Acessibilidade / Reportar erro

Natural Fertility and Metals Contents in Soils of Rio Grande do Sul (Brazil)

ABSTRACT:

The parent geological materials and formation factors influence the chemical, physical, and mineralogical properties and composition of the soil. Therefore, the aims of this study were to determine the chemical and some physical and mineralogical properties of the soil useful for agricultural practice; to determine the natural contents of the semitotal metals in soils of the state of Rio Grande do Sul (Brazil); and to suggest use of the quality reference values (QRVs) in accordance with Resolution 420/2009 of the National Commission for the Environment (Conama). To determine some soil properties useful for agricultural, 254 surface soil samples from areas without known human influence (native grasslands or forests) were analyzed according to the methodology used by the soil testing laboratories of the state of Rio Grande do Sul. In addition, the semitotal heavy metal (Cd, Co, Cr, Cu, Ni, Pb, V, and Zn) contents of the soil were determined by the Usepa 3050B method and Hg was determined through an adaptation of the Usepa 7471 method. The results were studied in five soil groups from the state of Rio Grande do Sul according to soil parent materials: (1) basalt (volcanic rocks) of the Plateau region, (2) crystalline rocks (granite, schists, etc.) of the Southern Shield, (3) pelitic rocks (siltstones, mudstones, etc.) of the Peripheral Depression, (4) sandstones (sedimentary) of the Central Plains, and (5) sediments (unconsolidated) of the Coastal Plains. The properties for agricultural use of these soils were compared using the criteria adopted by the current fertilizer recommendations for the state. Multivariate analysis was used to study metals contents. Average values of available P contents were low in all soil groups; however, average values were high in several soil groups for available K. Averages of total acidity and cation exchange capacity were higher in Group 1 soils. The average values of extractable Zn, Cu, and S were high in all soils. Averages of Fe oxides were higher in the soils formed over basalt than in the other soils. Average metal (Cd, Co, Cr, Cu, Ni, Pb, V, and Zn) contents were higher in Group 1 soils than in the other soil groups (2 to 5). For Hg, however, average values were similar for all soil groups. The Spearman correlation coefficients were positive and highest among the metals (except for Cd and Hg) and the clay, Fed, and extractable Cu soil properties. Another high positive correlation coefficient was found between semitotal Cu and Zn contents and organic carbon. The QRVs for Cd, Co, Cr, Cu, Hg, Ni, Pb, V, and Zn, determined according to Conama Resolution 420/2009, followed the same trend as the average metals contents.

Keywords:
native soils; chemical properties; heavy metals; quality reference values

INTRODUCTION

Soils develop over geological parent materials as a result of several factors, such as climate, position in the landscape, and biotic activity over long periods of time. In the southernmost state of Brazil (Rio Grande do Sul - RS) are very ancient crystalline rocks (such as granites, schists, etc.), sedimentary rocks (siltstones, claystones, sandstones), more recent volcanic rocks (basalt), and late unconsolidated deposited materials (sediments). These materials influence the soils properties and the content of elements such as heavy metals. Knowledge of the origin and distribution of geological materials contributes to a better understanding of the occurrence of various types of soils in RS. The geological parent materials are distributed according to the geomorphological provinces of RS, which are the Southern Shield, Peripheral Depression, Plateau, and Coastal Plains (Streck et al., 2008Streck EV, Kämpf N, Dalmolin RSD, Klamt E, Nascimento PC, Schneider P, Giasson E, Pinto LFS. Solos do Rio Grande do Sul. 2. ed rev ampl. Porto Alegre: Emater/RS; 2008.).

The first comprehensive description, classification, and mapping of RS soils was presented by Lemos et al. (1973)Lemos RC, Azolim MAD, Abrão PUR, Santos MCL. Levantamento de reconhecimento dos solos do estado do Rio Grande do Sul. Recife: Ministério da Agricultura; 1973. (Boletim técnico, 30). and revised according to the Brazilian Soil Classification System by Streck et al. (2008)Streck EV, Kämpf N, Dalmolin RSD, Klamt E, Nascimento PC, Schneider P, Giasson E, Pinto LFS. Solos do Rio Grande do Sul. 2. ed rev ampl. Porto Alegre: Emater/RS; 2008.. In those studies, 74 soil mapping units were presented, along with several intermixed formations.

The first characterization of undisturbed soil (with no anthropogenic influence) for agricultural purposes was that presented by Lemos et al. (1973)Lemos RC, Azolim MAD, Abrão PUR, Santos MCL. Levantamento de reconhecimento dos solos do estado do Rio Grande do Sul. Recife: Ministério da Agricultura; 1973. (Boletim técnico, 30).. Several soil surveys were conducted after that, starting with the study of Porto (1970)Porto MDM. Levantamento da fertilidade e necessidade de fertilizantes e corretivos dos solos do Rio Grande do Sul [dissertação]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 1970., using data from the soil testing laboratories that operated as a support for the RS program that started in 1966, which aimed to increase crop yield (mainly wheat, corn, and soybeans). The latest state soil survey, published by Rheinheimer et al. (2001)Rheinheimer DS, Gatiboni LC, Kaminski J, Robaina AD, Anghinoni I, Flores JPC, Horn D. Situação da fertilidade dos solos no Estado do Rio Grande do Sul. Santa Maria: Universidade Federal de Santa Maria; 2001. (Boletim técnico, 2)., included the results of 168,000 soil samples taken throughout the state. In these surveys, the data of pH(H2O), available P and K, total acidity (SMP method), organic matter, and clay content were studied. The methods described by Mielniczuk et al. (1969)Mielniczuk J, Ludwick A, Bohnen H. Recomendações de adubo e calcário para os solos e culturas do Rio Grande do Sul. Porto Alegre: Universidade Federal do Rio Grande do Sul; 1969. (Boletim técnico, 2). reviewed by Tedesco et al. (1995)Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ. Análises de solo, plantas e outros materiais. 2. ed rev ampl. Porto Alegre: Universidade Federal do Rio Grande do Sul; 1995. (Boletim técnico, 5). were used for soil testing. The surveys conducted by Porto (1970)Porto MDM. Levantamento da fertilidade e necessidade de fertilizantes e corretivos dos solos do Rio Grande do Sul [dissertação]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 1970. and Rheinheimer et al. (2001)Rheinheimer DS, Gatiboni LC, Kaminski J, Robaina AD, Anghinoni I, Flores JPC, Horn D. Situação da fertilidade dos solos no Estado do Rio Grande do Sul. Santa Maria: Universidade Federal de Santa Maria; 2001. (Boletim técnico, 2). mostly used samples of soils under cultivation.

Up to 1983, available Ca and Mg were not routinely determined in the soil testing laboratories of RS since most of the soils had high total acidity and therefore required liming, which increased these contents.

In 1982 and 1983, more detailed soil sampling was conducted in RS to characterize soil fertility in order to establish the soil samples collection of the Soil Science Department of the School of Agronomy at the Federal University of Rio Grande do Sul (UFRGS). These samples were described by location, mapping unit, vegetation, land use, soil depth, and chemical analysis for crop production (routine determinations) and summarized in a report to the sponsors of this research [UFRGS and the Studies and Projects Funding Agency (Finep)] by Volkweiss et al. (1983)Volkweiss SJ, Tedesco MJ, Bohnen H, Bissani CA, Gutterres JF, Klamt E, Schneider P, Kampf N. Levantamento dos teores de nutrientes das plantas em solos do Rio Grande do Sul. Porto Alegre: Universidade Federal do Rio Grande do Sul; 1983. (Relatório de Pesquisa).. Approximately one thousand samples were taken. Of these, about one quarter were collected from areas without known human influence (native grasslands or forests). These samples were used to characterize the native state of the soils of RS, in general and by physiographic region, from the standpoint of agricultural practice (plant macro- and micronutrients), heavy metals contents, or for other purposes.

