SciELO - Scientific Electronic Library Online

 
vol.35 issue11Phenotypic correlation between seed size and other characteristics in topcrosses of vegetable soybean with grain typeExtreme homogeneity among Brazilian wheat genotypes determined by RAPD markers author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Pesquisa Agropecuária Brasileira

Print version ISSN 0100-204XOn-line version ISSN 1678-3921

Pesq. agropec. bras. vol.35 no.11 Brasília Nov. 2000

http://dx.doi.org/10.1590/S0100-204X2000001100017 

ESTIMATIVAS DE PARÂMETROS GENÉTICOS E MÉTODOS DE SELEÇÃO PARA O MELHORAMENTO GENÉTICO DE PINUS CARIBAEA VAR. HONDURENSIS1

 

PAULO DE TARSO BARBOSA SAMPAIO2 , MARCOS DEON VILELA DE RESENDE3 e ANTÔNIO JOSÉ DE ARAÚJO4

 

 

RESUMO - Este trabalho teve por objetivo estudar a variabilidade genética por meio de testes de progênies e determinar o ganho genético por meio de seleção individual, combinada e índice multiefeito, em Pinus caribaea var. hondurensis. Foram instalados dois testes de progênie em Tibagi, PR, em setembro de 1988. Dados de crescimento e de formas da árvore foram obtidos aos cinco anos de idade. A produtividade volumétrica média obtida foi de 0,091 m3 por árvore. Para estabelecer um pomar de sementes por mudas, a seleção (no bloco) de 190 árvores (95 por procedência) com os maiores diâmetros na altura do peito (DAP) permite aumentos na produtividade volumétrica de 0,104 m3, 0,106 m3 e 0,106 m3 por árvore, na seleção individual, combinada e índice multiefeito, respectivamente. Em pomar de sementes clonal, a seleção (no experimento) de 30 árvores (15 por procedência) com o maior ganho genético em DAP, pode atingir incrementos na produtividade volumétrica de 0,112 m3, 0,113 m3 e 0,114 m3, por árvore, na seleção individual, combinada e índice multiefeito, respectivamente.

Termos para indexação: seleção, índice de seleção, valor genético, variação genética, ganho genético.

 

ESTIMATES OF GENETIC PARAMETERS AND SELECTION METHODS FOR GENETIC IMPROVEMENT OF PINUS CARIBAEA VAR. HONDURENSIS

ABSTRACT - The objective of this work was to study the genetic variability through progeny tests, and to determine the genetic gain through individual, combined and multieffect index selection in Pinus caribaea var. hondurensis. Two progeny tests were carried out in Tibagi, Paraná State, Brazil, on September, 1988. Growth data and tree characteristics were assessed when progenies were five years old. The mean volumetric timber production was 0.091 m3 per tree. To establish a seedling seed orchard (SSO), it should be selected (in the block) 190 trees (95 trees per provenance) with the greatest genetic gain diameter at breast height (DBH). Selection of these trees will allow and increase in the volumetric timber production, reaching 0.104 m3 per tree (individual selection), 0.106 m3 per tree (combined selection) and 0.106 m3 per tree (multieffect index). To establish a clonal seed orchard (CSO), it should be selected, in the experiment, 30 trees (15 trees per provenance) with the greatest genetic gain in DBH. Volumetric timber production, will attain 0.113 m3, 0.113 m3 and 0.114 m3 per tree, in the individual, combined and multieffect index selection, respectively.

Index terms: selection, selection index, breeding value, genetic variation, genetic gain.

 

 

INTRODUÇÃO

A introdução de espécies florestais exóticas no Brasil proporcionou grandes benefícios para o desenvolvimento socioeconômico de diversas regiões do país, principalmente em áreas cujas características de solo e clima desestimulavam a atividade agrícola.

A obtenção de populações melhoradas que satisfaçam as exigências da produtividade florestal depende da capacidade de identificar genótipos desejados na população sob seleção. Uma estratégia de eficiência comprovada para seleção desses genótipos é a combinação dos testes de procedências e progênies. Shimizu & Pinto Júnior (1988) relataram que esses ensaios permitem ao melhorista a obtenção simultânea de informações sobre a variação geográfica e diferenças genéticas entre árvores de cada procedência.

