to soil compaction under native vegetation of Southern Brazil. Rev Bras Cienc Solo . 2012;36:1733-44. doi:10.1590/S0100-06832012000600007
https://doi.org/10.1590/S0100-0683201200...
).

For their part, lower BD and higher Ma, as well as the lower proportion of large cohesive aggregates observed in the 0.00-0.10 m layer, represent a beneficial outcome for the soil under study because they come from the more extensive root growth of the species in this layer (Table 4), breaking the cohesive aggregates and possibly assisting in the formation of crumby aggregates (of chemical and biological origin). Materechera et al. (1992Materechera S, Dexter AR, Alston AM. Formation of aggregates by plant roots in homogenised soils. Plant Soil. 1992;142:69-79. doi:10.1007/BF00010176
https://doi.org/10.1007/BF00010176...
) also observed a lower proportion of large aggregates in agricultural clay soils cultivated with Lolium multiflorum compared to Triticum spp and Pisum sativum, attributing this result to the greater root length of Lolium multiflorum. The root system of grasses can lead to the change of more compact aggregates into less compact aggregates (Portella et al., 2012Portella CMR, Guimarães MF, Feller C, Fonseca ICB, Tavares Filho J. Soil aggregation under different management systems. Rev Bras Cienc Solo . 2012;36:1868-77. doi:10.1590/S0100-06832012000600021
https://doi.org/10.1590/S0100-0683201200...
) by breaking the aggregates and then reshaping them (Terpstra, 1990Terpstra R. Formation of new aggregates and weed seed behaviour in a coarse- and in a fine-textured loam soil: A laboratory experiment. Soil Till Res . 1990;15:285-96. doi:10.1016/0167-1987(90)90085-R
https://doi.org/10.1016/0167-1987(90)900...
) or by stresses generated in the soil-root interface during water extraction, which cause cracks in the soil (Ball et al., 2005Ball BC, Bingham I, Rees RM, Watson CA, Litterick A. The role of crop rotations in determining soil structure and crop growth conditions. Can J Soil Sci. 2005;85:557-77. doi:10.4141/S04-078
https://doi.org/10.4141/S04-078...
).

A high concentration of roots in a given soil layer also produces greater amounts of OC, influencing reduction in BD and increasing soil porosity (Baquero et al., 2012Baquero JE, Ralisch R, Medina CC, Tavares Filho J, Guimarães MF. Soil physical properties and sugarcane root growth in a red Oxissol. Rev Bras Cienc Solo. 2012;36:63-70. doi:10.1590/S0100-06832012000100007
https://doi.org/10.1590/S0100-0683201200...
; Matias et al., 2012Matias SS, Correia MA, Camargo LA, De Farias MT, Centurion JF, Nóbrega JC. Influência de diferentes sistemas de cultivo nos atributos físicos e no carbono orgânico do solo. Rev Bras Cienc Agrar. 2012;7:414-20. doi:10.5039/agraria.v7i3a1462
https://doi.org/10.5039/agraria.v7i3a146...
.). However, higher OC intake shown by U. brizantha in the 0.00-0.10 m soil layer (Table 5) might not be the predominant factor in the formation of smaller and less cohesive aggregates in this layer because the OC levels are still very low. Rather, the aggregation observed is probably due to the higher proportion of roots of this species (Table 4) and its greater physical performance in the surface layer of the constructed minesoil.

Reclamation of degraded areas does not necessarily mean restoring the soil to the previous natural conditions (Mukhopadhyay et al., 2013Mukhopadhyay S, Maiti SK, Masto RE. Use of Reclaimed Mine Soil Index (RMSI) for screening of tree species for reclamation of coal mine degraded land. Ecol Eng . 2013;57:133-42. doi:10.1016/j.ecoleng.2013.04.017
https://doi.org/10.1016/j.ecoleng.2013.0...
) and, in the case of areas impacted by coal mining, the recovery of soil physical properties tends to be slow, as shown by differences between treatments and the undisturbed natural soil (Reference Soil), especially in subsurface layers (Table 5). Even after 58 months of revegetation, it can be observed that the BD in the 0.00-0.10 m layer of the constructed soil is 7 to 14 % higher and the OC content is 45 to 60 % lower than in the reference soil surface layer.

