Acessibilidade / Reportar erro

Spatial Variability of Soil Fauna Under Different Land Use and Managements

ABSTRACT

Geostatistics allows the evaluation of the distribution pattern of data with high spatial variability in agricultural systems. This study aimed to evaluate the spatial variability of biological diversity indices of soil fauna under different land (agriculture and forest). Samples were collected in seven areas (millet, soybean, corn, eucalyptus, pasture crops, and preserved and disturbed Cerrado), in Maranhão state, Brazil. The soil fauna was caught trapped in pitfall traps, installed 3 m away from each other. In each area, 130 traps were maintained for seven days. After this period, they were removed and their content transferred to bottles and taken to the laboratory, where the insects were screened and identified at the level of orders and families. Eight indices were calculated, namely: individuals trap-1 day-1, Jackknife richness estimator, the Simpson, McIntosh, Shannon, and total diversity, and Simpson dominance, and Pielou equitability indices. The spatial variability was derived from the semivariograms fitted to Gaussian, spherical, and exponential geostatistical models. Statistical analysis showed medium values of the coefficient of variation for millet, except for the indices individuals trap-1 day-1 and McIntosh diversity, which were considered high. The values of the correlation matrix were negative for some indices, suggesting an inverse relationship. For millet, corn, eucalyptus, disturbed Cerrado, and pasture areas, the Shannon diversity index exhibited a pure nugget effect. For the areas of millet, corn, disturbed Cerrado and pasture, the total diversity index was adjusted to the Gaussian model. The degree of spatial dependence was considered high for the individuals trap-1 day-1 and Pielou equitability indices for millet. Only for soybean and pasture similarity in the scaled semivariograms was observed for the spatial variability of the indices, indicating similarity of performance. Soil management and land use affect the patterns of soil fauna abundance, richness, and diversity. The presence of groups such as Araneae, Diplura, and Poduromorpha are related to ecological equilibrium, quality, and sustainability of the agricultural systems studied.

soil biodiversity; soil properties; geostatistics

INTRODUCTION

The use of geostatistics in analysis of soil properties variability has increased significantly over the last decades. In a given area, geostatistical techniques can identify properties that are treated as homogeneous but would need a differentiated management (Ribeiro et al., 2016Ribeiro LS, Oliveira IR, Dantas JS, Silva CV, Silva GB, Azevedo JR. Variabilidade espacial de atributos físicos de solo coeso sob sistemas de manejo convencional e plantio direto. Pesq Agropec Bras. 2016;51:1699-702. https://doi.org/10.1590/S0100-204X2016000900071
https://doi.org/10.1590/S0100-204X201600...
). Moreover, by these techniques, soil properties can be understood, modelled, and mapped to identify specific management zones and reduce the effects of soil variability on crop yields (Siqueira et al., 2009Siqueira GM, Vieira SR, Dechen SCF. Variabilidade espacial da densidade e da porosidade de um Latossolo Vermelho eutroférrico sob semeadura direta por vinte anos. Bragantia. 2009;68:751-9. https://doi.org/10.1590/S0006-87052009000300023
https://doi.org/10.1590/S0006-8705200900...
; Chiba et al., 2010Chiba MK, Filho OG, Vieira SR. Variabilidade espacial e temporal de plantas daninhas em Latossolo Vermelho argiloso sob semeadura direta. Acta Sci-Agron. 2010;32:735-42. https://doi.org/10.4025/actasciagron.v32i4.5445
https://doi.org/10.4025/actasciagron.v32...
; Montanari et al., 2010Montanari R, Carvalhos MP, Andreotti M, Dalchiavon FC, Lovera LH, Honorato MAO. Aspectos da produtividade do feijão correlacionados com atributos físicos do solo sob elevado nível tecnológico de manejo. Rev Bras Cienc Solo. 2010;34:1811-22. https://doi.org/10.1590/S0100-06832010000600005
https://doi.org/10.1590/S0100-0683201000...
; Carvalho et al., 2014Carvalho LA, Meurer I, Silva Junior CA, Santos CFB, Libardi PL. Spatial variability of soil potassium in sugarcane areas subjected to the application of vinasse. An Acad Bras Cienc. 2014;86:1999-2011. https://doi.org/10.1590/0001-3765201420130319
https://doi.org/10.1590/0001-37652014201...
; Zonta et al., 2014Zonta JH, Brandão ZN, Medeiros JC, Sana RS, Sofiatti V. Variabilidade espacial da fertilidade do solo em área cultivada com algodoeiro no Cerrado do Brasil. R Bras Eng Agric Ambient. 2014;18:595-602. https://doi.org/10.1590/S1415-43662014000600005
https://doi.org/10.1590/S1415-4366201400...
; Aquino et al., 2015Aquino RE, Campos MCC, Marques Junior J, Oliveira IA, Teixeira DB, Cunha JM. Use of scaled semivariograms in the planning sample of soil physical properties in southern Amazonas, Brazil. Rev Bras Cienc Solo. 2015;39:21-30. https://doi.org/10.1590/01000683rbcs20150524
https://doi.org/10.1590/01000683rbcs2015...
; Montanari et al., 2015Montanari R, Panachuki E, Lovera LH, Correa AR, Oliveira IS, Queiroz HA, Tomaz PK. Variabilidade espacial da produtividade de sorgo e de atributos do solo na região do ecótono Cerrado-Pantanal, MS. Rev Bras Cienc Solo. 2015;39:385-96. https://doi.org/10.1590/01000683rbcs20140215
https://doi.org/10.1590/01000683rbcs2014...
; Siqueira et al., 2015aSiqueira GM, Silva EFF, Paz-Ferreiro J. Land use intensification effects in soil arthropod community of an Entisol in Pernambuco state, Brazil. The Scientific World Journal. 2014;2014:1-7. https://doi.org/10.1155/2014/625856
https://doi.org/10.1155/2014/625856...
, 2017Siqueira GM, Silva EFF, Vidal-Válquez E, Paz-González A. Multifractal and joint multifractal analysis of general soil properties and altitude along a transect. Biosyst Eng. 2017. In press. https://doi.org/10.1016/j.biosystemseng.2017.08.024
https://doi.org/10.1016/j.biosystemseng....
).

Soil variability occurs due to the interaction of formation factors, climate, temperature, and management (Bonnin et al., 2010Bonnin JJ, Mirás-Avalos JM, Lanças KP, González AP, Vieira SR. Spatial variability of soil penetration resistance influenced by season of sampling. Bragantia. 2010;69:163-73. https://doi.org/10.1590/S0006-87052010000500017
https://doi.org/10.1590/S0006-8705201000...
; Siqueira et al., 2017Siqueira GM, Silva EFF, Vidal-Válquez E, Paz-González A. Multifractal and joint multifractal analysis of general soil properties and altitude along a transect. Biosyst Eng. 2017. In press. https://doi.org/10.1016/j.biosystemseng.2017.08.024
https://doi.org/10.1016/j.biosystemseng....
), which directly affects agricultural productivity (Basso et al., 2011Basso FC, Andreotti M, Carvalho MP, Lodo BN. Relações entre produtividade de sorgo forrageiro e atributos físicos e teor de matéria orgânica de um Latossolo do Cerrado. Pesq Agropec Trop. 2011;41:135-44. https://doi.org/10.5216/pat.v41i1.7099
https://doi.org/10.5216/pat.v41i1.7099...
). The different planting systems can alter the soil quality, due to constant fertilization and liming, resulting in changes in the physical, chemical, and biological soil properties (Baretta et al., 2003Baretta D, Santos JCP, Mafra AL, Wildner LP, Miquelluti DJ. Fauna edáfica avaliada por armadilhas e catação manual afetada pelo manejo do solo na região oeste catarinense. Rev Cienc Agroveterinarias. 2003;2:97-106.; Carvalho et al., 2014Carvalho LA, Meurer I, Silva Junior CA, Santos CFB, Libardi PL. Spatial variability of soil potassium in sugarcane areas subjected to the application of vinasse. An Acad Bras Cienc. 2014;86:1999-2011. https://doi.org/10.1590/0001-3765201420130319
https://doi.org/10.1590/0001-37652014201...
).