Os programas tradicionais de melhoramento genético no Brasil têm-se baseado, principalmente, na seleção entre e dentro de famílias (seleção individual). Nesse esquema, identificam-se, em uma primeira etapa, as melhores famílias com base na média das parcelas. No caso de famílias de meio-irmãos, são explorados apenas 25% da variância aditiva total na seleção entre famílias. Na etapa seguinte, selecionam-se nas famílias as plantas de melhor desempenho. Tal prática proporciona ganhos adicionais por explorar a fração da variância não utilizada na seleção entre, mas apresenta o inconveniente de se basear em valores fenotípicos individuais, sujeitos a maior influência dos efeitos ambientais (Falconer, 1987).

A seleção combinada é baseada em um índice que leva em consideração, simultaneamente, o comportamento de indivíduos e de sua família. Nesse método, a seleção baseia-se em medidas genéticas (valores genéticos líquidos) e não fenotípicas, dos candidatos à seleção (Vencovsky & Barriga, 1992).

A melhor estimativa do valor genético de um indivíduo candidato à seleção corresponde ao produto do valor fenotípico desse indivíduo pela regressão do genótipo sobre o fenótipo (Falconer, 1987). Dentro desse conceito enquadram-se todas as modalidades de seleção baseadas em índices, sejam univariados ou multivariados (Resende & Higa, 1994b). Quando a seleção é praticada com base em um índice, combinando uma série de informações referentes aos indivíduos candidatos à seleção, esperam-se respostas máximas nos valores genéticos desses indivíduos e, conseqüentemente, maior precisão na seleção.

A seleção com base nos testes de progênies utiliza geralmente duas fontes de informações: o desvio do valor individual em relação à média da família no bloco e o desvio da média da família em relação à média geral do teste. O emprego dessas duas fontes permite a aplicação dos métodos de seleção individual e seleção combinada (Resende & Higa, 1994b). Entretanto, em esquemas de melhoramento, sem o emprego de sementes remanescentes e com baixo número de plantas por parcela nos experimentos, utilizando-se apenas essas duas fontes de informações, percebe-se que frações da variância genética aditiva não são consideradas na seleção, pois são retidas no efeito de parcelas e de blocos, efeitos esses que também propiciam correção para efeitos ambientais. A seleção pelo índice multiefeito possibilita a maximização da precisão na seleção.

Este trabalho teve por objetivos estudar a grandeza da variação genética e estimar os parâmetros genéticos relacionados às características crescimento e forma das árvores das populações de Pinus caribaea var. hondurensis; determinar como as características relacionadas ao crescimento da árvore se correlacionam; e determinar o ganho genético em volume de madeira por meio da seleção individual, combinada, e pelo índice multiefeito na implantação de pomar de sementes por mudas e pomar de sementes clonal.

 

MATERIAL E MÉTODOS

Foram avaliadas 22 e 13 progênies de Pinus caribaea var. hondurensis procedentes, respectivamente, de Isla de Guanaja (Honduras) e Poptún (Guatemala). Como testemunha foi utilizada a cultivar 999 da espécie P. taeda, procedente de Jaguariaíva, PR. A localização geográfica e os dados de precipitação das regiões de procedência desses materiais estão apresentados na Tabela 1.

 

 

Os dois testes de progênies foram realizados na fazenda Moquem (Tibagi, PR), pertencente à Pisa Florestal, localizada entre 24º7' de latitude S e 50º9' de longitude W, altitude de 840 m e precipitação média anual em torno de 1.339 mm. A temperatura média anual é de 20,9ºC, máxima absoluta de 37ºC, mínima absoluta de 0ºC, solo do tipo Latossolo Amarelo, grupamento indiscriminado.

O solo foi preparado com aração e gradeação, e o plantio efetuado quando as mudas atingiram aproximadamente 30 cm de altura em espaçamento 3 m x 3 m, em setembro de 1988, período seco, o que ocasionou mortalidade de algumas mudas.