Increasing ecological concerns over soil quality and soil use for disposal of residues (domestic and industrial), starting in the 1980s, led several Brazilian state agencies to study and propose soil quality standards, such as contents of heavy metals or other substances in soils. In RS, maximun levels of tannery residues (containing Cr) were established (Rodrigues et al., 1993Rodrigues AM, Anghinoni MCM, Tedesco MJ, Gianello C. Technical criteria for soil disposal of tannery solid wastes. In: Anais do 12th Congress of the International Union of Chemists and Technicians of the Leather Industry; 1993; Porto Alegre. Porto Alegre: International Union of Chemists and Technicians of the Leather Industry; 1993.). In the state of São Paulo, the Environmental Agency of the State of São Paulo (Cetesb) presented guidelines for soil and groundwater quality (Cetesb, 2001Companhia de Tecnologia de Saneamento Ambiental - Cetesb. Relatório de estabelecimento de valores orientadores para solos e águas subterrâneas no estado de São Paulo. (Série relatórios ambientais). São Paulo: Cetesb; 2001 [acesso em 18 jan. 2016]. Disponível em: http://sites.usp.br/sef/wp-content/uploads/sites/52/2015/03/46-CETESB2001_Valores_Orientadores_solo_agua.pdf.
http://sites.usp.br/sef/wp-content/uploa...
, 2005Companhia de Tecnologia de Saneamento Ambiental - Cetesb. Decisão de Diretoria No. 195-2005- E, de 23 de novembro de 2005. Dispõe sobre a aprovação dos Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo - 2005, em substituição aos Valores Orientadores de 2001, e dá outras providências. São Paulo: Diário Oficial Estado de São Paulo; 2005 [acesso em 18 jan. 2016]. Disponível em: http://www.bvsde.paho.org/bvsacd/cd56/tabela-valores.pdf.
http://www.bvsde.paho.org/bvsacd/cd56/ta...
), which were later adopted by the National Environment Commission (Conama) (Conama, 2009Conselho Nacional do Meio Ambiente - Conama. Resolução No. 420, de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Brasília, DF; 2009 [acesso em 18 jan. 2016]. Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620.
http://www.mma.gov.br/port/conama/legiab...
).

The semitotal contents of some metals (Cd, Co, Cr, Cu, Hg, Ni, Pb, V, and Zn) from the samples of undisturbed surface soils of RS in the UFRGS Soil Bank were presented by Althaus et al. (2014)Althaus D, Silva KJ, Felisberto R, Tedesco MJ, Bissani CA, Gianello C. Teores naturais de metais pesados em solos do Estado do Rio Grande do Sul. In: Anais do XXXIV Congresso Brasileiro de Ciência do Solo; 2013; Florianópolis. Florianópolis: Epagri, SBCS; 2014. p. 5264-6.. The State Environmental Protection Foundation (Fepam) later adopted the QRVs with some adaptations that were required by the different properties of the soils of the state of RS (Fepam, 2014Fundação Estadual de Proteção Ambiental Henrique Luiz Roessler/RS - Fepam. Portaria Fepam n° 85/2014. Dispõe sobre o estabelecimento de Valores de Referência de Qualidade (VRQ) dos solos para 09 (nove) elementos químicos naturalmente presentes nas diferentes províncias geomorfológicas/geológicas do Estado do Rio Grande do Sul. Porto Alegre; 2014 [acesso em 29 mai 2016]. Disponível em: http://www.fepam.rs.gov.br/legislacao/arq/Portaria085-2014.pdf.
http://www.fepam.rs.gov.br/legislacao/ar...
).

The aims of this study were to determine the chemical and some physical and mineralogical properties of the soil useful for agricultural practice; to determine the natural contents of the semitotal metals Cd, Co, Cr, Cu, Hg, Ni, Pb, V, and Zn in soils of the state of Rio Grande do Sul; and to suggest use of the quality reference values (QRVs) in accordance with Resolution 420/2009 of the Conama.

MATERIALS AND METHODS

Soil samples

At the end of 1983, a soil sample collection was established at the Federal University of Rio Grande do Sul through collection of approximately 1,000 samples representing the 74 soil mapping units described by Lemos et al. (1973)Lemos RC, Azolim MAD, Abrão PUR, Santos MCL. Levantamento de reconhecimento dos solos do estado do Rio Grande do Sul. Recife: Ministério da Agricultura; 1973. (Boletim técnico, 30). in the five geomorphological regions of the state (Streck et al., 2008Streck EV, Kämpf N, Dalmolin RSD, Klamt E, Nascimento PC, Schneider P, Giasson E, Pinto LFS. Solos do Rio Grande do Sul. 2. ed rev ampl. Porto Alegre: Emater/RS; 2008.).

Each sample was characterized by location, soil mapping unit, vegetation, slope, parent material, and soil use. The samples taken from the top layer (0.00-0.20 m depth) were air dried, ground to pass through a 2 mm sieve (ABNT 10), and kept in tightly closed PVC jars.

In this soil collection, 254 samples were collected in areas without previous apparent human activity (native grassland or forests), and they were used in this study. The soil samples were classified into five soil groups, according to their parent materials (Table 1). The location of the soil groups in the state is shown in figure 1.

Table 1
Soil groups with their parent materials, distribution in the state of Rio Grande do Sul (Brazil), and the number of samples used in this study
Figure 1
Map of soil groups of the state of Rio Grande do Sul (Brazil) according to soil parent material, based on the geological map (CPRM, 2006Companhia de Pesquisa de Recursos Minerais - CPRM. Mapa geológico do Estado do Rio Grande do Sul. Escala 1:750.000. Porto Alegre: Serviço Geológico do Brasil; 2006.) and on the geomorphological province map (Streck et al., 2008Streck EV, Kämpf N, Dalmolin RSD, Klamt E, Nascimento PC, Schneider P, Giasson E, Pinto LFS. Solos do Rio Grande do Sul. 2. ed rev ampl. Porto Alegre: Emater/RS; 2008.).

Chemical, physical, and mineralogical characterization of the soils for agricultural use

In the soil samples, particle size, pH(H2O), total acidity (H+Al), available P and K, extractable S, total nitrogen, and organic matter were determined. The results were summarized by Volkweiss et al. (1983)Volkweiss SJ, Tedesco MJ, Bohnen H, Bissani CA, Gutterres JF, Klamt E, Schneider P, Kampf N. Levantamento dos teores de nutrientes das plantas em solos do Rio Grande do Sul. Porto Alegre: Universidade Federal do Rio Grande do Sul; 1983. (Relatório de Pesquisa).. Subsequently, in this study, the values for available P and K, exchangeable Ca, Mg, Al, Mn, and Na, and extractable Cu, Zn, and B were determined in the same samples using an inductively coupled plasma optical emission spectrometer (ICP - OES/Perkin-Elmer Optima 7300 DV). The analytical methodology is summarized in table 2.

Table 2
Chemical, physical, and mineralogical properties of the soil determined in the soil groups according to table 1 and analytical methodology used

The analytical values of the soil iron oxides of low (Feo) and high (Fed) crystallinity were reported by Felisberto (2009)Felisberto R. Teor de mercúrio em solos do Rio Grande do Sul [dissertação]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2009..