The no-tillage system plays an important role in the conservation and maintenance of soil biota (Crusciol et al., 2010Crusciol CAC, Soratto RP, Borghi E, Matheus GP. Benefits of integrating crops and tropical pastures as systems of production. Better Crops With Plant Food. 2010;94:14-6.; Pedroso et al., 2016Pedroso AJS, Ruivo MLP, Piccinin JL, Okumura RS, Birani SM, Silva Junior ML, Melo VS, Costa AR, Albuquerque MPF. Chemical attributes of Oxisol under different tillage systems in Northeast of Pará. Afr J Agr Res. 2016;11:4947-52. https://doi.org/10.5897/AJAR2016.11688
https://doi.org/10.5897/AJAR2016.11688...
), due to the reduced soil disturbance, residue accumulation (Cunha et al., 2011Cunha EQ, Stone LF, Didonet AD, Ferreira EPB, Moreira JAA, Leandro WM. Atributos químicos de solo sob produção orgânica influenciados pelo prepare e por plantas de cobertura. Rev Bras Eng Agric Ambient. 2011;15:1021-9. https://doi.org/10.1590/S1415-43662011001000005
https://doi.org/10.1590/S1415-4366201100...
), and crop rotation (Paul et al., 2013Paul BK, Vanlauwe B, Ayuke F, Gassner A, Hoogmoed M, Hurisso TT, Koala S, Lelei D, Ndabamenye T, Six J, Pulleman MM. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agr Ecosyst Environ. 2013;164:14-22. https://doi.org/10.1016/j.agee.2012.10.003
https://doi.org/10.1016/j.agee.2012.10.0...
), which stabilize habitats and food supply (Bottega et al., 2013Bottega EL, Queiroz DM, Pinto FAC, Souza CMA. Variabilidade espacial de atributos do solo em sistema de semeadura direta com rotação de culturas no cerrado brasileiro. Rev Cienc Agron. 2013;44:1-9. https://doi.org/10.1590/S1806-66902013000100001
https://doi.org/10.1590/S1806-6690201300...
). In terms of soil benefits, the no-tillage system minimizes evaporation and erosion and can increase soil water infiltration and microbial activity rates, favoring nutrient incorporation in the soil and improving the physical, chemical, and biological quality.

Several studies have addressed soil fauna as a soil quality promoter (Vasconcellos et al., 2013Vasconcellos RLF, Segat JC, Bonfim JA, Baretta D, Cardoso EJBN. Soil macrofauna as an indicator of soil quality in an undisturbed riparian forest and recovering sites of different ages. Eur J Soil Biol. 2013;58:105-12. https://doi.org/10.1016/j.ejsobi.2013.07.001
https://doi.org/10.1016/j.ejsobi.2013.07...
; Rousseau et al., 2014Rousseau GX, Silva PRS, Celentano D, Carvalho CJR. Macrofauna do solo em uma cronosequência de capoeiras, florestas e pastos no Centro de Endemismo Belém, Amazônia Oriental. Acta Amaz. 2014;44:499-512. https://doi.org/10.1590/1809-4392201303245
https://doi.org/10.1590/1809-43922013032...
; Moura et al., 2015Moura EG, Aguiar ACF, Piedade AR, Rousseau GX. Contribution of legume tree residues and macrofauna to the improvement of abiotic soil properties in the eastern Amazon. Appl Soil Ecol. 2015;86:91-9. https://doi.org/10.1016/j.apsoil.2014.10.008
https://doi.org/10.1016/j.apsoil.2014.10...
). The soil biota comprises organisms of the most diverse sizes, which have been studied to evaluate changes in the environments (Rousseau et al., 2014Rousseau GX, Silva PRS, Celentano D, Carvalho CJR. Macrofauna do solo em uma cronosequência de capoeiras, florestas e pastos no Centro de Endemismo Belém, Amazônia Oriental. Acta Amaz. 2014;44:499-512. https://doi.org/10.1590/1809-4392201303245
https://doi.org/10.1590/1809-43922013032...
). In general, changes in group abundance, diversity, and composition reflect disturbances of the ecosystem (Domínguez et al., 2014Domínguez A, Bedano JC, Becker AR, Arolfo RV. Organic farming fosters agroecosystem functioning in Argentinian temperate soils: evidence from litter decomposition and soil fauna. Appl Soil Ecol. 2014;83:170-6. https://doi.org/10.1016/j.apsoil.2013.11.008
https://doi.org/10.1016/j.apsoil.2013.11...
). Agricultural practices cause numerous changes in the composition and distribution of soil biota, directly affecting soil processes such as nutrient cycling, organic matter decomposition, porosity, and water infiltration (Vries et al., 2013Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlund L, Jørgensen HB, Brady MV, Christensen S, Ruiter PC, d’Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Holk WHG, Hotes S, Mortimer SN, Setälä H, Sgardelis SP, Uteseny K, van der Putten WH, Wolters V, Bardgett RD. Soil food web properties explain ecosystem services across European land use systems. P Natl A Sci USA. 2013;110:14296-301. https://doi.org/10.1073/pnas.1305198110
https://doi.org/10.1073/pnas.1305198110...
; Wagg et al., 2014Wagg C, Bender SF, Widmer F, van der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. P Natl A Sci USA. 2014;111:5266-70. https://doi.org/10.1073/pnas.1320054111
https://doi.org/10.1073/pnas.1320054111...
; Siqueira et al., 2016Siqueira GM, Silva RA, Aguiar ACF, Costa MKL, Silva EFF. Spatial variability of weeds in an Oxisol under no-tillage system. Afr J Agric Res. 2016;11:2569-76. https://doi.org/10.5897/AJAR2016.11120
https://doi.org/10.5897/AJAR2016.11120...
).

Since the distribution of soil properties in the areas is irregular, an evaluation of the spatial distribution of the physical, chemical, and biological properties is essential to improve decision making with regard to crop management and production. The objective was to evaluate the spatial variability of biological diversity indices of the soil fauna under different land uses (millet, corn, soybean, eucalyptus, and pasture) and soil cover (preserved Cerrado and disturbed Cerrado).

MATERIALS AND METHODS

The study was carried out on the Fazenda Unha de Gato, municipality of Mata Roma, Maranhão, Brazil (3° 70’ 80.88” S and 43° 18’ 71.27” W). According to the Köppen classification system, the regional climate is humid tropical, with mean annual temperatures from 27 to 30 °C, a dry season from June to November, and a rainy season from December to May. Rainfall ranges from 1,400 to 1,600 mm and annual evapotranspiration is 1,144 mm (data measured at the meteorological station in the experimental area). The soil of the region is an Oxisol (Soil Survey Staff, 1999Soil Survey Staff. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. 2nd ed. Washington, DC: United States Department of Agriculture, Natural Resources Conservation Service; 1999. (Agricultural Handbook, 436).).

The soil fauna was sampled in May 2015, in pitfall traps, during the summer growing season of soybean and corn. In each of the five land use areas (millet, corn, soybean, eucalyptus, and pasture) and two areas with different soil cover (preserved cerrado and disturbed cerrado), 130 traps were installed (Figure 1). Each trap contained 4 % formaldehyde (200 mL) for the preservation of organisms, according to the methodology described by Aquino et al. (2001) and Siqueira et al. (2014)Siqueira GM, Silva EFF, Paz-Ferreiro J. Land use intensification effects in soil arthropod community of an Entisol in Pernambuco state, Brazil. The Scientific World Journal. 2014;2014:1-7. https://doi.org/10.1155/2014/625856
https://doi.org/10.1155/2014/625856...
.

Figure 1
Location of study areas. 1 and 2 = soybean and millet; 3 = corn; 4 = eucalyptus; 5 = pasture; 6 = preserved Cerrado; and 7 = disturbed Cerrado.

The traps were installed at a distance of 3.0 m from each other and left in the field for seven days. After this period, all contents were preserved in 70 % alcohol and screened. The groups were separated in large groups and family based on identification keys, according to Lawrence (1994)Lawrence JF. Key to hexapod orders and some other arthropod groups. In: Naumann ID, editor. Systematic and applied entomology: an introduction. Carlton: Melbourne University Press; 1994. p. 223-31.. Subsequently, the biodiversity indices were generated, based on the identification of groups.

Soil samples were collected in each transect (0.00-0.20 m layer) to evaluate the relationships between soil chemical (organic carbon, P, pH, K, Ca, Mg, and CEC) and physical properties (sand, silt, clay, bulk density, total porosity, macroporosity, and microporosity) and the soil macrofauna in the study areas. The mean values of the soil chemical and physical properties in the areas are listed in table 1.

Table 1
Soil physical and chemical properties in the study areas

Diversity indices

To determine the biodiversity indices, software DivEs (Rodrigues, 2015Rodrigues WC. DivEs - Diversidade de espécies v3.0: guia do usuário. Entomologistas do Brasil; 2015. Disponível em: http://dives.ebras.bio.br.
http://dives.ebras.bio.br...
) was used. The index individuals trap-1 day-1 was calculated from the number of individuals collected per trap and divided by the number of days in which the trap remained in the field, in this case, seven days.