O delineamento usado foi o de blocos de famílias compactas, com nove repetições e parcelas lineares de seis plantas. As medições foram realizadas aos cinco anos de idade, e os dados de volume (VOL) e forma do fuste (FF) foram obtidos em plantas individuais, enquanto os de copa quebrada (CQ), sobrevivência (SBR) e árvores com "foxtail" (FOX), em médias de parcelas de seis plantas. A forma do fuste foi avaliada por critérios subjetivos, como avaliação visual, atribuindo-se notas de 1 (pior) a 3 (melhor).

As análises dos caracteres mensurados foram realizadas com uso do programa Selegen (Resende et al., 1994b).

Análise de variância individual para cada característica

A análise de variância para as características em estudo foi realizada para cada procedência em separado, conforme esquema adaptado por Resende et al. (1994a), obedecendo ao seguinte modelo estatístico:

Y(ijk) = µ + pi + bj + e(ij) + d(ijk) ,

em que:
Y(ijk) = observação da planta k, da progênie i na repetição j;
µ = média geral;
pi = efeito da progênie i;
bj = efeito da repetição j, com j = 1, 2, .. 9;
e(ij) = erro experimental associado à progênie i na repetição j;
d(ijk) = efeito entre plantas dentro de parcela, associado ao indivíduo k da progênie i na repetição j; com k = 1, 2 , ..... 6.

O esquema da análise de variância para os blocos de famílias compactas, em médias de parcelas, com as respectivas esperanças dos quadrados médios, considerando todos os efeitos como aleatórios, exceto a média, seguiu o modelo sugerido por Resende et al. (1994a) (Tabela 2).

 

 

Embora a comparação de médias entre procedências fique prejudicada por estarem em diferentes experimentos, optou-se por realizar o teste de Tukey calculando-se o resíduo através da ponderação do quadrado médio do resíduo (Qmres) obtido para cada procedência. Neste caso, o F calculado é apenas aproximado (Pimentel-Gomes, 1977).

Estimativa dos coeficientes de herdabilidade

Os coeficientes de herdabilidade associados aos diferentes efeitos do modelo linear dentro de cada procedência foram estimados pelas seguintes expressões (Resende & Higa , 1994b):

a) Herdabilidade no sentido restrito de indivíduo na parcela ():

b) Herdabilidade no sentido restrito de progênie ()

n = número de plantas/parcela, b = número de blocos

c) Herdabilidade no sentido restrito de parcela ():

d) Herdabilidade no sentido restrito de blocos ():

e) Herdabilidade no sentido restrito de indivíduo no bloco ():

f) Herdabilidade no sentido restrito de plantas individuais no experimento ():

g) Erro associado à estimativa:

Quando existem muitas falhas no experimento, herdabilidades específicas para cada progênie devem ser computadas, considerando o número de plantas sobreviventes por progênie. No presente trabalho esse fato foi considerado, visto que o programa computacional utilizado contempla tal correção por ocasião da predição dos valores genéticos.

Estimativa de correlações genéticas e fenotípicas entre pares de características

As correlações genéticas, em indivíduos, e fenotípicas, em médias de famílias, foram estimadas a partir das seguintes expressões (Vencovsky, 1978; Falconer, 1987):

a) Coeficiente de correlação genética aditiva (rA)

em que:

= variância genética aditiva do caráter x;
= variância genética aditiva do caráter y.

b) Coeficiente de correlação em médias de progênies ()

em que:
= variância fenotípica do caráter x, em médias de famílias;
= variância fenotípica do caráter y, em médias de famílias.

c) Desvio-padrão do coeficiente de correlação genética aditiva (Falconer, 1987).

em que:
S(rAxy)= desvio-padrão do coeficiente de correlação genética aditiva dos caracteres x e y;
rAxy= coeficiente de correlação genética aditiva entre x e y;
= desvio-padrão do coeficiente de herdabilidade em famílias do caráter x;
= desvio-padrão do coeficiente de herdabilidade em famílias do caráter y;
= coeficiente de herdabilidade do caráter x, em famílias;
= coeficiente de herdabilidade do caráter y, em famílias.