Degradation of the physical properties of the constructed minesoil compared to the reference soil, especially in the subsurface (0.10-0.20 m) layer, becomes evident through the higher BD (29 to 31 %) and lower Ma (42-60 %) and OC content (30-50 %). In addition, the percentage of macroaggregates (formed by compressive action of machine traffic) was 9-18 % higher compared to the natural soil under native vegetation (Table 5). However, it is expected that an improvement in the physical properties of the constructed minesoil will occur over the years, as found by Wick and Daniels (2009Wick AF, Ingram LJ, Stahl PD. Aggregate and organic matter dynamics in reclaimed soils as indicated by stable carbon isotopes. Soil Biol Biochem. 2009;41:201-9. doi:10.1016/j.soilbio.2008.09.012
https://doi.org/10.1016/j.soilbio.2008.0...
), who observed aggregate distribution in a minesoil similar to the natural soil 16-20 years after surface coal mining.

In this regard, Reichert et al. (2016Reichert JM, Rosa VT, Vogelmann ES, Rosa DP, Horn R, Reinert DJ, Sattler A, Denardin JE. Conceptual framework for capacity and intensity physical soil properties affected by short and long-term (14 years) continuous no-tillage and controlled traffic S. Soil Till Res. 2016;158:123-36. doi:10.1016/j.still.2015.11.010
https://doi.org/10.1016/j.still.2015.11....
) made a thermodynamic approach to the development of the physical properties of an agricultural system 14 years after adoption of no-till, noting that withdrawal of the disruption caused by soil mobilization under conventional tillage would lead the system to a decrease in entropy production, with changes in the soil structure from initial "anthropogenic" aggregates, prismatic type, to "pedogenic" aggregates, which, ultimately, reaching a state of dynamic equilibrium, would become crumby due to biological action. Similarly, revegetation of the constructed minesoil and growth of its root system, with input of organic matter, restoring flows of matter and energy captured by photosynthesis, would lead the system to a similar situation, with declining entropy production and changes in the state of soil aggregation. Considering the extreme degree of disturbance caused by mining, however, a longer time can be expected to reach a steady state similar to the undisturbed system.

CONCLUSIONS

The results confirm the hypothesis that the grass root system recovers the physical properties of the 0.00-0.10 m layer of constructed minesoil after 58 months of revegetation.

The higher percentage of large aggregates, higher bulk density, and lower macroporosity below the 0.00-0.10 m soil layer indicates the presence of a degraded layer, negatively influencing grass root system development.

The Urochloa brizantha species showed the highest root mass in the surface layer, influencing the breakdown of large and cohesive aggregates and allowing their change into smaller crumby aggregates.

In the 0.10-0.20 m layer of the constructed minesoil, Urochloa humidicola exhibited the highest volume and root length; nevertheless, changes in soil physical properties were not observed, indicating that the revegetation time was not enough to provide improvements below the surface layer.

ACKNOWLEDGMENTS

Our thanks to the Companhia Riograndense de Mineração (CRM), CNPq - RedeCarvão, CAPES, and CNPq for logistical and/or financial support.