The first-order Jackknife richness index estimates the richness of a community. It is defined as a function of the number of species that occur in only one sample, termed single species. Thus, the larger the number of species in a single sample, the higher the estimate for the total number of species in the community (Equation 1):

E D = S o b s + S 1 f - 1 f Eq. 1

in which: Ed is Jackknife richness index; Sobs is the number of observed species; S1 the number of species present in a single cluster; and f the number of samples.

Simpson’s diversity index is used to quantify infinite communities, that is, in cases which the total number of individuals in a sample is different from the total number of individuals in the community (Equation 2). This index is appropriate to estimate diversity when sampling involves the counting of individuals:

D s = Σ n i n - 1 N N - 1 Eq. 2

in which: Ds is Simpson diversity index; ni is the number of individuals of species i in the sample; N is the total number of individuals in the sample.

The McIntosh diversity index is a more complex index because, apart from considering the total number of individuals, it takes square root of the sum of the number of individuals of each species into account (Equations 3 and 4):

D = N - U N - N Eq. 3
U = i = 1 n n i 2 Eq. 4

in which: D is the McIntosh diversity index; N is the total number of individuals in the sample(s); U the square root of the sum of the squared number of individuals per species.

The Shannon-Wiener diversity index is the most commonly used index in community studies. Shannon values range from 0 to 3.5, rarely exceeding 4.5 (Magurran, 1988Magurran AE. Ecological diversity and its measurement. New Jersey: Princeton University Press; 1988.). The index will be zero if a sample contains only one species and reaches the maximum value when all species of a sample have the same number of individuals (Equation 5):

H ' = i = 1 n pi × log 10 pi Eq. 5

in which: H’ is Shannon-Wiener diversity index; ni is the number of individuals of species i in the sample; N is the total number of individuals in the sample; log10 is the logarithm (base 10).

The diversity of a region, i.e., total diversity, can be estimated as a function of the species variation (Equation 6):

TD = i = 1 n wi pi 1 - pi Eq. 6

in which: TD is diversity total; wi is the weight given to the function, which expresses the desired importance of species i in the global quantification of regional diversity; pi is the relative frequency.

Simpson’s dominance is determined by the Simpson diversity index (Equation 7):

D s = 1 - i n n i × n - 1 N N - 1 Eq. 7

in which: Ds is the Simpson dominance; ni is the number of individuals of each species; and N the number of individuals.

The Pielou equitability indicates the distribution of individuals among species and is proportional to diversity and inversely proportional to dominance. Equitability compares the Shannon-Wiener diversity with the observed species distribution that maximizes diversity (Equation 8):

U = H ' log 10 S Eq. 8

in which: U is the Pielou equitability; H’ is the Shannon-Wiener index; S is the number of groups present in each area; and log10 is the logarithm to base 10.

Geostatistical and statistical analysis

Descriptive statistics were determined using the statistical program R (R Development Core Team, 2009R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2009. Available at: http://www.R-project.org/.
http://www.R-project.org/...
), where the values of maximum, minimum, mean, standard deviation, coefficient of variation (CV), skewness, kurtosis, and normality were calculated by the Kolmogorov-Smirnov test at 0.01 % probability. The linear correlation matrix of Pearson was calculated for all soil properties, according to the classification of Santos (2007)Santos C. Estatística descritiva: manual de auto-aprendizagem. Lisboa: Edições Sílabo; 2007., considering r values up to 0.5 as low and above 0.5 as high.

Multivariate statistics were applied to data of physical, chemical, and biological soil properties, using the factorial exploration technique to identify relationships between them. For the factorial analysis, collinearity-free data were selected and standardized (null mean and unit variance). The factors were extracted by principal component analysis calculated from the correlation matrix between variables. The properties with factor loadings above 0.7 in absolute value were selected (Jeffers, 1978Jeffers JNR. An introduction to system analysis: with ecological applications. London: University Park Press; 1978.). Multivariate analysis was carried out using software Statistica 7.0.

The spatial variability was analyzed through the construction of a semivariogram γ (h) of a spatially distributed variable, as proposed by Vieira (2000)Vieira SR. Geoestatística em estudos de variabilidade espacial do solo. In: Novais RF, Alvarez V VH, Schaefer CEGR. Tópicos em Ciência do Solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2000. v.1. p. 1-54. (Equation 9).

γ ( h ) = 1 2 N ( h ) i = 1 N h [ z ( xi ) - z ( xi + h ) ] 2 Eq. 9

in which: γ(h) is the spatial variability; N(h) is the number of observations separated by distance h. All semivariograms were fitted to a mathematical model according to the range (a), sill (C0+C1), and nugget effect parameters (C0).

The intrinsic hypothesis of geostatistics was considered, which requires no finite variance, Var(z) but only stationarity of the mean and second-order stationarity of the differences [(z (x) -z (x + h)] (Journel and Huijbregts, 1978Journel AG, Huijbregts CJ. Mining geostatistics. London: Academic Press; 1978.). The semivariograms were scaled as described by Vieira et al. (1997)Vieira SR, Tillotson PM, Biggar JW, Nielsen DR. Scaling of semivariograms and the kriging estimation of field-measured properties. Rev Bras Cienc Solo. 1997;21:525-33. https://doi.org/10.1590/S0100-06831997000400001
https://doi.org/10.1590/S0100-0683199700...
(Equation 10).

γ s c ( h ) = γ h V a r z Eq. 10

in which: ysc(h) is the scaled semivariogram; y(h) is the original semivariogram, and Var(h) is the data variance.

The advantage of the scaled semivariogram is that several semivariograms can be drawn on the same graph, otherwise, the scales on the semivariance axis would be different. When grouping the semivariograms, similar spatial variability of the relevant variables was observed (Vieira et al., 1997Vieira SR, Tillotson PM, Biggar JW, Nielsen DR. Scaling of semivariograms and the kriging estimation of field-measured properties. Rev Bras Cienc Solo. 1997;21:525-33. https://doi.org/10.1590/S0100-06831997000400001
https://doi.org/10.1590/S0100-0683199700...
) The experimental semivariogram was fitted by adjusting the spherical, exponential and Gaussian models and choosing the best fit by jack-knifing, as proposed by Carvalho et al. (2002)Carvalho JRP, Silveira PM, Vieira SR. Geoestatística na determinação da variabilidade espacial de características químicas do solo sob diferentes preparos. Pesq Agropec Bras. 2002;37:1151-9. https://doi.org/10.1590/S0100-204X2002000800013
https://doi.org/10.1590/S0100-204X200200...
.

The spatial dependence ratio was calculated according to the equation 11.

R D = C 0 C 0 + C 1 × 100 Eq. 11

in which: RD is the ratio of dependency; C0 is the nugget effect; C0+C1 is the sill.

And classified as proposed by Cambardella et al. (1994)Cambardella CA, Moorman TB, Parkin TB, Karlem DL, Novak JM, Turco RF, Konopka AE. Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J. 1994;58:1501-11. https://doi.org/10.2136/sssaj1994.03615995005800050033x
https://doi.org/10.2136/sssaj1994.036159...
, in strong (0-25 %); moderate (25-75 %); and weak (75-100 %).

RESULTS AND DISCUSSION

The sampled arthropods were classified into 20 taxonomic orders and one family. The representativeness was highest in the millet area, with 9,974 individuals, followed by eucalypt with 3,841 individuals. The lowest abundance was in the area with soybean (222 individuals) (Table 2).

Table 2
Composition of the soil fauna under different use and management in the Cerrado Biome

Poduromorpha tends to be better represented in areas with organic residues in the soil, where it is also captured in greater abundance (Baretta et al., 2003Baretta D, Santos JCP, Mafra AL, Wildner LP, Miquelluti DJ. Fauna edáfica avaliada por armadilhas e catação manual afetada pelo manejo do solo na região oeste catarinense. Rev Cienc Agroveterinarias. 2003;2:97-106.; Rafael et al., 2012Rafael JA, Melo GAR, Carvalho CJB, Casari SA, Constantino R, editores. Insetos do Brasil: diversidade e taxonomia. Ribeirão Preto: Holos Editora; 2012.). These organisms are used as bioindicators of soil quality and environmental disturbances, being key organisms for the detection of degraded areas. In the eucalyptus area, although there is a thick layer of organic matter, the contribution of the class Poduromorpha is relevant, because they are important as consumers, for nutrient cycling, and responsible for soil enrichment.