Progresso genético

As expressões para estimar o progresso genético com seleção individual, adequada para experimentos com várias plantas por parcela, foram apresentadas por Resende & Higa (1994a):

em que:
I = valor genético;
= coef. de herdabilidade no sentido restrito em indivíduos no experimento;
= coef. de herdabilidade no sentido restrito em indivíduos no bloco;
Xijk = valor do indivíduo k na parcela ij;
X
.. = média geral do experimento;
XX.j. = média do bloco.

O progresso genético com seleção combinada é estimado pelo índice , que corresponde à multiplicação dos valores fenotípicos referentes ao indivíduo, média de parcela, média da família e média geral do experimento pelas respectivas herdabilidades, em que:

I = valor genético;
Xi.. = média da família;
X
ij.. = média da parcela;
X
ij.. = média geral do experimento;
Xijk = desvio do valor individual (parcela);
= herdabilidade no sentido restrito associado aos efeitos de indivíduos dentro de parcelas;
= herdabilidade no sentido restrito em progênies.

A seleção índice multiefeito baseia-se na multiplicação dos valores fenotípicos referentes a indivíduo, média de parcela, média de família, média de bloco e média geral do experimento pelos coeficientes de ponderação dos índices (herdabilidades).

Os coeficientes de ponderação dos índices são determinados de forma que a correlação entre o índice e o valor genético seja máxima. Essa maximização ocorre pela regressão do valor genético sobre os valores fenotípicos, o que conduz a um sistema matricial (Resende & Higa, 1994a).

A expressão da estimativa do progresso genético com seleção baseada em desvios, adequada para experimentos com várias plantas por parcela, foi deduzida por Resende & Higa (1994a):

em que:
Yijk = valor do indivíduo k na parcela ij;
X
i.. = média da família no ensaio;
X
ij..= média da família em determinado bloco (média da parcela);
X
.j. = média do bloco;
= herdabilidade no sentido restrito em indivíduo dentro de parcela;
= herdabilidade no sentido restrito em progênie;
= herdabilidade no sentido restrito em parcela;
= herdabilidade no sentido restrito em bloco.

O intervalo de confiança de ganhos genéticos foi construído através da expressão (Resende et al., 1994a):

em que r2I,A é a acurácia, Gs é o ganho genético, t é o valor tabelado associado à distribuição t de Student. Neste estudo, para 95% de probabilidade, t = 1,96.

Os estimadores para acurácia derivados dos diferentes métodos de seleção são descritos na Tabela 3, conforme Resende et al. (1994a).

 

 

RESULTADOS E DISCUSSÃO

A análise de variância do volume (VOL) revelou que existem diferenças significativas a 1% (Teste F) entre as médias de todas as progênies e entre progênies dentro de cada procedência. As características forma do fuste (FF) e árvores com copa quebrada (CQ) não apresentaram variações significativas das progênies (Tabela 4).

 

 

Os coeficientes de variação experimental de progênies dentro de procedências para volume e forma do fuste estão entre 2,6% e 19,1%, indicando precisão aceitável para o critério de avaliação dessas características. Já para árvores com copa quebrada, os coeficientes estão entre 47,5% e 50,6%, valores considerados altos e que indicam grande variação dos dados, com possibilidade elevada de erro na avaliação dos dados (Tabela 4).

Considerando que os ensaios visam determinar a procedência de maior produção volumétrica, a procedência Poptún pode ser avaliada como a mais promissora, pois apresentou maior volume e difere significativamente a 5% (teste de Tukey) de Isla de Guanaja e da testemunha P. taeda (Tabela 4).

Procedências de P. caribaea var. hondurensis originadas de regiões de altitudes mais elevadas e de precipitações anuais mais baixas tendem a apresentar maior crescimento volumétrico em Agudos, SP (Massaki, 1989). Resultado similar foi observado em Tibagi, PR, onde a procedência Poptún originada de região de maior altitude e menor precipitação em relação a Isla de Guanaja apresentou maior produção volumétrica.

As árvores das procedências em teste apresentaram fustes tortuosos e 22% de árvores com copa quebrada, revelando a suscetibilidade dessa espécie aos fatores ambientais e climáticos de Tibagi. Resultados similares foram observados por Massaki (1989) nos Estados de São Paulo e Santa Catarina, e em Felixlândia, MG (Lima, 1990).