Semitotal metals contents

The semitotal metal contents (Cd, Co, Cr, Cu, Ni, Pb, V, and Zn) were determined by the Usepa 3050B methodology (Usepa, 1996United States Environmental Protection Agency - Usepa. Method 3050B: acid digestion of sediments, sludges, and soils, revision 2. Washington, DC; 1996.) from 2008 to 2012 using an ICP-OES.

Mercury was also determined in 146 samples (selected from the 254) extracted by an HNO3 + H2SO4 + KMnO4 solution at 110 °C [adapted from the Usepa 7471 methodology (Usepa, 1998United Stated Environmental Protection Agency - Usepa. Method 7471B: mercury in solid or semisolid waste (Manual cold-vapor technique), revision 2. Washington, DC; 1998.) by Felisberto (2009)Felisberto R. Teor de mercúrio em solos do Rio Grande do Sul [dissertação]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2009.] with cold vapor - atomic absorption spectrometry (CV-AAS).

Analytical quality control for Cd, Co, Cr, Cu, Ni, Pb, V, and Zn was verified by alternating determination of contents with use of the certified reference material BCR-142 R (IRMM, 2007Institute for Reference Materials and Measurements - IRMM. Certified reference material BCR - 142R. Geel; 2007 [accessed on 18 Jan. 2016]. Available at: http://www.lgcstandards.com/medias/sys_master/pdfs/pdfs/ha6/hc4/9208111169566/BCR-142R-ST-WB-CERT-1515931-1-1-1.pdf.
http://www.lgcstandards.com/medias/sys_m...
) and a control soil sample from the Soil Testing Lab/UFRGS. The results from the certified material were presented by Althaus (2017)Althaus D. Teores naturais e efeitos da adição de metais pesados em solos do estado do Rio Grande do Sul [tese]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2017.. For Hg, analytical quality control is presented by Felisberto (2009)Felisberto R. Teor de mercúrio em solos do Rio Grande do Sul [dissertação]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2009..

Statistical analysis of the data for soil agricultural use

The results were statistically analyzed in the soil groups by average values. The soil properties used for lime and fertilizer recommendations for the crops were classified according to their reference value in the plant cultivation practice (CQFS-RS/SC, 2004Comissão de Química e Fertilidade do Solo - CQFS-RS/SC. Manual de adubação e de calagem para os estados do Rio Grande do Sul e de Santa Catarina. 10. ed. Porto Alegre: Sociedade Brasileira de Ciência do Solo - Núcleo Regional Sul; 2004., 2016Comissão de Química e Fertilidade do Solo - CQFS-RS/SC. Manual de calagem e adubação para os Estados do Rio Grande do Sul e de Santa Catarina. 11. ed. Porto Alegre: Sociedade Brasileira de Ciência do Solo - Núcleo Regional Sul; 2016.).

Spearman correlation coefficients (rs) were used to compare the soil properties. Statistical significance of the correlation coefficients was calculated for the 5 % probability level (p<0.05). The Paleontological Statistics software (PAST), version 2.6 (Hammer et al., 2001Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;PE4.1.4A.), was used.

Statistical analyses of the semitotal soil metals contents

In the data matrix, all the sample units in five soil groups were used for each of the variables (metals and soil properties).

Metals content values were studied by multivariate analysis techniques for non-parametric data through ordination analysis of the principal component analysis (PCA) type. The purpose of this was to obtain exploratory analysis to validate pattern similarity among sampling units and the distribution of the nine metals (Cd, Co, Cr, Cu, Hg, Ni, Pb, V, and Zn) in the five soil groups according to their parent material. Analysis of variance was also conducted using a randomization test (with 1000 bootstrap interactions), comparing groups of sampling units with contrasts by the sum of the squares at a significance level of 5 % probability (p<0.05) from similarity measure of the Euclidean distance type in order to perform confirmatory analysis of the metal grouping.

Spearman correlation coefficients (rs) for non-parametric data were used to compare the metals (dependent variables) with soil properties (independent variables). The statistical significance of the correlation coefficients was calculated at the 5 % probability level (p<0.05).

Statistical analyses were performed using the statistical programs Paleontological Statistics (PAST), version 6.3 (Hammer et al., 2001Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;PE4.1.4A.) and Multiv, version 3.31b (Pillar, 1997Pillar VDP. Multivariate exploratory analysis and randomization testing with MULTIV. Coenoses. 1997;12:145-8.).

Quality reference values (QRVs) for semitotal metal analytical data

The quality reference value for the semitotal metal soil contents (Cd, Co, Cr, Cu, Hg, Ni, Pb, V, and Zn) were calculated at the 75th and 90th percentile frequency distribution of the analytical data, according to the guidelines presented by the 420/2009 Conama Resolution (Conama, 2009Conselho Nacional do Meio Ambiente - Conama. Resolução No. 420, de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Brasília, DF; 2009 [acesso em 18 jan. 2016]. Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620.
http://www.mma.gov.br/port/conama/legiab...
) for the five soil groups. For this calculation, the values considered as “outliers” were not included (approximately 2.5 % of the samples analyzed). Outliers were considered to be the samples which had values lower or higher than the group averages plus or minus twice the standard deviation. The software Microsoft Excel was used for this computation.

RESULTS AND DISCUSSION

Soil fertility evaluation

The soil properties used for liming and macronutrient (NPK) fertilization of agricultural crops are shown in table 3. Since the average pH in all soil groups is low (<5.0), they also have exchangeable Al (8 to 20 mmolc dm-3), which can be toxic to the plants. Therefore, liming is required to increase the soil pH level to 5.5 in order to neutralize Al toxicity. For legume cultivation, however, soil pH must be raised to at least the 6.0 level, neutralizing total acidity even more.

Table 3
Average contents, for soil groups, of soil properties used for liming and NPK fertilization recommendations for agricultural crops

The amounts of lime required can be established considering the crop, total soil acidity (H+Al), clay content, cation exchange capacity, and soil and crop management practices, according to current agronomic recommendations (CQFS-RS/SC, 2004Comissão de Química e Fertilidade do Solo - CQFS-RS/SC. Manual de adubação e de calagem para os estados do Rio Grande do Sul e de Santa Catarina. 10. ed. Porto Alegre: Sociedade Brasileira de Ciência do Solo - Núcleo Regional Sul; 2004., 2016Comissão de Química e Fertilidade do Solo - CQFS-RS/SC. Manual de calagem e adubação para os Estados do Rio Grande do Sul e de Santa Catarina. 11. ed. Porto Alegre: Sociedade Brasileira de Ciência do Solo - Núcleo Regional Sul; 2016.).

Liming also increases the soil Ca and Mg contents, which are low in sandy soils (soil group 4). Liming can also decrease the exchangeable Mn contents, which can reach toxic levels for legumes in some soils of group 1.

Available P is the most limiting plant nutrient for agricultural crops, which was recognized as well in the first soil survey in state of Rio Grande do Sul conducted by Lemos et al. (1973)Lemos RC, Azolim MAD, Abrão PUR, Santos MCL. Levantamento de reconhecimento dos solos do estado do Rio Grande do Sul. Recife: Ministério da Agricultura; 1973. (Boletim técnico, 30).. Low P soil availability and high crystallinity iron oxides (Figure 2) are found mainly in clayey soils. The P fertilization recommended for agronomic practices is based on soil clay content, plant requirements, and soil management practices (CQFS-RS/SC, 2016Comissão de Química e Fertilidade do Solo - CQFS-RS/SC. Manual de calagem e adubação para os Estados do Rio Grande do Sul e de Santa Catarina. 11. ed. Porto Alegre: Sociedade Brasileira de Ciência do Solo - Núcleo Regional Sul; 2016.).