REFERENCES

  • Akala VA, Lal R. Soil organic carbon pools and sequestration rates in reclaimed minesoils in Ohio. J Environ Qual. 2001;30:2098-104. doi:10.2134/jeq2001.2098
    » https://doi.org/10.2134/jeq2001.2098
  • Ball BC, Bingham I, Rees RM, Watson CA, Litterick A. The role of crop rotations in determining soil structure and crop growth conditions. Can J Soil Sci. 2005;85:557-77. doi:10.4141/S04-078
    » https://doi.org/10.4141/S04-078
  • Baquero JE, Ralisch R, Medina CC, Tavares Filho J, Guimarães MF. Soil physical properties and sugarcane root growth in a red Oxissol. Rev Bras Cienc Solo. 2012;36:63-70. doi:10.1590/S0100-06832012000100007
    » https://doi.org/10.1590/S0100-06832012000100007
  • Bergamin AC, Vitorino ACT, Franchini JC, Souza CMA, Souza FR. Compactação em um Latossolo Vermelho distroférrico e suas relações com o crescimento radicular do milho. Rev Bras Cienc Solo . 2010;34:681-91. doi:10.1590/S0100-06832010000300009
    » https://doi.org/10.1590/S0100-06832010000300009
  • Bogdan AV. Tropical pasture and fodder plants - grasses and legumes. London/New York: Longman Group; 1977.
  • Böhm W. Methods of studying root systems. New York: Ecological Studies; 1979.
  • Borůvka L, Kozák J, Mühlhanselová M, Donátová H, Nikodem A, Němeček K. Effect of covering with natural topsoil as a reclamation measure on brown-coal mining dumpsites. J Geochem Explor. 2012;113:118-23. doi:10.1016/j.gexplo.2011.11.004
    » https://doi.org/10.1016/j.gexplo.2011.11.004
  • Campaner VP, Luiz-Silva W. Processos físico-químicos em drenagem ácida de mina em mineração de carvão no sul do Brasil. Quim Nova. 2009;32:146-52. doi:10.1590/S0100-40422009000100028
    » https://doi.org/10.1590/S0100-40422009000100028
  • Carpenedo V, Mielniczuck J. Estado de agregação e qualidade de agregados de Latossolos Roxos submetidos a diferentes sistemas de manejo. Rev Bras Cienc Solo . 1990;14:99-105.
  • Comissão de Química e Fertilidade do Solo - CQFSRS/SC. Manual de adubação e calagem para os estados do Rio Grande do Sul e de Santa Catarina. Porto Alegre: Sociedade Brasileira de Ciência do Solo - Núcleo Região Sul; 2004.
  • Conte O, Wesp CL, Anghinoni I, Carvalho PCF, Levien R, Nabinger C. Densidade, agregação e frações de carbono de um Argissolo sob pastagem natural submetida a níveis de ofertas de forragem por longo tempo. Rev Bras Cienc Solo . 2011;35:579-87. doi:10.1590/S0100-06832011000200027
    » https://doi.org/10.1590/S0100-06832011000200027
  • Cook BG, Pengelly BC, Brown SD, Donnelly JL, Eagles DA, Franco MA, Hanson J, Mullen BF, Patridge IJ, Peters M, Schultze-kraft R. Tropical Forages: an interactive selection tool. [internet]. 2012. [accessed on: 19 May 2016]. Available at: Available at: http://www. tropicalforages.info/
    » http://www. tropicalforages.info/
  • Costa S, Zocche JJ. Fertilidade de solos construídos em áreas de mineração de carvão na região sul de Santa Catarina. Rev Árvore. 2009;33:665-74. doi:10.1590/S0100-67622009000400009
    » https://doi.org/10.1590/S0100-67622009000400009
  • Daniels WL, Zipper CE. Creation and management of productive mine soils: Powell River Project. [internet] .Virginia: Virginia State University; 2010 [accessed on: 05 Nov 2015]. Available at: Available at: http://pubs.ext.vt.edu/460/460-121/460-121_pdf
    » http://pubs.ext.vt.edu/460/460-121/460-121_pdf
  • Donagema GK, Campos DVB, Calderano SB, Teixeira WG, Viana JHM, organizadores. Manual de métodos de análise do solo. 2a ed. rev. Rio de Janeiro: Embrapa Solos; 2011.
