Acessibilidade / Reportar erro

Urban soils in Brazil: A review

ABSTRACT

This study analyzes the scientific production about soils within cities in Brazil, the most populous country of Latin America, to highlight significant patterns and contributions and point out gaps and future challenges. A more robust literature about urban soils in Brazil started in the 90´s decade and has intensified since 2015. Papers are mostly published in Portuguese, majority performed in cities with more than 500,000 inhabitants, many of them located in the Southern and Southeastern regions, and mainly focused on soil characterization, classification, mapping and/or contamination. Important methodological propositions (related to classification and land potential) and morphological, physical and chemical results are published. Urban soils formed from landfills are the most common, but soils developed from irregular zones of waste disposals are also frequent, showing the deficiency of proper waste management in developing countries. Properties such as pH, base saturation, soil organic matter and P amounts tend to be higher in soils marked by the addition of earthy materials and solid waste than in soils developed from the process of cutting, which commonly exposes the acid and deep saprolite of the tropical and subtropical zones. Although the attention on the Brazilian urban soils has grown in the last years, more studies, with a higher variety of morphological and analytical data, still have to be performed to obtain more representative results. Systematization of concepts, terminologies, and methodologies is also necessary, allowing a more complete understanding of the soils. In addition, the incorporation of a classification key of Anthropogenic soils, including urban soils, in the Brazilian official classification system seems urgent. Finally, it is relevant to foment international publications about the Brazilian urban soils, allowing a wider comparison between the produced data and the results obtained worldwide.

soils within cities; morphology; physical and chemical characteristics; organic contamination; toxic metals

INTRODUCTION

During the 20th century, a significant increase in mankind population was registered around the world, especially in the cities. Approximately 55 and 84 % of the world (United Nations, 2019United Nations. World urbanization prospects 2018: Highlights [internet]. New York: United Nations - Department of Economic and Social Affairs; 2019. Available from: https://population.un.org/wup/Publications/Files/WUP2018-Highlights.pdf.
https://population.un.org/wup/Publicatio...
) and the Brazilian population (IBGE, 2012Instituto Brasileiro de Geografia e Estatística - IBGE. Censo 2010. Rio de Janeiro: IBGE; 2012. Available from: https://censo2010.ibge.gov.br/
https://censo2010.ibge.gov.br/...
), respectively, are currently living in urban zones, with a projection to reach 68 % in the globe and 92 % in Brazil until 2050 (United Nations, 2019United Nations. World urbanization prospects 2018: Highlights [internet]. New York: United Nations - Department of Economic and Social Affairs; 2019. Available from: https://population.un.org/wup/Publications/Files/WUP2018-Highlights.pdf.
https://population.un.org/wup/Publicatio...
). The increase of population and the consequent growth of urban areas promote profound alterations in the organisms, air, water, rock, landform and soil, with environmental degradation in local, regional and global scales (Hardoy and Satterthwaite, 1991; Johnson, 2001Johnson MP. Environmental impacts of urban sprawl: A survey of the literature and proposed research agenda. Environ Plann A. 2001;33:717-35. https://doi.org/10.1068/a3327
https://doi.org/10.1068/a3327...
; Simon, 2007Simon D. Urbanization and global environmental change: new intergenerational challenges. Int J Green Econ. 2007;1:299-306. https://doi.org/10.1504/ijge.2007.013061
https://doi.org/10.1504/ijge.2007.013061...
; Seto et al., 2012Seto KC, Guneralp B, Hutyra LR. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. P Natl Acad Sci. 2012;109:16083-8. https://doi.org/10.1073/pnas.1211658109
https://doi.org/10.1073/pnas.1211658109...
; McDonald et al., 2014McDonald RI, Weber K, Padowski J, Florke M, Schneider C, Green PA, Gleeson T, Eckman S, Lehner B, Balk D, Boucher T, Grill G, Montgomery M. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Global Environ Chang. 2014;27:96-105. https://doi.org/10.1016/j.gloenvcha.2014.04.022
https://doi.org/10.1016/j.gloenvcha.2014...
; Ameen and Mourshed, 2017Ameen RFM, Mourshed M. Urban environmental challenges in developing countries - A stakeholder perspective. Habitat Int. 2017;64:1-10. https://doi.org/10.1016/j.habitatint.2017.04.002
https://doi.org/10.1016/j.habitatint.201...
).

The high magnitude of the human-induced changes, not only but significantly triggered by urban and industrial activities, led to the proposition of the Anthropocene as a new epoch in the Geological Time Scale (Crutzer and Stoermer, 2000; Crutzen, 2002Crutzen PJ. Geology of mankind. Nature. 2002;415:23. https://doi.org/10.1038/415023a
https://doi.org/10.1038/415023a...
). The beginning and the formal inclusion of this new geological time unit are still under debate, but suggestions of its beginning include the advent of the Industrial Revolution (post-1760), with the increased use of fossil fuel and ash deposition, and the “Great Acceleration” (post-1950), with a significant rise of atmospheric CO2 and accumulation of persistent anthropic materials (plastic, pollutants, etc.) in the environment (Crutzer and Stoermer, 2000; Lewis and Maslin, 2015Lewis SL, Maslin MA. Defining the Anthropocene. Nature. 2015;519:171-80. https://doi.org/10.1038/nature14258
https://doi.org/10.1038/nature14258...
; Zalasiewicz et al., 2015Zalasiewicz J, Waters CN, Williams M, Barnosky AD, Cearreta A, Crutzen P, Ellis E, Ellis MA, Fairchild IJ, Grineval J, Haff PK, Hajdas I, Leinfelder R, McNeill J, Odada EO, Poirier C, Richter D, Steffen W, Summerhayes C, Syvitski JPM, Vidas D, Wagreich M, Wing SL, Wolfe AP, An Z, Oreskes N. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quatern Int. 2015;383:196-203. https://doi.org/10.1016/j.quaint.2014.11.045
https://doi.org/10.1016/j.quaint.2014.11...
).

Adverse effects of environmental degradation during Anthropocene in human health and life quality are strongly enhanced in urban areas, where cultural, social and economic activities are concentrated (Power et al., 2018Power AL, Tennant RK, Jones RT, Tang Y, Du J, Worsley AT, Love J. Monitoring impacts of urbanization and industrialization on air quality in the Anthropocene using urban pond sediments. Front Earth Sci. 2018;6:131. https://doi.org/10.3389/feart.2018.00131
https://doi.org/10.3389/feart.2018.00131...
). The mitigation of these impacts necessarily involves a suitable management of the city´s environment, recognizing their functions and the proper utilization of their ecosystem services. Healthy urban environments can supply, for example, the regulation of the local climate and the gas and/or water cycle, filtering of freshwater, support for plant growth and habitat for biodiversity, consequently providing good air quality, control of temperature, flood and erosion mitigation, clean water, secure food and areas for recreation (De Grout et al., 2002; McPhearson et al., 2013McPhearson T, Kremer P, Hamstead ZA. Mapping ecosystem services in New York City: Applying a social-ecological approach in urban vacant land. Ecosyst Serv. 2013;5:11-26. https://doi.org/10.1016/j.ecoser.2013.06.005
https://doi.org/10.1016/j.ecoser.2013.06...
).

Urban soils can play a key role in all these functions and ecosystem services, depending on the degree of anthropic interference and management (Morel et al., 2015Morel JL, Chenu C, Lorenz K. Ecosystems services provide by soils of urban, industrial, traffic, mining and military area s (SUITMAs). J Soils Sedimentss. 2015;15:1659-66. https://doi.org/10.1007/s11368-014-0926-0
https://doi.org/10.1007/s11368-014-0926-...
). They are able to regulate climate, gas and/or the water cycle through, respectively, carbon sequestration, participation in biogeochemical cycles and control of infiltration capacity, hydraulic conductivity and moisture retention. Also, they may have an important function in water purification, mainly by sorption of contaminants in colloidal particles, and in the sustaining of urban agriculture, parks and forests, providing physical support, water and/or nutrients to the vegetation and other forms of life (McPhearson et al., 2013McPhearson T, Kremer P, Hamstead ZA. Mapping ecosystem services in New York City: Applying a social-ecological approach in urban vacant land. Ecosyst Serv. 2013;5:11-26. https://doi.org/10.1016/j.ecoser.2013.06.005
https://doi.org/10.1016/j.ecoser.2013.06...
; Morel et al., 2015Morel JL, Chenu C, Lorenz K. Ecosystems services provide by soils of urban, industrial, traffic, mining and military area s (SUITMAs). J Soils Sedimentss. 2015;15:1659-66. https://doi.org/10.1007/s11368-014-0926-0
https://doi.org/10.1007/s11368-014-0926-...
; Herrmann et al., 2016Herrmann DL, Shuster WD, Garmestani AS. Vacant urban lot soils and their potential to support ecosystem services. Plant Soil. 2016;413:45-57. https://doi.org/10.1007/s11104-016-2874-5
https://doi.org/10.1007/s11104-016-2874-...
; Setala et al., 2017Setälä H, Francini G, Allen JA, Jumpponen A, Hui N, Kotze DJ. Urban parks provide ecosystem services by retaining metals and nutrients in soils. Environ Pollut. 2017;231:451-61. https://doi.org/10.1016/j.envpol.2017.08.010
https://doi.org/10.1016/j.envpol.2017.08...
; Vasenev et al., 2018Vasenev VI, Van Oudenhoven AP, Romzaykina ON, Hajiaghaeva RA. The ecological functions and ecosystem services of urban and technogenic soils: From theory to practice (A review). Eurasian Soil Sci. 2018;51:1119-32. https://doi.org/10.1134/s1064229318100137
https://doi.org/10.1134/s106422931810013...
).

Functions and ecosystem services related to urban soils, except their geotechnical capacity to support the city’s infra-structure, have been mostly ignored or underestimated around the world (Breure et al., 2012Breure A, De Deyn G, Dominati E, Eglin T, Hedlund K, Van Orshoven J, Posthuma L. Ecosystem services: A useful concept for soil policy making. Curr Opin Environ Sustain. 2012;4:578-85. https://doi.org/10.1016/j.cosust.2012.10.010
https://doi.org/10.1016/j.cosust.2012.10...
; Bouma and McBratney, 2013Bouma J, McBratney A. Framing soils as an actor when dealing with wicked environmental problems. Geoderma. 2013;200-201:130-9. https://doi.org/10.1016/j.geoderma.2013.02.011
https://doi.org/10.1016/j.geoderma.2013....
; Burghardt et al., 2015Burghardt W, Morel JL, Zhang GL. Development of the soils research about urban, industrial, traffic, mining and military areas (SUITMAS). Soil Sci Plant Nutr. 2015;61:3-21. https://doi.org/10.1080/00380768.2015.1046136
https://doi.org/10.1080/00380768.2015.10...
). Many reasons can explain this behavior, including the much smaller interest in soils within cities than those in agricultural areas for soils scientists. Pedological maps of different scales, for example, commonly ignore the soils of the cities, representing the whole urban area as white or gray spots or only repeating the soils classes of the surroundings (Oliveira et al., 1987Oliveira JB, Prado H, Bejar OIG, Oliveira ER, Longobardi RC, Assis EA. Carta pedológica semidetalhado do Estado de São Paulo: Folha de Piracicaba. São Paulo. Secretaria da Agricultura/CPC/IA; Secretaria de Economia e Planejamento/CAR/IGC; 1987.; De Kimpe and Morel, 2000De Kimpe CR, Morel JL. Urban soil management: A growing concern. Soil Sci. 2000;165:31-40. https://doi.org/10.1097/00010694-200001000-00005
https://doi.org/10.1097/00010694-2000010...
; Burghardt et al., 2015Burghardt W, Morel JL, Zhang GL. Development of the soils research about urban, industrial, traffic, mining and military areas (SUITMAS). Soil Sci Plant Nutr. 2015;61:3-21. https://doi.org/10.1080/00380768.2015.1046136
https://doi.org/10.1080/00380768.2015.10...
; Morel et al., 2017Morel JL, Burghardt W, Kim K-HL. The challenges for soils in the urban environment. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - Composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 1-6.; Rossi, 2017Rossi M. Mapa pedológico do Estado de São Paulo. rev ampl. São Paulo: Instituto Florestal; 2017.). This attitude implies insufficient knowledge about their morphological, physical, chemical, mineralogical and biological properties.

A proper comprehension of urban soils is mandatory to understand their functions, to apply appropriate management and deliver ecosystem services. The publications about urban soils of subtropical and tropical environments are still lower than in cities of Europe, North America and Asia (Gbadegesin and Olabode, 2000Gbadegesin A, Olabode MA. Soil properties in the metropolitan region of Ibadan, Nigeria: Implications for the management of the urban environment of developing countries. Environmentalist. 2000;20:205-14. https://doi.org/10.1023/A:1006747630110
https://doi.org/10.1023/A:1006747630110...
). However, they have been increased in the last decades, providing valuable information about these regions, which are generally under the influence of urbanization processes that are typical of undeveloped or developing countries. The population of these countries is commonly exposed to low food/water security and high geological risks. The urban soils can play a crucial role in mitigating these environmental issues.

This study aims to analyze the scientific production about soils within cities in Brazil, the largest and most populous country of Latin America, in the light of the concepts and characteristics of urban soils developed in the international literature. The goal is to understand the local state of art of the knowledge, highlight the most important results and contributions of the national literature, recognize trends and patterns in the published data, and point out gaps and research topics to be developed in the country related to urban soils.

URBAN SOILS: DEFINITIONS AND MAIN CHARACTERISTICS

The impacts of human societies on soil properties are so intense worldwide that some authors have considered anthropic actions as the sixth factor of soil formation, in addition to climate, parent material, landform, time and organisms formerly proposed by Jenny (1941)Jenny H. Factors of soil formation: A system of quantitative pedology. New York: McGraw-Hill; 1941.. The separation of humans from other living organisms is justified mainly because anthropic activities are made with a high degree of awareness and in a much higher magnitude in time and space, interfering in the other five factors in a simultaneous, fast and profound way. Also, differently from other species, human beings present different cultures, which provoke different types and degrees of impacts and imprints a mosaic of modified soils and landscapes along time (Bidwell and Hole, 1965Bidwell DW, Hole FD. Man as a factor of soil formation. Soil Sci. 1965;99:65-72. https://doi.org/10.1097/00010694-196501000-00011
https://doi.org/10.1097/00010694-1965010...
; Amundson and Jenny, 1991Amundson R, Jenny H. The place of humans in the state factor theory of ecosystems and their soils. Soil Sci. 1991;151:99-109. https://doi.org/10.1097/00010694-199101000-00012
https://doi.org/10.1097/00010694-1991010...
; Effland and Pouyat, 1997Effland WR, Pouyat RV. The genesis, classification, and mapping of soils in urban areas. Urban Ecosystems. 1997;1:217-28. https://doi.org/10.1023/a:1018535813797
https://doi.org/10.1023/a:1018535813797...
; Dudal et al., 2002Dudal R, Nachtergaele FO, Pumell MF. The human factor of soil formation. In: Proceedings 17th Congress of Soil Science; 14-21 August 2002; Bangkok. Bangkok: Soil Science; 2002.; Dudal, 2004Dudal R. The sixth factor of soil formation. In: International Conference on Soil Classification 2004; 3-5 August, 2004; Petrozavodsk, Russia. Petrozavodsk: International Union of Soil Sciences; 2004.; Yaalon and Yaron, 2006Yaalon HD, Yaron B. Framework for man-made soil changes: An outline of metapedogenesis. Soil Sci. 2006;171:154-9. https://doi.org/10.1097/00010694-200606001-00021
https://doi.org/10.1097/00010694-2006060...
; Pouyat et al., 2010Pouyat RV, Szlavecz K, Yesilonis ID, Groffman PM, Schwarz K. Chemical, physical and biological characteristics of urban soils. In: Aitkenhead-Peterson J, Volder A, editors. Urban ecosystem ecology. Madison: American Society of Agronomy/Crop Science Society of America/Soil Science Society of America; 2010. p. 119-52. https://doi.org/10.2134/urbanecosystem ecology2010.frontmatterx
https://doi.org/10.2134/urbanecosystem e...
).

The concepts of Anthrosol, Anthroposols, Anthropic or Anthropogenic soils have been used in a generic way to include all soils with layers, horizons or features strongly altered or entirely constructed by humans, both in farming or non-farming activities (Dudal, 2004Dudal R. The sixth factor of soil formation. In: International Conference on Soil Classification 2004; 3-5 August, 2004; Petrozavodsk, Russia. Petrozavodsk: International Union of Soil Sciences; 2004.; Dazzi and Lo Papa, 2015Dazzi C, Lo Papa G. Anthropogenic soils: General aspects and features. Ecocycles. 2015;1:3-8. https://doi.org/10.19040/ecocycles.v1i1.23
https://doi.org/10.19040/ecocycles.v1i1....
; IUSS Working Group WRB, 2015IUSS Working Group WRB. World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. Rome: Food and Agriculture Organization of the United Nations; 2015. (World Soil Resources Reports, 106).). Agriculture and animal husbandry, especially since about 10000 years BP, have modified soils by manuring, fertilizing, liming, irrigation, terracing, plowing, flooding, etc. (Dudal et al., 2002Dudal R, Nachtergaele FO, Pumell MF. The human factor of soil formation. In: Proceedings 17th Congress of Soil Science; 14-21 August 2002; Bangkok. Bangkok: Soil Science; 2002.; Sandor et al., 2004Sandor J, Burras CL, Thompson M. Human impacts on soil formation. In: Hillel D, editor. Encyclopedia of soils in the environment. New York: Academic Press; 2004. p. 520-32.). However, activities developed in urban and suburban areas, mostly since the Industrial Revolution, can cause different types and/or magnitude of changes in the soils by, for example, cutting, landfilling, leveling, sealing, mixing and disposal of wastes (Meuser, 2010Meuser H. Contaminated urban soils. Dordrecht: Springer Netherlands; 2010. https://doi.org/10.1007/978-90-481-9328-8
https://doi.org/10.1007/978-90-481-9328-...
; Morel et al., 2017Morel JL, Burghardt W, Kim K-HL. The challenges for soils in the urban environment. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - Composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 1-6.).

Specific studies about urban soils occurred since the beginning of modern Soil Science, in the 19th century, but they were punctual and mainly focused on contamination (Lehmann and Stahr, 2007Lehmann A, Stahr K. Nature and significance of anthropogenic urban soils. J Soil Sediment. 2007;7:247-60. https://doi.org/10.1065/jss2007.06.235
https://doi.org/10.1065/jss2007.06.235...
). A growing awareness about these soils has occurred after the 1950's, mainly because of the development of soils surveys in cities of Australia, Europe and North America to support cities’ planning (Burghardt et al., 2015Burghardt W, Morel JL, Zhang GL. Development of the soils research about urban, industrial, traffic, mining and military areas (SUITMAS). Soil Sci Plant Nutr. 2015;61:3-21. https://doi.org/10.1080/00380768.2015.1046136
https://doi.org/10.1080/00380768.2015.10...
; Burghardt, 2017)Burghardt W. Main characteristics of urban soils. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 19-26.. However, a broader interest has occurred mainly since the 1990's, with a deeper attention on subjects and approaches more strictly related to Soil Science, such as classification, properties, pedogenesis and functions (Lehmann and Stahr, 2007Lehmann A, Stahr K. Nature and significance of anthropogenic urban soils. J Soil Sediment. 2007;7:247-60. https://doi.org/10.1065/jss2007.06.235
https://doi.org/10.1065/jss2007.06.235...
; Burghardt et al., 2015Burghardt W, Morel JL, Zhang GL. Development of the soils research about urban, industrial, traffic, mining and military areas (SUITMAS). Soil Sci Plant Nutr. 2015;61:3-21. https://doi.org/10.1080/00380768.2015.1046136
https://doi.org/10.1080/00380768.2015.10...
; Burghardt, 2017)Burghardt W. Main characteristics of urban soils. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 19-26.. Although an important growth in the number of publications was registered in the last decades, the concept of urban soil is still not well defined, being used in variable contexts and with different meanings (Table 1).

Table 1
Definitions of urban soil and similar terms

All the definitions of urban soils presented in table 1 englobe Anthropogenic soils developed within cities, that is, soils strongly modified by human activities associated with the urbanization process. However, the wider definitions of Hollis (1991)Hollis JM. The classification of soils in urban areas. In: Bullock P, Gregory P, editors. Soils in the urban environment. Londres: Blackwell Publishing; 1991. p. 5-27., Rossiter (2007)Rossiter DG. Classification of urban and industrial soils in the world reference base for soil resources. J Soils Sediments. 2007;7:96-100. https://doi.org/10.1065/jss2007.02.208
https://doi.org/10.1065/jss2007.02.208...
, Lehman and Stahr (2007), Hazelton and Murphy (2011)Hazelton P, Murphy B. Understanding soils in urban environments. Clayton: CSIRO Publishing; 2011. https://doi.org/10.1071/9780643101432
https://doi.org/10.1071/9780643101432...
and Morel et al. (2017)Morel JL, Burghardt W, Kim K-HL. The challenges for soils in the urban environment. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - Composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 1-6. also include less disturbed or undisturbed soils that may occur within urbanized zones, more similar to the agricultural or forest areas. These more preserved soils may be dominant in very small cities (Lehman and Stahr, 2007) and suburban areas of metropolitan regions (Effland and Pouyat, 1997Effland WR, Pouyat RV. The genesis, classification, and mapping of soils in urban areas. Urban Ecosystems. 1997;1:217-28. https://doi.org/10.1023/a:1018535813797
https://doi.org/10.1023/a:1018535813797...
), but they may occur in any city’s zone, especially in green areas such as parks, gardens, squares, backyards, horticulture areas and forest fragments. However, Rossiter (2007)Rossiter DG. Classification of urban and industrial soils in the world reference base for soil resources. J Soils Sediments. 2007;7:96-100. https://doi.org/10.1065/jss2007.02.208
https://doi.org/10.1065/jss2007.02.208...
argues that even the less human-affected soils inside a city have some degree of modification by urban activities, such as the addition of dust or precipitation containing organic or inorganic contaminants.