Figure 2
Average contents of exchangeable Ca, Mg, and Mn; extractable Zn, Cu, B, and S; and Fe oxides of high (Fed) and low (Feo) crystallinity in the soil groups according to table 1. L = low; M = medium; H = high, according to the SBCS/NRS (2004, 2016). Analytical methodology used according to table 2.

The K available to plants in uncultivated soils can be considered adequate (Table 3). As a cation (K+) in the soil solution, its availability to plants is related to the soil cation exchange capacity (CEC). Plant potassium needs are high, and generally K must be supplied by fertilization. For that reason, not only plant requirements, but also the CEC must be considered (CQFS-RS/SC, 2016Comissão de Química e Fertilidade do Solo - CQFS-RS/SC. Manual de calagem e adubação para os Estados do Rio Grande do Sul e de Santa Catarina. 11. ed. Porto Alegre: Sociedade Brasileira de Ciência do Solo - Núcleo Regional Sul; 2016.).

Soil group 1, developed over basalt, also had higher organic carbon contents (organic matter), which can be an important nitrogen source for plants. Non-legume crops generally require N fertilization.

Soils of all the soil groups showed high average levels of S and plant micronutrients (Zn, Cu, and B) (Figure 2).

Semitotal metals contents

The averages and the standard deviation values obtained for the semitotal contents of the metals in the soils of the five soil groups are shown in figure 3. For the metals Cd, Co, Cr, Cu, Ni, Pb, V, and Zn, the highest average values were determined in soil group 1 (developed over basalt). The highest average value was found for V (278 mg kg-1) and the lowest for Cd (0.41 mg kg-1). The average values in the other soil groups decreased in the order: Cu > Zn > Cr > Co > Pb > Ni.

Figure 3
Average contents of semitotal Cd, Co, Cr, Cu, Hg, Ni, Pb, V, and Zn in the soil groups according to table 1. Averages with the same letters are not statistically different in the randomization test from Euclidean distance (p<0.05). Vertical bars indicate the standard deviation.

Mercury, however, showed a different trend - the semitotal values are much lower than those for the other metals (an average of 0.05 mg kg-1 for soil group 1). But the average value for soil group 5 was similar to this. This is probably due to some anthropic influence, since the samples were taken from recent sedimentary deposits.

For statistical study of the data, principal component analysis (PCA) was used, with analysis of variance by randomization tests and Spearman correlation between metals contents and soil properties.

Based on statistical analysis, quality reference values (QRVs) for the soils of the state of Rio Grande do Sul were suggested and compared with others adopted by several Brazilian states/regions and by the Conama.

Principal component analysis

The ordination diagram obtained by PCA (Figure 4) synthesizes the metals values in their soil groups for all sample units distributed along ordination axes (principal components). Multivariate techniques, such as PCA, allow inferences regarding data sets at a known level of significance and thus allow a wide range of understanding of the overall distribution of results (Paye et al., 2012Paye HS, Mello JWV, Melo SB. Métodos de análise multivariada no estabelecimento de valores de referência de qualidade para elementos-traço em solos. Rev Bras Cienc Solo. 2012;36:1031-41. https://doi.org/10.1590/S0100-06832012000300033
https://doi.org/10.1590/S0100-0683201200...
).

Figure 4
Ordination diagram obtained by principal component analysis for metals and soil groups, according to table 1. The metals are represented by vectors and soil groups by dots.

The pattern of distribution of sample units was considered stable, since the first axis allowed explanation of 62 % of variation and axis 2 allowed 13 %.

The distribution of the sample units of the metals relative to axes 1 and 2 of the diagram is according to greater or lesser similarity among the units. For all sampling units, a greater gradient along axis 1 was observed, in which most sampling units were located on the right side of the diagram, corresponding to soil group 1, and most sampling units corresponding to the other soil groups (2 to 5), were located on the left side, which were therefore grouped together, thus showing greater similarity among units. Considering their parent materials, the sample units in soil groups 2 to 5 were previously classified in different groups, but from principal component analysis, the similarities of these groups were observed. Therefore, by the PCA, we can establish a new grouping, namely, the soil group formed over basalt (soil group 1) and the soil groups developed over the other parent materials (soil groups 2 to 5). In the study of Burak et al. (2010)Burak DL, Fontes MPF, Santos NT, Monteiro LVS, Martins ES, Becquer T. Geochemistry and spatial distribution of heavy metals in Oxisols in a mineralized region of the Brazilian Central Plateau. Geoderma. 2010;160:131-42. https://doi.org/10.1016/j.geoderma.2010.08.007
https://doi.org/10.1016/j.geoderma.2010....
, the PCA method was also performed to better quantify the relationships among the variables and to identify groups of geochemically similar samples.

As for the sample units, the metals, represented by vectors in the ordination diagram (Figure 4), were also more concentrated along axis 1, with the highest percentage of explanation of the distribution of sample units, since the highest correlation coefficient for the metals (with the exception of Cd) obtained by PCA are on axis 1. Mercury, although with a higher correlation coefficient related to axis 1 than axis 2, showed low correlations for both axes (Table 4).

Table 4
Correlation coefficients obtained by principal component analysis relating metals to the axes of the ordination diagram

The proximity of the metals projected in the ordination diagram obtained by PCA analysis indicates the similarity among them. This is also shown by calculating the Spearman correlation coefficients (rs) for these same metals (Althaus, 2017Althaus D. Teores naturais e efeitos da adição de metais pesados em solos do estado do Rio Grande do Sul [tese]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2017.), where high positive values (rs ≥0.65; p<0.05) between several metals were observed. A significant and positive correlation coefficient suggests similar geochemical behavior and/or a common source material of these elements (Burak et al., 2010Burak DL, Fontes MPF, Santos NT, Monteiro LVS, Martins ES, Becquer T. Geochemistry and spatial distribution of heavy metals in Oxisols in a mineralized region of the Brazilian Central Plateau. Geoderma. 2010;160:131-42. https://doi.org/10.1016/j.geoderma.2010.08.007
https://doi.org/10.1016/j.geoderma.2010....
). Exceptions were observed for Cd and Hg, which, as represented in the PCA diagram, were at a greater distance from axis 1 and thus from the other metals and showed the lowest correlation coefficients.

The projection of the metal in the ordination diagram also indicated in which direction the metals showed an upward trend. Each one went to the right side of the diagram, the side in which the sampling units corresponding to soil group 1 are also projected (Figure 4). This indicates that the metals exhibit an upward trend of their contents in soil group 1 (soils formed over basalt), and the opposite trend is obtained for the other groups, also showing the difference between soil group 1 and soil groups 2 to 5.

Analysis of variance by randomization tests

The randomization test to compare soil groups for metals, using the similarity measure of the Euclidean distance type, showed the existence of contrasts by summing the squares at the significance level of 5 % probability (p<0.05). This corroborates conventional analysis of variance in indicating that there is a statistically significant difference between metals of soil group 1, which have the highest metals contents, and the metal values from the other soil groups, except for Hg (Figure 3).