  • Girardelo VC, Amado TJC, Nicoloso RS, Hörbe TAN, Ferreira AO, Tabaldi FM, Lanzanova ME. Alterações nos atributos físicos de um Latossolo Vermelho sob plantio direto induzidas por diferentes tipos de escarificadores e o rendimento da soja. Rev Bras Cienc Solo . 2011;35:2115-26. doi:10.1590/S0100-06832011000600026
    » https://doi.org/10.1590/S0100-06832011000600026
  • Gregory P. Plant roots: Growth, activity and interaction with soils. Oxford: Blackwell Publishing; 2006.
  • Inda AV, Quinõnes ORG, Giassoni E, Bissani CA, Dick DP, Nascimento PC. Atributos químicos relacionados ao processo de sulfurização em solos construídos após mineração de carvão. Cienc Rural. 2010;40:1060-7. doi:10.1590/S0103-84782010000500010
    » https://doi.org/10.1590/S0103-84782010000500010
  • Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis - Ibama. Instrução Normativa n° 4, de 13 de abril de 2011. 2. [acessado em: 19 maio 2016]. Disponível em: Disponível em: http://www.bdlaw.com/assets/htmldocuments/IBAMA%20Normative%20Instruction%204%20 of%202011.pdf
    » http://www.bdlaw.com/assets/htmldocuments/IBAMA%20Normative%20Instruction%204%20 of%202011.pdf
  • Jackson RB, Canadel J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. A global analysis of root distributions for terrestrial biomes. Oceologia. 1996;108:389-411. doi:10.1007/BF00333714
    » https://doi.org/10.1007/BF00333714
  • Kemper WD, Rosenau RC. Aggregate stability and size distribution. In: Klute A, editor. Methods of soil analysis. Wisconsin: American Society of Agronomy; 1986. Pt 1. p.425-42.
  • Leal OA, Castilhos RMV, Pauletto EA, Pinto LFS, Pillon CN, Penning LH, Santos DC. Organic matter fractions and quality of the surface layer of a constructed and vegetated soil after coal mining. II - Physical compartments and carbon management index. Rev Bras Cienc Solo . 2015;39:895-902. doi:10.1590/01000683rbcs20140784
    » https://doi.org/10.1590/01000683rbcs20140784
  • Libardi LL, Jong van Lier Q. Atuação dos fatores físicos do solo no desenvolvimento do sistema radicular. In: Anais do Workshop sobre Sistema Radicular: Metodologias e Estudo de Casos; 1999; Aracaju. Aracaju: Embrapa-TabuleirosCosteiros; 1999. p.47-56.
  • Lima RP, León MJ, Silva AR. Compactação do solo de diferentes classes texturais em áreas de produção de cana-de-açúcar. Rev Ceres. 2013;60:16-20. doi:10.1590/S0034-737X2013000100003
    » https://doi.org/10.1590/S0034-737X2013000100003
  • Lima VMP, Oliveira GC, Serafim NE, Curi N, Evangelista AR. Intervalo hídrico ótimo como indicador de melhoria da qualidade estrutural em Latossolo degradado. Rev Bras Cienc Solo . 2012;36:71-8. doi:10.1590/S0100-06832012000100008
    » https://doi.org/10.1590/S0100-06832012000100008
  • Lorenzi H. Plantas daninhas do Brasil - terrestres, aquáticas, parasitas e tóxicas. 3a ed. Nova Odessa: Instituto Plantarum; 2000.
  • Luciano RV, Albuquerque JA, Costa AD, Batistella B, Warmling MT. Physical attributes related to soil compaction under native vegetation of Southern Brazil. Rev Bras Cienc Solo . 2012;36:1733-44. doi:10.1590/S0100-06832012000600007
    » https://doi.org/10.1590/S0100-06832012000600007
  • Lunardi Neto A, Albuquerque JA, De Almeida JA, Mafra ÁL, Medeiros JC, Alberton A. Atributos físicos do solo em área de mineração de carvão influenciados pela correção da acidez, adubação orgânica e revegetação. Rev Bras Cienc Solo . 2008;32:1379-88. doi:10.1590/S0100-06832008000400002
    » https://doi.org/10.1590/S0100-06832008000400002