Testes de procedência na Venezuela e Colômbia indicaram que P. caribaea, quando introduzida em regiões com precipitação anual média inferior à das regiões de origem das sementes, apresentou elevado número de árvores com fustes quebrados (Dvorak & Donahue, 1992). Resultados similares foram observados em Tibagi.

Procedências de P. caribaea var. hondurensis originadas de sítios com altitudes mais elevadas e precipitações mais baixas tendem a apresentar maior incidência de "foxtail" (Massaki, 1989; Lima, 1990; Dvorak & Donahue, 1992). Em Tibagi, a procedência Poptún apresentou maior incidência de "foxtail" e diferiu significativamente de Isla de Guanaja e da testemunha P. taeda (Tabela 5).

 

 

As estimativas dos coeficientes de herdabilidades no sentido restrito, em médias de famílias, para HT, DAP e VOL foram maiores que as obtidas em indivíduos nas parcelas, bloco e experimento (Tabela 6). A seleção para tais características pode ser mais eficiente entre médias de famílias do que dentro de famílias.

 

 

Quanto mais baixo o número de indivíduos por parcela, maior a importância das herdabilidades referentes aos efeitos parcela, em relação às herdabilidades entre e dentro de famílias (Resende & Higa, 1994b). Neste estudo a sobrevivência ficou em torno de 71%, o que significa, em média, 4,26 indivíduos vivos por parcela, indicando que 17,6% da variância genética aditiva fica retida no efeito parcela.

Os valores dos desvios-padrão associados aos coeficientes de herdabilidade, em médias de famílias, das características HT, DAP e VOL podem ser considerados de magnitude média. Os melhores resultados na seleção são obtidos quando as estimativas de herdabilidade dos caracteres a serem selecionados são altas e com pequenos desvios-padrão (Souza et al., 1992).

As estimativas de herdabilidade em indivíduos para um único ambiente são normalmente superestimadas, pois não é possível separar a variância da interação de progênie com o ambiente da variância em virtude da progênie. Por isso, tais estimativas são válidas somente para o local do experimento onde as mesmas foram determinadas (Wright, 1976).

As estimativas dos coeficientes de correlação genética aditiva, em plantas, e fenotípicas, em médias de famílias, entre as características altura total, diâmetro e volume, foram positivas e de alta magnitude nas procedências Poptún e Isla de Guanaja (Tabela 7). Assim, quando se praticar a seleção em uma delas, espera-se uma alta resposta correlacionada na outra, o que se constitui uma vantagem, uma vez que o sentido da seleção é o mesmo para tais características.

 

 

As características altura total, diâmetro e volume, por sua vez, apresentaram correlações genéticas aditivas próximas de zero ou negativas, de baixa magnitude com a forma do fuste e diâmetro dos galhos (Tabela 7). Tal fato, tem grande importância prática, pois pode-se propor a condução da seleção entre altura total, diâmetro e volume com a forma do fuste e o diâmetro dos galhos, de forma independente, sem a preocupação da interferência de uma sobre a outra.

Observa-se que o diâmetro mostrou-se geneticamente correlacionado com o volume e os desvios-padrão dessas correlações foram de baixa magnitude. As altas correlações associadas aos baixos desvios-padrão indicam que a opção da condução da seleção através do diâmetro deverá refletir-se em estimativas de ganhos genéticos expressivos em volume e com boa precisão (Tabela 7).

Os limites inferiores dos intervalos de segurança e as acurácias referentes ao método de seleção denominado índice multiefeito foram, no mínimo, iguais aos obtidos na seleção combinada em blocos e sempre superiores aos da seleção individual no mesmo estrato (Tabela 8). Esse fato revela que a seleção através do índice multiefeito possibilita as maiores estimativas de ganho genético, pois além de considerar o desvio do valor individual em relação à média da família no bloco e no experimento, considera a fração da variância genética retida nos efeitos de parcela.