Analysis of variance with randomization tests for multivariate data was used as confirmatory analysis of the metal grouping results already obtained by exploratory PCA analysis. Analysis of variance confirmed the difference in metals contents of soil group 1, with basalt as the main parent formation material, compared to the other groups. Soils derived from basaltic materials contain large heavy metals contents (Kabata-Pendias, 2011Kabata-Pendias A. Trace elements in soils and plants. 4th ed. Boca Raton: CRC Press; 2011.). As a result of these findings, not five different soil groups (Figure 3) but rather maintenance of soil group 1 and unification of soil groups 2 to 5, called soil group 2-5, were established for the metals studied, as presented in table 5.

Table 5
Average contents, standard deviations, and ranges of semitotal Cd, Co, Cr, Cu, Hg, Ni, Pb, V, and Zn in soil group 1 and soil group 2-5

Spearman correlation between metals and soil properties

Spearman correlation coefficients (rs) between metals and the main soil properties are presented in table 6. The values of the correlation coefficients are important for identifying the soil properties that most influence retention of metals in soils and their distribution in the different environmental compartments.

Table 6
Spearman correlation coefficients (rs) between soil properties and metals. Correlation coefficients >0.65 are in bold

The highest values (rs ≥0.65; p<0.05) for metals (except for Cd and Hg) were observed in the clay, Fed, and extractable Cu soil properties (Table 6). The clay fraction (and silt, to a lesser extent) contains the main mineral adsorbents in the soil, such as Fe and Al oxides, and therefore has considerable influence on the distribution of trace elements in the soil profile (Kabata-Pendias, 2011Kabata-Pendias A. Trace elements in soils and plants. 4th ed. Boca Raton: CRC Press; 2011.).

Another highly significant positive correlation coefficient was found between Cu or Zn and organic carbon. The same result was reported by Biondi et al. (2011)Biondi CM, Nascimento CWA, Fabricio Neta AB, Ribeiro MR. Teores de Fe, Mn, Zn, Cu, Ni e Co em solos de referência de Pernambuco. Rev Bras Cienc Solo. 2011;35:1057-66. https://doi.org/10.1590/S0100-06832011000300039
https://doi.org/10.1590/S0100-0683201100...
. This can be explained by the fact that Cu and Zn ions have affinity with the humified organic matter fraction of the soil (Melo et al., 2008Melo EEC, Nascimento CWA, Santos ACQ, Silva AS. Disponibilidade e fracionamento de Cd, Pb, Cu e Zn em função do pH e tempo de incubação com o solo. Cienc Agrotec. 2008;32:776-84. https://doi.org/10.1590/S1413-70542008000300011
https://doi.org/10.1590/S1413-7054200800...
).

The pH(H2O) showed the lower correlation values with the metals (Table 6). According to Fadigas et al. (2002)Fadigas FS, Amaral-Sobrinho NMB, Mazur N, Anjos LHC, Freixo AA. Concentrações naturais de metais pesados em algumas classes de solos brasileiros. Bragantia. 2002;61:151-9. https://doi.org/10.1590/S0006-87052002000200008
https://doi.org/10.1590/S0006-8705200200...
, this may be due to the use of a strongly acidic solution to determine the semitotal metals contents. Significant correlations could be obtained when using diluted acidic solutions or complexing agents (Paye et al., 2012Paye HS, Mello JWV, Melo SB. Métodos de análise multivariada no estabelecimento de valores de referência de qualidade para elementos-traço em solos. Rev Bras Cienc Solo. 2012;36:1031-41. https://doi.org/10.1590/S0100-06832012000300033
https://doi.org/10.1590/S0100-0683201200...
).

The complete list of the Spearman correlation coefficients (rs) between the soil properties is presented by Althaus (2017)Althaus D. Teores naturais e efeitos da adição de metais pesados em solos do estado do Rio Grande do Sul [tese]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2017..

Quality reference values (QRVs)

According to Conama Resolution 420/2009Conselho Nacional do Meio Ambiente - Conama. Resolução No. 420, de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Brasília, DF; 2009 [acesso em 18 jan. 2016]. Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620.
http://www.mma.gov.br/port/conama/legiab...
, the soil QRVs can be established considering the 75th or 90th percentiles (Conama, 2009Conselho Nacional do Meio Ambiente - Conama. Resolução No. 420, de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Brasília, DF; 2009 [acesso em 18 jan. 2016]. Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620.
http://www.mma.gov.br/port/conama/legiab...
). These values are presented by Althaus (2017)Althaus D. Teores naturais e efeitos da adição de metais pesados em solos do estado do Rio Grande do Sul [tese]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2017. for the five soil groups of RS, as already mentioned (Althaus et al., 2014Althaus D, Silva KJ, Felisberto R, Tedesco MJ, Bissani CA, Gianello C. Teores naturais de metais pesados em solos do Estado do Rio Grande do Sul. In: Anais do XXXIV Congresso Brasileiro de Ciência do Solo; 2013; Florianópolis. Florianópolis: Epagri, SBCS; 2014. p. 5264-6.), for the metals Cd, Co, Cr, Cu, Hg, Ni, Pb, V, and Zn in soils. These values were adopted, with some adaptions, by the 85/2014 Fepam Ordinance (Fepam, 2014Fundação Estadual de Proteção Ambiental Henrique Luiz Roessler/RS - Fepam. Portaria Fepam n° 85/2014. Dispõe sobre o estabelecimento de Valores de Referência de Qualidade (VRQ) dos solos para 09 (nove) elementos químicos naturalmente presentes nas diferentes províncias geomorfológicas/geológicas do Estado do Rio Grande do Sul. Porto Alegre; 2014 [acesso em 29 mai 2016]. Disponível em: http://www.fepam.rs.gov.br/legislacao/arq/Portaria085-2014.pdf.
http://www.fepam.rs.gov.br/legislacao/ar...
).

Considering the large areas of the groups and the geomorphological and pedogenetic diversities in every state, and even more so in the country, the establishment of soil QRVs for smaller areas is justified, with technical and statistical support. Furthermore, each soil residues disposal project should include “blank” areas for reference as the operations proceed and for the decision-making to occur safely.

The QRVs for native metals contents in the soils of RS at the 90th percentile are presented in two categories (Table 7): one for soils developed over basalt and the other as the averages of the remaining soils (soil groups 2 to 5, table 1).

Table 7
Average quality reference values (QRVs) for metals, in the 90th percentile, by soil groups for the natural metals contents in soils of the state of Rio Grande do Sul (Brazil)

Soil mapping units, or even soil classes, were not considered in this study. Mello and Abrahão (2013)Mello JWV, Abrahão WAP. Valores de referência de qualidade para elementos traço nos solos de Minas Gerais e Espírito Santo: os bastidores de uma experiência. Bol Inf Soc Bras Cienc Solo. 2013;38:12-7. pointed out that the soil classification system criteria mainly considers soil genesis and not semitotal heavy metals contents.