Some authors have also extended the concept of urban soils to soils occurring in industrial, mining, traffic and military areas (Table 1) (Lehman and Stahr, 2007; Rossiter, 2007Rossiter DG. Classification of urban and industrial soils in the world reference base for soil resources. J Soils Sediments. 2007;7:96-100. https://doi.org/10.1065/jss2007.02.208
https://doi.org/10.1065/jss2007.02.208...
; Meuser, 2010Meuser H. Contaminated urban soils. Dordrecht: Springer Netherlands; 2010. https://doi.org/10.1007/978-90-481-9328-8
https://doi.org/10.1007/978-90-481-9328-...
; Morel et al., 2017Morel JL, Burghardt W, Kim K-HL. The challenges for soils in the urban environment. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - Composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 1-6.). This broad definition is supported by the fact that these activities, although they are often developed outside cities, strongly support urban life (Lehman and Stahr, 2007) and generally modify the soils in similar ways than in urban areas (Morel et al., 2017Morel JL, Burghardt W, Kim K-HL. The challenges for soils in the urban environment. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - Composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 1-6.). Since the Working Group SUITMA (Soils of Urban, Industrial, Traffic, Mining and Military areas) was created by the International Union of Soil Science (IUSS), in the 16th World Congress of Soil Science (Montpellier, 1998), the adoption of this concept has been growing in the international literature (Burghardt, 2017Burghardt W. Main characteristics of urban soils. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 19-26.).

Indeed, the soils of urban landscapes, similarly mainly to industrial, mining and traffic areas, tend to bear specific morphological, physical, chemical and/or biological characteristics due to contamination, infra-structure loads, pedestrian and vehicles traffic, intentional compaction, topography modifications, among other interferences (Greinert, 2015Greinert A. The heterogeneity of urban soils in the light of their properties. J Soil Sediment. 2015;15:1725-37. https://doi.org/10.1007/s11368-014-1054-6
https://doi.org/10.1007/s11368-014-1054-...
). Because of the variety of land uses and their fast modification over time, these characteristics usually change in short distances, producing a large lateral and vertical variability (Craul, 1985Craul PJ. Urban soils. METRIA 5: Selecting and preparing sites for urban trees. In: 5th Conference of the Metropolitan Tree Improvement Alliance; May 1985; Pennsylvania. Pennsylvania: The Pennsylvania State University; 1985. p. 23-4., 1994Craul PJ. The nature of urban soils: Their problems and future. Arboric J. 1994;18:275-87. https://doi.org/10.1080/03071375.1994.9747027
https://doi.org/10.1080/03071375.1994.97...
; Effland and Pouyat, 1997Effland WR, Pouyat RV. The genesis, classification, and mapping of soils in urban areas. Urban Ecosystems. 1997;1:217-28. https://doi.org/10.1023/a:1018535813797
https://doi.org/10.1023/a:1018535813797...
; Burghardt et al., 2015Burghardt W, Morel JL, Zhang GL. Development of the soils research about urban, industrial, traffic, mining and military areas (SUITMAS). Soil Sci Plant Nutr. 2015;61:3-21. https://doi.org/10.1080/00380768.2015.1046136
https://doi.org/10.1080/00380768.2015.10...
; Greinert, 2015Greinert A. The heterogeneity of urban soils in the light of their properties. J Soil Sediment. 2015;15:1725-37. https://doi.org/10.1007/s11368-014-1054-6
https://doi.org/10.1007/s11368-014-1054-...
). Regarding the morphological changes, these include introduction, removal or mixing of horizons/layers, abrupt and very wavy or irregular boundaries between horizons/layers, modification or destruction of the structure (Craul, 1985Craul PJ. Urban soils. METRIA 5: Selecting and preparing sites for urban trees. In: 5th Conference of the Metropolitan Tree Improvement Alliance; May 1985; Pennsylvania. Pennsylvania: The Pennsylvania State University; 1985. p. 23-4.; De Kimpe and Morel, 2000De Kimpe CR, Morel JL. Urban soil management: A growing concern. Soil Sci. 2000;165:31-40. https://doi.org/10.1097/00010694-200001000-00005
https://doi.org/10.1097/00010694-2000010...
; Burghardt, 2006Burghardt W. Soil sealing and soil properties related to sealing. Geo Soc Spec Publ. 2006;266:117-24. https://doi.org/10.1144/gsl.sp.2006.266.01.09
https://doi.org/10.1144/gsl.sp.2006.266....
), presence of anthropic artifacts, such as concrete, asphalt, brick, pottery, plastic, glass, rubber, rubble and wood products (Craul, 1985Craul PJ. Urban soils. METRIA 5: Selecting and preparing sites for urban trees. In: 5th Conference of the Metropolitan Tree Improvement Alliance; May 1985; Pennsylvania. Pennsylvania: The Pennsylvania State University; 1985. p. 23-4.; Lehmann and Stahr, 2007Lehmann A, Stahr K. Nature and significance of anthropogenic urban soils. J Soil Sediment. 2007;7:247-60. https://doi.org/10.1065/jss2007.06.235
https://doi.org/10.1065/jss2007.06.235...
; Morel et al., 2015Morel JL, Chenu C, Lorenz K. Ecosystems services provide by soils of urban, industrial, traffic, mining and military area s (SUITMAs). J Soils Sedimentss. 2015;15:1659-66. https://doi.org/10.1007/s11368-014-0926-0
https://doi.org/10.1007/s11368-014-0926-...
; Greinert, 2015Greinert A. The heterogeneity of urban soils in the light of their properties. J Soil Sediment. 2015;15:1725-37. https://doi.org/10.1007/s11368-014-1054-6
https://doi.org/10.1007/s11368-014-1054-...
; Burghardt, 2017Burghardt W. Main characteristics of urban soils. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 19-26.) and increase of coarse particles (sand, gravel) released by construction materials (De Kimpe and Morel, 2000De Kimpe CR, Morel JL. Urban soil management: A growing concern. Soil Sci. 2000;165:31-40. https://doi.org/10.1097/00010694-200001000-00005
https://doi.org/10.1097/00010694-2000010...
; Burghardt, 2006Burghardt W. Soil sealing and soil properties related to sealing. Geo Soc Spec Publ. 2006;266:117-24. https://doi.org/10.1144/gsl.sp.2006.266.01.09
https://doi.org/10.1144/gsl.sp.2006.266....
; Burghardt et al., 2015Burghardt W, Morel JL, Zhang GL. Development of the soils research about urban, industrial, traffic, mining and military areas (SUITMAS). Soil Sci Plant Nutr. 2015;61:3-21. https://doi.org/10.1080/00380768.2015.1046136
https://doi.org/10.1080/00380768.2015.10...
; Greinert, 2015Greinert A. The heterogeneity of urban soils in the light of their properties. J Soil Sediment. 2015;15:1725-37. https://doi.org/10.1007/s11368-014-1054-6
https://doi.org/10.1007/s11368-014-1054-...
).

Physical transformations, in general, promoted by infrastructure and traffic loads and intentional compressions, can increase the bulk density and compaction in surface and subsurface horizons/layers, with consequent decrease in total porosity, infiltration capacity, hydraulic conductivity and moisture contents (Craul, 1985Craul PJ. Urban soils. METRIA 5: Selecting and preparing sites for urban trees. In: 5th Conference of the Metropolitan Tree Improvement Alliance; May 1985; Pennsylvania. Pennsylvania: The Pennsylvania State University; 1985. p. 23-4.; Jim, 1993Jim CY. Soil compaction as a constraint to tree growth in tropical & subtropical urban habitats. Environ Conserv. 1993;20:35-49. https://doi.org/10.1017/S0376892900037206
https://doi.org/10.1017/S037689290003720...
; Schueler, 2000Schueler T. The compaction of urban soils. Watershed Protection Techniques. 2000;3:661-5.; Lehmann and Stahr, 2007Lehmann A, Stahr K. Nature and significance of anthropogenic urban soils. J Soil Sediment. 2007;7:247-60. https://doi.org/10.1065/jss2007.06.235
https://doi.org/10.1065/jss2007.06.235...
; Hazelton and Murphy, 2011Hazelton P, Murphy B. Understanding soils in urban environments. Clayton: CSIRO Publishing; 2011. https://doi.org/10.1071/9780643101432
https://doi.org/10.1071/9780643101432...
; Burghardt, 2017Burghardt W. Main characteristics of urban soils. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 19-26.). Compaction also reduces gas exchange, decreasing aeration and changing the composition of soil atmosphere (Jim, 1993Jim CY. Soil compaction as a constraint to tree growth in tropical & subtropical urban habitats. Environ Conserv. 1993;20:35-49. https://doi.org/10.1017/S0376892900037206
https://doi.org/10.1017/S037689290003720...
; Kozlowski, 1999Kozlowski TT. Soil compaction and growth of woody plants. Scand J Forest Res. 1999;14:596-619. https://doi.org/10.1080/02827589908540825
https://doi.org/10.1080/0282758990854082...
; Schueler, 2000Schueler T. The compaction of urban soils. Watershed Protection Techniques. 2000;3:661-5.). Additionally, heat islands commonly developed in medium-sized and large cities, tend to increase soil temperatures, especially in zones where temperature regulation is impaired, such as impervious surfaces (Lehmann and Stahr, 2007Lehmann A, Stahr K. Nature and significance of anthropogenic urban soils. J Soil Sediment. 2007;7:247-60. https://doi.org/10.1065/jss2007.06.235
https://doi.org/10.1065/jss2007.06.235...
; Cheon et al., 2014Cheon JY, Ham BS, Lee JY, Park Y, Lee KK. Soil temperatures in four metropolitan cities of Korea from 1960 to 2010: implications for climate change and urban heat. Environ Earth Sci. 2014;71:5215-30. https://doi.org/10.1007/s12665-013-2924-8
https://doi.org/10.1007/s12665-013-2924-...
; Yang and Zhang, 2015Yang J-L, Zhang G-L. Formation, characteristics and eco-environmental implications of urban soils – A review. Soil Sci Plant Nutr. 2015;61:30-46. https://doi.org/10.1080/00380768.2015.1035622
https://doi.org/10.1080/00380768.2015.10...
).

The chemical properties are generally associated with the input of organic and inorganic contaminants (toxic metals, platinum group elements, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, naphthalene, etc.) and to higher content of certain elements (N, P, inorganic C, S, Na and other salts) if compared with natural environments (Norra and Stuben, 2003Norra S, Stuben D. Urban soils. J Soils Sediments. 2003;3:230-3. https://doi.org/10.1007/bf02988664
https://doi.org/10.1007/bf02988664...
; Lehamnn and Stahr, 2007; Pouyat et al., 2010Pouyat RV, Szlavecz K, Yesilonis ID, Groffman PM, Schwarz K. Chemical, physical and biological characteristics of urban soils. In: Aitkenhead-Peterson J, Volder A, editors. Urban ecosystem ecology. Madison: American Society of Agronomy/Crop Science Society of America/Soil Science Society of America; 2010. p. 119-52. https://doi.org/10.2134/urbanecosystem ecology2010.frontmatterx
https://doi.org/10.2134/urbanecosystem e...
; Greinert, 2015Greinert A. The heterogeneity of urban soils in the light of their properties. J Soil Sediment. 2015;15:1725-37. https://doi.org/10.1007/s11368-014-1054-6
https://doi.org/10.1007/s11368-014-1054-...
; Yang and Zhang, 2015Yang J-L, Zhang G-L. Formation, characteristics and eco-environmental implications of urban soils – A review. Soil Sci Plant Nutr. 2015;61:30-46. https://doi.org/10.1080/00380768.2015.1035622
https://doi.org/10.1080/00380768.2015.10...
; Burghardt, 2017Burghardt W. Main characteristics of urban soils. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 19-26.). A change of pH is commonly reported, especially to higher values due to the elevated amount of carbonates in anthropic artifacts (cement, concrete, rubble, tiles), but also to lower values when sulfides are added as mining spoil, for example (Craul, 1985Craul PJ. Urban soils. METRIA 5: Selecting and preparing sites for urban trees. In: 5th Conference of the Metropolitan Tree Improvement Alliance; May 1985; Pennsylvania. Pennsylvania: The Pennsylvania State University; 1985. p. 23-4.; Lehmann and Stahr, 2007Lehmann A, Stahr K. Nature and significance of anthropogenic urban soils. J Soil Sediment. 2007;7:247-60. https://doi.org/10.1065/jss2007.06.235
https://doi.org/10.1065/jss2007.06.235...
; Greinert, 2015Greinert A. The heterogeneity of urban soils in the light of their properties. J Soil Sediment. 2015;15:1725-37. https://doi.org/10.1007/s11368-014-1054-6
https://doi.org/10.1007/s11368-014-1054-...
; Yang and Zhang, 2015Yang J-L, Zhang G-L. Formation, characteristics and eco-environmental implications of urban soils – A review. Soil Sci Plant Nutr. 2015;61:30-46. https://doi.org/10.1080/00380768.2015.1035622
https://doi.org/10.1080/00380768.2015.10...
; Burghardt, 2017Burghardt W. Main characteristics of urban soils. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 19-26.). Production and release of gases, such as CO2 and CH4, also occur especially in zones with waste disposal and embankments with organic materials (Meuser, 2010Meuser H. Contaminated urban soils. Dordrecht: Springer Netherlands; 2010. https://doi.org/10.1007/978-90-481-9328-8
https://doi.org/10.1007/978-90-481-9328-...
; Turkoglu, 2010Turkoglu N. Analysis of urban effects on soil temperature in Ankara. Environ Monit Assess. 2010;169:439-50. https://doi.org/10.1007/s10661-009-1187-z
https://doi.org/10.1007/s10661-009-1187-...
; Burghardt et al., 2015Burghardt W, Morel JL, Zhang GL. Development of the soils research about urban, industrial, traffic, mining and military areas (SUITMAS). Soil Sci Plant Nutr. 2015;61:3-21. https://doi.org/10.1080/00380768.2015.1046136
https://doi.org/10.1080/00380768.2015.10...
).

Morphological, physical and chemical alterations cause clear changes in the soil biology of urban areas (Guilland et al., 2018Guilland C, Maron PA, Damas O, Ranjard L. Biodiversity of urban soils for sustainable cities. Environ Chem Lett. 2018;16:1267-82. https://doi.org/10.1007/s10311-018-0751-6
https://doi.org/10.1007/s10311-018-0751-...
). The restriction of root penetration and poor aeration provoked by compaction difficult the proper development of plants, especially trees and shrubs (Jim, 1993Jim CY. Soil compaction as a constraint to tree growth in tropical & subtropical urban habitats. Environ Conserv. 1993;20:35-49. https://doi.org/10.1017/S0376892900037206
https://doi.org/10.1017/S037689290003720...
; Kozlowski, 1999Kozlowski TT. Soil compaction and growth of woody plants. Scand J Forest Res. 1999;14:596-619. https://doi.org/10.1080/02827589908540825
https://doi.org/10.1080/0282758990854082...
; Schueler, 2000Schueler T. The compaction of urban soils. Watershed Protection Techniques. 2000;3:661-5.). Compaction, contamination and changes in soil temperature and pH generally reduce the abundance and diversity of many species, especially of arthropods (ants, mites, springtails, beetles) and nematodes (Guilland et al., 2018Guilland C, Maron PA, Damas O, Ranjard L. Biodiversity of urban soils for sustainable cities. Environ Chem Lett. 2018;16:1267-82. https://doi.org/10.1007/s10311-018-0751-6
https://doi.org/10.1007/s10311-018-0751-...
). Also, Scharenbroch et al. (2005)Scharenbroch BC, Lloyd JE, Johnson-Maynard JL. Distinguishing urban soils with physical, chemical, and biological properties. Pedobiologia. 2005;49:283-96. https://doi.org/10.1016/j.pedobi.2004.12.002
https://doi.org/10.1016/j.pedobi.2004.12...
and Guilland et al. (2018)Guilland C, Maron PA, Damas O, Ranjard L. Biodiversity of urban soils for sustainable cities. Environ Chem Lett. 2018;16:1267-82. https://doi.org/10.1007/s10311-018-0751-6
https://doi.org/10.1007/s10311-018-0751-...
registered lower microbial biomass and activity and different composition of microorganisms in the cities in comparison with the surrounding agricultural and forest soils However, the biodiversity is highly dependent on the land use, inasmuch as the effects of urbanization tend to be higher in central zones and lower in green areas (Guilland et al., 2018Guilland C, Maron PA, Damas O, Ranjard L. Biodiversity of urban soils for sustainable cities. Environ Chem Lett. 2018;16:1267-82. https://doi.org/10.1007/s10311-018-0751-6
https://doi.org/10.1007/s10311-018-0751-...
).

The amounts of soil organic matter (SOM) in urban soils generally present higher spatial heterogeneity and standard deviation than the agricultural and forest areas (Vasenev et al., 2013Vasenev VI, Stoorvogel JJ, Vasenev II. Urban soil organic carbon and its spatial heterogeneity in comparison with natural and agricultural areas in the Moscow region. Catena. 2013;107:96-102. https://doi.org/10.1016/j.catena.2013.02.009
https://doi.org/10.1016/j.catena.2013.02...
). Low amounts can be found especially in densely urbanized zones and/or recent settlements (Scharenbroch et al., 2005Scharenbroch BC, Lloyd JE, Johnson-Maynard JL. Distinguishing urban soils with physical, chemical, and biological properties. Pedobiologia. 2005;49:283-96. https://doi.org/10.1016/j.pedobi.2004.12.002
https://doi.org/10.1016/j.pedobi.2004.12...
; Vasenev et al., 2013Vasenev VI, Stoorvogel JJ, Vasenev II. Urban soil organic carbon and its spatial heterogeneity in comparison with natural and agricultural areas in the Moscow region. Catena. 2013;107:96-102. https://doi.org/10.1016/j.catena.2013.02.009
https://doi.org/10.1016/j.catena.2013.02...
), mainly because of the removal of the topsoil due to fills and leveling, the decrease in the inputs of organic materials due to lower presence of vegetation and the reduced soil microbial activity (Craul, 1994Craul PJ. The nature of urban soils: Their problems and future. Arboric J. 1994;18:275-87. https://doi.org/10.1080/03071375.1994.9747027
https://doi.org/10.1080/03071375.1994.97...
; Scharenbroch et al., 2005Scharenbroch BC, Lloyd JE, Johnson-Maynard JL. Distinguishing urban soils with physical, chemical, and biological properties. Pedobiologia. 2005;49:283-96. https://doi.org/10.1016/j.pedobi.2004.12.002
https://doi.org/10.1016/j.pedobi.2004.12...
; Lehman and Stahr, 2007). However, SOM can also be very high in the urban mosaic, especially in green areas and landfills built with organic residues (Lehman and Stahr, 2007; Pouyat et al., 2010Pouyat RV, Szlavecz K, Yesilonis ID, Groffman PM, Schwarz K. Chemical, physical and biological characteristics of urban soils. In: Aitkenhead-Peterson J, Volder A, editors. Urban ecosystem ecology. Madison: American Society of Agronomy/Crop Science Society of America/Soil Science Society of America; 2010. p. 119-52. https://doi.org/10.2134/urbanecosystem ecology2010.frontmatterx
https://doi.org/10.2134/urbanecosystem e...
). Thus, these areas and those that suffered intense mixing during engineering operations can have both topsoil and subsurface horizons/layers enriched with organic matter (Scharenbroch et al., 2005Scharenbroch BC, Lloyd JE, Johnson-Maynard JL. Distinguishing urban soils with physical, chemical, and biological properties. Pedobiologia. 2005;49:283-96. https://doi.org/10.1016/j.pedobi.2004.12.002
https://doi.org/10.1016/j.pedobi.2004.12...
).

URBAN SOILS IN BRAZIL

Concept and classification of technogenic deposits

Studies about urban surface materials in Brazil have been more intensively performed through an engineering and geological approach than in the light of the soil science framework. The materials that are produced and transformed by anthropic activities have been mainly described as recent deposits, formed mainly by cultural layers, landfills, channel/reservoir siltation, and industrial, construction and domestic wastes (Peloggia, 1996a,b). They are commonly called in the Brazilian geological literature as depósitos tecnogênicos, translated to technogenous (Ter-Stepanian, 1988Ter-Stepanian G. Beginning of the technogene. Bull Intern Assoc Engin Geology. 1988;38:13342. https://doi.org/10.1007/BF02590457
https://doi.org/10.1007/BF02590457...
) or technogenic (Chemekov, 1982Chemekov YF. Technogenic deposits. In: XI Inqua Congress; 1982; Moscow. Moscow: Abstracts; 1982. v. 3. p. 62.) deposits, which are considered as stratigraphic units, correlative to the processes induced by intensive human activities during the Technogene era (Peloggia, 1999Peloggia AUG. Sobre a classificação, enquadramento estratigráfico e cartografação dos solos e depósitos tecnogênicos. In: Prefeitura do Município de São Paulo. Estudos de geotécnica e geologia urbana (I). São Paulo: Grupo de Trabalho de Geotécnica e Geologia Urbana; 1999. (Manual técnico, 3). p. 35-50.). This geological unit of time, proposed by the soviet Ter-Stepanian (1988)Ter-Stepanian G. Beginning of the technogene. Bull Intern Assoc Engin Geology. 1988;38:13342. https://doi.org/10.1007/BF02590457
https://doi.org/10.1007/BF02590457...
, would start with the agricultural revolution (10000 years BP), being comparable to the Anthropocene in the human protagonism in the modification of the Earth Surface (Oliveira et al., 2014Oliveira AA, Oliveira MAS, Andrade MRM. Depósitos tecnogênicos como testemunhos e indicadores de processos geológicos em área urbana degradada em Guarulhos, SP. Quater Environ Geosc. 2014;5:12-27. https://doi.org/10.5380/abequa.v5i1.34737
https://doi.org/10.5380/abequa.v5i1.3473...
).