 

 

O método do índice multiefeito é um procedimento ótimo de seleção, equivalendo ao procedimento BLUP (melhor predição linear não-viciada) para o caso em que os dados são balanceados ou a sobrevivência é superior a 85% (Resende & Fernandes, 1999). O método pode ser prontamente aplicado em qualquer situação (com sobrevivência superior a 85%) no melhoramento em curto, médio e longo prazos e não acarreta qualquer custo adicional à seleção.

A seleção em bloco visa transformar o teste de procedências e progênies em pomar de sementes por mudas. O número de indivíduos selecionados em cada procedência correspondeu a uma intensidade de seleção entre 8,0% (Isla de Guanaja) e 13,5% (Poptún). Foram selecionados 95 indivíduos por procedência, totalizando 190 indivíduos.

A seleção desses indivíduos proporcionou estimativas de ganho genético indireto, em volume, por meio da seleção individual, de 14,9%, na seleção combinada, 16,68%, e no índice multiefeito, 17,22%; o que elevou a nova média das populações em estudo após um ciclo de seleção de 0,0910 m3/árv. para 0,1046 m3/árv. (seleção individual), para 0,1063 m3/árv. (seleção combinada) e para 0,1068 m3/árv. (índice multiefeito) (Tabela 9).

 

 

Para implantação do pomar de sementes clonal, foram selecionados, em experimento, 15 indivíduos em cada procedência. A seleção desses indivíduos correspondeu a uma intensidade de seleção entre 1,26% (Isla de Guanaja) e 2,14% (Poptún), totalizando 30 indivíduos no pomar de sementes clonal. A seleção individual proporcionará estimativas de ganhos genéticos indiretos em volume de 23,35%, a seleção combinada, de 23,74%, e o índice multiefeito, de 25,39%; elevando a nova média da população em volume de 0,0910 m3/árv. para 0,1127 m3/árv. (seleção individual), para 0,1130 m3/árv. (seleção combinada) e para 0,1145 m3/árv (seleção índice multiefeito) (Tabela 9).

Os limites inferiores dos ganhos genéticos indiretos em volume e as acurácias referentes ao método de seleção índice multiefeito foram superiores aos obtidos na seleção individual e combinada no mesmo estrato. No pomar de sementes clonal, o ganho genético em volume foi superior em 8,45% (seleção individual), 7,06% (seleção combinada), e 8,17% (índice multiefeito) em relação ao pomar de sementes por mudas. Tais resultados podem ser justificados pela maior intensidade de seleção na implantação do pomar de sementes clonal. Com base nesse fato, é aconselhável optar pela utilização do índice multiefeito, pois sua adoção não implica custos adicionais ao processo seletivo e maximiza o ganho genético em volume, tanto na implantação do pomar de sementes clonal como no pomar de sementes por mudas.

 

CONCLUSÕES

1. Existem variações genéticas entre e dentro de progênies para as características altura total, diâmetro, árvores bifurcadas e árvores com "foxtail".

2. A melhor procedência é Poptún, a qual apresenta maior produção volumétrica, maior número de árvores com copa quebrada, bifurcadas e com "foxtail".

3. As características volume, diâmetro, altura total, forma do fuste e diâmetro dos galhos apresentam maior herdabilidade, revelando boas perspectivas de resposta à seleção.

4. A seleção de árvores visando maximizar o ganho genético em volume deverá ser baseada no diâmetro, em virtude dos elevados coeficientes de correlação genética aditiva e dos baixos desvios-padrão entre essa característica e o volume.

5. O método de seleção índice multiefeito conduz a maiores acurácias e ganhos genéticos do que as modalidades seleção massal e seleção combinada, para o pomar de sementes por mudas e pomar de sementes clonal.