The correlation matrix between soil fauna taxa and soil chemical and physical properties was null (<0.05) (data not shown). In a study on the spatial relationship between macrofauna and soil properties, Gholami et al. (2016)Gholami S, Sayad E, Gebbers R, Schirrmann M, Joschko M, Timmer J. Spatial analysis of riparian forest soil macrofauna and its relation to abiotic soil properties. Pedobiologia. 2016;59:27-36. https://doi.org/10.1016/j.pedobi.2015.12.003
https://doi.org/10.1016/j.pedobi.2015.12...
stated that this correlation is difficult to describe. The reasons are the sensitivity and dynamics of the soil macrofauna, depending on soil use and management, once these organisms respond to the slightest environment alterations.

Multivariate analysis grouped the data in three classes, which together explain 88.75 % of the original data (Table 3). The factors 1, 2, and 3 explained 40.27, 26.39, and 22.07 %, respectively, of the total variation.

Table 3
Factor analysis with the first three factors and factorial charge that represent the correlation coefficients between soil properties and each factor

Factor 1 describes the ecological equilibrium and soil chemical quality in the studied environment. It involves the groups of predators, recyclers of organic matter and groups involved in soil decomposition processes such as Araneae (0.77065), Scorpionida (0.76860), Diplura (0.75912), and Coleoptera (-0.97741). This factor had a strong negative correlation with the following soil properties: silt (-0.80897), P (-0.96085), pH (-0.91209), K (-0.96407), Ca (-0.96709), Mg (-0.75495), and CEC (-0.79704).

Factor 2 grouped the food chain regulators and soil porosity, with a strong positive correlation with the groups Entomobryomorpha (0.705438), Psocoptera (0.705438), and Sternorrhyncha (0.765612). This indicates that these groups are related to macroporosity (-0.935675), sand (0.974856), and total porosity (-0.856098), which demonstrates their contribution to organic matter decomposition and soil structuring.

Factor 3 grouped the soil properties called soil builders, with a strong positive correlation to all properties. The groups Diplopoda (0.918383), Isopoda (0.962091), and Poduromorpha (0.961003) are related to organic matter input and relevant in nutrient recycling and soil enrichment (Bedano et al., 2016Bedano JC, Domínguez A, Arolfo R, Wall LG. Effect of good agricultural practices under no-till on litter and soil invertebrates in areas with different soil types. Soil Till Res. 2016;158:100-9. https://doi.org/10.1016/j.still.2015.12.005
https://doi.org/10.1016/j.still.2015.12....
). The presence of the groups of soil builders and organic matter decomposers contributed positively to the sustainability of the productivity of agricultural systems. In this way, the soil fauna is the transforming agent of chemical, physical, and biological properties of the soil (Correia, 2002Correia MEF. Potencial de utilização dos atributos das comunidades de fauna do solo e de grupos chave de invertebrados como bioindicadores de manejo de ecossistemas. Seropédica: Embrapa Agrobiologia; 2002. (Documentos, 157).; Blanchart et al., 2006Blanchart E, Villenave C, Viallatoux A, Barthès B, Girardin C, Azontonde A, Feller C. Long-term effect of a legume cover crop (Mucuna pruriens var. utilis) on the communities of soil macrofauna and nematofauna, under maize cultivation, in southern Benin. Eur J Soil Biol. 2006;42:S136-44. https://doi.org/10.1016/j.ejsobi.2006.07.018
https://doi.org/10.1016/j.ejsobi.2006.07...
; Bottinelli et al., 2015Bottinelli N, Jouquet P, Capowiez Y, Podwojewski P, Grimaldi M, Peng X. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil Till Res. 2015;146:118-24. https://doi.org/10.1016/j.still.2014.01.007
https://doi.org/10.1016/j.still.2014.01....
; Franco et al., 2016Franco ALC, Bartz MLC, Cherubin MR, Baretta D, Cerri CEP, Feigl BJ, Wall DH, Davies CA, Cerri CC. Loss of soil (macro)fauna due to the expansion of Brazilian sugarcane acreage. Sci Total Environ. 2016;563-564:160-8. https://doi.org/10.1016/j.scitotenv.2016.04.116
https://doi.org/10.1016/j.scitotenv.2016...
).

The main statistical parameters for biodiversity indices are described in table 4. In millet, according to the classification of Warrick and Nielsen (1980)Warrick AW, Nielsen DR. Spatial variability of soil physical properties in the field. In: Hillel D, editor. Applications of soil physics. New York: Academic Press; 1980. p. 319-44., the coefficient of variation (CV) values are considered medium, except for the indices individuals trap-1 day-1 (CV = 66.29) and McIntosh diversity (CV = 124.67), which are considered high. For corn, all CV values are considered high (>60 %). In the soybean area, the CV values of the Simpson, McIntosh, Shannon diversity, total diversity, Simpson dominance, and Pielou equitability indices were above 100 %, which was also the case for the McIntosh index in all areas. High CV values are related to high standard deviations, explained by the aggregate behavior of the soil fauna and by intrinsic processes such as reproduction, feeding, migration, and dispersion of organisms. Thus, according to Warrick and Nielsen (1980)Warrick AW, Nielsen DR. Spatial variability of soil physical properties in the field. In: Hillel D, editor. Applications of soil physics. New York: Academic Press; 1980. p. 319-44., the CV values of soil properties can reach 1000 %.

Table 4
Statistical parameters for biodiversity indices in the studied areas

Several authors report high CV values for soil variables. In a study on weed variability under different managements, Schaffrath et al. (2007)Schaffrath VR, Tormena CA, Gonçalves ACA, Oliveira Junior RS. Variabilidade espacial de plantas daninhas em dois sistemas de manejo de solo. Rev Bras Eng Agric Ambient. 2007;11:53-60. https://doi.org/10.1590/S1415-43662007000100007
https://doi.org/10.1590/S1415-4366200700...
reported CV between 86.05 and 168.85 %. In an evaluation of the volumetric content of water in the soil, Siqueira et al. (2015a)Siqueira GM, Silva EFF, Paz-Ferreiro J. Land use intensification effects in soil arthropod community of an Entisol in Pernambuco state, Brazil. The Scientific World Journal. 2014;2014:1-7. https://doi.org/10.1155/2014/625856
https://doi.org/10.1155/2014/625856...
reported a high CV range (97.60 - 106.8 %) for the different depths. However, Machado et al. (2006)Machado PLOA, Bernadi ACC, Valencia LIO, Molin JP, Gimenez LM, Silva CA, Andrade AG, Madari BE, Meirelles MSP. Mapeamento da condutividade elétrica e relação com a argila de Latossolo sob plantio direto. Pesq Agropec Bras. 2006;41:1023-31. https://doi.org/10.1590/S0100-204X2006000600019
https://doi.org/10.1590/S0100-204X200600...
attributed the high CV values to the sampling grid used.

There was variation regarding the minimum and maximum value of individuals in the areas. Only corn and soybean obtained a minimum value of zero in all indices. The highest mean was for individuals trap-1 day-1 in the eucalyptus area (29.55), followed by individuals trap-1 day-1 in the preserved Cerrado (18.34); in both areas, the CV was greater than 100 %. According to Carvalho et al. (2002)Carvalho JRP, Silveira PM, Vieira SR. Geoestatística na determinação da variabilidade espacial de características químicas do solo sob diferentes preparos. Pesq Agropec Bras. 2002;37:1151-9. https://doi.org/10.1590/S0100-204X2002000800013
https://doi.org/10.1590/S0100-204X200200...
, skewness and kurtosis values between 0 and 3 indicate normal frequency. In this case, some indices presented no skewness and kurtosis values close to 0 and 3, indicating a lognormal distribution of these indices. For Isaaks and Srivastava (1989)Isaaks EH, Srivastava RM. An introduction to applied geostatistics. New York: Oxford University Press; 1989. and Cressie (1991)Cressie NAC. Statistics for spatial data. New York: John Wiley & Sons, Inc.; 1991., data normality is not a prerequisite for the use of geostatistics, whereas the stationarity of the semivariance is required.

The linear correlation matrix showed negative values for some indices in all areas (Table 5). In millet, total diversity × individuals trap-1 day-1 (r = -0.010) and Simpson diversity × Jackknife richness (r = -0.059) obtained very low and negative values, indicating an inverse association, that is, while an index grows other decreases. With the exception of preserved Cerrado, the correlation between Shannon index × Simpson diversity index for the other areas (millet r = 0647; corn r = 0.885, soybeans r = 0943; eucalyptus r = 0.976; disturbed Cerrado r = 0.942; pasture r = 0.920) remained high and positive, according to Santos classification (2007). The high correlation between Shannon diversity and Simpson diversity occurs because both indices take into account the total number of individuals within the sample, being these indices adequate to work with infinite communities, where it is only possible to determine diversity by sample means. The other correlations, with values between r = 0.1-0.5 or r = <0.1 are considered low.