The research about technogenic deposits in Brazil has occurred mainly since the 1990's, intensifying the study of urban areas in the last decade. Most of the studies in urban areas were developed in the Southern and Southeastern regions of the country, especially in capitals of states (e.g., São Paulo-São Paulo State, SP; Porto Alegre-Rio Grande do Sul State, RS; Florianópolis-Santa Catarina State, SC) or cities with regional significance (e.g., Presidente Prudente-SP; Santa Maria-RS; Pelotas-RS; Londrina-Paraná State, PR). In general, they are published in Brazilian journals or scientific meeting proceedings, mostly in Portuguese, and are focused on spatial analyses, such as mapping and classification of the deposits and their relationship with other spatial attributes (geology, geomorphology, land use) and/or on field descriptions, with the identification of layers, colors, texture and/or sedimentary structure. Laboratory analyses are less common and more related to particle size and organic matter contents (e.g., Bertê, 2001Bertê AMA. Depósitos tecnogênicos e planejamento urbano: O aterro sanitário da zona norte de Porto Alegre - RS/Brasil [dissertation]. Porto Alegre: Instituto de Geociências da Universidade Federal do Rio Grande do Sul; 2001.; Silva, 2012)Silva ECN. Formação de depósitos tecnogênicos e relações com o uso e ocupação do solo no perímetro urbano de Presidente Prudente-SP [dissertation]. Presidente Prudente: Universidade Estadual Paulista; 2012..

Many classification systems of technogenic deposits have been proposed in the international and national literature (Chemekov, 1982Chemekov YF. Technogenic deposits. In: XI Inqua Congress; 1982; Moscow. Moscow: Abstracts; 1982. v. 3. p. 62.; Fanning and Fanning, 1989Fanning DS, Fanning MCB. Soil: Morphology, genesis and classification. New York: John Wiley and Sons; 1989.; Oliveira, 1990Oliveira A. Depósitos tecnogênicos associados à erosão atual. In: XXXVI Congresso Brasileiro de Geologia de Engenharia; 28/Oct-01Nov 1990, Natal RN. Natal: Associação Brasileira de Geologia de Engenharia; 1990. p. 411-5.; Peloggia, 1999Peloggia AUG. Sobre a classificação, enquadramento estratigráfico e cartografação dos solos e depósitos tecnogênicos. In: Prefeitura do Município de São Paulo. Estudos de geotécnica e geologia urbana (I). São Paulo: Grupo de Trabalho de Geotécnica e Geologia Urbana; 1999. (Manual técnico, 3). p. 35-50.; Peloggia et al., 2014Peloggia AUG, Oliveira AMS, Oliveira AA, Silva ECN, Nunes JOR. Technogenic geodiversity: A proposal on the classification of artificial ground. Quat Environ Geosc. 2014;5:28-40. https://doi.org/10.5380/abequa.v5i1.34823
https://doi.org/10.5380/abequa.v5i1.3482...
), but the most applied in the Brazilian urban areas are the proposals of Fanning and Fanning (1989)Fanning DS, Fanning MCB. Soil: Morphology, genesis and classification. New York: John Wiley and Sons; 1989. and Oliveira (1990)Oliveira A. Depósitos tecnogênicos associados à erosão atual. In: XXXVI Congresso Brasileiro de Geologia de Engenharia; 28/Oct-01Nov 1990, Natal RN. Natal: Associação Brasileira de Geologia de Engenharia; 1990. p. 411-5.. The former classifies the materials in urbic (modern anthropic artefacts), garbic (anthropic organic wastes), spolic (earthy materials moved by anthropic activities) and dredged materials (mineral materials dredged from waterways). In the later system, the classification includes built-up (directly transported and deposited by human actions), induced (indirectly transported and deposited by human actions, such as by accelerated erosion processes) and modified technogenic deposits (natural materials transformed by human actions). Despite the high dissemination of the proposal of Fanning and Fanning (1989)Fanning DS, Fanning MCB. Soil: Morphology, genesis and classification. New York: John Wiley and Sons; 1989. in the country, these authors adopt the term “highly man-influenced soils or materials” instead of “technogenic deposits” in their chapter, which is inserted in a book with a clear Soil Science scope. Also, when the classification of Oliveira (1990)Oliveira A. Depósitos tecnogênicos associados à erosão atual. In: XXXVI Congresso Brasileiro de Geologia de Engenharia; 28/Oct-01Nov 1990, Natal RN. Natal: Associação Brasileira de Geologia de Engenharia; 1990. p. 411-5. is applied, the term “natural soils”, transformed in situ by fertilizing or contamination, for example, would be considered within the class of the modified deposits (Peloggia, 1996a).

Indeed, the concepts of “technogenic deposits” and “soils” commonly overlap in the Brazilian and international geosciences’ literature, with the concept of soil being often general and ambiguous, commonly used as synonymous or analogous to deposits. Peloggia (2017)Peloggia AUG. O que produzimos sob nossos pés? Uma revisão comparativa dos conceitos fundamentais referentes a solos e terrenos antropogênicos. Rev UNG Geocienc. 2017;16:102-27. made an important effort to distinguish these concepts, defining soils by their formation in situ, presence of horizons, and action of pedogenesis, among other elements, and defining deposits as the materials that are product of removal, transport and deposition in the environment. In Soil Science, soil is commonly distinguished from other geological surface materials by the recognition of pedological processes (additions, losses, transfers and transformations of matter and energy) and/or the ability to support plants with roots (Soil Survey Staff, 2014Soil Survey Staff. Keys to soil taxonomy. 12th ed. Washington, DC: United States Department of Agriculture, Natural Resources Conservation Service; 2014.). Thus, adopting the scope of Soil Science, the technogenic deposits could commonly be the parent materials of certain types of urban soils, especially those marked by the introduction of exogenous materials. However, the soils would already be marked by pedogenetic processes influenced by local external environment, including the climate, landform, organisms and, in especial, human actions.

Considering the wide use of the term “soil” as synonymous of “deposits” in the Brazilian and international geoscience field, it is important to define in the present study that the analyses inserted in the next sections will consider only the publications that adopt the concept of urban soils in the scope of Soil Science. These publications generate a different data set from the geological/geomorphological literature described before, including detailed pedological field descriptions and/or laboratory analyses that are typically measured by methods defined by Soil Science manuals. National and international classification systems are also assessed in some publications, but generally based on data and criteria produced within the Soil Science framework. This approach leads to different data applications, allowing for the identification of soils with morphological, physical, chemical and/or biological patterns within the cities and their relationship with pedogenetic processes and spatial distribution linked to human activities. This knowledge is crucial for a better recognition of the soil urban functions and a more precise identification of ecosystem services in the Brazilian cities.

Brazilian production about urban soils

An overview

A continuous and more robust literature about urban soils in Brazil started in the middle of the 90's decade and intensified significantly since 2015 (Figure 1a). They are general reviews, methodological proposals and specific cases published mostly in Portuguese as non-indexed journals, chapters of books and academic texts (monographies, dissertations and thesis) (Figures 1b and 1c), but publications in English have increased since 2010. Most of the studies were performed by groups of universities located in the Southern and Southeastern of the country, which are the more economically developed regions (Figure 1d). The research groups located in the Federal University of Santa Maria (UFSM) and Federal University of Paraná (UFPR) stand out for concentrating a higher number of publications.

Figure1
Number of Brazilian studies about urban soils, according to: (a) year of publication; (b) type of publication (Method. prop.: methodological proposals; Spec. cases: specific cases); (c) language (Port.: Portuguese; Eng.: English) and type publication media (Journ.: journals; Ac. texts: academic texts, such as thesis, dissertations, monographs; Ch.: chapters of books and others - e.g., reports); and (d) region of the country.

The general reviews are all in Portuguese and discuss the specific properties, functions, limitations, management, conservation and/or systems of classification related to urban soils. They introduce general concepts without focusing on the Brazilian production or in the specific properties or functioning of Brazilian and/or tropical urban soils (Pedron and Dalmolin, 2002Pedron FA, Dalmolin RSD. Caracterização e manejo de solos urbanos. Santa Maria: Centro de Ciência Rural da Universidade Federal de Santa Maria; 2002. (Informe técnico, 2).; Pedron et al., 2004Pedron FA, Dalmolin RSD, Azevedo AC, Kaminski J. Solos urbanos. Cienc Rural. 2004;34:1647-53. https://doi.org/10.1590/S0103-84782004000500053
https://doi.org/10.1590/S0103-8478200400...
; Pedron et al., 2007Pedron FA, Dalmolin RSD, Azevedo AC, Botelho MR, Menezes FP. Levantamento e classificação de solos em áreas urbanas: Importância, limitações e aplicações. Rev Bras Agrocienc. 2007;13:147-51. https://doi.org/10.18539/CAST.V13I2.1354
https://doi.org/10.18539/CAST.V13I2.1354...
; Ladeira, 2012a,b; Pedron et al., 2019Pedron FA, Schenato RB, Baroni M. Conservação do solo e da água em ambientes urbanos. In: Bertol I, De Maria IC, Souza LC, editors. Manejo e conservação do solo e da água. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2019. p. 645-99.). Regarding the methodological proposals, the more significant publications include a classification system of Anthroposols (including urban soils) by Curcio et al. (2004)Curcio GR, Lima VC, Giarola NFB. Antropossolos: Proposta de ordem - 1ª aproximação). Colombo: Embrapa Florestas; 2004., a land use potential system for urban soils by Pedron (2005)Pedron FA. Classificação do potencial de uso das terras no perímetro urbano de Santa Maria - RS [dissertation]. Santa Maria: Universidade Federal de Santa Maria; 2005. and Pedron et al. (2006)Pedron FA, Dalmolin RSD, Azevedo AC, Poelking EL, Miguel P. Utilização do sistema de avaliação do potencial de uso urbano de terras no diagnóstico ambiental do município de Santa Maria - RS. Cienc Rural. 2006;36:468-77. https://doi.org/10.1590/S0103-84782006000200017
https://doi.org/10.1590/S0103-8478200600...
, and a protocol of qualifiers’ description of urban soils by Costa (2018)Costa JR. Procedimentos para análise de campo e identificação de qualificadores diagnósticos para solos urbanos [dissertation]. Santa Maria: Universidade Federal de Santa Maria; 2018. and Costa et al. (2019)Costa JR, Pedron FD, Dalmolin RS, Schenato RB. Field description and identification of diagnostic qualifiers for urban soils in Brazil. Rev Bras Cienc Solo. 2019;43:e0180121. https://doi.org/10.1590/18069657rbcs20180121
https://doi.org/10.1590/18069657rbcs2018...
, the latter being the only one in English.

Most of the publications are study cases developed in neighborhoods of cities located in the South and Southeast, commonly with more than 500,000 inhabitants, which are classified as medium-sized (100,000-1,000,000 inhabitants) to large cities (>1,000,000 inhabitants), according to Vries et al. (2001)Vries J, Schuster M, Procee P, Mengers H. Environmental management of small and medium sized cities in latin america and the caribbean. Washington, DC: Environment Division Publications; 2001. (Figure 2). Large cities that are capitals of states are the main studied urban areas, such as São Paulo (SP), Curitiba (PR), Rio de Janeiro (Rio de Janeiro State-RJ), Belo Horizonte (Minas Gerais State-MG) and Recife (Pernambuco State-PE) (Figure 2). The urban population of these metropoles varies from 1,537,704 in Recife to 11,152,344 in São Paulo, but most of them have between 1,500,000 and 2,500,000 inhabitants (IBGE, 2012)Instituto Brasileiro de Geografia e Estatística - IBGE. Censo 2010. Rio de Janeiro: IBGE; 2012. Available from: https://censo2010.ibge.gov.br/
https://censo2010.ibge.gov.br/...
. Studies developed on medium-sized cities, but with regional importance, are also relatively frequent, including Campinas (SP), Santa Maria (RS) and Guarapari (Espírito Santo State-ES) (Figure 2). The publications are generally focused on soil characterization, classification, mapping and/or contamination, but themes like soil erosion, soil mineralogy, and the relationship between soils and urban fauna, flora and diseases are addressed in minor amounts.

Figure 2
Spatial distribution of the main Brazilian cities with publications about urban soils, according to: (a) city population; and (b) number of publications.

Morphological descriptions in the field, especially of the soil profile, are made in some publications, especially on those focused on soil characterization, classification and/or genesis (Putrino, 2017Putrino SM. Tecnossolos Úrbicos do parque linear ribeirão das Pedras, Campinas/SP [dissertation]. Campinas: Instituto de Geociências, Universidade Estadual de Campinas; 2017.; Costa, 2018Costa JR. Procedimentos para análise de campo e identificação de qualificadores diagnósticos para solos urbanos [dissertation]. Santa Maria: Universidade Federal de Santa Maria; 2018.; Almeida, 2019Almeida IS. Potencial de fornecimento de serviços ecossistêmicos de um solo no município de São Paulo - SP [dissertation]. São Paulo: Universidade de São Paulo; 2019.; Araújo, 2019Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019.; Gomes, 2019Gomes WS. Qualidade e serviços ecossistêmicos do solo em uma antiga área de uso industrial no município de Diadema/SP [dissertation]. Diadema: Universidade Federal de São Paulo; 2019.; Putrino and Ladeira, 2019Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
). However, physical and/or chemical analyses are commonly performed only in the topsoil (0.05, 0.10, 0.20 or 0.30 first meters), which are, in general, arbitrarily pre-defined depths. Laboratory analyses are more common in publications centered on contamination (e.g., Moura et al., 2006Moura MCS, Lopes ANC, Moita GC, Moita Neto JM. Estudo multivariado de solos urbanos da cidade de Teresina. Quim Nova. 2006;29:429-35. https://doi.org/10.1590/S0100-40422006000300005
https://doi.org/10.1590/S0100-4042200600...
; Gonçalves, 2011Gonçalves JAC. A contaminação natural por arsênio em solos e águas subterrâneas na área urbana de Ouro Preto (MG) [dissertation]. Ouro Preto: Universidade Federal de Ouro Preto; 2011.; Aniceto and Horbe, 2012Aniceto KCP, Horbe AMC. Solos urbanos formados pelo acúmulo de resíduos em Manaus, Amazonas, Brasil. Acta Amazon. 2012;42:135-48. https://doi.org/10.1590/S0044-59672012000100016
https://doi.org/10.1590/S0044-5967201200...
; Cervi et al., 2014Cervi EC, Costa ACS, Souza Junior IG. Magnetic susceptibility and the spatial variability of heavy metals in soils developed on basalt. J Appl Geophy. 2014;111:377-83. https://doi.org/10.1016/j.jappgeo.2014.10.024
https://doi.org/10.1016/j.jappgeo.2014.1...
; Barbosa and Correa, 2015Barbosa AA, Corrêa SM. Caracterização química de solo contaminado por resíduos sólidos urbanos na Estrada Arroio Pavuna em Jacarepaguá no município de Rio de Janeiro. Engevista. 2015;17:266-72. https://doi.org/10.22409/engevista.v17i2.609
https://doi.org/10.22409/engevista.v17i2...
; Dias, 2017Dias MA. Antropossolos: Enquadramento taxonômico e implicações ambientais [dissertation]. Curitiba: Universidade Federal do Paraná; 2017.; França et al., 2017França FC, Albuquerque AMA, Almeida AC, Silveira PB, Filho CA, Hazin CA, Honorato EV. Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil. Food Chem. 2017;215:171-6. https://doi.org/10.1016/j.foodchem.2016.07.168
https://doi.org/10.1016/j.foodchem.2016....
; Dala-Paula et al., 2018Dala-Paula BM, Custódio FB, Knupp EAN, Palieri HEL, Silva JBB, Glória MBA. Cadmium, copper and lead levels in different cultivars of lettuce and soil from urban agriculture. Environ Pollut. 2018;242:383-9. https://doi.org/10.1016/j.envpol.2018.04.101
https://doi.org/10.1016/j.envpol.2018.04...
; Milhome et al.; 2018Milhome MA, Holanda JWB, Araújo Neto JR, Nascimento RF. Diagnosis of contamination of soil by toxic metals from urban solid waste and influence of organic matter. Rev Virt Quim. 2018;10:59-72. https://doi.org/10.21577/1984-6835.20180007
https://doi.org/10.21577/1984-6835.20180...
; Putrino and Ladeira, 2019Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
), but they are also available in studies focused on genesis and characterization (Santos Junior and Lima, 2012; Teixeira et al., 2019Teixeira RC, Rocha PA, Faria ALL, Costa LM, Alves EEN. Quantificação química em perfis de Antropossolos por fluorescência de raios-x com vistas a identificação de descontinuidades de camadas. Quat Env Geo. 2019;10:10-7. https://doi.org/10.5380/abequa.v10i1.53087
https://doi.org/10.5380/abequa.v10i1.530...
), classification (Costa et al., 2019Costa JR, Pedron FD, Dalmolin RS, Schenato RB. Field description and identification of diagnostic qualifiers for urban soils in Brazil. Rev Bras Cienc Solo. 2019;43:e0180121. https://doi.org/10.1590/18069657rbcs20180121
https://doi.org/10.1590/18069657rbcs2018...
) and fauna and flora (Patucci et al., 2017Patucci NN, Oliveira Filho LCI, Oliveira D, Baretta D, Bartz MLC, Brescovit AD. Inventário de fauna edáfica como instrumento na avaliação de qualidade e biodiversidade de solos urbanos: Estudo de caso do parque CienTec. Bol Paul Geo. 2017;96:66-90.; Vale et al., 2017Vale VS, Araújo GM, Oliveira AS, Prado Júnior JA, Santos LCS. Estrutura da comunidade arbórea e características edáficas de um fragmento urbano. Cienc Florest. 2017;27:1415-28. https://doi.org/10.5902/1980509830322
https://doi.org/10.5902/1980509830322...
; Lima et al., 2018Lima MS, Freire FJ, Marangon LC, Almeida BG, Ribeiro EP, Santos RL. Solos florestais em fragmento de floresta urbana na mata de Dois Irmãos, Recife, Pernambuco, Brasil. Cienc Florest. 2018;28:542-53. https://doi.org/10.5902/1980509832037
https://doi.org/10.5902/1980509832037...
). The pH, soil organic carbon (SOC), exchangeable cations, CEC and particle size are the most frequent analyses presented in the results.

Publications associated with soil contamination generally present quantification of total inorganic elements, especially Zn, Pb, Cu, Cr, Ba and Ni. However, other analyses are eventually available, such as sequential extraction of metals, soil mineralogy and/or organic contaminants (Oliveira and Brilhante, 1996Oliveira RM, Brilhante OM. Hexachlorocyclohexane contamination in an urban area of Rio de Janeiro, Brazil. Environ Int. 1996;22:289-94. https://doi.org/10.1016/0160-4120(96)00014-1
https://doi.org/10.1016/0160-4120(96)000...
; Wilcke et al., 1999Wilcke W, Lilienfein J, Lima SC, Zech W. Contamination of highly weathered urban soils in Uberlândia, Brazil. J Plant Nutr Soil Sc. 1999;162:539-48. https://doi.org/10.1002/(SICI)1522-2624(199910)162:5<539::AID-JPLN539>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1522-2624(...
; Aniceto and Horbe, 2012Aniceto KCP, Horbe AMC. Solos urbanos formados pelo acúmulo de resíduos em Manaus, Amazonas, Brasil. Acta Amazon. 2012;42:135-48. https://doi.org/10.1590/S0044-59672012000100016
https://doi.org/10.1590/S0044-5967201200...
; Pussente et al., 2017Pussente IC, ten Dam G, van Leeuwen S, Augusti R. PCDD/Fs and PCBs in soils: A study of case in the city of Belo Horizonte-MG. J Brazilian Chem Society. 2017;28:858-67. https://doi.org/10.21577/0103-5053.20160238
https://doi.org/10.21577/0103-5053.20160...
). Other types of data are provided in publications centered on soil mapping and/or geological risk, such as spatial information related to landforms (Digital Elevation Model, hypsometry, slope gradient, landform types, anthropic interventions), which are obtained by satellite images and/or aerial photography (without a complete morphological description). Spatial distribution of the current and historical land use in the studied cities, coupled with data related to demography, may also be provided (Estevam, 2015Estevam F. Mapeamento dos Antropossolos na porção sudoeste do Bairro Boqueirão, Curitiba/PR [monography]. Curitiba: Universidade Federal do Paraná; 2015.; Santos, 2015Santos JA. Antropossolos e áreas de risco a escorregamentos: estudo de caso na comunidade do Sítio Joaninha (Diadema) e Antigo Lixão do Alvarenga (São Bernardo do Campo) - Região Metropolitana de São Paulo (RMSP) [dissertation]. Presidente Prudente: Universidade Estadual Paulista; 2015.; Antonio et al., 2017Antonio JN, Metternicht GI, Tommaselli JTG. Classificação de Antropossolos em áreas de antigos depósitos de resíduos sólidos em Presidente Prudente - SP. In: 17th Simpósio Brasileiro de Geografia Física Aplicada; junho 2017; Campinas. Campinas: Instituto de Geociências; 2017.; Mysczak and Paula, 2017; Dias and Paula, 2018Dias MA, Paula EV. Mapeamento de Antropossolos: Estudo de caso no bairro Santa Felicidade (Curitiba/Paraná). Raega. 2018;44:212-30. https://doi.org/10.5380/raega.v44i0.49411
https://doi.org/10.5380/raega.v44i0.4941...
).