Several Brazilian states, such as São Paulo (Cetesb, 2014Companhia de Tecnologia de Saneamento Ambiental - Cetesb. Decisão de Diretoria 045/2014/E/C/I, de 20-02-2014. Dispõe sobre a aprovação dos Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo - 2014, em substituição aos Valores Orientadores de 2005 e dá outras providências. São Paulo: Diário Oficial Estado de São Paulo; 2014 [acesso em 18 jan. 2016]. Disponível em: http://www.Cetesb.sp.gov.br/wp-content/uploads/sites/11/2013/11/DD-045-2014-P53.pdf.
http://www.Cetesb.sp.gov.br/wp-content/u...
), Minas Gerais (Copam, 2011Conselho Estadual de Política Ambiental - Copam. Deliberação Normativa COPAM n° 166, de 29 de junho de 2011. Altera o Anexo I da Deliberação Normativa Conjunta COPAM CERH no 2 de 6 de setembro de 2010, estabelecendo os Valores de Referência de Qualidade dos Solos. Belo Horizonte; 2011 [acesso em 18 jan. 2016]. Disponível em: http://www.siam.mg.gov.br/sla/download.pdf?idNorma=18414.
http://www.siam.mg.gov.br/sla/download.p...
), Mato Grosso (Santos, 2011Santos SN. Valores de referência de metais pesados em solos de Mato Grosso e Rondônia [dissertação]. Piracicaba: Escola Superior de Agricultura Luiz de Queiroz; 2011.), Rondônia, Rio Grande do Norte (Preston et al., 2014Preston W, Nascimento CWA, Biondi CM, Souza Junior VS, Silva WR, Ferreira HA. Valores de referência de qualidade para metais pesados em solos do Rio Grande do Norte. Rev Bras Cienc Solo. 2014;38:1028-37. https://doi.org/10.1590/S0100-06832014000300035
https://doi.org/10.1590/S0100-0683201400...
), and the Archipelago of Fernando de Noronha (Fabricio Neta, 2012Fabricio Neta AB. Teores naturais de metais pesados em solos da Ilha de Fernando de Noronha [dissertação]. Recife: Universidade Federal Rural de Pernambuco; 2012.), have adopted the 75th percentile, which is more restrictive. However, other states, including RS, have adopted the 90th percentile.

The 75th percentile is more restrictive to soil use, since it assumes that 25 % of the soils are “naturally contaminated” and cannot be used, even for food production. This leads to a paradoxical situation: on the one hand, agencies concerned about the environment forbid use of the soil, and, on the other hand, there is a shortage of areas for cultivation and, consequently, lower food production. For that reason, some authors (Melo Junior, 2008Melo Junior G. Argumentos em favor do percentil 90 na atual proposta de Resolução do Conama. Natal: Universidade Federal do Rio Grande do Norte; 2008 [acesso em 18 jan. 2016]. Disponível em: http://www.mma.gov.br/port/conama/processos/FE4582B1/CONAMA_11-12-2008-UFRN1.pdf.
http://www.mma.gov.br/port/conama/proces...
; Paye et al., 2010Paye HS, Mello JWV, Abrahão WAP, Fernandes Filho EI, Dias LCP, Castro MLO, Melo SB, França MM. Valores de referência de qualidade para metais pesados em solos no estado do Espírito Santo. Rev Bras Cienc Solo. 2010;34:2041-51. https://doi.org/10.1590/S0100-06832010000600028
https://doi.org/10.1590/S0100-0683201000...
) point out that, even with use of the 90th percentile, there are at least 10 % “naturally contaminated” soils. For that reason, use of the 90th percentile is more commonly accepted by government agencies in the European Community and the USA.

In our study (a population of 254 soil samples), 2.5 % of them were excluded as outliers. With use of the 90 percentile, we would have 12.5 % of the soil “naturally contaminated”, which seems very strange, to say the least.

However, if the proposal of Conama Resolution 420/2009 for prevention values (PV) and investigation values (IV) (Althaus, 2017Althaus D. Teores naturais e efeitos da adição de metais pesados em solos do estado do Rio Grande do Sul [tese]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2017.) is accepted, more strange situations will be observed for soil group 1: (1) the QRV for Co, Cr, Cu, and Ni are higher than their prevention values (PV); (2) the QRV for Co is higher than the agricultural and residential investigation value (IV). Moreover, for soil groups 2 to 5, the maximum variation of the QRV for Co is higher than the proposed PV. It can be seen, therefore, that 43 % of the soils of RS (developed over basalt) are “naturally contaminated” by some metal or another.

The situation of the Archipelago of Fernando de Noronha, a supposedly non-contaminated environment, is at least as strange, since some QRVs for metals are higher than the Conama PV and IV values (Fabricio Neta, 2012Fabricio Neta AB. Teores naturais de metais pesados em solos da Ilha de Fernando de Noronha [dissertação]. Recife: Universidade Federal Rural de Pernambuco; 2012.).

In Minas Gerais, the QRV for Cr was also observed to be higher than the PV (Mello and Abrahão, 2013Mello JWV, Abrahão WAP. Valores de referência de qualidade para elementos traço nos solos de Minas Gerais e Espírito Santo: os bastidores de uma experiência. Bol Inf Soc Bras Cienc Solo. 2013;38:12-7.). This State Environmental Agency therefore decided to use the PV (proposed by the Cetesb) as the QRV.

The whole strange situation comes from Conama's decision to adopt the data obtained by the Cetesb for the whole country; the Cetesb used few soil samples with small diversity (Cetesb, 2001Companhia de Tecnologia de Saneamento Ambiental - Cetesb. Relatório de estabelecimento de valores orientadores para solos e águas subterrâneas no estado de São Paulo. (Série relatórios ambientais). São Paulo: Cetesb; 2001 [acesso em 18 jan. 2016]. Disponível em: http://sites.usp.br/sef/wp-content/uploads/sites/52/2015/03/46-CETESB2001_Valores_Orientadores_solo_agua.pdf.
http://sites.usp.br/sef/wp-content/uploa...
, 2005Companhia de Tecnologia de Saneamento Ambiental - Cetesb. Decisão de Diretoria No. 195-2005- E, de 23 de novembro de 2005. Dispõe sobre a aprovação dos Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo - 2005, em substituição aos Valores Orientadores de 2001, e dá outras providências. São Paulo: Diário Oficial Estado de São Paulo; 2005 [acesso em 18 jan. 2016]. Disponível em: http://www.bvsde.paho.org/bvsacd/cd56/tabela-valores.pdf.
http://www.bvsde.paho.org/bvsacd/cd56/ta...
, 2014Companhia de Tecnologia de Saneamento Ambiental - Cetesb. Decisão de Diretoria 045/2014/E/C/I, de 20-02-2014. Dispõe sobre a aprovação dos Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo - 2014, em substituição aos Valores Orientadores de 2005 e dá outras providências. São Paulo: Diário Oficial Estado de São Paulo; 2014 [acesso em 18 jan. 2016]. Disponível em: http://www.Cetesb.sp.gov.br/wp-content/uploads/sites/11/2013/11/DD-045-2014-P53.pdf.
http://www.Cetesb.sp.gov.br/wp-content/u...
), similar to the parent materials of RS soil groups 3 (pelitic) and 4 (sandstones).

Therefore, we suggest that due to the large diversity of the parent materials and pedogeomorphological and pedogeoclimatic conditions, each state or region should propose and use its own QRV based on standardized sampling and an analytical methodology, as well as a suitable statistical basis.

Furthermore, the use of the QRVs as proposed by Conama Resolution 420/2009 does not consider the agricultural use of organic residues generated by food production (poultry, swine, and cattle raising) or industrial (tanneries) and urban (sewage sludge and organic compost) activities. That means that a different approach must be used for disposal of such residues in the soil, a practice highly recommended for several thousands of years in organic agriculture. The interactions between soil properties, residue composition, plant uptake, and effects of metals on living beings (animal and human) must be considered, as suggested earlier (Quadro, 2008Quadro MS. Crescimento de plantas e modificações de propriedades do solo após várias aplicações de resíduos de curtume e carbonífero [tese]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2008.; Giasson and Tedesco, 2010Giasson E, Tedesco MJ. Classificação das terras e quantidades máximas de metais pesados a adicionar por lodo de esgoto. In: Coscione AR, Nogueira TAR, Pires AMM, editores. Uso agrícola de lodo de esgoto: avaliação após a Resolução n° 375 do Conama. Botucatu: Fepaf; 2010. p. 171-96.).