  • Macedo MCM, Zimmer AH, Kichel NA, Almeida RG, Araujo AR. Degradação de pastagens, alternativas de recuperação e renovação, e formas de mitigação. In: Encontro de Adubação de Pastagens da Scot Consultoria. Ribeirão Preto: Scot Consultoria; 2013. p.158-81.
  • Marchini DC, Ling TGC, Alves MC, Crestana S, Souto Filho SN, Arruda OG. Matéria orgânica, infiltração e imagens tomográficas de Latossolo em recuperação sob diferentes tipos de manejo. Rev Bras Eng Agríc Amb. 2015;19:574-80. doi:10.1590/1807-1929/agriambi.v19n6p574-580
    » https://doi.org/10.1590/1807-1929/agriambi.v19n6p574-580
  • Materechera S, Dexter AR, Alston AM. Formation of aggregates by plant roots in homogenised soils. Plant Soil. 1992;142:69-79. doi:10.1007/BF00010176
    » https://doi.org/10.1007/BF00010176
  • Matias SS, Correia MA, Camargo LA, De Farias MT, Centurion JF, Nóbrega JC. Influência de diferentes sistemas de cultivo nos atributos físicos e no carbono orgânico do solo. Rev Bras Cienc Agrar. 2012;7:414-20. doi:10.5039/agraria.v7i3a1462
    » https://doi.org/10.5039/agraria.v7i3a1462
  • Moura AJ. Microrganismos endofíticos associados à planta de ambientes impactados e não impactados pela drenagem ácida de mina de carvão (DAM) [dissertação]. Florianópolis: Universidade Federal de Santa Catarina; 2014.
  • Mukhopadhyay S, Maiti SK, Masto RE. Development of mine soil quality index (MSQI) for evaluation of reclamation success: A chronosequence study. Ecol Eng. 2014;71:10-20. doi:10.1016/j.ecoleng.2014.07.001
    » https://doi.org/10.1016/j.ecoleng.2014.07.001
  • Mukhopadhyay S, Maiti SK, Masto RE. Use of Reclaimed Mine Soil Index (RMSI) for screening of tree species for reclamation of coal mine degraded land. Ecol Eng . 2013;57:133-42. doi:10.1016/j.ecoleng.2013.04.017
    » https://doi.org/10.1016/j.ecoleng.2013.04.017
  • Neves CSVJ, Medina CC. Distribuição de raízes de citrus em Latossolo Roxo. In: Anais do Workshop sobre sistema radicular: Metodologias e estudo de casos; 1999; Aracaju. Aracaju: Embrapa-Tabuleiros Costeiros; 1999. p.153-66.
  • Oliveira Filho LCI, Baretta D, Santos JCP. Influência dos processos de recuperação do solo após mineração de carvão sobre a mesofauna edáfica em Lauro Müller, Santa Catarina, Brasil. Biotemas. 2014;27:69-77. doi:10.5007/2175-7925.2014v27n2p69
    » https://doi.org/10.5007/2175-7925.2014v27n2p69
  • Onweremadu EU. Chronosequential pedon development on a mined landscape. J Am Sci. 2007;3:16-22.
  • Palmeira PRT, Pauletto EA, Teixeira CFA, Gomes AS, Silva JB. Agregação de um Planossolo submetido a diferentes sistemas de cultivo. Rev Bras Cienc Solo . 1999;23:189-95. doi:10.1590/S0100-06831999000200001
    » https://doi.org/10.1590/S0100-06831999000200001
  • Peek MS, Leffler AJ, Ivans CY, Ryel RJ, Caldwell MM. Fine root distribution and persistence under field conditions of three co-occurring Great Basin species of different life form. New Phytol. 2005;165:171-80. doi:10.1111/j.1469-8137.2004.01186.x
    » https://doi.org/10.1111/j.1469-8137.2004.01186.x
  • Portella CMR, Guimarães MF, Feller C, Fonseca ICB, Tavares Filho J. Soil aggregation under different management systems. Rev Bras Cienc Solo . 2012;36:1868-77. doi:10.1590/S0100-06832012000600021
    » https://doi.org/10.1590/S0100-06832012000600021
  • Quiñones ORG, Inda AV, Giasson E, Bissani CA, Dick DP. Características de solos construídos após mineração de carvão relacionada ao processo de construção e a composição do material utilizado. Cienc Rural . 2008;38:1564-71. doi:10.1590/S0103-84782008000600012
    » https://doi.org/10.1590/S0103-84782008000600012