Table 5
Linear correlation matrix for the biodiversity indexes in the studied areas

The parameters of the semivariograms adjustment are presented in table 6. It is observed that for the richness indices, Simpson and Shannon diversity and Simpson dominance in the area of millet, the data evidenced pure nugget effect. The same occurred for the Simpson, McIntosh, Shannon diversity, Simpson dominance, and Pielou equitability in the corn area; Simpson, McIntosh diversity, total diversity in soybean area; Simpson, McIntosh, Shannon diversity, total diversity, Simpson dominance, and Pielou equitability in the eucalyptus area; individuals trap-1 day-1, jackknife richness, Simpson diversity, McIntosh diversity, total diversity, and Pielou equitability in the preserved Cerrado area; Simpson diversity, Shannon diversity, Simpson dominance, and Pielou equitability in the disturbed Cerrado; individuals trap-1 day-1, Simpson, McIntosh, Shannon index, and Pielou equitability in the pasture area. Siqueira et al. (2016)Siqueira GM, Silva RA, Aguiar ACF, Costa MKL, Silva EFF. Spatial variability of weeds in an Oxisol under no-tillage system. Afr J Agric Res. 2016;11:2569-76. https://doi.org/10.5897/AJAR2016.11120
https://doi.org/10.5897/AJAR2016.11120...
evaluating the variability of weeds in a no-tillage system obtained a pure nugget effect for the Shannon diversity index, the same occurred in the present study for millet, corn, eucalyptus, disturbed Cerrado, and pasture areas. The pure nugget effect indicates that 3 m spacing was not sufficient to detect spatial variability (Vieira, 2000Vieira SR. Geoestatística em estudos de variabilidade espacial do solo. In: Novais RF, Alvarez V VH, Schaefer CEGR. Tópicos em Ciência do Solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2000. v.1. p. 1-54.).

Table 6
Semivariogram fitting parameters for biodiversity indices in the studied areas

The other indices with spatial variability were fitted to a geostatistical model, Gaussian, spherical or exponential. For the millet only the Pielou equitability was adjusted to the spherical model, individuals trap-1 day-1 and McIntosh diversity were fitted to the exponential model and total diversity to the Gaussian model (Table 6). Gholami et al. (2016)Gholami S, Sayad E, Gebbers R, Schirrmann M, Joschko M, Timmer J. Spatial analysis of riparian forest soil macrofauna and its relation to abiotic soil properties. Pedobiologia. 2016;59:27-36. https://doi.org/10.1016/j.pedobi.2015.12.003
https://doi.org/10.1016/j.pedobi.2015.12...
studying the spatial variability of the soil macrofauna associated to abiotic factors in a riparian forest in south-western Iran, it adjusted the exponential model to the index of uniformity, richness and diversity, and the spherical model to soil macrofauna abundance. Several authors describe that the spherical model is the one that best fits the soil and plants data (Cambardella et al., 1994Cambardella CA, Moorman TB, Parkin TB, Karlem DL, Novak JM, Turco RF, Konopka AE. Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J. 1994;58:1501-11. https://doi.org/10.2136/sssaj1994.03615995005800050033x
https://doi.org/10.2136/sssaj1994.036159...
; Vieira, 2000Vieira SR. Geoestatística em estudos de variabilidade espacial do solo. In: Novais RF, Alvarez V VH, Schaefer CEGR. Tópicos em Ciência do Solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2000. v.1. p. 1-54.; Siqueira et al., 2008Siqueira GM, Vieira SR, Ceddia MB. Variabilidade de atributos físicos do solo determinados por métodos diversos. Bragantia. 2008;67:203-11. https://doi.org/10.1590/S0006-87052008000100025
https://doi.org/10.1590/S0006-8705200800...
; Siqueira et al., 2009Siqueira GM, Vieira SR, Dechen SCF. Variabilidade espacial da densidade e da porosidade de um Latossolo Vermelho eutroférrico sob semeadura direta por vinte anos. Bragantia. 2009;68:751-9. https://doi.org/10.1590/S0006-87052009000300023
https://doi.org/10.1590/S0006-8705200900...
; Chiba et al., 2010Chiba MK, Filho OG, Vieira SR. Variabilidade espacial e temporal de plantas daninhas em Latossolo Vermelho argiloso sob semeadura direta. Acta Sci-Agron. 2010;32:735-42. https://doi.org/10.4025/actasciagron.v32i4.5445
https://doi.org/10.4025/actasciagron.v32...
; Silva et al., 2014Silva J, Assis Junior RN, Matias SSR, Tavares RC, Andrade FR, Camacho-Tamayo JH. Using geostatistics to evaluate the physical attributes of a soil cultivated with sugarcane. Rev Cienc Agrar. 2014;57:186-93. https://doi.org/10.4322/rca.2014.013
https://doi.org/10.4322/rca.2014.013...
; Siqueira et al., 2015bSiqueira GM, Silva JS, Bezerra JM, Silva EFF, Dafonte JD, Melo RF. Estacionariedade do conteúdo de água de um Espodossolo Humilúvico. R Bras Eng Agric Ambient. 2015b;19:439-48. https://doi.org/10.1590/1807-1929/agriambi.v19n5p439-448
https://doi.org/10.1590/1807-1929/agriam...
).

According to the classification of Cambardella et al. (1994)Cambardella CA, Moorman TB, Parkin TB, Karlem DL, Novak JM, Turco RF, Konopka AE. Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J. 1994;58:1501-11. https://doi.org/10.2136/sssaj1994.03615995005800050033x
https://doi.org/10.2136/sssaj1994.036159...
, the spatial dependence degree for the individuals trap-1 day-1 index and Pielou equitability in the millet area is high (above 75 %). For soybean and preserved Cerrado area, the spatial dependence remained the median (25 to 75 %). The highest value of nugget effect (C0) was for individuals trap-1 day-1 in eucalyptus (C0 = 400), and the lowest value was for total diversity (C0 = 0.008) in the pasture, which indicates good representativeness of the semivariogram fitting parameter. According to Carvalho et al. (2001)Carvalho JR, Vieira SR, Marinho PR, Dechen SCF, Maria IC, Pott CA, Dufranc G. Avaliação da variabilidade espacial de parâmetros físicos do solo sob semeadura direta em São Paulo, Brasil. Campinas: Embrapa; 2001. p. 1-4. (Comunicado Técnico)., high values of nugget effect indicate discontinuity between the samples.

The range of values (a) ranged from 20 m individuals trap-1 day-1 in eucalyptus to 78 m individuals trap-1 day-1 in millet. The determination of the range values is needed to know to what point the samples are correlated with each other and the maximum spatial dependence distance between the samples (Vieira, 2000Vieira SR. Geoestatística em estudos de variabilidade espacial do solo. In: Novais RF, Alvarez V VH, Schaefer CEGR. Tópicos em Ciência do Solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2000. v.1. p. 1-54.). For Carvalho et al. (2003)Carvalho MP, Takeda EY, Freddi OS. Variabilidade espacial de atributos de um solo sob videira em Vitória Brasil (SP). Rev Bras Cienc Solo. 2003;27:695-703. https://doi.org/10.1590/S0100-06832003000400014
https://doi.org/10.1590/S0100-0683200300...
, based on the range of spatial dependence, future samplings can be delineated, provided the same conditions are repeated. In a study on the spatial variability of the diversity indices of soil macrofauna, Gholami et al. (2016)Gholami S, Sayad E, Gebbers R, Schirrmann M, Joschko M, Timmer J. Spatial analysis of riparian forest soil macrofauna and its relation to abiotic soil properties. Pedobiologia. 2016;59:27-36. https://doi.org/10.1016/j.pedobi.2015.12.003
https://doi.org/10.1016/j.pedobi.2015.12...
found range values varying from 952 m for diversity to 2,967 m for the uniformity index.