Main methodological contributions

Three methodological propositions, available in Portuguese in four publications (Curcio et al., 2004Curcio GR, Lima VC, Giarola NFB. Antropossolos: Proposta de ordem - 1ª aproximação). Colombo: Embrapa Florestas; 2004.; Pedron, 2005Pedron FA. Classificação do potencial de uso das terras no perímetro urbano de Santa Maria - RS [dissertation]. Santa Maria: Universidade Federal de Santa Maria; 2005.; Pedron et al., 2006Pedron FA, Dalmolin RSD, Azevedo AC, Poelking EL, Miguel P. Utilização do sistema de avaliação do potencial de uso urbano de terras no diagnóstico ambiental do município de Santa Maria - RS. Cienc Rural. 2006;36:468-77. https://doi.org/10.1590/S0103-84782006000200017
https://doi.org/10.1590/S0103-8478200600...
; Costa, 2018Costa JR. Procedimentos para análise de campo e identificação de qualificadores diagnósticos para solos urbanos [dissertation]. Santa Maria: Universidade Federal de Santa Maria; 2018.), and in English in one publication (Costa et al., 2019Costa JR, Pedron FD, Dalmolin RS, Schenato RB. Field description and identification of diagnostic qualifiers for urban soils in Brazil. Rev Bras Cienc Solo. 2019;43:e0180121. https://doi.org/10.1590/18069657rbcs20180121
https://doi.org/10.1590/18069657rbcs2018...
), deserve a highlight because they bring significant contributions for the study of Anthropogenic soils worldwide, especially regarding their mapping and classification.

Pedron (2005)Pedron FA. Classificação do potencial de uso das terras no perímetro urbano de Santa Maria - RS [dissertation]. Santa Maria: Universidade Federal de Santa Maria; 2005. and Pedron et al. (2006)Pedron FA, Dalmolin RSD, Azevedo AC, Poelking EL, Miguel P. Utilização do sistema de avaliação do potencial de uso urbano de terras no diagnóstico ambiental do município de Santa Maria - RS. Cienc Rural. 2006;36:468-77. https://doi.org/10.1590/S0103-84782006000200017
https://doi.org/10.1590/S0103-8478200600...
proposed an Urban Land Use Potential System, inspired in technical systems applied in rural areas, in order to employ the maximum potential of urban soils for human activities and avoid land degradation. A Map of Urban Land Use Potential is produced based on a semi-detail survey, classification and mapping of urban soils and in the spatial distribution of other variables, such as hillslope declivities, drainage system, land use, and permanent preservation areas. Four different classes of soils’ use are defined: waste disposal (nontoxic organic and nontoxic inorganic; toxic organic and toxic inorganic), urban construction (recreational/ green areas, commercial/ residential and industrial), urban agriculture (silviculture, pasture, olericulture, fruit-culture, annual culture) and environmental preservation. According to soil characteristics and environmental properties, the zones defined in the map are classified as suitable, restricted, and unsuitable for each of the four classes of soil uses. For example, zones classified as suitable for organic and inorganic toxic wastes involve those with deep soils, high CEC, undetectable watertable level in the profile, low permeability, low declivities, and low susceptibility to floods. Another example is related to the zones intended for environmental preservation, which are regulated by federal, state or municipal legislation or classified as unsuitable for other uses, such as areas susceptible to flooding or with high rock fragments.

Costa (2018)Costa JR. Procedimentos para análise de campo e identificação de qualificadores diagnósticos para solos urbanos [dissertation]. Santa Maria: Universidade Federal de Santa Maria; 2018. and Costa et al. (2019)Costa JR, Pedron FD, Dalmolin RS, Schenato RB. Field description and identification of diagnostic qualifiers for urban soils in Brazil. Rev Bras Cienc Solo. 2019;43:e0180121. https://doi.org/10.1590/18069657rbcs20180121
https://doi.org/10.1590/18069657rbcs2018...
proposed a protocol for urban soils description and the incorporation of qualifiers to describe a Technosol (IUSS Working Group WRB, 2015IUSS Working Group WRB. World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. Rome: Food and Agriculture Organization of the United Nations; 2015. (World Soil Resources Reports, 106).), based on the study of soils of a medium-sized city (Santa Maria - RS). The protocol for field description incorporates morphological variables that highlight the heterogeneity and the influence of anthropic interventions in urban soils. Thus, the authors suggest to use the term layer instead of horizon to highlight the low pedological development commonly found in the profiles; the inclusion in the description of the type and percentage of anthropic artifacts (such as plaster, concrete, paper, ceramic, glass, etc.); and the use of the term color mosaic, applied where spots with three or more colors are recognized as a reflection of the diversity of the technogenic deposits. Five new qualifiers are proposed to emphasize aspects common in soils highly affected by human actions. The saprolitic and saprorockic qualifiers are related to the presence of layers of in situ and transported saprolite, respectively. The stonic and multigranic qualifiers correspond to the occurrence of a layer with, respectively, stoniness ≥40 % and presence of different textures, both generally provoked by the introduction and/or mixing of different materials by anthropic actions. Finally, the impervic qualifier should be employed when a sealed or impermeable layer is found within 1.00 m from the surface.

Finally, the classification system of Anthrosols (Antropossolos) proposed by Curcio et al. (2004)Curcio GR, Lima VC, Giarola NFB. Antropossolos: Proposta de ordem - 1ª aproximação). Colombo: Embrapa Florestas; 2004. is another important Brazilian methodological contribution. The main goal of the proposition is to assist the Brazilian Soil Classification System (Santos et al., 2018Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Araújo Filho JC, Oliveira JB, Cunha TJF. Sistema brasileiro de classificação de solos. 5. ed. rev. ampl. Brasília, DF: Embrapa; 2018.) to incorporate a taxonomy dedicated to soils highly modified by human activities. The system is organized into four taxonomic levels: order, suborder, great group and subgroups, the first three based on morphological features and the last mainly in laboratory analyses. The suborders of the Antropossolo order were defined as Líxico, Sômico, Decapítico and Mobílico. Líxico implies in the addition of toxic wastes; Sômico requires the combination of mobilization and addition of non-toxic materials; Decapítico is dedicated to the removal of materials from the profile; and Mobílico is exclusively used for the in situ mobilization and mixing of soils and other materials. The great groups involve the presence of the water table, occurrence of layers, similarity with natural soils and the total or partial removal of the soil and other materials. Finally, the subgroups are mainly related to chemical characteristics of the soils, including occurrence of contaminants and/or pathogenic microorganisms, base saturation, Al saturation and clay activity. Although this classification is widely used by Brazilian authors, it is not official in the country since it was not incorporated in the Brazilian Soil Classification System.

Urban soils in the Brazilian cities: main results and interpretations

Urban soil concept

Estevam (2015)Estevam F. Mapeamento dos Antropossolos na porção sudoeste do Bairro Boqueirão, Curitiba/PR [monography]. Curitiba: Universidade Federal do Paraná; 2015., Dias (2017)Dias MA. Antropossolos: Enquadramento taxonômico e implicações ambientais [dissertation]. Curitiba: Universidade Federal do Paraná; 2017., Putrino (2017)Putrino SM. Tecnossolos Úrbicos do parque linear ribeirão das Pedras, Campinas/SP [dissertation]. Campinas: Instituto de Geociências, Universidade Estadual de Campinas; 2017., Dias and Paula (2018)Dias MA, Paula EV. Mapeamento de Antropossolos: Estudo de caso no bairro Santa Felicidade (Curitiba/Paraná). Raega. 2018;44:212-30. https://doi.org/10.5380/raega.v44i0.49411
https://doi.org/10.5380/raega.v44i0.4941...
and Putrino and Ladeira (2019)Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
postulate, based on the concepts of Pedron et al. (2004)Pedron FA, Dalmolin RSD, Azevedo AC, Kaminski J. Solos urbanos. Cienc Rural. 2004;34:1647-53. https://doi.org/10.1590/S0103-84782004000500053
https://doi.org/10.1590/S0103-8478200400...
and others, that urban soils are those found in the urban environment and, in consequence, generally modified by anthropic interventions that are typical of the cities. Although an explicit definition is not provided in most other analyzed studies, it is possible to consider the context in which the term “urban soil” is applied by observing the selected study areas and the results, especially the descriptions and/or classifications of the soils. Thus, some studies englobe only soils that are strongly modified by human actions in the cities, such as those in highly populated neighborhoods and irregular, dense settlements (slums) (e.g., Wilcke et al., 1999Wilcke W, Lilienfein J, Lima SC, Zech W. Contamination of highly weathered urban soils in Uberlândia, Brazil. J Plant Nutr Soil Sc. 1999;162:539-48. https://doi.org/10.1002/(SICI)1522-2624(199910)162:5<539::AID-JPLN539>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1522-2624(...
; Guerrini et al., 2017Guerrini IA, Croce CGG, Bueno OC, Jacob CPRP, Nogueira TAR, Fernandes DM, Ganga A, Capra GF. Composted sewage sludge and steel mill slag as potential amendments for urban soils involved in afforestation programs. Urban For Urban Gree. 2017;22:93-104 https://doi.org/10.1016/j.ufug.2017.01.015
https://doi.org/10.1016/j.ufug.2017.01.0...
; Schneider et al., 2018). These Anthropogenic soils that are highly impacted during urbanization are included in all the definitions of urban soils exposed in table 1.

Another important number of the analyzed publications includes less disturbed soils located inside the cities, especially in parks and agricultural zones (e.g., Aniceto and Horbe, 2012Aniceto KCP, Horbe AMC. Solos urbanos formados pelo acúmulo de resíduos em Manaus, Amazonas, Brasil. Acta Amazon. 2012;42:135-48. https://doi.org/10.1590/S0044-59672012000100016
https://doi.org/10.1590/S0044-5967201200...
; Putrino, 2017Putrino SM. Tecnossolos Úrbicos do parque linear ribeirão das Pedras, Campinas/SP [dissertation]. Campinas: Instituto de Geociências, Universidade Estadual de Campinas; 2017.) or in peri-urban areas with low density of occupation (e.g., Santos Júnior et al., 2012; Mysczak, 2013Mysczak LA. Aplicação da proposta de ordem dos Antropossolos no Bairro Ganchinho, Curitiba/PR [monography]. Curitiba: Universidade Federal do Paraná; 2013.; Costa et al., 2019Costa JR, Pedron FD, Dalmolin RS, Schenato RB. Field description and identification of diagnostic qualifiers for urban soils in Brazil. Rev Bras Cienc Solo. 2019;43:e0180121. https://doi.org/10.1590/18069657rbcs20180121
https://doi.org/10.1590/18069657rbcs2018...
). This approach corroborates with the definitions of Hollis (1991)Hollis JM. The classification of soils in urban areas. In: Bullock P, Gregory P, editors. Soils in the urban environment. Londres: Blackwell Publishing; 1991. p. 5-27., Lehman and Stahr (2007), Rossiter (2007)Rossiter DG. Classification of urban and industrial soils in the world reference base for soil resources. J Soils Sediments. 2007;7:96-100. https://doi.org/10.1065/jss2007.02.208
https://doi.org/10.1065/jss2007.02.208...
and Hazelton and Murphy (2011)Hazelton P, Murphy B. Understanding soils in urban environments. Clayton: CSIRO Publishing; 2011. https://doi.org/10.1071/9780643101432
https://doi.org/10.1071/9780643101432...
(Table 1), which comprise more altered as well as more preserved soils located within urban and suburban areas. An even broader definition, similar to SUITMAS (Lehman and Stahr, 2007; Rossiter, 2007Rossiter DG. Classification of urban and industrial soils in the world reference base for soil resources. J Soils Sediments. 2007;7:96-100. https://doi.org/10.1065/jss2007.02.208
https://doi.org/10.1065/jss2007.02.208...
; Meuser, 2010Meuser H. Contaminated urban soils. Dordrecht: Springer Netherlands; 2010. https://doi.org/10.1007/978-90-481-9328-8
https://doi.org/10.1007/978-90-481-9328-...
; Morel et al., 2017Morel JL, Burghardt W, Kim K-HL. The challenges for soils in the urban environment. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - Composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 1-6.), has been rarely adopted in Brazil (e.g., Moura et al., 2006Moura MCS, Lopes ANC, Moita GC, Moita Neto JM. Estudo multivariado de solos urbanos da cidade de Teresina. Quim Nova. 2006;29:429-35. https://doi.org/10.1590/S0100-40422006000300005
https://doi.org/10.1590/S0100-4042200600...
), although the use of this concept has increased in the international literature, as explained before.

Morphological results

As exposed, only some publications show complete morphological descriptions of urban soil profiles. The data are available mainly for soils located in medium (e.g., Santa Maria – RS) and large cities (e.g., Campinas and São Paulo - SP) under subtropical climate (e.g., Almeida, 2019Almeida IS. Potencial de fornecimento de serviços ecossistêmicos de um solo no município de São Paulo - SP [dissertation]. São Paulo: Universidade de São Paulo; 2019.; Costa et al., 2019Costa JR, Pedron FD, Dalmolin RS, Schenato RB. Field description and identification of diagnostic qualifiers for urban soils in Brazil. Rev Bras Cienc Solo. 2019;43:e0180121. https://doi.org/10.1590/18069657rbcs20180121
https://doi.org/10.1590/18069657rbcs2018...
; Gomes, 2019Gomes WS. Qualidade e serviços ecossistêmicos do solo em uma antiga área de uso industrial no município de Diadema/SP [dissertation]. Diadema: Universidade Federal de São Paulo; 2019.; Putrino and Ladeira, 2019Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
) and in a small city (<100,000 inhabitants, according to Vries et al., 2001Vries J, Schuster M, Procee P, Mengers H. Environmental management of small and medium sized cities in latin america and the caribbean. Washington, DC: Environment Division Publications; 2001.) under tropical climate (Cáceres - Mato Grosso State, MT), (Araújo, 2019)Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019.. The thickness and boundary of the horizons/layers are variable, but many are 0.20 to 0.30 m thick, with dominance of abrupt or clear distinctness and smooth or wavy topography. Red (5R to 10R) and yellow red hues (2.5 to 10YR) are predominant, with a great variation of colors and regular presence of three or more matrix colors [mosaic colors, according to Costa et al. (2019)Costa JR, Pedron FD, Dalmolin RS, Schenato RB. Field description and identification of diagnostic qualifiers for urban soils in Brazil. Rev Bras Cienc Solo. 2019;43:e0180121. https://doi.org/10.1590/18069657rbcs20180121
https://doi.org/10.1590/18069657rbcs2018...
]. Structureless materials occur in most soils, although surface horizons/layers commonly present blocky subangular or granular structures. Intermediate textures (e.g., loam, sandy loam, silty loam, clay loam) are the most common, but this characteristic tend to be quite heterogeneous in most of the soils, either within the profiles or from one profile to another. Human artefacts can be found in different proportions and types, including concrete, brick, asphalt, pottery, tile, plastic, glass, paper, styrofoam, cloth, wire and wood products.

The described soils are mainly classified as Urbic Technosols (IUSS Working Group WRB, 2015IUSS Working Group WRB. World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. Rome: Food and Agriculture Organization of the United Nations; 2015. (World Soil Resources Reports, 106).) in the medium and large cities and as Antropossolos Sômicos and Líxicos (Curcio et al., 2004Curcio GR, Lima VC, Giarola NFB. Antropossolos: Proposta de ordem - 1ª aproximação). Colombo: Embrapa Florestas; 2004.) in the small city. Some of these publications generally adopt the term “horizon” in the description, using the horizon designations proposed by FAO (2012) or Santos et al. (2018)Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Araújo Filho JC, Oliveira JB, Cunha TJF. Sistema brasileiro de classificação de solos. 5. ed. rev. ampl. Brasília, DF: Embrapa; 2018.. Thus, in Putrino and Ladeira (2019)Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
, the profiles generally have a sequence of A and/or AB horizons or A and C horizons, many of them in vertical discontinuity with the overlying horizons, whereas in Araújo (2019)Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019., the soils present mainly AC, CA and A horizons at or near the surface and Bw, Bf, Bg, Bgfc and C horizons in the subsurface. On the other side, Costa et al. (2019)Costa JR, Pedron FD, Dalmolin RS, Schenato RB. Field description and identification of diagnostic qualifiers for urban soils in Brazil. Rev Bras Cienc Solo. 2019;43:e0180121. https://doi.org/10.1590/18069657rbcs20180121
https://doi.org/10.1590/18069657rbcs2018...
utilize the term “layers” in all the described profiles, which are identified by numbers. As exposed before, these authors propose the use of the term “layer” instead of “horizon” in urban soils. Finally, Almeida (2019)Almeida IS. Potencial de fornecimento de serviços ecossistêmicos de um solo no município de São Paulo - SP [dissertation]. São Paulo: Universidade de São Paulo; 2019. adopts an intermediate position, which is in accordance with IBGE (2007)Instituto Brasileiro de Geografia e Estatística - IBGE. Manual técnico de pedologia. 2. ed. Rio de Janeiro: IBGE; 2007., with the utilization of “layers” for sections that are low affected by pedogenesis and “horizons” for sections with more evident interference of pedogenesis (e.g., presence of structure, SOC accumulation, etc.). This last approach seems more appropriate for Anthropogenic soils, since it recognizes the action of pedological processes.

Many of the described soils are influenced by materials likely transported from the surroundings to fill and level the terrain (e.g., Almeida, 2019Almeida IS. Potencial de fornecimento de serviços ecossistêmicos de um solo no município de São Paulo - SP [dissertation]. São Paulo: Universidade de São Paulo; 2019.; Costa et al., 2019Costa JR, Pedron FD, Dalmolin RS, Schenato RB. Field description and identification of diagnostic qualifiers for urban soils in Brazil. Rev Bras Cienc Solo. 2019;43:e0180121. https://doi.org/10.1590/18069657rbcs20180121
https://doi.org/10.1590/18069657rbcs2018...
; Gomes, 2019Gomes WS. Qualidade e serviços ecossistêmicos do solo em uma antiga área de uso industrial no município de Diadema/SP [dissertation]. Diadema: Universidade Federal de São Paulo; 2019.). The large input of these materials is corroborated by many horizons/ layers with thickness between 0.20 and 0.30 m, in accordance with the maximum of 0.30 m of each layer specified by the Brazilian technical procedures of landfill (ABNT-5681, 2015), by the dominance of abrupt and smooth boundaries between horizons/layers, as generally observed in landfilling, and by the occurrence of human artifacts inserted in the imported materials, such as construction residues. Thus, landfilling, which generates technogenic deposits, seems to be the main responsible for the high morphological heterogeneity of most of these soils, expressed mainly by mosaic colors and differences in texture and quantity and/or type of human artefacts in each horizon/layer (Almeida, 2019Almeida IS. Potencial de fornecimento de serviços ecossistêmicos de um solo no município de São Paulo - SP [dissertation]. São Paulo: Universidade de São Paulo; 2019.; Araújo, 2019Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019.; Costa et al., 2019Costa JR, Pedron FD, Dalmolin RS, Schenato RB. Field description and identification of diagnostic qualifiers for urban soils in Brazil. Rev Bras Cienc Solo. 2019;43:e0180121. https://doi.org/10.1590/18069657rbcs20180121
https://doi.org/10.1590/18069657rbcs2018...
; Gomes, 2019Gomes WS. Qualidade e serviços ecossistêmicos do solo em uma antiga área de uso industrial no município de Diadema/SP [dissertation]. Diadema: Universidade Federal de São Paulo; 2019.; Putrino and Ladeira, 2019Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
). Mapping of urban soils in other cities (Campina Grande do Sul-PR, Guarapari-ES, Curitiba-PR) (Santos Junior and Lima; 2012; Estevam, 2015Estevam F. Mapeamento dos Antropossolos na porção sudoeste do Bairro Boqueirão, Curitiba/PR [monography]. Curitiba: Universidade Federal do Paraná; 2015.; Teixeira, 2015Teixeira RC. Antropossolos em Guarapari (ES): A geografia dos solos antrópicos [monography]. Viçosa, MG: Universidade Federal de Viçosa; 2015.), using mainly aerial images and topographical attributes (without a complete morphological description), also shows an important influence of landfilling in the morphological configuration, which is expressed in the classification of most soils as Antropossolos Sômicos, according to Curcio et al. (2004)Curcio GR, Lima VC, Giarola NFB. Antropossolos: Proposta de ordem - 1ª aproximação). Colombo: Embrapa Florestas; 2004..

The morphological descriptions also suggest irregular and continuous waste disposal into the urban soils, such as construction materials and domestic garbage, which is mainly shown by accumulation piles of these materials or the presence of specific human artifacts (e.g., Araújo, 2019Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019.; Putrino and Ladeira, 2019Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
). The occurrence of Antropossolos Líxicos, classified according to the system of Curcio et al. (2004)Curcio GR, Lima VC, Giarola NFB. Antropossolos: Proposta de ordem - 1ª aproximação). Colombo: Embrapa Florestas; 2004. and identified by aerial images and topographical attributes (without a complete morphological description) (Mysczak, 2013Mysczak LA. Aplicação da proposta de ordem dos Antropossolos no Bairro Ganchinho, Curitiba/PR [monography]. Curitiba: Universidade Federal do Paraná; 2013.; Estevam, 2015Estevam F. Mapeamento dos Antropossolos na porção sudoeste do Bairro Boqueirão, Curitiba/PR [monography]. Curitiba: Universidade Federal do Paraná; 2015.; Mysczak and Paula, 2017), points it as a common process in cities of undeveloped and developing countries. The deficit in solid waste management is usually attributed to insufficient coverage and frequency of waste collection, lack of sanitary landfills, poverty and low awareness of part of the population (Ejaz et al., 2011Ejaz N, Ahktar N, Ali Naeem U. Environmental Impacts of improper solid waste management in developing countries: A case study of Rawalpindi city. In: Brebbia CA, editor. The sustainable world. Southampton: Wit Press; 2011. p. 379-87.). In Brazil, 40.5 % of the total of approximately 73 millions tons of solid waste are discarded in inadequate areas (ABRELPE, 2020Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais - Abrelpe. Panorama dos Resíduos Sólidos no Brasil 2019. São Paulo: Abrelpe; 2020.). Brownfields and zones temporarily not occupied by buildings are commonly used to dispose domestic and construction materials, responsible for considerable amounts of waste and human artifacts in the urban soils. Putrino and Ladeira (2019)Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
, for example, reported that dumping of solid waste from other places continued even after the implementation of the studied park (1999/2002), which was corroborated by the identification of a cereal bar packing with a later fabrication date (2012) within the soil.