CONCLUSIONS

Average values of available P contents are low in all soil groups, but are high in several soil groups for available K. Averages of total acidity and cation exchange capacity are higher in the soils developed over basalt (soil group 1). The average values of extractable Zn, Cu, and S are high in all soils. Averages of Fe oxides are higher in the soils formed over basalt than in the other soils.

Average metal (Cd, Co, Cr, Cu, Ni, Pb, V, and Zn) contents were higher in Group 1 soils than in the other soil groups (2 to 5). For Hg, however, average values are similar for all soil groups.

The Spearman correlation coefficients are positive and highest between the metals (except for Cd and Hg) and the clay, Fed, and extractable Cu soil properties. Another high positive correlation coefficient was found between semitotal Cu and Zn contents and organic carbon.

The quality reference values (QRVs) for Cd, Co, Cr, Cu, Hg, Ni, Pb, V, and Zn, determined according to the National Commission for the Environment (Conama Resolution 420/2009Conselho Nacional do Meio Ambiente - Conama. Resolução No. 420, de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Brasília, DF; 2009 [acesso em 18 jan. 2016]. Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620.
http://www.mma.gov.br/port/conama/legiab...
), followed the same trend as the average metals contents.

REFERENCES

  • Althaus D, Silva KJ, Felisberto R, Tedesco MJ, Bissani CA, Gianello C. Teores naturais de metais pesados em solos do Estado do Rio Grande do Sul. In: Anais do XXXIV Congresso Brasileiro de Ciência do Solo; 2013; Florianópolis. Florianópolis: Epagri, SBCS; 2014. p. 5264-6.
  • Althaus D. Teores naturais e efeitos da adição de metais pesados em solos do estado do Rio Grande do Sul [tese]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2017.
  • Biondi CM, Nascimento CWA, Fabricio Neta AB, Ribeiro MR. Teores de Fe, Mn, Zn, Cu, Ni e Co em solos de referência de Pernambuco. Rev Bras Cienc Solo. 2011;35:1057-66. https://doi.org/10.1590/S0100-06832011000300039
    » https://doi.org/10.1590/S0100-06832011000300039
  • Burak DL, Fontes MPF, Santos NT, Monteiro LVS, Martins ES, Becquer T. Geochemistry and spatial distribution of heavy metals in Oxisols in a mineralized region of the Brazilian Central Plateau. Geoderma. 2010;160:131-42. https://doi.org/10.1016/j.geoderma.2010.08.007
    » https://doi.org/10.1016/j.geoderma.2010.08.007
  • Comissão de Química e Fertilidade do Solo - CQFS-RS/SC. Manual de adubação e de calagem para os estados do Rio Grande do Sul e de Santa Catarina. 10. ed. Porto Alegre: Sociedade Brasileira de Ciência do Solo - Núcleo Regional Sul; 2004.
  • Comissão de Química e Fertilidade do Solo - CQFS-RS/SC. Manual de calagem e adubação para os Estados do Rio Grande do Sul e de Santa Catarina. 11. ed. Porto Alegre: Sociedade Brasileira de Ciência do Solo - Núcleo Regional Sul; 2016.
  • Companhia de Tecnologia de Saneamento Ambiental - Cetesb. Relatório de estabelecimento de valores orientadores para solos e águas subterrâneas no estado de São Paulo. (Série relatórios ambientais). São Paulo: Cetesb; 2001 [acesso em 18 jan. 2016]. Disponível em: http://sites.usp.br/sef/wp-content/uploads/sites/52/2015/03/46-CETESB2001_Valores_Orientadores_solo_agua.pdf
    » http://sites.usp.br/sef/wp-content/uploads/sites/52/2015/03/46-CETESB2001_Valores_Orientadores_solo_agua.pdf
  • Companhia de Tecnologia de Saneamento Ambiental - Cetesb. Decisão de Diretoria No. 195-2005- E, de 23 de novembro de 2005. Dispõe sobre a aprovação dos Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo - 2005, em substituição aos Valores Orientadores de 2001, e dá outras providências. São Paulo: Diário Oficial Estado de São Paulo; 2005 [acesso em 18 jan. 2016]. Disponível em: http://www.bvsde.paho.org/bvsacd/cd56/tabela-valores.pdf
    » http://www.bvsde.paho.org/bvsacd/cd56/tabela-valores.pdf
  • Companhia de Tecnologia de Saneamento Ambiental - Cetesb. Decisão de Diretoria 045/2014/E/C/I, de 20-02-2014. Dispõe sobre a aprovação dos Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo - 2014, em substituição aos Valores Orientadores de 2005 e dá outras providências. São Paulo: Diário Oficial Estado de São Paulo; 2014 [acesso em 18 jan. 2016]. Disponível em: http://www.Cetesb.sp.gov.br/wp-content/uploads/sites/11/2013/11/DD-045-2014-P53.pdf
    » http://www.Cetesb.sp.gov.br/wp-content/uploads/sites/11/2013/11/DD-045-2014-P53.pdf
  • Conselho Nacional do Meio Ambiente - Conama. Resolução No. 420, de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Brasília, DF; 2009 [acesso em 18 jan. 2016]. Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620
    » http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620
  • Conselho Estadual de Política Ambiental - Copam. Deliberação Normativa COPAM n° 166, de 29 de junho de 2011. Altera o Anexo I da Deliberação Normativa Conjunta COPAM CERH no 2 de 6 de setembro de 2010, estabelecendo os Valores de Referência de Qualidade dos Solos. Belo Horizonte; 2011 [acesso em 18 jan. 2016]. Disponível em: http://www.siam.mg.gov.br/sla/download.pdf?idNorma=18414
    » http://www.siam.mg.gov.br/sla/download.pdf?idNorma=18414
  • Companhia de Pesquisa de Recursos Minerais - CPRM. Mapa geológico do Estado do Rio Grande do Sul. Escala 1:750.000. Porto Alegre: Serviço Geológico do Brasil; 2006.
  • Fabricio Neta AB. Teores naturais de metais pesados em solos da Ilha de Fernando de Noronha [dissertação]. Recife: Universidade Federal Rural de Pernambuco; 2012.
  • Fadigas FS, Amaral-Sobrinho NMB, Mazur N, Anjos LHC, Freixo AA. Concentrações naturais de metais pesados em algumas classes de solos brasileiros. Bragantia. 2002;61:151-9. https://doi.org/10.1590/S0006-87052002000200008
    » https://doi.org/10.1590/S0006-87052002000200008
  • Felisberto R. Teor de mercúrio em solos do Rio Grande do Sul [dissertação]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2009.
  • Fundação Estadual de Proteção Ambiental Henrique Luiz Roessler/RS - Fepam. Portaria Fepam n° 85/2014. Dispõe sobre o estabelecimento de Valores de Referência de Qualidade (VRQ) dos solos para 09 (nove) elementos químicos naturalmente presentes nas diferentes províncias geomorfológicas/geológicas do Estado do Rio Grande do Sul. Porto Alegre; 2014 [acesso em 29 mai 2016]. Disponível em: http://www.fepam.rs.gov.br/legislacao/arq/Portaria085-2014.pdf