  • Reichert JM, Reinert JD, Braida JA. Qualidade dos solos e sustentabilidade dos sistemas agrícolas. Cienc Amb. 2003;27:29-48.
  • Reichert JM, Rosa VT, Vogelmann ES, Rosa DP, Horn R, Reinert DJ, Sattler A, Denardin JE. Conceptual framework for capacity and intensity physical soil properties affected by short and long-term (14 years) continuous no-tillage and controlled traffic S. Soil Till Res. 2016;158:123-36. doi:10.1016/j.still.2015.11.010
    » https://doi.org/10.1016/j.still.2015.11.010
  • Reichert JM, Suzuki LEAS, Reinert DJ, Horn R, Håkansson I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Till Res . 2009;102:242-54. doi:10.1016/j.still.2008.07.002
    » https://doi.org/10.1016/j.still.2008.07.002
  • Reichert JM, Suzuki LEAS, Reinert DJ. Compactação do solo em sistemas agropecuários e florestais: identificação, efeitos, limites críticos e mitigação. Tópicos Cienc Solo. 2007;5:49-134.
  • Reis DA, Lima CLR, Pauletto EA. Resistência tênsil de agregados e compressibilidade de um solo construído com plantas de cobertura em área de mineração de carvão em Candiota, RS. Rev Bras Cienc Solo . 2014;38:669-78. doi:10.1590/S0100-06832014000200031
    » https://doi.org/10.1590/S0100-06832014000200031
  • Salton JC, Tomazi M. Sistema radicular de plantas e qualidade do solo. Dourados: Embrapa Agropecuária Oeste; 2014. (Comunicado técnico, 198).
  • Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Oliveira JB, Coelho MR, Lumbreras JF, Cunha TJF. Sistema brasileiro de classificação de solos. 3a ed. Rio de Janeiro: Embrapa Solos ; 2013.
  • Santos FLS, Melo WRF, Coelho PHM, Benett CGS, Dotto MC. Crescimento inicial de espécies de Urochloa em função da profundidade de semeadura. Rev Agric Neotrop. 2015;2:1-6.
  • Sena K, Barton C, Hall S, Angel P, Agouridis C, Warner R. Influence of spoil type on afforestation success and natural vegetative recolonization on a surface coal mine in Appalachia, United States. Rest Ecol. 2015;23:131-8. doi:10.1111/rec.12164
    » https://doi.org/10.1111/rec.12164
  • Sencindiver JC, Ammons JT. Minesoil genesis and classification. In: Barnhisel RI, Daniels WL, Darmody RG, editors. Reclamation of drastically disturbed lands. Madison: American Society Agronomy; 2000. p.12-85.
  • Sheoran V, Sheoran AS, Poonia P. Soil reclamation of abandoned mine land by revegetation: a review. Int J Soil Sedim Water. 2010;3:2-13.
  • Sigmaplot. For windows, version 9.01. San Jose: Systat Software; 2004.
  • Silva FR, Albuquerque JA, Costa A. Crescimento inicial da cultura da soja em Latossolo Bruno com diferentes graus de compactação. Rev Bras Cienc Solo . 2014;38:1731-9. doi:10.1590/S0100-06832014000600008
    » https://doi.org/10.1590/S0100-06832014000600008
  • Silva IF, Mielniczuk J. Sistemas de cultivo e características do solo afetando a estabilidade de agregados. Rev Bras Cienc Solo . 1998;22:311-17. doi:10.1590/S0100-06831998000200017
    » https://doi.org/10.1590/S0100-06831998000200017
  • Sourkova M, Frouz J, Fettweis U, Bens OH, Santruckova H. Soil development and properties of microbial biomass succession in reclaimed post mining sites near Sokolov (Czech Republic) and near Cottbus (Germany). Geoderma. 2005;129:73-80. doi:10.1016/j.geoderma.2004.12.032
    » https://doi.org/10.1016/j.geoderma.2004.12.032
  • Stumpf L, Pauletto EA, Fernandes FF, Suzuki LEAS, Silva TS, Pinto LFS, Lima CLR. Perennial grasses for recovery of the aggregation capacity of a reconstructed soil in a coal mining area in southern Brazil. Rev Bras Cienc Solo . 2014;38:327-35. doi:10.1590/S0100-06832014000100033