Layers built by deposits, irregular inputs of solid wastes and/or remobilization of materials are majority massive and may be compacted, which can collaborate with the increasing erodibility of urban soils (Zanata and Perusi, 2010Zanata JM, Perusi MC. Solos urbanos: degradação ambiental na forma de processos erosivos. Rev Geog Pesq. 2010;4:107-22.). However, as exposed before, granular and blocky structures are common in surface horizons (Araújo, 2019Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019.; Costa et al., 2019Costa JR, Pedron FD, Dalmolin RS, Schenato RB. Field description and identification of diagnostic qualifiers for urban soils in Brazil. Rev Bras Cienc Solo. 2019;43:e0180121. https://doi.org/10.1590/18069657rbcs20180121
https://doi.org/10.1590/18069657rbcs2018...
; Gomes, 2019Gomes WS. Qualidade e serviços ecossistêmicos do solo em uma antiga área de uso industrial no município de Diadema/SP [dissertation]. Diadema: Universidade Federal de São Paulo; 2019.; Putrino and Ladeira, 2019Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
), which can potentially increase the infiltration capacity of urban soils, decreasing runoff and soil erodibility. Putrino and Ladeira (2019)Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
identified domestic garbage with the fabrication date of 1992 and 2012 in deeper horizons of urban soils is Campinas (SP), which suggests, respectively, the development of weak, small blocky structure in decades and weak, small granular structure in less than ten years in the overlying horizons. This possible high rate of structure formation may be partially related to the previous materials that form the technogenic deposits, which reflect the iron oxides-enriched soils of the source areas, as expected in tropical and subtropical areas. This high presence of iron oxides is corroborated by the red (5R to 10R) and yellow-red (2.5YR to 10YR) dominant hues registered in the soils.

Gomes (2019)Gomes WS. Qualidade e serviços ecossistêmicos do solo em uma antiga área de uso industrial no município de Diadema/SP [dissertation]. Diadema: Universidade Federal de São Paulo; 2019. and Putrino and Ladeira (2019)Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
were able to identify in situ saprolite underlying the transported materials, based mainly on the deep position in the profile, the absence of human artifacts and/or the typical reddish mosaic colors of saprolites developed from crystalline rocks. Costa et al. (2019)Costa JR, Pedron FD, Dalmolin RS, Schenato RB. Field description and identification of diagnostic qualifiers for urban soils in Brazil. Rev Bras Cienc Solo. 2019;43:e0180121. https://doi.org/10.1590/18069657rbcs20180121
https://doi.org/10.1590/18069657rbcs2018...
also identified in situ saprolite in some soils of Santa Maria (RS), but exposed on the surface by cutting, being the upward material likely transported and used to build landfills in the surroundings. After landfilling, cutting is the second dominant engineering intervention observed in the soils studied in the last study and in others focused on mapping of urban soils, based on aerial images and topographical attributes (without a complete morphological description), accomplished by Santos Junior and Lima (2012) in Campina Grande do Sul (PR), Teixeira (2015)Teixeira RC. Antropossolos em Guarapari (ES): A geografia dos solos antrópicos [monography]. Viçosa, MG: Universidade Federal de Viçosa; 2015. and Teixeira et al. (2019)Teixeira RC, Rocha PA, Faria ALL, Costa LM, Alves EEN. Quantificação química em perfis de Antropossolos por fluorescência de raios-x com vistas a identificação de descontinuidades de camadas. Quat Env Geo. 2019;10:10-7. https://doi.org/10.5380/abequa.v10i1.53087
https://doi.org/10.5380/abequa.v10i1.530...
in Guarapari (ES) and Dias (2017)Dias MA. Antropossolos: Enquadramento taxonômico e implicações ambientais [dissertation]. Curitiba: Universidade Federal do Paraná; 2017. in Paranaguá (PR). Erosion forms (sheet erosion, linear erosion) are not the focus of these specific papers, but the relationship between the exposition of saprolites at the surface, high annual precipitation means and erosion susceptibility may be a subject to be investigated in tropical and subtropical zones, since saprolites tend to have low shear strength, commonly attributed to lack of structure, low amounts of clay and/or high amounts of silt and very fine sand (Scholten, 1997Scholten T. Hydrology and erodibility of the soils and saprolite cover of the Swaziland Middleveld. Soil Technol. 1997;11:247-62. https://doi.org/10.1016/s0933-3630(97)00011-1
https://doi.org/10.1016/s0933-3630(97)00...
; Morais et al., 2004Morais F, Bacellar LAP, Sobreira FG. Análise da erodibilidade de saprolitos de gnaisse. Rev Bras Cienc Solo. 2004;28:1055-62. https://doi.org/10.1590/s0100-06832004000600014
https://doi.org/10.1590/s0100-0683200400...
; Heimsath and Whipple, 2019Heimsath AM, Whipple KX. Strength matters: resisting erosion across upland landscapes. Earth Surf Proc and Land. 2019;44:1748-54. https://doi.org/10.1002/esp.4609
https://doi.org/10.1002/esp.4609...
).

Physical, chemical and biological results

Similar to the morphological data, physical and chemical properties tend to show large vertical and/or lateral heterogeneity within a Brazilian city or even in shorter distances, such as in a neighborhood, an urban park, or in the surroundings of an erosional form. Although some authors used different methods of laboratory measurements, it is possible to draw a general comparison among the published data, identifying initial patterns.

Particle size accompanied the high texture variation obtained in the morphological description performed by some authors. Putrino and Ladeira (2019)Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
, for example, show values between 136-535 and 21-669 g kg-1 for clay and sand, respectively, in a single profile (Campinas, SP), which is characterized by the addition of human artifacts in the near-surface horizons. Laterally, in topsoils (up to 0.20 m), Wilcke et al. (1999)Wilcke W, Lilienfein J, Lima SC, Zech W. Contamination of highly weathered urban soils in Uberlândia, Brazil. J Plant Nutr Soil Sc. 1999;162:539-48. https://doi.org/10.1002/(SICI)1522-2624(199910)162:5<539::AID-JPLN539>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1522-2624(...
and Santos Júnior and Lima (2012) registered, respectively, a range of clay of 110-700 / 60-500 g kg-1 and a range of sand of 109–810 / 240-800 g kg-1. In general, the random distribution of particles is attributed to human interferences in the cities, especially the accretion of coarser construction materials (e.g., Zanata and Perusi, 2010Zanata JM, Perusi MC. Solos urbanos: degradação ambiental na forma de processos erosivos. Rev Geog Pesq. 2010;4:107-22.; Santos Júnior and Lima, 2012; Putrino and Ladeira, 2019Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
), as usually observed in urban soils (De Kimpe and Morel, 2000De Kimpe CR, Morel JL. Urban soil management: A growing concern. Soil Sci. 2000;165:31-40. https://doi.org/10.1097/00010694-200001000-00005
https://doi.org/10.1097/00010694-2000010...
; Burghardt et al., 2015Burghardt W, Morel JL, Zhang GL. Development of the soils research about urban, industrial, traffic, mining and military areas (SUITMAS). Soil Sci Plant Nutr. 2015;61:3-21. https://doi.org/10.1080/00380768.2015.1046136
https://doi.org/10.1080/00380768.2015.10...
; Greinert, 2015Greinert A. The heterogeneity of urban soils in the light of their properties. J Soil Sediment. 2015;15:1725-37. https://doi.org/10.1007/s11368-014-1054-6
https://doi.org/10.1007/s11368-014-1054-...
).

Bulk density (BD) measurements, available mainly from topsoil (up to 0.20 m) or indiscriminate by depth (mean, minimum, maximum), reach high values in most of studied soils (e.g., up to 1.89 Mg m-3 in clayey, 1.77 Mg m-3 in loamy and 1.63 Mg m-3 in sandy soils) (Zanata and Perusi, 2010Zanata JM, Perusi MC. Solos urbanos: degradação ambiental na forma de processos erosivos. Rev Geog Pesq. 2010;4:107-22.; Santos Júnior and Lima, 2012; Almeida, 2019Almeida IS. Potencial de fornecimento de serviços ecossistêmicos de um solo no município de São Paulo - SP [dissertation]. São Paulo: Universidade de São Paulo; 2019.; Costa et al., 2019Costa JR, Pedron FD, Dalmolin RS, Schenato RB. Field description and identification of diagnostic qualifiers for urban soils in Brazil. Rev Bras Cienc Solo. 2019;43:e0180121. https://doi.org/10.1590/18069657rbcs20180121
https://doi.org/10.1590/18069657rbcs2018...
), commonly arriving at critical values for vegetation growing (Reichert et al., 2009Reichert JM, Suzuki LEAS, Reinert DJ, Horn R, Hakansson I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Till Res. 2009;102:242-54. https://doi.org/10.1016/j.still.2008.07.002
https://doi.org/10.1016/j.still.2008.07....
). As widely observed in urban soils, these elevated bulk densities are usually connected with compaction caused by urban activities, such as intense walking, traffic and landfilling (e.g., Santos Júnior and Lima, 2012; Almeida, 2019Almeida IS. Potencial de fornecimento de serviços ecossistêmicos de um solo no município de São Paulo - SP [dissertation]. São Paulo: Universidade de São Paulo; 2019.). In Brazil, the high bulk densities occurring in regular landfills are associated with a compaction degree ≥95 % in relation to a Proctor compaction test, which determines the maximum dry density related to a specific moisture content (ABNT-5681, 2015; ABNT-7182, 2016). Gomes (2019)Gomes WS. Qualidade e serviços ecossistêmicos do solo em uma antiga área de uso industrial no município de Diadema/SP [dissertation]. Diadema: Universidade Federal de São Paulo; 2019. observed BD between 1.1 and 1.3 Mg m-3 in surface horizons of soils originated mainly from landfills, characterized by strong granular and moderate subangular blocky structure, and BD majority higher than 1.47 Mg m-3 in massive subsurface horizons, demonstrating the importance of the development of structure in the quality of urban soils.

Values of pH(H2O) and pH(CaCl2) range mostly from acid to neutral or alkaline in the same profile or surface samples (commonly up to 0.30 m) (e.g., Wilcke et al., 1999Wilcke W, Lilienfein J, Lima SC, Zech W. Contamination of highly weathered urban soils in Uberlândia, Brazil. J Plant Nutr Soil Sc. 1999;162:539-48. https://doi.org/10.1002/(SICI)1522-2624(199910)162:5<539::AID-JPLN539>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1522-2624(...
; Santos Júnior and Lima, 2012; Dias, 2017Dias MA. Antropossolos: Enquadramento taxonômico e implicações ambientais [dissertation]. Curitiba: Universidade Federal do Paraná; 2017.; Almeida, 2019Almeida IS. Potencial de fornecimento de serviços ecossistêmicos de um solo no município de São Paulo - SP [dissertation]. São Paulo: Universidade de São Paulo; 2019.; Araújo, 2019Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019.; Putrino and Ladeira, 2019Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
). In general, the highest values of pH (neutral or alkaline) are associated with carbonate-bearing human artifacts (cement, concrete, tiles), as expected in urban soils around the world (Craul, 1985Craul PJ. Urban soils. METRIA 5: Selecting and preparing sites for urban trees. In: 5th Conference of the Metropolitan Tree Improvement Alliance; May 1985; Pennsylvania. Pennsylvania: The Pennsylvania State University; 1985. p. 23-4.; Lehmann and Stahr, 2007Lehmann A, Stahr K. Nature and significance of anthropogenic urban soils. J Soil Sediment. 2007;7:247-60. https://doi.org/10.1065/jss2007.06.235
https://doi.org/10.1065/jss2007.06.235...
; Greinert, 2015Greinert A. The heterogeneity of urban soils in the light of their properties. J Soil Sediment. 2015;15:1725-37. https://doi.org/10.1007/s11368-014-1054-6
https://doi.org/10.1007/s11368-014-1054-...
; Yang and Zhang, 2015Yang J-L, Zhang G-L. Formation, characteristics and eco-environmental implications of urban soils – A review. Soil Sci Plant Nutr. 2015;61:30-46. https://doi.org/10.1080/00380768.2015.1035622
https://doi.org/10.1080/00380768.2015.10...
; Burghardt, 2017Burghardt W. Main characteristics of urban soils. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 19-26.), as exposed before. This is clearly demonstrated by Almeida (2019)Almeida IS. Potencial de fornecimento de serviços ecossistêmicos de um solo no município de São Paulo - SP [dissertation]. São Paulo: Universidade de São Paulo; 2019. and Putrino and Ladeira (2019)Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
, since the highest values are often registered in horizons with a high presence of manmade artifacts, as registered by soil description. Neutral and alkaline pH are frequent in soils characterized by massive addition of materials, such as landfills and zones of irregular waste disposal (in Brazilian Portuguese known as lixões). On the other side, the lowest pH values are registered where cutting is the main engineering intervention, likely reflecting the naturally acid subsurface horizons and/or saprolite exposed at the surface, commonly found in tropical and subtropical zones (Teixeira, 2015Teixeira RC. Antropossolos em Guarapari (ES): A geografia dos solos antrópicos [monography]. Viçosa, MG: Universidade Federal de Viçosa; 2015.; Dias, 2017Dias MA. Antropossolos: Enquadramento taxonômico e implicações ambientais [dissertation]. Curitiba: Universidade Federal do Paraná; 2017.; Araújo, 2019Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019.).

Cation exchange capacity (CEC) values can change, for example, from 47 to 134 mmolc kg-1 [low to high, according to Sobral et al. (2015)Sobral LF, Barretto MCV, Silva AJ, Anjos JL. Guia prático para interpretação de resultados de análises de solo. Aracaju: Embrapa Tabuleiros Costeiros; 2015.] in profiles of Campinas (SP) (Putrino and Ladeira, 2019Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
) and from 50 to 232 mmolc kg-1 [medium to high, according to Sobral et al. (2015)Sobral LF, Barretto MCV, Silva AJ, Anjos JL. Guia prático para interpretação de resultados de análises de solo. Aracaju: Embrapa Tabuleiros Costeiros; 2015.] in surface samples (up to 0.20 m) in Ourinhos (SP) (Zanata and Perusi, 2010Zanata JM, Perusi MC. Solos urbanos: degradação ambiental na forma de processos erosivos. Rev Geog Pesq. 2010;4:107-22.), likely reflecting the large texture and SOM variations. Eutrophic (V% >50 %) soils or specific horizons/layers are regularly observed and, such as the higher pH values, seem to be mainly a consequence of cations input by landfilling or waste disposal (e.g., Aniceto and Horbe, 2012Aniceto KCP, Horbe AMC. Solos urbanos formados pelo acúmulo de resíduos em Manaus, Amazonas, Brasil. Acta Amazon. 2012;42:135-48. https://doi.org/10.1590/S0044-59672012000100016
https://doi.org/10.1590/S0044-5967201200...
; Teixeira, 2015Teixeira RC. Antropossolos em Guarapari (ES): A geografia dos solos antrópicos [monography]. Viçosa, MG: Universidade Federal de Viçosa; 2015.; Almeida, 2019Almeida IS. Potencial de fornecimento de serviços ecossistêmicos de um solo no município de São Paulo - SP [dissertation]. São Paulo: Universidade de São Paulo; 2019.; Araújo, 2019Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019.; Putrino and Ladeira, 2019)Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
. Dystrophic soils (V% <50 %) occur mainly in areas that are less influenced by human interferences, such as urban forests (Patucci et al., 2017Patucci NN, Oliveira Filho LCI, Oliveira D, Baretta D, Bartz MLC, Brescovit AD. Inventário de fauna edáfica como instrumento na avaliação de qualidade e biodiversidade de solos urbanos: Estudo de caso do parque CienTec. Bol Paul Geo. 2017;96:66-90.; Vale et al., 2017)Vale VS, Araújo GM, Oliveira AS, Prado Júnior JA, Santos LCS. Estrutura da comunidade arbórea e características edáficas de um fragmento urbano. Cienc Florest. 2017;27:1415-28. https://doi.org/10.5902/1980509830322
https://doi.org/10.5902/1980509830322...
, or in subsurface horizons or saprolite exposed at the surface by cutting, accompanying the lowest pH values (e.g., Teixeira, 2015Teixeira RC. Antropossolos em Guarapari (ES): A geografia dos solos antrópicos [monography]. Viçosa, MG: Universidade Federal de Viçosa; 2015.; Dias, 2017)Dias MA. Antropossolos: Enquadramento taxonômico e implicações ambientais [dissertation]. Curitiba: Universidade Federal do Paraná; 2017.. The main exchangeable cations in most soils are Ca2, H+ and Al3. (e.g., Moura et al., 2006Moura MCS, Lopes ANC, Moita GC, Moita Neto JM. Estudo multivariado de solos urbanos da cidade de Teresina. Quim Nova. 2006;29:429-35. https://doi.org/10.1590/S0100-40422006000300005
https://doi.org/10.1590/S0100-4042200600...
; Araújo, 2019Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019.; Putrino and Ladeira, 2019)Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
. Contents of Ca2 are likely enhanced by introducing carbonate-bearing human artifacts, increasing the pH values. Even in eutrophic soils, when Ca2 assumes the highest values, H+Al tend to be in the second most abundant position in the exchange complex, which may indicate an inherited acid condition, previous to urbanization, typical of soils in tropical and subtropical climates.

Soil organic carbon (SOC) is commonly lower than 2 % (e.g., Barbosa and Correa, 2015Barbosa AA, Corrêa SM. Caracterização química de solo contaminado por resíduos sólidos urbanos na Estrada Arroio Pavuna em Jacarepaguá no município de Rio de Janeiro. Engevista. 2015;17:266-72. https://doi.org/10.22409/engevista.v17i2.609
https://doi.org/10.22409/engevista.v17i2...
; Guerrini et al., 2017Guerrini IA, Croce CGG, Bueno OC, Jacob CPRP, Nogueira TAR, Fernandes DM, Ganga A, Capra GF. Composted sewage sludge and steel mill slag as potential amendments for urban soils involved in afforestation programs. Urban For Urban Gree. 2017;22:93-104 https://doi.org/10.1016/j.ufug.2017.01.015
https://doi.org/10.1016/j.ufug.2017.01.0...
; Costa, 2018Costa JR. Procedimentos para análise de campo e identificação de qualificadores diagnósticos para solos urbanos [dissertation]. Santa Maria: Universidade Federal de Santa Maria; 2018.), which may be a consequence of the faster C turnover in tropical and subtropical zones (Six et al., 2002Six J, Feller C, Denef K, Stephen M, Ogle S, Moraes JM, Albrecht A. Soil organic matter, biota and aggregation in temperate and tropical soils - Effects of no-tillage. Agronomie. 2002;22:755-75. https://doi.org/10.1051/agro:2002043
https://doi.org/10.1051/agro:2002043...
), low vegetation cover and/or low microbial activity in urban areas (Craul, 1994Craul PJ. The nature of urban soils: Their problems and future. Arboric J. 1994;18:275-87. https://doi.org/10.1080/03071375.1994.9747027
https://doi.org/10.1080/03071375.1994.97...
; Scharenbroch et al., 2005Scharenbroch BC, Lloyd JE, Johnson-Maynard JL. Distinguishing urban soils with physical, chemical, and biological properties. Pedobiologia. 2005;49:283-96. https://doi.org/10.1016/j.pedobi.2004.12.002
https://doi.org/10.1016/j.pedobi.2004.12...
; Lehman and Stahr, 2007). Another reason can be the common addition of saprolites and construction wastes in landfilling, depleted materials in SOC, or the exposition of saprolites in the surface by cutting, as verified by Araújo (2019)Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019., expressing the removal of the SOC-enriched topsoil. As pointed out by Lehman and Stahr (2007) and Pouyat et al. (2010)Pouyat RV, Szlavecz K, Yesilonis ID, Groffman PM, Schwarz K. Chemical, physical and biological characteristics of urban soils. In: Aitkenhead-Peterson J, Volder A, editors. Urban ecosystem ecology. Madison: American Society of Agronomy/Crop Science Society of America/Soil Science Society of America; 2010. p. 119-52. https://doi.org/10.2134/urbanecosystem ecology2010.frontmatterx
https://doi.org/10.2134/urbanecosystem e...
, higher values of SOC are registered in Brazilian urban soils of green areas, such as urban forests (SOC: 2 to 4 %) (Patucci et al., 2017Patucci NN, Oliveira Filho LCI, Oliveira D, Baretta D, Bartz MLC, Brescovit AD. Inventário de fauna edáfica como instrumento na avaliação de qualidade e biodiversidade de solos urbanos: Estudo de caso do parque CienTec. Bol Paul Geo. 2017;96:66-90.; Vale et al., 2017Vale VS, Araújo GM, Oliveira AS, Prado Júnior JA, Santos LCS. Estrutura da comunidade arbórea e características edáficas de um fragmento urbano. Cienc Florest. 2017;27:1415-28. https://doi.org/10.5902/1980509830322
https://doi.org/10.5902/1980509830322...
), or in soils marked by the addition of organic residues (up to 9 %) (e.g., Aniceto and Horbe, 2012Aniceto KCP, Horbe AMC. Solos urbanos formados pelo acúmulo de resíduos em Manaus, Amazonas, Brasil. Acta Amazon. 2012;42:135-48. https://doi.org/10.1590/S0044-59672012000100016
https://doi.org/10.1590/S0044-5967201200...
; Dias, 2017Dias MA. Antropossolos: Enquadramento taxonômico e implicações ambientais [dissertation]. Curitiba: Universidade Federal do Paraná; 2017.; Milhome et al., 2018Milhome MA, Holanda JWB, Araújo Neto JR, Nascimento RF. Diagnosis of contamination of soil by toxic metals from urban solid waste and influence of organic matter. Rev Virt Quim. 2018;10:59-72. https://doi.org/10.21577/1984-6835.20180007
https://doi.org/10.21577/1984-6835.20180...
; Araújo, 2019Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019.). It is common to observe progressive decreasing of SOC contents from the surface to deeper horizons/layers (Rocha, 1995Rocha GC. Carta de solos da bacia do ribeirão Cambé na área urbano-rural de Londrina, PR. Semina Cienc Exatas/Tecn. 1995;16:536-49. https://doi.org/10.5433/1679-0375.1995v16n4p536
https://doi.org/10.5433/1679-0375.1995v1...
; Araújo, 2019Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019.; Putrino and Ladeira, 2019Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
), but the erratic distribution of SOC down in the profile is also registered, mainly in zones of earthy materials and solid waste deposition (Aniceto and Horbe, 2012Aniceto KCP, Horbe AMC. Solos urbanos formados pelo acúmulo de resíduos em Manaus, Amazonas, Brasil. Acta Amazon. 2012;42:135-48. https://doi.org/10.1590/S0044-59672012000100016
https://doi.org/10.1590/S0044-5967201200...
; Araújo, 2019Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019.).