    » http://www.fepam.rs.gov.br/legislacao/arq/Portaria085-2014.pdf
  • Giasson E, Tedesco MJ. Classificação das terras e quantidades máximas de metais pesados a adicionar por lodo de esgoto. In: Coscione AR, Nogueira TAR, Pires AMM, editores. Uso agrícola de lodo de esgoto: avaliação após a Resolução n° 375 do Conama. Botucatu: Fepaf; 2010. p. 171-96.
  • Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;PE4.1.4A.
  • Holz M. Do mar ao deserto: a evolução do Rio Grande do Sul no tempo geológico. Porto Alegre: Editora UFRGS; 1999.
  • Inda Junior AV, Kämpf N. Avaliação de procedimentos de extração dos óxidos de ferro pedogênicos com ditionito-citrato-bicarbonato de sódio. Rev Bras Cienc Solo. 2003;27:1139-47. https://doi.org/10.1590/S0100-06832003000600018
    » https://doi.org/10.1590/S0100-06832003000600018
  • Institute for Reference Materials and Measurements - IRMM. Certified reference material BCR - 142R. Geel; 2007 [accessed on 18 Jan. 2016]. Available at: http://www.lgcstandards.com/medias/sys_master/pdfs/pdfs/ha6/hc4/9208111169566/BCR-142R-ST-WB-CERT-1515931-1-1-1.pdf
    » http://www.lgcstandards.com/medias/sys_master/pdfs/pdfs/ha6/hc4/9208111169566/BCR-142R-ST-WB-CERT-1515931-1-1-1.pdf
  • Kabata-Pendias A. Trace elements in soils and plants. 4th ed. Boca Raton: CRC Press; 2011.
  • Lemos RC, Azolim MAD, Abrão PUR, Santos MCL. Levantamento de reconhecimento dos solos do estado do Rio Grande do Sul. Recife: Ministério da Agricultura; 1973. (Boletim técnico, 30).
  • Mehra OP, Jackson ML. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. In: Swineford A, editor. Clays and Clay Minerals: Proceedings of the seventh national conference on clays and clay minerals. London: Pergamon Press; 1960. p. 317-27.
  • Mello JWV, Abrahão WAP. Valores de referência de qualidade para elementos traço nos solos de Minas Gerais e Espírito Santo: os bastidores de uma experiência. Bol Inf Soc Bras Cienc Solo. 2013;38:12-7.
  • Melo EEC, Nascimento CWA, Santos ACQ, Silva AS. Disponibilidade e fracionamento de Cd, Pb, Cu e Zn em função do pH e tempo de incubação com o solo. Cienc Agrotec. 2008;32:776-84. https://doi.org/10.1590/S1413-70542008000300011
    » https://doi.org/10.1590/S1413-70542008000300011
  • Melo Junior G. Argumentos em favor do percentil 90 na atual proposta de Resolução do Conama. Natal: Universidade Federal do Rio Grande do Norte; 2008 [acesso em 18 jan. 2016]. Disponível em: http://www.mma.gov.br/port/conama/processos/FE4582B1/CONAMA_11-12-2008-UFRN1.pdf
    » http://www.mma.gov.br/port/conama/processos/FE4582B1/CONAMA_11-12-2008-UFRN1.pdf
  • Mielniczuk J, Ludwick A, Bohnen H. Recomendações de adubo e calcário para os solos e culturas do Rio Grande do Sul. Porto Alegre: Universidade Federal do Rio Grande do Sul; 1969. (Boletim técnico, 2).
  • Paye HS, Mello JWV, Abrahão WAP, Fernandes Filho EI, Dias LCP, Castro MLO, Melo SB, França MM. Valores de referência de qualidade para metais pesados em solos no estado do Espírito Santo. Rev Bras Cienc Solo. 2010;34:2041-51. https://doi.org/10.1590/S0100-06832010000600028
    » https://doi.org/10.1590/S0100-06832010000600028
  • Paye HS, Mello JWV, Melo SB. Métodos de análise multivariada no estabelecimento de valores de referência de qualidade para elementos-traço em solos. Rev Bras Cienc Solo. 2012;36:1031-41. https://doi.org/10.1590/S0100-06832012000300033
    » https://doi.org/10.1590/S0100-06832012000300033
  • Pillar VDP. Multivariate exploratory analysis and randomization testing with MULTIV. Coenoses. 1997;12:145-8.
  • Porto MDM. Levantamento da fertilidade e necessidade de fertilizantes e corretivos dos solos do Rio Grande do Sul [dissertação]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 1970.
  • Preston W, Nascimento CWA, Biondi CM, Souza Junior VS, Silva WR, Ferreira HA. Valores de referência de qualidade para metais pesados em solos do Rio Grande do Norte. Rev Bras Cienc Solo. 2014;38:1028-37. https://doi.org/10.1590/S0100-06832014000300035
    » https://doi.org/10.1590/S0100-06832014000300035
  • Quadro MS. Crescimento de plantas e modificações de propriedades do solo após várias aplicações de resíduos de curtume e carbonífero [tese]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2008.
  • Rheinheimer DS, Gatiboni LC, Kaminski J, Robaina AD, Anghinoni I, Flores JPC, Horn D. Situação da fertilidade dos solos no Estado do Rio Grande do Sul. Santa Maria: Universidade Federal de Santa Maria; 2001. (Boletim técnico, 2).
  • Rodrigues AM, Anghinoni MCM, Tedesco MJ, Gianello C. Technical criteria for soil disposal of tannery solid wastes. In: Anais do 12th Congress of the International Union of Chemists and Technicians of the Leather Industry; 1993; Porto Alegre. Porto Alegre: International Union of Chemists and Technicians of the Leather Industry; 1993.
  • Santos SN. Valores de referência de metais pesados em solos de Mato Grosso e Rondônia [dissertação]. Piracicaba: Escola Superior de Agricultura Luiz de Queiroz; 2011.
  • Streck EV, Kämpf N, Dalmolin RSD, Klamt E, Nascimento PC, Schneider P, Giasson E, Pinto LFS. Solos do Rio Grande do Sul. 2. ed rev ampl. Porto Alegre: Emater/RS; 2008.
  • Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ. Análises de solo, plantas e outros materiais. 2. ed rev ampl. Porto Alegre: Universidade Federal do Rio Grande do Sul; 1995. (Boletim técnico, 5).
  • United States Environmental Protection Agency - Usepa. Method 3050B: acid digestion of sediments, sludges, and soils, revision 2. Washington, DC; 1996.
  • United Stated Environmental Protection Agency - Usepa. Method 7471B: mercury in solid or semisolid waste (Manual cold-vapor technique), revision 2. Washington, DC; 1998.
  • Volkweiss SJ, Tedesco MJ, Bohnen H, Bissani CA, Gutterres JF, Klamt E, Schneider P, Kampf N. Levantamento dos teores de nutrientes das plantas em solos do Rio Grande do Sul. Porto Alegre: Universidade Federal do Rio Grande do Sul; 1983. (Relatório de Pesquisa).
  • Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37:29-38. http://dx.doi.org/10.1097/00010694-193401000-00003
    » http://dx.doi.org/10.1097/00010694-193401000-00003

Publication Dates

  • Publication in this collection
    2018

History

  • Received
    19 Sept 2016
  • Accepted
    15 Aug 2017
Sociedade Brasileira de Ciência do Solo Secretaria Executiva , Caixa Postal 231, 36570-000 Viçosa MG Brasil, Tel.: (55 31) 3899 2471 - Viçosa - MG - Brazil
E-mail: sbcs@ufv.br