Soil arthropods play a relevant role with regard to the ecosystem quality. However, their abundance and richness may be affected by land use and soil management (Lima et al., 2010Lima SS, Aquino AM, Leite LFC, Velásquez E, Lavelle P. Relação entre macrofauna edáfica e atributos químicos do solo em diferentes agroecossistemas. Pesq Agropec Bras. 2010;45:322-31. https://doi.org/10.1590/S0100-204X2010000300013
https://doi.org/10.1590/S0100-204X201000...
), and by physical and chemical properties (Majer et al., 2007Majer JD, Brennan KEC, Moir ML. Invertebrates and the restoration of a forest ecosystem: 30 years of research following bauxite mining in Western Australia. Restor Ecol. 2007;15:S104-15. https://doi.org/10.1111/j.1526-100X.2007.00298.x
https://doi.org/10.1111/j.1526-100X.2007...
; Rousseau et al., 2014Rousseau GX, Silva PRS, Celentano D, Carvalho CJR. Macrofauna do solo em uma cronosequência de capoeiras, florestas e pastos no Centro de Endemismo Belém, Amazônia Oriental. Acta Amaz. 2014;44:499-512. https://doi.org/10.1590/1809-4392201303245
https://doi.org/10.1590/1809-43922013032...
; Bedano et al., 2016Bedano JC, Domínguez A, Arolfo R, Wall LG. Effect of good agricultural practices under no-till on litter and soil invertebrates in areas with different soil types. Soil Till Res. 2016;158:100-9. https://doi.org/10.1016/j.still.2015.12.005
https://doi.org/10.1016/j.still.2015.12....
). According to Birkhofer et al. (2010)Birkhofer K, Scheu S, Wiegand D. Assessing spatiotemporal predator-prey patterns in heterogeneous habitats. Basic Appl Ecol. 2010;11:486-94. https://doi.org/10.1016/j.baae.2010.06.010
https://doi.org/10.1016/j.baae.2010.06.0...
, the biotic relations also contribute to the formation of spatial patterns. In this sense, the presence of cover crops favors species of the soil epigeal fauna that are specialized and sensitive to abiotic alterations, e.g., Acari, Araneae, Diplura, Formicidae, and Poduromorpha. This occurs due to food offer, microclimate, and natural shelter (Batista et al., 2014Batista I, Correia MEF, Pereira MG, Bieluczyk W, Schiavo JA, Rouws JRC. Frações oxidáveis do carbono orgânico total e macrofauna edáfica em sistema de integração lavoura-pecuária. Rev Bras Cienc Solo. 2014;38:797-809. https://doi.org/10.1590/S0100-06832014000300011
https://doi.org/10.1590/S0100-0683201400...
; Gholami et al., 2014Gholami SH, Mahini AS, Hosseini SM, Mohammadi J, Sayad E. Assessment of vegetation density and soil macrofauna relationship in riparian forest of Karkhe River for determination of rivers buffer zone. Iranian J Appl Ecol. 2014;7:13-26.; Franco et al., 2016Franco ALC, Bartz MLC, Cherubin MR, Baretta D, Cerri CEP, Feigl BJ, Wall DH, Davies CA, Cerri CC. Loss of soil (macro)fauna due to the expansion of Brazilian sugarcane acreage. Sci Total Environ. 2016;563-564:160-8. https://doi.org/10.1016/j.scitotenv.2016.04.116
https://doi.org/10.1016/j.scitotenv.2016...
).

Soil use and management are directly related to spatial patterns of soil fauna (Ettema and Wardle, 2002Ettema CH, Wardle DA. Spatial soil ecology. Trends Ecol Evol. 2002;17:177-83. https://doi.org/10.1016/S0169-5347(02)02496-5
https://doi.org/10.1016/S0169-5347(02)02...
; Bardgett and van der Putten, 2014Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505-11. https://doi.org/10.1038/nature13855
https://doi.org/10.1038/nature13855...
). Therefore, it is possible to describe the greatest differences in the spatial distribution of soil macrofauna, mainly in preserved and disturbed Cerrado because the soil fauna is sensitive to minimal alterations caused by inappropriate soil use and management.

The scaled semivariogram was used to allow a comparison between diversity indices that express the difference of the scalar magnitude of soil fauna (Figure 2). In addition, it favors the comparison and comprehension of the spatial variability of the studied diversity indices.

Figure 2
Scaled semivariograms for biodiversity indices in the studied areas.

For the areas of soybean and pasture, biodiversity indices suggested similarity of spatial variability. However, the Shannon diversity, Simpson diversity, McIntosh diversity, and jackknife richness indices in millet were more dispersed than the other indices of this crop area. The same was observed for individuals trap-1 day-1 in the corn area; Shannon diversity in eucalyptus; McIntosh diversity in the preserved Cerrado; and individuals trap-1 day-1 and Jackknife richness in the disturbed Cerrado. The greatest differences described for soil macrofauna diversity indices by the scaled semivariogram are a result of the soil management, disturbance degree, and sensitivity of macrofauna groups to food availability.

Therefore, the semivariance of the Shannon index was higher for millet than the other semivariance values of the other indices for the area, separating this index from the others. In the other cases, the semivariance was close to zero, and lower than the indices with similar variability.

This dispersion may be explained by the parameters used to determine the indices. The individuals trap-1 day-1 indices take the number of individuals collected in a sample of seven days into consideration, so this value always tends to be higher or equal to the others. With regard to the Shannon, Simpson, and McIntosh indices, the total number of species in a given sample is considered, and, specifically in the case of McIntosh diversity, the square root of the sum of the number of individuals, which explains the high values of semivariance in the Shannon and Simpson indices and the low semivariance of McIntosh’s index in millet.

Another explanation for the variation in semivariance values may be related to the number of individuals collected in each area and their distribution among the samples. In an evaluation of the Shannon and Simpson diversity indices in weeds, Siqueira et al. (2016)Siqueira GM, Silva RA, Aguiar ACF, Costa MKL, Silva EFF. Spatial variability of weeds in an Oxisol under no-tillage system. Afr J Agric Res. 2016;11:2569-76. https://doi.org/10.5897/AJAR2016.11120
https://doi.org/10.5897/AJAR2016.11120...
observed similar spatial variability of these indices.

CONCLUSIONS

Soil management and land use affected the patterns of soil fauna abundance, richness and diversity. The presence of groups such as Araneae, Diplura, and Poduromorpha indicated the ecological equilibrium, quality and sustainability of the agricultural systems studied. Geostatistical techniques satisfactorily analyzed the spatial dynamics of soil fauna in the seven studied areas. The spatial variability of all indices in the soybean and pasture area is similar, with close semivariance values.

ACKNOWLEDGMENTS

The authors are indebted to the Fapema (Foundation for Research and Scientific and Technological Development of Maranhão, Brazil) for the financial support of the project (Apcinter-02587/14, BATI-02985/14, Universal-00735/15, BEPP-01301/15, APEC 01697/15, BM-01267/15, Fapema/05232/15 and BD-01343/15). Authors would like to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the grant awarded to the second and fifth author.