Phosphorus results were obtained by different methods: ion-exchange resin, according to Camargo et al. (2009)Camargo AO, Moniz AC, Jorge JA, Valadares JMAS. Métodos de análise química, mineralógica e física de solos do Instituto Agronômico de Campinas. Campinas: IAC; 2009. (Boletim técnico, 106). (Zanata and Perusi, 2010Zanata JM, Perusi MC. Solos urbanos: degradação ambiental na forma de processos erosivos. Rev Geog Pesq. 2010;4:107-22.; Putrino and Ladeira, 2019Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
); extraction with H2SO4 1:1, according to Claessen (1997)Claessen MEC. Manual de métodos de análise de solo. 2. ed. Rio de Janeiro: Embrapa Solos; 1997. and Donagemma et al. (2011)Donagemma GK, Campos DVB, Calderano SB, Teixeira WG, Viana JHM. Manual de métodos de análise do solo. 2. ed. rev. Rio de Janeiro: Embrapa Solos; 2011. (Teixeira, 2015Teixeira RC. Antropossolos em Guarapari (ES): A geografia dos solos antrópicos [monography]. Viçosa, MG: Universidade Federal de Viçosa; 2015.; Patucci et al., 2017Patucci NN, Oliveira Filho LCI, Oliveira D, Baretta D, Bartz MLC, Brescovit AD. Inventário de fauna edáfica como instrumento na avaliação de qualidade e biodiversidade de solos urbanos: Estudo de caso do parque CienTec. Bol Paul Geo. 2017;96:66-90.; Araújo, 2019Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019.); extraction with Mehlich-1, according to Silva (2009)Silva FC. Manual de análises químicas de solos, plantas e fertilizantes. 2. ed rev ampl. Brasília, DF: Embrapa Informação Tecnológica; 2009. (Lima et al, 2018). These values tend to be high [based on the parameters of Sobral et al. (2015)Sobral LF, Barretto MCV, Silva AJ, Anjos JL. Guia prático para interpretação de resultados de análises de solo. Aracaju: Embrapa Tabuleiros Costeiros; 2015.] in soils characterized by massive waste disposal , reaching extreme values such as 1096 mg dm-3 (Dias, 2017Dias MA. Antropossolos: Enquadramento taxonômico e implicações ambientais [dissertation]. Curitiba: Universidade Federal do Paraná; 2017.) or 2765 mg dm-3 (Araújo, 2019Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019.). Urban soils that are mainly characterized by the addition of earthy and other anthropic materials may have low to high P contents, following the parameters of Sobral et al. (2015)Sobral LF, Barretto MCV, Silva AJ, Anjos JL. Guia prático para interpretação de resultados de análises de solo. Aracaju: Embrapa Tabuleiros Costeiros; 2015. (Zanata and Perusi, 2010Zanata JM, Perusi MC. Solos urbanos: degradação ambiental na forma de processos erosivos. Rev Geog Pesq. 2010;4:107-22.; Putrino and Ladeira, 2019Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
), whereas soils of urban parks or forests (Patucci et al., 2017Patucci NN, Oliveira Filho LCI, Oliveira D, Baretta D, Bartz MLC, Brescovit AD. Inventário de fauna edáfica como instrumento na avaliação de qualidade e biodiversidade de solos urbanos: Estudo de caso do parque CienTec. Bol Paul Geo. 2017;96:66-90.; Vale et al., 2017Vale VS, Araújo GM, Oliveira AS, Prado Júnior JA, Santos LCS. Estrutura da comunidade arbórea e características edáficas de um fragmento urbano. Cienc Florest. 2017;27:1415-28. https://doi.org/10.5902/1980509830322
https://doi.org/10.5902/1980509830322...
; Lima et al., 2018Lima MS, Freire FJ, Marangon LC, Almeida BG, Ribeiro EP, Santos RL. Solos florestais em fragmento de floresta urbana na mata de Dois Irmãos, Recife, Pernambuco, Brasil. Cienc Florest. 2018;28:542-53. https://doi.org/10.5902/1980509832037
https://doi.org/10.5902/1980509832037...
) or significantly affected by cutting generally present low P levels (Teixeira, 2015Teixeira RC. Antropossolos em Guarapari (ES): A geografia dos solos antrópicos [monography]. Viçosa, MG: Universidade Federal de Viçosa; 2015.; Dias, 2017Dias MA. Antropossolos: Enquadramento taxonômico e implicações ambientais [dissertation]. Curitiba: Universidade Federal do Paraná; 2017.). The high presence of P in the urban soils is related to the common disposal of P-bearing materials, such as food additives, pet food, detergents and human/animal excreta (Friedman, 2004Friedman M. Detergents and the environment: Historical review. In: Zoller U, editor. Handbook of detergents - part B: Environmental impact. New York: Marcel Dekker; 2004. p. 11-34.). Besides the high presence of inappropriate discarded solid waste, undeveloped and developing countries are also characterized by insufficient sewage collection and treatment coverage, leading to a potential accumulation and contamination of P and other substances in soils and waters. In Brazil, a mean of 61.9 % of the urban population has access to sewage collection, with a great contrast between the Southeastern (83.7 %) and Northern (15.8 %) regions, whereas a mean of 78.5 % of the collected sewage receives suitable treatment (Brasil, 2020Brasil. Ministério do Desenvolvimento Regional - MDR. Secretaria Nacional de Saneamento - SNS. Sistema nacional de informações sobre saneamento: 25º Diagnóstico dos serviços de água e esgotos - 2019. Brasília, DF: SNS/MDR; 2020. Available from: http://www.snis.gov.br/downloads/diagnosticos/ae/2019/Diagn%C3%B3stico_SNIS_AE_2019_Republicacao_31032021.pdf.
http://www.snis.gov.br/downloads/diagnos...
).

As postulated before, data focused on soil mineralogy are less frequent in Brazilian cities. The general methods applied in the mineralogical analyses did not reveal the typical heterogeneity observed in other parameters. The assemblages are dominated by minerals that are commonly formed in subtropical and tropical soils, such as kaolinite and Fe/Al oxides (hematite, goethite and gibbsite), especially in the clay and silt fractions (Gonçalves, 2011Gonçalves JAC. A contaminação natural por arsênio em solos e águas subterrâneas na área urbana de Ouro Preto (MG) [dissertation]. Ouro Preto: Universidade Federal de Ouro Preto; 2011.; Aniceto and Horbe, 2012Aniceto KCP, Horbe AMC. Solos urbanos formados pelo acúmulo de resíduos em Manaus, Amazonas, Brasil. Acta Amazon. 2012;42:135-48. https://doi.org/10.1590/S0044-59672012000100016
https://doi.org/10.1590/S0044-5967201200...
; Almeida, 2019Almeida IS. Potencial de fornecimento de serviços ecossistêmicos de um solo no município de São Paulo - SP [dissertation]. São Paulo: Universidade de São Paulo; 2019.). However, a mix in the topsoil with 2:1 phyllosilicates, which is more frequently found in the weathering front in the tropics, possibly indicates an infilling with saprolite of the surroundings (Gonçalves, 2011Gonçalves JAC. A contaminação natural por arsênio em solos e águas subterrâneas na área urbana de Ouro Preto (MG) [dissertation]. Ouro Preto: Universidade Federal de Ouro Preto; 2011.; Almeida, 2019Almeida IS. Potencial de fornecimento de serviços ecossistêmicos de um solo no município de São Paulo - SP [dissertation]. São Paulo: Universidade de São Paulo; 2019.). Amorphous and poorly crystalline materials, especially composed by Fe, are also identified in the assemblages (Wilcke et al., 1999Wilcke W, Lilienfein J, Lima SC, Zech W. Contamination of highly weathered urban soils in Uberlândia, Brazil. J Plant Nutr Soil Sc. 1999;162:539-48. https://doi.org/10.1002/(SICI)1522-2624(199910)162:5<539::AID-JPLN539>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1522-2624(...
; Aniceto and Horbe, 2012Aniceto KCP, Horbe AMC. Solos urbanos formados pelo acúmulo de resíduos em Manaus, Amazonas, Brasil. Acta Amazon. 2012;42:135-48. https://doi.org/10.1590/S0044-59672012000100016
https://doi.org/10.1590/S0044-5967201200...
). The soils studied by Aniceto and Horbe (2012)Aniceto KCP, Horbe AMC. Solos urbanos formados pelo acúmulo de resíduos em Manaus, Amazonas, Brasil. Acta Amazon. 2012;42:135-48. https://doi.org/10.1590/S0044-59672012000100016
https://doi.org/10.1590/S0044-5967201200...
showed both positive and negative delta pH, indicating that poorly or highly crystalline materials of the clay fraction may adsorb cations and anions. Additionally, these authors identified the presence of calcite, attributed to the introduction of construction materials in the soils.

Finally, a few studies focus on soil organisms and/or soil-plant relationships in Brazilian cities. Patucci et al. (2017)Patucci NN, Oliveira Filho LCI, Oliveira D, Baretta D, Bartz MLC, Brescovit AD. Inventário de fauna edáfica como instrumento na avaliação de qualidade e biodiversidade de solos urbanos: Estudo de caso do parque CienTec. Bol Paul Geo. 2017;96:66-90. investigated the soil biota biodiversity in an urban park of São Paulo city (SP), identifying oligochaetes and families of the orders Araneae, Chilopoda and Coleoptera. The increase of SOC is related to a higher density of individuals (ind m-2), and the large frequency of P. corenthurus (Oligochaeta Glossoscolecidae) indicated anthropic interventions, since it is a species typically found in human-disturbed environments (e.g., deforested areas, monocultures). Vale et al. (2017)Vale VS, Araújo GM, Oliveira AS, Prado Júnior JA, Santos LCS. Estrutura da comunidade arbórea e características edáficas de um fragmento urbano. Cienc Florest. 2017;27:1415-28. https://doi.org/10.5902/1980509830322
https://doi.org/10.5902/1980509830322...
performed a phytosociological survey in an urban forest in Araguari (MG), identifying a community in an intermediate stage of succession formed by a high number of families (total 39, mainly Fabaceae-8, Myrtaceae-7, Lauraceae- 7) and species (94), but also marked by human impacts, as showed by the important presence of edge species in the whole fragment. Soil pathogenic agents, such as fungi (dermathophytes) and Leptospira spp are studied in urban and rural areas of Paraíba State (PB) by Pontes et al. (2013)Pontes ZBVS, Oliveira A, Guerra FQS, Pontes LRA, Santos JP. Distribution of dermatophytes from soils of urban and rural areas of cities of Paraiba State, Brazil. Rev Inst Med Trop SP. 2013;55:377-83. https://doi.org/10.1590/s0036-46652013000600002
https://doi.org/10.1590/s0036-4665201300...
and in a slum in Salvador (Bahia State-BA) by Scheineder et al. (2018), respectively. The urban areas of PB are more suitable for the dermatophytes than rural areas, especially brownfields, schools and slums, which tend to present soils enriched in human wastes and animal keratin. In Salvador (BA), an important capital of the Northeastern region, Leptospira spp was found in one-third of the soil samples, indicating soils as an additional reservoir in its life cycle, together with sewage or freshwater. These two studies reveal the potential risk of the urban population of developing countries to soil pathogens, particularly those living in slums.

Soil contamination by toxic metals and organic substances

Publications centered on contamination of urban soils are mostly from samples collected in pre-determined depths at the topsoil, without the definition of horizons/layers by morphological descriptions. The most common metals with contents above the reference limits established by the Brazilian Environmental Council (CONAMA 420/2009) are Zn, Pb, Cu and Cr, but Ba and Ni are also registered by some authors (Moura et al., 2006Moura MCS, Lopes ANC, Moita GC, Moita Neto JM. Estudo multivariado de solos urbanos da cidade de Teresina. Quim Nova. 2006;29:429-35. https://doi.org/10.1590/S0100-40422006000300005
https://doi.org/10.1590/S0100-4042200600...
; Aniceto and Horbe, 2012Aniceto KCP, Horbe AMC. Solos urbanos formados pelo acúmulo de resíduos em Manaus, Amazonas, Brasil. Acta Amazon. 2012;42:135-48. https://doi.org/10.1590/S0044-59672012000100016
https://doi.org/10.1590/S0044-5967201200...
; Barbosa and Correa, 2015Barbosa AA, Corrêa SM. Caracterização química de solo contaminado por resíduos sólidos urbanos na Estrada Arroio Pavuna em Jacarepaguá no município de Rio de Janeiro. Engevista. 2015;17:266-72. https://doi.org/10.22409/engevista.v17i2.609
https://doi.org/10.22409/engevista.v17i2...
; França et al., 2017França FC, Albuquerque AMA, Almeida AC, Silveira PB, Filho CA, Hazin CA, Honorato EV. Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil. Food Chem. 2017;215:171-6. https://doi.org/10.1016/j.foodchem.2016.07.168
https://doi.org/10.1016/j.foodchem.2016....
; Dala Paula et al., 2018; Milhome et al., 2018Milhome MA, Holanda JWB, Araújo Neto JR, Nascimento RF. Diagnosis of contamination of soil by toxic metals from urban solid waste and influence of organic matter. Rev Virt Quim. 2018;10:59-72. https://doi.org/10.21577/1984-6835.20180007
https://doi.org/10.21577/1984-6835.20180...
; Putrino and Ladeira, 2019Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
).

In most cases, the metal contents are above the Reference Values of Quality, which is the quality level for healthy soils. However, in some of the analyzed soils, the quantities of these metals are above the Prevention Values, which already requires monitoring, identification of the pollution sources and control. Only Pb content in irregular waste disposal area (lixão) in Iguatu (CE) is above the Intervention Value (Milhome et al., 2018Milhome MA, Holanda JWB, Araújo Neto JR, Nascimento RF. Diagnosis of contamination of soil by toxic metals from urban solid waste and influence of organic matter. Rev Virt Quim. 2018;10:59-72. https://doi.org/10.21577/1984-6835.20180007
https://doi.org/10.21577/1984-6835.20180...
), requiring a detailed investigation and the adoption of emergency actions to minimize the exposition of the population to the contaminated area (CONAMA 420/2009).

In general, the accumulation of these contaminants in the studied soils is attributed to anthropic activities. Human artifacts can be a major source of toxic contaminants, since ceramic fragments may contain Pb, Ni, Zn and Ba; electronic residuals can provide Pb, Zn, Cu and Cd; plastic residuals can release Pb and Ni; glass fragments may have Ba; and rubber can release Pb and Zn (Barbosa and Correa, 2015Barbosa AA, Corrêa SM. Caracterização química de solo contaminado por resíduos sólidos urbanos na Estrada Arroio Pavuna em Jacarepaguá no município de Rio de Janeiro. Engevista. 2015;17:266-72. https://doi.org/10.22409/engevista.v17i2.609
https://doi.org/10.22409/engevista.v17i2...
; Milhome et al., 2018Milhome MA, Holanda JWB, Araújo Neto JR, Nascimento RF. Diagnosis of contamination of soil by toxic metals from urban solid waste and influence of organic matter. Rev Virt Quim. 2018;10:59-72. https://doi.org/10.21577/1984-6835.20180007
https://doi.org/10.21577/1984-6835.20180...
; Putrino and Ladeira, 2019Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
). In Campinas (SP), the association between a detailed morphological description of entire profiles with metals quantification allowed the association between high Ba accumulation and high presence of artifacts in horizons of different depths (Putrino and Ladeira, 2019Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
https://doi.org/10.33958/revig.v40i1.627...
). Part of Pb contents in the Brazilian soils is also derived from atmospheric inputs provided by gasoline combustion, but the compound tetraethyl lead, presented in the gasoline, was replaced by alcohol in the whole country in 1999 (Decreto-lei 186/99, 31/05/1999). However, higher amounts of Pb in the topsoil of old avenues of Teresina (Piauí State-PI), for example, are attributed to a heritage of atmospheric inputs by Moura et al. (2006)Moura MCS, Lopes ANC, Moita GC, Moita Neto JM. Estudo multivariado de solos urbanos da cidade de Teresina. Quim Nova. 2006;29:429-35. https://doi.org/10.1590/S0100-40422006000300005
https://doi.org/10.1590/S0100-4042200600...
.

Wilcke et al. (1999)Wilcke W, Lilienfein J, Lima SC, Zech W. Contamination of highly weathered urban soils in Uberlândia, Brazil. J Plant Nutr Soil Sc. 1999;162:539-48. https://doi.org/10.1002/(SICI)1522-2624(199910)162:5<539::AID-JPLN539>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1522-2624(...
used sequential extraction in topsoils of Uberlândia (MG) and Aniceto and Horbe (2012)Aniceto KCP, Horbe AMC. Solos urbanos formados pelo acúmulo de resíduos em Manaus, Amazonas, Brasil. Acta Amazon. 2012;42:135-48. https://doi.org/10.1590/S0044-59672012000100016
https://doi.org/10.1590/S0044-5967201200...
in different depths of soils developed from lixões in Manaus, capital of Amazonas State (AM). These authors observed high accumulations of toxic metals in amorphous oxides and/or crystalline Fe-oxides. The amorphous materials are mainly associated with Cu, Cr and Ni in Uberlândia (MG) and Cu, Zn and Pb in Manaus (AM), whereas the crystalline phases are connected with Cu, Cr, Zn and Ni in Uberlândia (MG) and Cu, Zn and Pb in Manaus (AM). Aniceto and Horbe (2012)Aniceto KCP, Horbe AMC. Solos urbanos formados pelo acúmulo de resíduos em Manaus, Amazonas, Brasil. Acta Amazon. 2012;42:135-48. https://doi.org/10.1590/S0044-59672012000100016
https://doi.org/10.1590/S0044-5967201200...
attributed the presence of amorphous phases especially to Fe-bearing residuals (wires, nails) in the soils. However, urban soils tend to be Fe-enriched in tropical and subtropical zones also because of the abundance of this element in natural soils and saprolite. Thus, adding earthy materials or cutting, which exposes common Fe-rich subsurface materials, can improve the amounts of Fe phases in the cities. Wilcke et al. (1999)Wilcke W, Lilienfein J, Lima SC, Zech W. Contamination of highly weathered urban soils in Uberlândia, Brazil. J Plant Nutr Soil Sc. 1999;162:539-48. https://doi.org/10.1002/(SICI)1522-2624(199910)162:5<539::AID-JPLN539>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1522-2624(...
also reported an important correlation between the metals with silicates (Cu, Cr, Ni, Pb, Zn) and, to a lesser extension, to SOM (Cu, Pb, Zn). In addition, a significant correlation of Zn with SOM contents is described by Milhome et al. (2018)Milhome MA, Holanda JWB, Araújo Neto JR, Nascimento RF. Diagnosis of contamination of soil by toxic metals from urban solid waste and influence of organic matter. Rev Virt Quim. 2018;10:59-72. https://doi.org/10.21577/1984-6835.20180007
https://doi.org/10.21577/1984-6835.20180...
in soils originated from lixões in Iguatu (Ceará State - CE), but the authors do not consider the association of metals with other fractions, such as amorphous or crystalline Fe-materials or silicates.

As commented before, contamination by organic substances in urban soils is registered only in few publications. Oliveira and Brilhante (1996)Oliveira RM, Brilhante OM. Hexachlorocyclohexane contamination in an urban area of Rio de Janeiro, Brazil. Environ Int. 1996;22:289-94. https://doi.org/10.1016/0160-4120(96)00014-1
https://doi.org/10.1016/0160-4120(96)000...
detected high levels of the pesticide hexachlorocyclohexane (HCH) in a terrain occupied by an orphanage in Duque de Caxias (RJ), but previously used by a HCH factory. Higher concentrations are commonly related to higher presence of SOM in the surface horizons, but the HCH concentrations do not directly accompany the progressive decrease in SOM down in the profile. Polycyclic aromatic hydrocarbon (PAH) in Uberlândia (MG) (Wilcke et al., 1999Wilcke W, Lilienfein J, Lima SC, Zech W. Contamination of highly weathered urban soils in Uberlândia, Brazil. J Plant Nutr Soil Sc. 1999;162:539-48. https://doi.org/10.1002/(SICI)1522-2624(199910)162:5<539::AID-JPLN539>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1522-2624(...
) and polychlorinated biphenyls (PCBs) in Uberlândia (MG) and Belo Horizonte (capital of MG State) (Wilcke et al., 1999Wilcke W, Lilienfein J, Lima SC, Zech W. Contamination of highly weathered urban soils in Uberlândia, Brazil. J Plant Nutr Soil Sc. 1999;162:539-48. https://doi.org/10.1002/(SICI)1522-2624(199910)162:5<539::AID-JPLN539>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1522-2624(...
; Pussente et al., 2017Pussente IC, ten Dam G, van Leeuwen S, Augusti R. PCDD/Fs and PCBs in soils: A study of case in the city of Belo Horizonte-MG. J Brazilian Chem Society. 2017;28:858-67. https://doi.org/10.21577/0103-5053.20160238
https://doi.org/10.21577/0103-5053.20160...
) show lower contents, especially when compared with urban soils located in industrial nations under temperate climate. Wilcke et al. (1999)Wilcke W, Lilienfein J, Lima SC, Zech W. Contamination of highly weathered urban soils in Uberlândia, Brazil. J Plant Nutr Soil Sc. 1999;162:539-48. https://doi.org/10.1002/(SICI)1522-2624(199910)162:5<539::AID-JPLN539>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1522-2624(...
attribute the results to stronger leaching, higher volatilization and faster degradation of these substances in tropical than temperate zones. Additionally, these authors show that PAH tend to have a similar profile in tropical areas over the world, which seems to be related not only with fuel combustion, but also with vegetation fires and biological production.