    » https://doi.org/10.1590/S0100-06832014000100033
  • Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ. Análise de solo, plantas e outros materiais. 2a ed. Porto Alegre: UFRGS; 1995.
  • Terpstra R. Formation of new aggregates and weed seed behaviour in a coarse- and in a fine-textured loam soil: A laboratory experiment. Soil Till Res . 1990;15:285-96. doi:10.1016/0167-1987(90)90085-R
    » https://doi.org/10.1016/0167-1987(90)90085-R
  • Tisdall JM, Oades JM. Organic matter and water-stable aggregates in soil. Eur J Soil Sci. 1982;33:141-63. doi:10.1111/j.1365-2389.1982.tb01755.x
    » https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
  • Topp GC, Reynolds WD, Cokk FJ, Kirby JM, Carter MR. Physical attributes of soil quality. In: Gregorich EG, Carter MR, editors. Soil quality for crop production and ecosystem health. New York: Elsevier; 1997. p.21-58.
  • Ussiri DA, Lal R. Carbon sequestration in reclaimed minesoils. Crit Rev Plant Sci. 2005;24:151-65. doi:10.1080/07352680591002147
    » https://doi.org/10.1080/07352680591002147
  • Valle CB, Jank L, Resende RMS. O melhoramento de forrageiras tropicais no Brasil. Rev Ceres . 2009;56:460-72.
  • Voorhees WB. Relative effectiveness of tillage and natural forces in alleviating wheel-induced soil compaction. Soil Sci Soc Am J. 1983;47:129-33. doi:10.2136/sssaj1983.03615995004700010026x
    » https://doi.org/10.2136/sssaj1983.03615995004700010026x
  • Wick AF, Daniels WL. Physical protection of organic matter in reclaimed coal mine soils of SW Virginia. In: Barnhisel RI, editor. Proceedings of National Meeting of the American Society of Mining and Reclamation, Bridging Reclamation; 2009; Billings. Billings: ASMR; 2009. p.1564-82.
  • Wick AF, Ingram LJ, Stahl PD. Aggregate and organic matter dynamics in reclaimed soils as indicated by stable carbon isotopes. Soil Biol Biochem. 2009;41:201-9. doi:10.1016/j.soilbio.2008.09.012
    » https://doi.org/10.1016/j.soilbio.2008.09.012
  • World Reference Base for Soil Resources - WRB. International soil classification system for naming soils and creating legends for soil maps. Rome: FAO; 2014. (World Soil Resources Reports, 106).
  • Yada MM, Mingotte FLC, Melo WJ, Melo GP, Melo VP, Longo RM, Ribeiro AÍ. Atributos químicos e bioquímicos em solos degradados por mineração de estanho e em fase de recuperação em ecossistema amazônico. Rev Bras Cienc Solo . 2015;39:714-24. doi:10.1590/01000683rbcs20140499
    » https://doi.org/10.1590/01000683rbcs20140499
  • Zhang L, Jinmanwang W, Bai Z, Chunjuan LV. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena. 2015;128:44-53. doi:10.1016/j.catena.2015.01.016
    » https://doi.org/10.1016/j.catena.2015.01.016
  • Zhao Z, Shahrour I, Bai Z, Fan W, Feng L, Li H. Soils development in opencast coal mine spoils reclaimed for 1-13 years in the West-Northern Loess Plateau of China. Eur J Soil Biol. 2013;55:40-6. doi:10.1016/j.ejsobi.2012.08.006
    » https://doi.org/10.1016/j.ejsobi.2012.08.006
  • How to cite:

    Pauletto EA, Stumpf L, Pinto LFS, Silva TS, Ambus JV, Garcia GF, Dutra Junior LA, Scheunemann T, Albert RP. Reclamation of a Degraded Coal-Mining Area with Perennial Cover Crops. Rev Bras Cienc Solo. 2016;40:e0150482.

Publication Dates

  • Publication in this collection
    2016

History

  • Received
    01 Dec 2015
  • Accepted
    08 Aug 2016
Sociedade Brasileira de Ciência do Solo Secretaria Executiva , Caixa Postal 231, 36570-000 Viçosa MG Brasil, Tel.: (55 31) 3899 2471 - Viçosa - MG - Brazil
E-mail: sbcs@ufv.br