REFERENCES

  • Aquino AM. Manual para macrofauna do solo. Seropédica: Embrapa Agrobiologia; 2001. (Documentos 130).
  • Aquino RE, Campos MCC, Marques Junior J, Oliveira IA, Teixeira DB, Cunha JM. Use of scaled semivariograms in the planning sample of soil physical properties in southern Amazonas, Brazil. Rev Bras Cienc Solo. 2015;39:21-30. https://doi.org/10.1590/01000683rbcs20150524
    » https://doi.org/10.1590/01000683rbcs20150524
  • Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505-11. https://doi.org/10.1038/nature13855
    » https://doi.org/10.1038/nature13855
  • Baretta D, Santos JCP, Mafra AL, Wildner LP, Miquelluti DJ. Fauna edáfica avaliada por armadilhas e catação manual afetada pelo manejo do solo na região oeste catarinense. Rev Cienc Agroveterinarias. 2003;2:97-106.
  • Basso FC, Andreotti M, Carvalho MP, Lodo BN. Relações entre produtividade de sorgo forrageiro e atributos físicos e teor de matéria orgânica de um Latossolo do Cerrado. Pesq Agropec Trop. 2011;41:135-44. https://doi.org/10.5216/pat.v41i1.7099
    » https://doi.org/10.5216/pat.v41i1.7099
  • Batista I, Correia MEF, Pereira MG, Bieluczyk W, Schiavo JA, Rouws JRC. Frações oxidáveis do carbono orgânico total e macrofauna edáfica em sistema de integração lavoura-pecuária. Rev Bras Cienc Solo. 2014;38:797-809. https://doi.org/10.1590/S0100-06832014000300011
    » https://doi.org/10.1590/S0100-06832014000300011
  • Bedano JC, Domínguez A, Arolfo R, Wall LG. Effect of good agricultural practices under no-till on litter and soil invertebrates in areas with different soil types. Soil Till Res. 2016;158:100-9. https://doi.org/10.1016/j.still.2015.12.005
    » https://doi.org/10.1016/j.still.2015.12.005
  • Birkhofer K, Scheu S, Wiegand D. Assessing spatiotemporal predator-prey patterns in heterogeneous habitats. Basic Appl Ecol. 2010;11:486-94. https://doi.org/10.1016/j.baae.2010.06.010
    » https://doi.org/10.1016/j.baae.2010.06.010
  • Blanchart E, Villenave C, Viallatoux A, Barthès B, Girardin C, Azontonde A, Feller C. Long-term effect of a legume cover crop (Mucuna pruriens var. utilis) on the communities of soil macrofauna and nematofauna, under maize cultivation, in southern Benin. Eur J Soil Biol. 2006;42:S136-44. https://doi.org/10.1016/j.ejsobi.2006.07.018
    » https://doi.org/10.1016/j.ejsobi.2006.07.018
  • Bonnin JJ, Mirás-Avalos JM, Lanças KP, González AP, Vieira SR. Spatial variability of soil penetration resistance influenced by season of sampling. Bragantia. 2010;69:163-73. https://doi.org/10.1590/S0006-87052010000500017
    » https://doi.org/10.1590/S0006-87052010000500017
  • Bottega EL, Queiroz DM, Pinto FAC, Souza CMA. Variabilidade espacial de atributos do solo em sistema de semeadura direta com rotação de culturas no cerrado brasileiro. Rev Cienc Agron. 2013;44:1-9. https://doi.org/10.1590/S1806-66902013000100001
    » https://doi.org/10.1590/S1806-66902013000100001
  • Bottinelli N, Jouquet P, Capowiez Y, Podwojewski P, Grimaldi M, Peng X. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil Till Res. 2015;146:118-24. https://doi.org/10.1016/j.still.2014.01.007
    » https://doi.org/10.1016/j.still.2014.01.007
  • Camargo OA, Moniz AC, Jorge JA, Valadares JMAS. Métodos de análise química, mineralógica e física de solos do Instituto Agronômico de Campinas. Campinas: Instituto Agronômico; 2009. (Boletim técnico, 106).
  • Cambardella CA, Moorman TB, Parkin TB, Karlem DL, Novak JM, Turco RF, Konopka AE. Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J. 1994;58:1501-11. https://doi.org/10.2136/sssaj1994.03615995005800050033x
    » https://doi.org/10.2136/sssaj1994.03615995005800050033x
  • Carvalho JR, Vieira SR, Marinho PR, Dechen SCF, Maria IC, Pott CA, Dufranc G. Avaliação da variabilidade espacial de parâmetros físicos do solo sob semeadura direta em São Paulo, Brasil. Campinas: Embrapa; 2001. p. 1-4. (Comunicado Técnico).
  • Carvalho JRP, Silveira PM, Vieira SR. Geoestatística na determinação da variabilidade espacial de características químicas do solo sob diferentes preparos. Pesq Agropec Bras. 2002;37:1151-9. https://doi.org/10.1590/S0100-204X2002000800013
    » https://doi.org/10.1590/S0100-204X2002000800013
  • Carvalho LA, Meurer I, Silva Junior CA, Santos CFB, Libardi PL. Spatial variability of soil potassium in sugarcane areas subjected to the application of vinasse. An Acad Bras Cienc. 2014;86:1999-2011. https://doi.org/10.1590/0001-3765201420130319
    » https://doi.org/10.1590/0001-3765201420130319
  • Carvalho MP, Takeda EY, Freddi OS. Variabilidade espacial de atributos de um solo sob videira em Vitória Brasil (SP). Rev Bras Cienc Solo. 2003;27:695-703. https://doi.org/10.1590/S0100-06832003000400014
    » https://doi.org/10.1590/S0100-06832003000400014
  • Chiba MK, Filho OG, Vieira SR. Variabilidade espacial e temporal de plantas daninhas em Latossolo Vermelho argiloso sob semeadura direta. Acta Sci-Agron. 2010;32:735-42. https://doi.org/10.4025/actasciagron.v32i4.5445
    » https://doi.org/10.4025/actasciagron.v32i4.5445
  • Correia MEF. Potencial de utilização dos atributos das comunidades de fauna do solo e de grupos chave de invertebrados como bioindicadores de manejo de ecossistemas. Seropédica: Embrapa Agrobiologia; 2002. (Documentos, 157).
  • Cressie NAC. Statistics for spatial data. New York: John Wiley & Sons, Inc.; 1991.
  • Crusciol CAC, Soratto RP, Borghi E, Matheus GP. Benefits of integrating crops and tropical pastures as systems of production. Better Crops With Plant Food. 2010;94:14-6.
  • Cunha EQ, Stone LF, Didonet AD, Ferreira EPB, Moreira JAA, Leandro WM. Atributos químicos de solo sob produção orgânica influenciados pelo prepare e por plantas de cobertura. Rev Bras Eng Agric Ambient. 2011;15:1021-9. https://doi.org/10.1590/S1415-43662011001000005
    » https://doi.org/10.1590/S1415-43662011001000005
  • Domínguez A, Bedano JC, Becker AR, Arolfo RV. Organic farming fosters agroecosystem functioning in Argentinian temperate soils: evidence from litter decomposition and soil fauna. Appl Soil Ecol. 2014;83:170-6. https://doi.org/10.1016/j.apsoil.2013.11.008
    » https://doi.org/10.1016/j.apsoil.2013.11.008
  • Ettema CH, Wardle DA. Spatial soil ecology. Trends Ecol Evol. 2002;17:177-83. https://doi.org/10.1016/S0169-5347(02)02496-5
    » https://doi.org/10.1016/S0169-5347(02)02496-5
  • Franco ALC, Bartz MLC, Cherubin MR, Baretta D, Cerri CEP, Feigl BJ, Wall DH, Davies CA, Cerri CC. Loss of soil (macro)fauna due to the expansion of Brazilian sugarcane acreage. Sci Total Environ. 2016;563-564:160-8. https://doi.org/10.1016/j.scitotenv.2016.04.116
    » https://doi.org/10.1016/j.scitotenv.2016.04.116
  • Gholami SH, Mahini AS, Hosseini SM, Mohammadi J, Sayad E. Assessment of vegetation density and soil macrofauna relationship in riparian forest of Karkhe River for determination of rivers buffer zone. Iranian J Appl Ecol. 2014;7:13-26.
  • Gholami S, Sayad E, Gebbers R, Schirrmann M, Joschko M, Timmer J. Spatial analysis of riparian forest soil macrofauna and its relation to abiotic soil properties. Pedobiologia. 2016;59:27-36. https://doi.org/10.1016/j.pedobi.2015.12.003
    » https://doi.org/10.1016/j.pedobi.2015.12.003
  • Isaaks EH, Srivastava RM. An introduction to applied geostatistics. New York: Oxford University Press; 1989.
  • Jeffers JNR. An introduction to system analysis: with ecological applications. London: University Park Press; 1978.
  • Journel AG, Huijbregts CJ. Mining geostatistics. London: Academic Press; 1978.
  • Lawrence JF. Key to hexapod orders and some other arthropod groups. In: Naumann ID, editor. Systematic and applied entomology: an introduction. Carlton: Melbourne University Press; 1994. p. 223-31.
  • Lima SS, Aquino AM, Leite LFC, Velásquez E, Lavelle P. Relação entre macrofauna edáfica e atributos químicos do solo em diferentes agroecossistemas. Pesq Agropec Bras. 2010;45:322-31. https://doi.org/10.1590/S0100-204X2010000300013
    » https://doi.org/10.1590/S0100-204X2010000300013
  • Machado PLOA, Bernadi ACC, Valencia LIO, Molin JP, Gimenez LM, Silva CA, Andrade AG, Madari BE, Meirelles MSP. Mapeamento da condutividade elétrica e relação com a argila de Latossolo sob plantio direto. Pesq Agropec Bras. 2006;41:1023-31. https://doi.org/10.1590/S0100-204X2006000600019