Main gaps and future challenges

The publications about Brazilian urban soils embrace a wide variety of themes, focusing on characterization, mapping, classification, and/or contamination. Soil erosion, mineralogy and the relationship between soils and urban fauna, flora, and diseases are addressed in minor amounts. Important methodological propositions and morphological, physical and chemical results were published, contributing to a better comprehension of these soils. However, facing that the country contains 5570 cities (IBGE, 2021Instituto Brasileiro de Geografia e Estatística - IBGE. Cidades. Rio de Janeiro: IBGE; 2021 Available from: https://cidades.ibge.gov.br/
https://cidades.ibge.gov.br/...
) with different sizes, physical settlements (climate, landform, geology, original soils), social and economic structures and land-use history, a much greater number of studies still has to be performed to obtain representative data. Also, it is important to highlight the low accessibility of most of the published data due to a high “scientific endemism”, that is, their restriction mainly to Brazilian scientists because many publications are in Portuguese.

Although the set of publications provides a considerable number of laboratory analyses, a greater variety of analytical procedures in each study is necessary to improve the interpretations about the soils processes, including the most common physical and chemical methods, but also mineralogical and micromorphological analyses. Furthermore, the concentration in the first centimeters of the soils can restrict a more complete knowledge about the soil system, especially if the study’s objective is related to the comprehension of soils genesis and classification, which aid to assess their functioning. Additionally, the sampling procedure based on pre-defined depths, without a proper distinction of horizons/layers by field description, has to be improved in Brazilian studies. Because the morphology is not described in these cases, a mix of different horizons/layers can be the source of the physical, chemical, mineralogical and biological analyses, avoiding a correct interpretation of the results and complicating the establishment of a more realistic relationship between the soil characteristics.

Another important perception is that different areas of knowledge (e.g., Geography, Geology, Agronomy, Engineering) tend to examine the urban soils with specific approaches, without a systematic understanding of concepts, terminologies and methodologies. The meaning of terms, such as technogenic deposits, soils, urban soils, layers and horizons, is commonly unclear in the publications, which can make difficult the comparison between data and the comprehension of the general characteristics and functioning of the soils. Although mapping of urban soils using methodologies based on aerial images and topographical attributes (without a complete morphological description) gives some useful results, this type of approach should be re-evaluated as it could provide imprecise information about the study area, whereas integration with a complete and systematic soil survey would lead to more comprehensive and precise conclusions.

It is also important to highlight the lack of proper, detailed inclusion of the Anthropogenic soils in the Brazilian Soil Classification System (Santos et al., 2018Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Araújo Filho JC, Oliveira JB, Cunha TJF. Sistema brasileiro de classificação de solos. 5. ed. rev. ampl. Brasília, DF: Embrapa; 2018.). The national proposal of Curcio et al. (2004)Curcio GR, Lima VC, Giarola NFB. Antropossolos: Proposta de ordem - 1ª aproximação). Colombo: Embrapa Florestas; 2004. is among the most used by the Brazilian publications, although the identification of the type and/or the predominant engineering intervention that defines the orders may not be easy without more specific laboratory analyses. However, interesting relationships between the orders defined by Curcio et al. (2004)Curcio GR, Lima VC, Giarola NFB. Antropossolos: Proposta de ordem - 1ª aproximação). Colombo: Embrapa Florestas; 2004. and chemical characteristics are found in different publications, such as higher pH, base saturation, SOC and P contents in Antropossolos Sômicos and Líxicos, pointing to a suitability of this system, or at least part of it, to the tropical and subtropical conditions. It is important to underline that, in some publications, the classification following the Curcio et al. (2004)Curcio GR, Lima VC, Giarola NFB. Antropossolos: Proposta de ordem - 1ª aproximação). Colombo: Embrapa Florestas; 2004. system and the mapping of urban soils are based on aerial images, which can lead to major mistakes in the spatial distribution of the soils. Anyway, it is important to analyze the available national and international proposals for the classification of Anthropogenic soils, to establish a broad and systematic discussion about this subject and to incorporate a robust protocol into the official Brazilian soil classification system.

CONCLUSIONS

The growth of the number of publications about Brazilian urban soils since the beginning of the 21th century is evident, with important contributions to the knowledge of soils located under tropical and subtropical climates and in developing social-economic conditions. The publications are mostly in Portuguese and are majority performed in cities with more than 500,000 inhabitants, many of them located in the Southern and Southeastern regions of the country. Urban soils formed from landfills and irregular zones of waste disposals are the most common, showing the deficiency of waste management in developing countries. Properties such as pH, base saturation, SOC and P contents tend to be higher in soils marked by the addition of earthy materials and solid waste than in soils developed from cutting, which commonly exposes the deep acidic saprolite of the tropical and subtropical zones.

Although scientific production is increasing, more studies are needed to obtain more representative patterns. It is also important to advance in the discussion and systematization of concepts, terminologies and methodologies in the different areas that embrace this subject, providing a complete interpretation about urban soils. In addition, complete field descriptions and a greater variety of analytical procedures must be considered in future studies to obtain more consistent data. Furthermore, it is urgent to analyze the available national and international proposals of classification of Anthropogenic soils and incorporate a robust system in the official classification of the country. Finally, it is relevant to improve the accessibility of the Brazilian scientific production, with more international publications, allowing the comparison between the national data and the results obtained worldwide.

Thus, broader and deeper research about the urban soils must be established in the country, coupled with efforts to incorporate soils in the urban planning to contemplate potential ecosystem services and improve the life quality of the cities’ population. Transdisciplinary management instruments, including all the environmental matrices (air, water and soil), must be developed by scientists, politics, urban planners and population to arrive in more sustainable cities, which seems a major challenge worldwide, but especially in undeveloped and developing countries, such as in Brazil.

ACKNOWLEDGEMENTS

The authors thank to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) by the fellowship to I.S.A.