    » https://doi.org/10.1590/S0100-204X2006000600019
  • Magurran AE. Ecological diversity and its measurement. New Jersey: Princeton University Press; 1988.
  • Majer JD, Brennan KEC, Moir ML. Invertebrates and the restoration of a forest ecosystem: 30 years of research following bauxite mining in Western Australia. Restor Ecol. 2007;15:S104-15. https://doi.org/10.1111/j.1526-100X.2007.00298.x
    » https://doi.org/10.1111/j.1526-100X.2007.00298.x
  • Montanari R, Carvalhos MP, Andreotti M, Dalchiavon FC, Lovera LH, Honorato MAO. Aspectos da produtividade do feijão correlacionados com atributos físicos do solo sob elevado nível tecnológico de manejo. Rev Bras Cienc Solo. 2010;34:1811-22. https://doi.org/10.1590/S0100-06832010000600005
    » https://doi.org/10.1590/S0100-06832010000600005
  • Montanari R, Panachuki E, Lovera LH, Correa AR, Oliveira IS, Queiroz HA, Tomaz PK. Variabilidade espacial da produtividade de sorgo e de atributos do solo na região do ecótono Cerrado-Pantanal, MS. Rev Bras Cienc Solo. 2015;39:385-96. https://doi.org/10.1590/01000683rbcs20140215
    » https://doi.org/10.1590/01000683rbcs20140215
  • Moura EG, Aguiar ACF, Piedade AR, Rousseau GX. Contribution of legume tree residues and macrofauna to the improvement of abiotic soil properties in the eastern Amazon. Appl Soil Ecol. 2015;86:91-9. https://doi.org/10.1016/j.apsoil.2014.10.008
    » https://doi.org/10.1016/j.apsoil.2014.10.008
  • Paul BK, Vanlauwe B, Ayuke F, Gassner A, Hoogmoed M, Hurisso TT, Koala S, Lelei D, Ndabamenye T, Six J, Pulleman MM. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agr Ecosyst Environ. 2013;164:14-22. https://doi.org/10.1016/j.agee.2012.10.003
    » https://doi.org/10.1016/j.agee.2012.10.003
  • Pedroso AJS, Ruivo MLP, Piccinin JL, Okumura RS, Birani SM, Silva Junior ML, Melo VS, Costa AR, Albuquerque MPF. Chemical attributes of Oxisol under different tillage systems in Northeast of Pará. Afr J Agr Res. 2016;11:4947-52. https://doi.org/10.5897/AJAR2016.11688
    » https://doi.org/10.5897/AJAR2016.11688
  • R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2009. Available at: http://www.R-project.org/
    » http://www.R-project.org/
  • Rafael JA, Melo GAR, Carvalho CJB, Casari SA, Constantino R, editores. Insetos do Brasil: diversidade e taxonomia. Ribeirão Preto: Holos Editora; 2012.
  • Ribeiro LS, Oliveira IR, Dantas JS, Silva CV, Silva GB, Azevedo JR. Variabilidade espacial de atributos físicos de solo coeso sob sistemas de manejo convencional e plantio direto. Pesq Agropec Bras. 2016;51:1699-702. https://doi.org/10.1590/S0100-204X2016000900071
    » https://doi.org/10.1590/S0100-204X2016000900071
  • Rodrigues WC. DivEs - Diversidade de espécies v3.0: guia do usuário. Entomologistas do Brasil; 2015. Disponível em: http://dives.ebras.bio.br
    » http://dives.ebras.bio.br
  • Rousseau GX, Silva PRS, Celentano D, Carvalho CJR. Macrofauna do solo em uma cronosequência de capoeiras, florestas e pastos no Centro de Endemismo Belém, Amazônia Oriental. Acta Amaz. 2014;44:499-512. https://doi.org/10.1590/1809-4392201303245
    » https://doi.org/10.1590/1809-4392201303245
  • Santos C. Estatística descritiva: manual de auto-aprendizagem. Lisboa: Edições Sílabo; 2007.
  • Schaffrath VR, Tormena CA, Gonçalves ACA, Oliveira Junior RS. Variabilidade espacial de plantas daninhas em dois sistemas de manejo de solo. Rev Bras Eng Agric Ambient. 2007;11:53-60. https://doi.org/10.1590/S1415-43662007000100007
    » https://doi.org/10.1590/S1415-43662007000100007
  • Silva J, Assis Junior RN, Matias SSR, Tavares RC, Andrade FR, Camacho-Tamayo JH. Using geostatistics to evaluate the physical attributes of a soil cultivated with sugarcane. Rev Cienc Agrar. 2014;57:186-93. https://doi.org/10.4322/rca.2014.013
    » https://doi.org/10.4322/rca.2014.013
  • Siqueira GM, Dafonte JD, Valcárcel AM. Correlación espacial entre malas hierbas en una pradera y su relación con la conductividad eléctrica aparente del suelo (CEA). Planta Daninha. 2015a;33:631-41. https://doi.org/10.1590/S0100-83582015000400002
    » https://doi.org/10.1590/S0100-83582015000400002
  • Siqueira GM, Silva EFF, Paz-Ferreiro J. Land use intensification effects in soil arthropod community of an Entisol in Pernambuco state, Brazil. The Scientific World Journal. 2014;2014:1-7. https://doi.org/10.1155/2014/625856
    » https://doi.org/10.1155/2014/625856
  • Siqueira GM, Silva EFF, Vidal-Válquez E, Paz-González A. Multifractal and joint multifractal analysis of general soil properties and altitude along a transect. Biosyst Eng. 2017. In press. https://doi.org/10.1016/j.biosystemseng.2017.08.024
    » https://doi.org/10.1016/j.biosystemseng.2017.08.024
  • Siqueira GM, Silva JS, Bezerra JM, Silva EFF, Dafonte JD, Melo RF. Estacionariedade do conteúdo de água de um Espodossolo Humilúvico. R Bras Eng Agric Ambient. 2015b;19:439-48. https://doi.org/10.1590/1807-1929/agriambi.v19n5p439-448
    » https://doi.org/10.1590/1807-1929/agriambi.v19n5p439-448
  • Siqueira GM, Silva RA, Aguiar ACF, Costa MKL, Silva EFF. Spatial variability of weeds in an Oxisol under no-tillage system. Afr J Agric Res. 2016;11:2569-76. https://doi.org/10.5897/AJAR2016.11120
    » https://doi.org/10.5897/AJAR2016.11120
  • Siqueira GM, Vieira SR, Ceddia MB. Variabilidade de atributos físicos do solo determinados por métodos diversos. Bragantia. 2008;67:203-11. https://doi.org/10.1590/S0006-87052008000100025
    » https://doi.org/10.1590/S0006-87052008000100025
  • Siqueira GM, Vieira SR, Dechen SCF. Variabilidade espacial da densidade e da porosidade de um Latossolo Vermelho eutroférrico sob semeadura direta por vinte anos. Bragantia. 2009;68:751-9. https://doi.org/10.1590/S0006-87052009000300023
    » https://doi.org/10.1590/S0006-87052009000300023
  • Soil Survey Staff. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. 2nd ed. Washington, DC: United States Department of Agriculture, Natural Resources Conservation Service; 1999. (Agricultural Handbook, 436).
  • Vasconcellos RLF, Segat JC, Bonfim JA, Baretta D, Cardoso EJBN. Soil macrofauna as an indicator of soil quality in an undisturbed riparian forest and recovering sites of different ages. Eur J Soil Biol. 2013;58:105-12. https://doi.org/10.1016/j.ejsobi.2013.07.001
    » https://doi.org/10.1016/j.ejsobi.2013.07.001
  • Vieira SR. Geoestatística em estudos de variabilidade espacial do solo. In: Novais RF, Alvarez V VH, Schaefer CEGR. Tópicos em Ciência do Solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2000. v.1. p. 1-54.
  • Vieira SR, Tillotson PM, Biggar JW, Nielsen DR. Scaling of semivariograms and the kriging estimation of field-measured properties. Rev Bras Cienc Solo. 1997;21:525-33. https://doi.org/10.1590/S0100-06831997000400001
    » https://doi.org/10.1590/S0100-06831997000400001
  • Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlund L, Jørgensen HB, Brady MV, Christensen S, Ruiter PC, d’Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Holk WHG, Hotes S, Mortimer SN, Setälä H, Sgardelis SP, Uteseny K, van der Putten WH, Wolters V, Bardgett RD. Soil food web properties explain ecosystem services across European land use systems. P Natl A Sci USA. 2013;110:14296-301. https://doi.org/10.1073/pnas.1305198110
    » https://doi.org/10.1073/pnas.1305198110
  • Wagg C, Bender SF, Widmer F, van der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. P Natl A Sci USA. 2014;111:5266-70. https://doi.org/10.1073/pnas.1320054111
    » https://doi.org/10.1073/pnas.1320054111
  • Warrick AW, Nielsen DR. Spatial variability of soil physical properties in the field. In: Hillel D, editor. Applications of soil physics. New York: Academic Press; 1980. p. 319-44.
  • Zonta JH, Brandão ZN, Medeiros JC, Sana RS, Sofiatti V. Variabilidade espacial da fertilidade do solo em área cultivada com algodoeiro no Cerrado do Brasil. R Bras Eng Agric Ambient. 2014;18:595-602. https://doi.org/10.1590/S1415-43662014000600005
    » https://doi.org/10.1590/S1415-43662014000600005

Publication Dates

  • Publication in this collection
    2018

History

  • Received
    13 Apr 2017
  • Accepted
    5 Nov 2017
Sociedade Brasileira de Ciência do Solo Secretaria Executiva , Caixa Postal 231, 36570-000 Viçosa MG Brasil, Tel.: (55 31) 3899 2471 - Viçosa - MG - Brazil
E-mail: sbcs@ufv.br