REFERENCES

  • Almeida IS. Potencial de fornecimento de serviços ecossistêmicos de um solo no município de São Paulo - SP [dissertation]. São Paulo: Universidade de São Paulo; 2019.
  • Ameen RFM, Mourshed M. Urban environmental challenges in developing countries - A stakeholder perspective. Habitat Int. 2017;64:1-10. https://doi.org/10.1016/j.habitatint.2017.04.002
    » https://doi.org/10.1016/j.habitatint.2017.04.002
  • Amundson R, Jenny H. The place of humans in the state factor theory of ecosystems and their soils. Soil Sci. 1991;151:99-109. https://doi.org/10.1097/00010694-199101000-00012
    » https://doi.org/10.1097/00010694-199101000-00012
  • Aniceto KCP, Horbe AMC. Solos urbanos formados pelo acúmulo de resíduos em Manaus, Amazonas, Brasil. Acta Amazon. 2012;42:135-48. https://doi.org/10.1590/S0044-59672012000100016
    » https://doi.org/10.1590/S0044-59672012000100016
  • Antonio JN, Metternicht GI, Tommaselli JTG. Classificação de Antropossolos em áreas de antigos depósitos de resíduos sólidos em Presidente Prudente - SP. In: 17th Simpósio Brasileiro de Geografia Física Aplicada; junho 2017; Campinas. Campinas: Instituto de Geociências; 2017.
  • Araújo R. Caracterização e classificação de solo urbanos na cidade de Cáceres - Mato Grosso [dissertation]. Cáceres: Universidade do Estado de Mato Grosso; 2019.
  • Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais - Abrelpe. Panorama dos Resíduos Sólidos no Brasil 2019. São Paulo: Abrelpe; 2020.
  • Associação Brasileira de Normas Técnicas - ABNT. Norma Brasileira - NBR ISO 5681: Controle tecnológico da execução de aterros em obras de edificações. Rio de Janeiro: ABNT; 2015.
  • Associação Brasileira de Normas Técnicas - ABNT. Norma Brasileira - NBR ISO 7182: Solo - Ensaio de compactação. Rio de Janeiro: ABNT; 2016.
  • Barbosa AA, Corrêa SM. Caracterização química de solo contaminado por resíduos sólidos urbanos na Estrada Arroio Pavuna em Jacarepaguá no município de Rio de Janeiro. Engevista. 2015;17:266-72. https://doi.org/10.22409/engevista.v17i2.609
    » https://doi.org/10.22409/engevista.v17i2.609
  • Bertê AMA. Depósitos tecnogênicos e planejamento urbano: O aterro sanitário da zona norte de Porto Alegre - RS/Brasil [dissertation]. Porto Alegre: Instituto de Geociências da Universidade Federal do Rio Grande do Sul; 2001.
  • Bidwell DW, Hole FD. Man as a factor of soil formation. Soil Sci. 1965;99:65-72. https://doi.org/10.1097/00010694-196501000-00011
    » https://doi.org/10.1097/00010694-196501000-00011
  • Bockheim JG. Nature and properties of highly disturbed urban soils. Philadelphia, Pennsylvania. In: Division S-5 Annual Conference. Chicago: Soil Science Society of America; 1974.
  • Bouma J, McBratney A. Framing soils as an actor when dealing with wicked environmental problems. Geoderma. 2013;200-201:130-9. https://doi.org/10.1016/j.geoderma.2013.02.011
    » https://doi.org/10.1016/j.geoderma.2013.02.011
  • Brasil. Ministério do Desenvolvimento Regional - MDR. Secretaria Nacional de Saneamento - SNS. Sistema nacional de informações sobre saneamento: 25º Diagnóstico dos serviços de água e esgotos - 2019. Brasília, DF: SNS/MDR; 2020. Available from: http://www.snis.gov.br/downloads/diagnosticos/ae/2019/Diagn%C3%B3stico_SNIS_AE_2019_Republicacao_31032021.pdf
    » http://www.snis.gov.br/downloads/diagnosticos/ae/2019/Diagn%C3%B3stico_SNIS_AE_2019_Republicacao_31032021.pdf
  • Breure A, De Deyn G, Dominati E, Eglin T, Hedlund K, Van Orshoven J, Posthuma L. Ecosystem services: A useful concept for soil policy making. Curr Opin Environ Sustain. 2012;4:578-85. https://doi.org/10.1016/j.cosust.2012.10.010
    » https://doi.org/10.1016/j.cosust.2012.10.010
  • Burghardt W, Morel JL, Zhang GL. Development of the soils research about urban, industrial, traffic, mining and military areas (SUITMAS). Soil Sci Plant Nutr. 2015;61:3-21. https://doi.org/10.1080/00380768.2015.1046136
    » https://doi.org/10.1080/00380768.2015.1046136
  • Burghardt W. Main characteristics of urban soils. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 19-26.
  • Burghardt W. Soil sealing and soil properties related to sealing. Geo Soc Spec Publ. 2006;266:117-24. https://doi.org/10.1144/gsl.sp.2006.266.01.09
    » https://doi.org/10.1144/gsl.sp.2006.266.01.09
  • Camargo AO, Moniz AC, Jorge JA, Valadares JMAS. Métodos de análise química, mineralógica e física de solos do Instituto Agronômico de Campinas. Campinas: IAC; 2009. (Boletim técnico, 106).
  • Cervi EC, Costa ACS, Souza Junior IG. Magnetic susceptibility and the spatial variability of heavy metals in soils developed on basalt. J Appl Geophy. 2014;111:377-83. https://doi.org/10.1016/j.jappgeo.2014.10.024
    » https://doi.org/10.1016/j.jappgeo.2014.10.024
  • Chemekov YF. Technogenic deposits. In: XI Inqua Congress; 1982; Moscow. Moscow: Abstracts; 1982. v. 3. p. 62.
  • Cheon JY, Ham BS, Lee JY, Park Y, Lee KK. Soil temperatures in four metropolitan cities of Korea from 1960 to 2010: implications for climate change and urban heat. Environ Earth Sci. 2014;71:5215-30. https://doi.org/10.1007/s12665-013-2924-8
    » https://doi.org/10.1007/s12665-013-2924-8
  • Claessen MEC. Manual de métodos de análise de solo. 2. ed. Rio de Janeiro: Embrapa Solos; 1997.
  • Conselho Nacional do Meio Ambiente - Conama. Resolução n° 420, de 28 de dezembro de 2009: Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Brasília, DF: Ministério do Meio Ambiente; 2009. Available from: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=620
    » http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=620
  • Costa JR, Pedron FD, Dalmolin RS, Schenato RB. Field description and identification of diagnostic qualifiers for urban soils in Brazil. Rev Bras Cienc Solo. 2019;43:e0180121. https://doi.org/10.1590/18069657rbcs20180121
    » https://doi.org/10.1590/18069657rbcs20180121
  • Costa JR. Procedimentos para análise de campo e identificação de qualificadores diagnósticos para solos urbanos [dissertation]. Santa Maria: Universidade Federal de Santa Maria; 2018.
  • Craul PJ. The nature of urban soils: Their problems and future. Arboric J. 1994;18:275-87. https://doi.org/10.1080/03071375.1994.9747027
    » https://doi.org/10.1080/03071375.1994.9747027
  • Craul PJ. Urban soil in landscape design. Wiley: New York; 1992.
  • Craul PJ. Urban soils. METRIA 5: Selecting and preparing sites for urban trees. In: 5th Conference of the Metropolitan Tree Improvement Alliance; May 1985; Pennsylvania. Pennsylvania: The Pennsylvania State University; 1985. p. 23-4.
  • Crutzen PJ, Stoemer EF. The Anthropocene. Global Change NewsLetter. 2000;41:17-8. Available from: http://www.igbp.net/download/18.316f18321323470177580001401/1376383088452/NL41.pdf
    » http://www.igbp.net/download/18.316f18321323470177580001401/1376383088452/NL41.pdf
  • Crutzen PJ. Geology of mankind. Nature. 2002;415:23. https://doi.org/10.1038/415023a
    » https://doi.org/10.1038/415023a
  • Curcio GR, Lima VC, Giarola NFB. Antropossolos: Proposta de ordem - 1ª aproximação). Colombo: Embrapa Florestas; 2004.
  • Dala-Paula BM, Custódio FB, Knupp EAN, Palieri HEL, Silva JBB, Glória MBA. Cadmium, copper and lead levels in different cultivars of lettuce and soil from urban agriculture. Environ Pollut. 2018;242:383-9. https://doi.org/10.1016/j.envpol.2018.04.101
    » https://doi.org/10.1016/j.envpol.2018.04.101
  • Dazzi C, Lo Papa G. Anthropogenic soils: General aspects and features. Ecocycles. 2015;1:3-8. https://doi.org/10.19040/ecocycles.v1i1.23
    » https://doi.org/10.19040/ecocycles.v1i1.23
  • De Groot R, Wilson M, Boumans R. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ. 2002;41:393-408. https://doi.org/10.1016/S0921-8009(02)00089-7
    » https://doi.org/10.1016/S0921-8009(02)00089-7
  • De Kimpe CR, Morel JL. Urban soil management: A growing concern. Soil Sci. 2000;165:31-40. https://doi.org/10.1097/00010694-200001000-00005
    » https://doi.org/10.1097/00010694-200001000-00005
  • Dias MA, Paula EV. Mapeamento de Antropossolos: Estudo de caso no bairro Santa Felicidade (Curitiba/Paraná). Raega. 2018;44:212-30. https://doi.org/10.5380/raega.v44i0.49411
    » https://doi.org/10.5380/raega.v44i0.49411
  • Dias MA. Antropossolos: Enquadramento taxonômico e implicações ambientais [dissertation]. Curitiba: Universidade Federal do Paraná; 2017.
  • Donagemma GK, Campos DVB, Calderano SB, Teixeira WG, Viana JHM. Manual de métodos de análise do solo. 2. ed. rev. Rio de Janeiro: Embrapa Solos; 2011.
  • Dudal R, Nachtergaele FO, Pumell MF. The human factor of soil formation. In: Proceedings 17th Congress of Soil Science; 14-21 August 2002; Bangkok. Bangkok: Soil Science; 2002.
  • Dudal R. The sixth factor of soil formation. In: International Conference on Soil Classification 2004; 3-5 August, 2004; Petrozavodsk, Russia. Petrozavodsk: International Union of Soil Sciences; 2004.
  • Effland WR, Pouyat RV. The genesis, classification, and mapping of soils in urban areas. Urban Ecosystems. 1997;1:217-28. https://doi.org/10.1023/a:1018535813797
    » https://doi.org/10.1023/a:1018535813797
  • Ejaz N, Ahktar N, Ali Naeem U. Environmental Impacts of improper solid waste management in developing countries: A case study of Rawalpindi city. In: Brebbia CA, editor. The sustainable world. Southampton: Wit Press; 2011. p. 379-87.
  • Estevam F. Mapeamento dos Antropossolos na porção sudoeste do Bairro Boqueirão, Curitiba/PR [monography]. Curitiba: Universidade Federal do Paraná; 2015.
  • Fanning DS, Fanning MCB. Soil: Morphology, genesis and classification. New York: John Wiley and Sons; 1989.
  • Food and Agricultural Organization of the United Nations - FAO. Guidelines for soil description. 4th ed. Rome: FAO; 2006.
  • França FC, Albuquerque AMA, Almeida AC, Silveira PB, Filho CA, Hazin CA, Honorato EV. Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil. Food Chem. 2017;215:171-6. https://doi.org/10.1016/j.foodchem.2016.07.168
    » https://doi.org/10.1016/j.foodchem.2016.07.168
  • Friedman M. Detergents and the environment: Historical review. In: Zoller U, editor. Handbook of detergents - part B: Environmental impact. New York: Marcel Dekker; 2004. p. 11-34.
  • Gbadegesin A, Olabode MA. Soil properties in the metropolitan region of Ibadan, Nigeria: Implications for the management of the urban environment of developing countries. Environmentalist. 2000;20:205-14. https://doi.org/10.1023/A:1006747630110
    » https://doi.org/10.1023/A:1006747630110
  • Gomes WS. Qualidade e serviços ecossistêmicos do solo em uma antiga área de uso industrial no município de Diadema/SP [dissertation]. Diadema: Universidade Federal de São Paulo; 2019.
  • Gonçalves JAC. A contaminação natural por arsênio em solos e águas subterrâneas na área urbana de Ouro Preto (MG) [dissertation]. Ouro Preto: Universidade Federal de Ouro Preto; 2011.
  • Greinert A. The heterogeneity of urban soils in the light of their properties. J Soil Sediment. 2015;15:1725-37. https://doi.org/10.1007/s11368-014-1054-6
    » https://doi.org/10.1007/s11368-014-1054-6
  • Guerrini IA, Croce CGG, Bueno OC, Jacob CPRP, Nogueira TAR, Fernandes DM, Ganga A, Capra GF. Composted sewage sludge and steel mill slag as potential amendments for urban soils involved in afforestation programs. Urban For Urban Gree. 2017;22:93-104 https://doi.org/10.1016/j.ufug.2017.01.015
    » https://doi.org/10.1016/j.ufug.2017.01.015
  • Guilland C, Maron PA, Damas O, Ranjard L. Biodiversity of urban soils for sustainable cities. Environ Chem Lett. 2018;16:1267-82. https://doi.org/10.1007/s10311-018-0751-6
    » https://doi.org/10.1007/s10311-018-0751-6
  • Hardoy JE, Satterhwaite D. Environmental problems of third world cities: A global issue ignored? Public Admin Develop. 1991;11:341-61. https://doi.org/10.1002/pad.4230110405
    » https://doi.org/10.1002/pad.4230110405
  • Hazelton P, Murphy B. Understanding soils in urban environments. Clayton: CSIRO Publishing; 2011. https://doi.org/10.1071/9780643101432
    » https://doi.org/10.1071/9780643101432
  • Heimsath AM, Whipple KX. Strength matters: resisting erosion across upland landscapes. Earth Surf Proc and Land. 2019;44:1748-54. https://doi.org/10.1002/esp.4609
    » https://doi.org/10.1002/esp.4609
  • Herrmann DL, Shuster WD, Garmestani AS. Vacant urban lot soils and their potential to support ecosystem services. Plant Soil. 2016;413:45-57. https://doi.org/10.1007/s11104-016-2874-5
    » https://doi.org/10.1007/s11104-016-2874-5
  • Hollis JM. The classification of soils in urban areas. In: Bullock P, Gregory P, editors. Soils in the urban environment. Londres: Blackwell Publishing; 1991. p. 5-27.
  • Instituto Brasileiro de Geografia e Estatística - IBGE. Censo 2010. Rio de Janeiro: IBGE; 2012. Available from: https://censo2010.ibge.gov.br/
    » https://censo2010.ibge.gov.br/
  • Instituto Brasileiro de Geografia e Estatística - IBGE. Cidades. Rio de Janeiro: IBGE; 2021 Available from: https://cidades.ibge.gov.br/
    » https://cidades.ibge.gov.br/
  • Instituto Brasileiro de Geografia e Estatística - IBGE. Manual técnico de pedologia. 2. ed. Rio de Janeiro: IBGE; 2007.
  • IUSS Working Group WRB. World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. Rome: Food and Agriculture Organization of the United Nations; 2015. (World Soil Resources Reports, 106).
  • Jenny H. Factors of soil formation: A system of quantitative pedology. New York: McGraw-Hill; 1941.
  • Jim CY. Soil compaction as a constraint to tree growth in tropical & subtropical urban habitats. Environ Conserv. 1993;20:35-49. https://doi.org/10.1017/S0376892900037206
    » https://doi.org/10.1017/S0376892900037206
  • Johnson MP. Environmental impacts of urban sprawl: A survey of the literature and proposed research agenda. Environ Plann A. 2001;33:717-35. https://doi.org/10.1068/a3327
    » https://doi.org/10.1068/a3327
  • Kozlowski TT. Soil compaction and growth of woody plants. Scand J Forest Res. 1999;14:596-619. https://doi.org/10.1080/02827589908540825
    » https://doi.org/10.1080/02827589908540825
  • Ladeira FSB. A ação antrópica sobre os solos nos diferentes biomas brasileiros – terras indígenas e solos urbanos. Entre Lug. 2012a;3:127-39.
  • Ladeira FSB. Solos em áreas urbanas: Reflexões e possibilidades de análise. In: Silva CA, editor. Geografia e natureza: Experiências e abordagens de pesquisas. Dourados: Universidade Federal da Grande Dourados; 2012b. p. 201-26.
  • Lehmann A, Stahr K. Nature and significance of anthropogenic urban soils. J Soil Sediment. 2007;7:247-60. https://doi.org/10.1065/jss2007.06.235
    » https://doi.org/10.1065/jss2007.06.235
  • Lewis SL, Maslin MA. Defining the Anthropocene. Nature. 2015;519:171-80. https://doi.org/10.1038/nature14258
    » https://doi.org/10.1038/nature14258
  • Lima MS, Freire FJ, Marangon LC, Almeida BG, Ribeiro EP, Santos RL. Solos florestais em fragmento de floresta urbana na mata de Dois Irmãos, Recife, Pernambuco, Brasil. Cienc Florest. 2018;28:542-53. https://doi.org/10.5902/1980509832037
    » https://doi.org/10.5902/1980509832037
  • McDonald RI, Weber K, Padowski J, Florke M, Schneider C, Green PA, Gleeson T, Eckman S, Lehner B, Balk D, Boucher T, Grill G, Montgomery M. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Global Environ Chang. 2014;27:96-105. https://doi.org/10.1016/j.gloenvcha.2014.04.022
    » https://doi.org/10.1016/j.gloenvcha.2014.04.022
  • McPhearson T, Kremer P, Hamstead ZA. Mapping ecosystem services in New York City: Applying a social-ecological approach in urban vacant land. Ecosyst Serv. 2013;5:11-26. https://doi.org/10.1016/j.ecoser.2013.06.005
    » https://doi.org/10.1016/j.ecoser.2013.06.005
  • Meuser H. Contaminated urban soils. Dordrecht: Springer Netherlands; 2010. https://doi.org/10.1007/978-90-481-9328-8
    » https://doi.org/10.1007/978-90-481-9328-8
  • Milhome MA, Holanda JWB, Araújo Neto JR, Nascimento RF. Diagnosis of contamination of soil by toxic metals from urban solid waste and influence of organic matter. Rev Virt Quim. 2018;10:59-72. https://doi.org/10.21577/1984-6835.20180007
    » https://doi.org/10.21577/1984-6835.20180007
  • Morais F, Bacellar LAP, Sobreira FG. Análise da erodibilidade de saprolitos de gnaisse. Rev Bras Cienc Solo. 2004;28:1055-62. https://doi.org/10.1590/s0100-06832004000600014
    » https://doi.org/10.1590/s0100-06832004000600014
  • Morel JL, Burghardt W, Kim K-HL. The challenges for soils in the urban environment. In: Levin M, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK, editors. Soils within Cities: Global approaches to their sustainable management - Composition, properties, and functions of soils of the urban environment. Stuttgart: Catena Soil Science; 2017. p. 1-6.
  • Morel JL, Chenu C, Lorenz K. Ecosystems services provide by soils of urban, industrial, traffic, mining and military area s (SUITMAs). J Soils Sedimentss. 2015;15:1659-66. https://doi.org/10.1007/s11368-014-0926-0
    » https://doi.org/10.1007/s11368-014-0926-0
  • Moura MCS, Lopes ANC, Moita GC, Moita Neto JM. Estudo multivariado de solos urbanos da cidade de Teresina. Quim Nova. 2006;29:429-35. https://doi.org/10.1590/S0100-40422006000300005
    » https://doi.org/10.1590/S0100-40422006000300005
  • Mysczak LA, De Paula EV. Aplicação da proposta de ordem dos Antropossolos no bairro do Ganchinho - Curitiba–PR. Rev Bras Cart. 2017;69:1865-80.
  • Mysczak LA. Aplicação da proposta de ordem dos Antropossolos no Bairro Ganchinho, Curitiba/PR [monography]. Curitiba: Universidade Federal do Paraná; 2013.
  • Norra S, Stuben D. Urban soils. J Soils Sediments. 2003;3:230-3. https://doi.org/10.1007/bf02988664
    » https://doi.org/10.1007/bf02988664
  • Oliveira A. Depósitos tecnogênicos associados à erosão atual. In: XXXVI Congresso Brasileiro de Geologia de Engenharia; 28/Oct-01Nov 1990, Natal RN. Natal: Associação Brasileira de Geologia de Engenharia; 1990. p. 411-5.
  • Oliveira AA, Oliveira MAS, Andrade MRM. Depósitos tecnogênicos como testemunhos e indicadores de processos geológicos em área urbana degradada em Guarulhos, SP. Quater Environ Geosc. 2014;5:12-27. https://doi.org/10.5380/abequa.v5i1.34737
    » https://doi.org/10.5380/abequa.v5i1.34737
  • Oliveira JB, Prado H, Bejar OIG, Oliveira ER, Longobardi RC, Assis EA. Carta pedológica semidetalhado do Estado de São Paulo: Folha de Piracicaba. São Paulo. Secretaria da Agricultura/CPC/IA; Secretaria de Economia e Planejamento/CAR/IGC; 1987.
  • Oliveira RM, Brilhante OM. Hexachlorocyclohexane contamination in an urban area of Rio de Janeiro, Brazil. Environ Int. 1996;22:289-94. https://doi.org/10.1016/0160-4120(96)00014-1
    » https://doi.org/10.1016/0160-4120(96)00014-1
  • Patucci NN, Oliveira Filho LCI, Oliveira D, Baretta D, Bartz MLC, Brescovit AD. Inventário de fauna edáfica como instrumento na avaliação de qualidade e biodiversidade de solos urbanos: Estudo de caso do parque CienTec. Bol Paul Geo. 2017;96:66-90.
  • Pedron FA, Dalmolin RSD, Azevedo AC, Botelho MR, Menezes FP. Levantamento e classificação de solos em áreas urbanas: Importância, limitações e aplicações. Rev Bras Agrocienc. 2007;13:147-51. https://doi.org/10.18539/CAST.V13I2.1354
    » https://doi.org/10.18539/CAST.V13I2.1354
  • Pedron FA, Dalmolin RSD, Azevedo AC, Kaminski J. Solos urbanos. Cienc Rural. 2004;34:1647-53. https://doi.org/10.1590/S0103-84782004000500053
    » https://doi.org/10.1590/S0103-84782004000500053
  • Pedron FA, Dalmolin RSD, Azevedo AC, Poelking EL, Miguel P. Utilização do sistema de avaliação do potencial de uso urbano de terras no diagnóstico ambiental do município de Santa Maria - RS. Cienc Rural. 2006;36:468-77. https://doi.org/10.1590/S0103-84782006000200017
    » https://doi.org/10.1590/S0103-84782006000200017
  • Pedron FA, Dalmolin RSD. Caracterização e manejo de solos urbanos. Santa Maria: Centro de Ciência Rural da Universidade Federal de Santa Maria; 2002. (Informe técnico, 2).
  • Pedron FA, Schenato RB, Baroni M. Conservação do solo e da água em ambientes urbanos. In: Bertol I, De Maria IC, Souza LC, editors. Manejo e conservação do solo e da água. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2019. p. 645-99.
  • Pedron FA. Classificação do potencial de uso das terras no perímetro urbano de Santa Maria - RS [dissertation]. Santa Maria: Universidade Federal de Santa Maria; 2005.
  • Peloggia AUG, Oliveira AMS, Oliveira AA, Silva ECN, Nunes JOR. Technogenic geodiversity: A proposal on the classification of artificial ground. Quat Environ Geosc. 2014;5:28-40. https://doi.org/10.5380/abequa.v5i1.34823
    » https://doi.org/10.5380/abequa.v5i1.34823
  • Peloggia AUG. Delineação e aprofundamento temático da geologia do Tecnógeno do município de São Paulo: as conseqüências geológicas da ação do homem sobre a natureza e as determinações geológicas da ação humana em suas particularidades referentes à precária ocupação urbana [thesis]. São Paulo: Instituto de Geociências, Universidade de São Paulo; 1996a.
  • Peloggia AUG. Discussão sobre a atual cartografia geotécnica do município de São Paulo e suas possíveis aplicações. Rev Bras Geocienc. 1996b;26:315-9. https://doi.org/10.25249/0375-7536.19964315319
    » https://doi.org/10.25249/0375-7536.19964315319
  • Peloggia AUG. O que produzimos sob nossos pés? Uma revisão comparativa dos conceitos fundamentais referentes a solos e terrenos antropogênicos. Rev UNG Geocienc. 2017;16:102-27.
  • Peloggia AUG. Sobre a classificação, enquadramento estratigráfico e cartografação dos solos e depósitos tecnogênicos. In: Prefeitura do Município de São Paulo. Estudos de geotécnica e geologia urbana (I). São Paulo: Grupo de Trabalho de Geotécnica e Geologia Urbana; 1999. (Manual técnico, 3). p. 35-50.
  • Pontes ZBVS, Oliveira A, Guerra FQS, Pontes LRA, Santos JP. Distribution of dermatophytes from soils of urban and rural areas of cities of Paraiba State, Brazil. Rev Inst Med Trop SP. 2013;55:377-83. https://doi.org/10.1590/s0036-46652013000600002
    » https://doi.org/10.1590/s0036-46652013000600002
  • Pouyat RV, Szlavecz K, Yesilonis ID, Groffman PM, Schwarz K. Chemical, physical and biological characteristics of urban soils. In: Aitkenhead-Peterson J, Volder A, editors. Urban ecosystem ecology. Madison: American Society of Agronomy/Crop Science Society of America/Soil Science Society of America; 2010. p. 119-52. https://doi.org/10.2134/urbanecosystem ecology2010.frontmatterx
    » https://doi.org/10.2134/urbanecosystem ecology2010.frontmatterx
  • Power AL, Tennant RK, Jones RT, Tang Y, Du J, Worsley AT, Love J. Monitoring impacts of urbanization and industrialization on air quality in the Anthropocene using urban pond sediments. Front Earth Sci. 2018;6:131. https://doi.org/10.3389/feart.2018.00131
    » https://doi.org/10.3389/feart.2018.00131
  • Pussente IC, ten Dam G, van Leeuwen S, Augusti R. PCDD/Fs and PCBs in soils: A study of case in the city of Belo Horizonte-MG. J Brazilian Chem Society. 2017;28:858-67. https://doi.org/10.21577/0103-5053.20160238
    » https://doi.org/10.21577/0103-5053.20160238
  • Putrino SM, Ladeira FS. Tecnossolos Úrbicos do parque linear ribeirão das pedras, Campinas/SP. Rev Inst Geologico. 2019;40:19-52. https://doi.org/10.33958/revig.v40i1.627
    » https://doi.org/10.33958/revig.v40i1.627
  • Putrino SM. Tecnossolos Úrbicos do parque linear ribeirão das Pedras, Campinas/SP [dissertation]. Campinas: Instituto de Geociências, Universidade Estadual de Campinas; 2017.
  • Reichert JM, Suzuki LEAS, Reinert DJ, Horn R, Hakansson I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Till Res. 2009;102:242-54. https://doi.org/10.1016/j.still.2008.07.002
    » https://doi.org/10.1016/j.still.2008.07.002
  • Rocha GC. Carta de solos da bacia do ribeirão Cambé na área urbano-rural de Londrina, PR. Semina Cienc Exatas/Tecn. 1995;16:536-49. https://doi.org/10.5433/1679-0375.1995v16n4p536
    » https://doi.org/10.5433/1679-0375.1995v16n4p536
  • Rossi M. Mapa pedológico do Estado de São Paulo. rev ampl. São Paulo: Instituto Florestal; 2017.
  • Rossiter DG. Classification of urban and industrial soils in the world reference base for soil resources. J Soils Sediments. 2007;7:96-100. https://doi.org/10.1065/jss2007.02.208
    » https://doi.org/10.1065/jss2007.02.208
  • Sandor J, Burras CL, Thompson M. Human impacts on soil formation. In: Hillel D, editor. Encyclopedia of soils in the environment. New York: Academic Press; 2004. p. 520-32.
  • Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Araújo Filho JC, Oliveira JB, Cunha TJF. Sistema brasileiro de classificação de solos. 5. ed. rev. ampl. Brasília, DF: Embrapa; 2018.
  • Santos JA. Antropossolos e áreas de risco a escorregamentos: estudo de caso na comunidade do Sítio Joaninha (Diadema) e Antigo Lixão do Alvarenga (São Bernardo do Campo) - Região Metropolitana de São Paulo (RMSP) [dissertation]. Presidente Prudente: Universidade Estadual Paulista; 2015.
  • Santos Junior JB, Lima MR. Caracterização e classificação de solos urbanos em Campina Grande do Sul, Estado do Paraná. Rev Cienc Agrar. 2012;55:98-104. https://doi.org/10.4322/rca.2012.049
    » https://doi.org/10.4322/rca.2012.049
  • Scharenbroch BC, Lloyd JE, Johnson-Maynard JL. Distinguishing urban soils with physical, chemical, and biological properties. Pedobiologia. 2005;49:283-96. https://doi.org/10.1016/j.pedobi.2004.12.002
    » https://doi.org/10.1016/j.pedobi.2004.12.002
  • Scheneider AG, Casanova-Massana A, Hacker KP, Wunder Junior EA, Begon M, Reis MG, Childs JE, Costa F, Lindow JC, Ko AI. Quantification of pathogenic Leptospira in the soils of a Brazilian urban slum. PLoS Negl Trop Dis. 2018;12:e0006415. https://doi.org/10.1371/journal.pntd.0006415
    » https://doi.org/10.1371/journal.pntd.0006415
  • Scholten T. Hydrology and erodibility of the soils and saprolite cover of the Swaziland Middleveld. Soil Technol. 1997;11:247-62. https://doi.org/10.1016/s0933-3630(97)00011-1
    » https://doi.org/10.1016/s0933-3630(97)00011-1
  • Schueler T. The compaction of urban soils. Watershed Protection Techniques. 2000;3:661-5.
  • Setälä H, Francini G, Allen JA, Jumpponen A, Hui N, Kotze DJ. Urban parks provide ecosystem services by retaining metals and nutrients in soils. Environ Pollut. 2017;231:451-61. https://doi.org/10.1016/j.envpol.2017.08.010
    » https://doi.org/10.1016/j.envpol.2017.08.010
  • Seto KC, Guneralp B, Hutyra LR. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. P Natl Acad Sci. 2012;109:16083-8. https://doi.org/10.1073/pnas.1211658109
    » https://doi.org/10.1073/pnas.1211658109
  • Silva ECN. Formação de depósitos tecnogênicos e relações com o uso e ocupação do solo no perímetro urbano de Presidente Prudente-SP [dissertation]. Presidente Prudente: Universidade Estadual Paulista; 2012.
  • Silva FC. Manual de análises químicas de solos, plantas e fertilizantes. 2. ed rev ampl. Brasília, DF: Embrapa Informação Tecnológica; 2009.
  • Simon D. Urbanization and global environmental change: new intergenerational challenges. Int J Green Econ. 2007;1:299-306. https://doi.org/10.1504/ijge.2007.013061
    » https://doi.org/10.1504/ijge.2007.013061
  • Six J, Feller C, Denef K, Stephen M, Ogle S, Moraes JM, Albrecht A. Soil organic matter, biota and aggregation in temperate and tropical soils - Effects of no-tillage. Agronomie. 2002;22:755-75. https://doi.org/10.1051/agro:2002043
    » https://doi.org/10.1051/agro:2002043
  • Sobral LF, Barretto MCV, Silva AJ, Anjos JL. Guia prático para interpretação de resultados de análises de solo. Aracaju: Embrapa Tabuleiros Costeiros; 2015.
  • Soil Survey Staff. Keys to soil taxonomy. 12th ed. Washington, DC: United States Department of Agriculture, Natural Resources Conservation Service; 2014.
  • Stroganova MN, Agarkova MG. Urban soils: Experimental study and classification (exemplified by the soils of southwestern Moscow). Eurasian Soil Sci. 1993;25:59-69.
  • Teixeira RC. Antropossolos em Guarapari (ES): A geografia dos solos antrópicos [monography]. Viçosa, MG: Universidade Federal de Viçosa; 2015.
  • Teixeira RC, Rocha PA, Faria ALL, Costa LM, Alves EEN. Quantificação química em perfis de Antropossolos por fluorescência de raios-x com vistas a identificação de descontinuidades de camadas. Quat Env Geo. 2019;10:10-7. https://doi.org/10.5380/abequa.v10i1.53087
    » https://doi.org/10.5380/abequa.v10i1.53087
  • Ter-Stepanian G. Beginning of the technogene. Bull Intern Assoc Engin Geology. 1988;38:13342. https://doi.org/10.1007/BF02590457
    » https://doi.org/10.1007/BF02590457
  • Turkoglu N. Analysis of urban effects on soil temperature in Ankara. Environ Monit Assess. 2010;169:439-50. https://doi.org/10.1007/s10661-009-1187-z
    » https://doi.org/10.1007/s10661-009-1187-z
  • United Nations. World urbanization prospects 2018: Highlights [internet]. New York: United Nations - Department of Economic and Social Affairs; 2019. Available from: https://population.un.org/wup/Publications/Files/WUP2018-Highlights.pdf
    » https://population.un.org/wup/Publications/Files/WUP2018-Highlights.pdf
  • Vale VS, Araújo GM, Oliveira AS, Prado Júnior JA, Santos LCS. Estrutura da comunidade arbórea e características edáficas de um fragmento urbano. Cienc Florest. 2017;27:1415-28. https://doi.org/10.5902/1980509830322
    » https://doi.org/10.5902/1980509830322
  • Vasenev VI, Stoorvogel JJ, Vasenev II. Urban soil organic carbon and its spatial heterogeneity in comparison with natural and agricultural areas in the Moscow region. Catena. 2013;107:96-102. https://doi.org/10.1016/j.catena.2013.02.009
    » https://doi.org/10.1016/j.catena.2013.02.009
  • Vasenev VI, Van Oudenhoven AP, Romzaykina ON, Hajiaghaeva RA. The ecological functions and ecosystem services of urban and technogenic soils: From theory to practice (A review). Eurasian Soil Sci. 2018;51:1119-32. https://doi.org/10.1134/s1064229318100137
    » https://doi.org/10.1134/s1064229318100137
  • Vries J, Schuster M, Procee P, Mengers H. Environmental management of small and medium sized cities in latin america and the caribbean. Washington, DC: Environment Division Publications; 2001.
  • Wilcke W, Lilienfein J, Lima SC, Zech W. Contamination of highly weathered urban soils in Uberlândia, Brazil. J Plant Nutr Soil Sc. 1999;162:539-48. https://doi.org/10.1002/(SICI)1522-2624(199910)162:5<539::AID-JPLN539>3.0.CO;2-O
    » https://doi.org/10.1002/(SICI)1522-2624(199910)162:5<539::AID-JPLN539>3.0.CO;2-O
  • Yaalon HD, Yaron B. Framework for man-made soil changes: An outline of metapedogenesis. Soil Sci. 2006;171:154-9. https://doi.org/10.1097/00010694-200606001-00021
    » https://doi.org/10.1097/00010694-200606001-00021
  • Yang J-L, Zhang G-L. Formation, characteristics and eco-environmental implications of urban soils – A review. Soil Sci Plant Nutr. 2015;61:30-46. https://doi.org/10.1080/00380768.2015.1035622
    » https://doi.org/10.1080/00380768.2015.1035622
  • Zalasiewicz J, Waters CN, Williams M, Barnosky AD, Cearreta A, Crutzen P, Ellis E, Ellis MA, Fairchild IJ, Grineval J, Haff PK, Hajdas I, Leinfelder R, McNeill J, Odada EO, Poirier C, Richter D, Steffen W, Summerhayes C, Syvitski JPM, Vidas D, Wagreich M, Wing SL, Wolfe AP, An Z, Oreskes N. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quatern Int. 2015;383:196-203. https://doi.org/10.1016/j.quaint.2014.11.045
    » https://doi.org/10.1016/j.quaint.2014.11.045
  • Zanata JM, Perusi MC. Solos urbanos: degradação ambiental na forma de processos erosivos. Rev Geog Pesq. 2010;4:107-22.

Edited by

Editors: José Miguel Reichert and José Coelho de Araújo Filho.

Publication Dates

  • Publication in this collection
    28 Mar 2022
  • Date of issue
    2022

History

  • Received
    25 Aug 2021
  • Accepted
    10 Nov 2021
Sociedade Brasileira de Ciência do Solo Secretaria Executiva , Caixa Postal 231, 36570-000 Viçosa MG Brasil, Tel.: (55 31) 3899 2471 - Viçosa - MG - Brazil
E-mail: sbcs@ufv.br