 

REFERÊNCIAS

DVORAK, W.S.; DONAHUE, J.K. CAMCORE cooperative research review: 1980-1992. Raleigh : North Carolina State University/CAMCORE Cooperative, 1992. 93p.         [ Links ]

FALCONER, O.S. Introdução à genética quantitativa. Viçosa : UFV, 1987. 279p.         [ Links ]

LIMA, R.T. Comportamento de espécies e procedências tropicais do gênero Pinus em Felixlândia, MG, Brasil: região de cerrados. 1 – Pinus caribaea var. hondurensis e Pinus oocarpa. Revista Árvore, Viçosa, v.14, n.1, p.16-25, 1990.         [ Links ]

MASSAKI, K.M.C. Variação entre espécies de procedências de pinheiros tropicais em Agudos, SP, Capão Bonito, SP, e Araquari, SC. Curitiba : UFPR, 1989. 82p. Dissertação de Mestrado.         [ Links ]

PIMENTEL-GOMES, F. Curso de Estatística Experimental. 7.ed. Piracicaba : Nobel, 1977. 430p.         [ Links ]

RESENDE, M.D.V. de; FERNANDES, J.S.C. Procedimento BLUP individual para delineamentos experimentais aplicados ao melhoramento florestal. Revista de Matemática e Estatística, Marília, v.17, p.87-109,1999.         [ Links ]

RESENDE, M.D.V.; HIGA, A.R. Estimação de valores genéticos no melhoramento de Eucalyptus: seleção em um caráter com base em informações do indivíduo e de seus parentes. Boletim de Pesquisas Florestais, Curitiba, v.28/29, p.11-35, 1994a.         [ Links ]

RESENDE, M.D.V.; HIGA, A.R. Maximização da eficiência da seleção em testes de progênies de Eucalyptus através da utilização de todos os efeitos do modelo matemático. Boletim de Pesquisas Florestais, Curitiba, v.28/29, p.37-56, 1994b.         [ Links ]

RESENDE, M.D.V.; ARAÚJO, A.J.; SAMPAIO, P.B.; WIECHETECK, A.S. Acurácia seletiva, intervalos de confiança e variâncias de ganhos genéticos associados a 22 métodos de seleção em Pinus caribaea var. hondurensis. Revista Floresta, Curitiba, v. 24, n.1/2, p.35-45, 1994a.         [ Links ]

RESENDE, M.D.V.; OLIVEIRA, E.B.; MELINSKI, L.C.; GOULART JÚNIOR, F.S.; OAIDA, G.R.P. Seleção genética computadorizada - SELEGEN "best prediction": manual do usuário. Colombo : Embrapa-CNPF, 1994b. 31p.         [ Links ]

SHIMIZU, J.Y.; PINTO JÚNIOR, J.E. Diretrizes para credenciamento de fontes de material genético melhorado para reflorestamento. Curitiba : Embrapa-CNPF, 1988. 15p. (Embrapa-CNPF. Documentos, 18).         [ Links ]

SOUZA, S.M. de; RESENDE, M.D.V.; SILVA, H.D. da; HIGA, A.R. Variabilidade genética e interação genótipo x ambiente envolvendo procedências de Eucalyptus cloesiana F. Muell., em diferentes regiões do Brasil. Revista Árvore, Viçosa, v.16, n.1, p.1-17, 1992.         [ Links ]

VENCOVSKY, R. Genética quantitativa. In: PATERNIANI, E. (Coord.). Melhoramento do milho no Brasil. Piracicaba : Fundação Cargill, 1978. p.122-201.         [ Links ]

VENCOVSKY, R.; BARRIGA, P. Genética biométrica no fitomelhoramento. Ribeirão Preto : Sociedade Brasileira de Genética, 1992. 486p.         [ Links ]

WRIGHT, J.W. Introduction to Forest Genetics. New York : Academic, 1976. 463p.         [ Links ]

 

 

1 Aceito para publicação em 30 de dezembro de 1999.
2 Eng. Flor., Dr., Instituto Nacional de Pesquisa da Amazônia (INPA), Coordenação de Pesquisa em Silvicultura Tropical (CPST), Caixa Postal 478, CEP 69011970 Manaus, AM. Email: sampaio@inpa.gov.br
3 Eng. Agrôn., Dr., Embrapa-Centro Nacional de Pesquisa de Florestas (CNPF), Caixa Postal 319, CEP 83411000 Colombo, PR. Email: deon@cnpf.embrapa.br
4 Eng. Flor., Ph.D., Prof. Titular, Dep. de Silvicultura, Universidade Federal do Paraná (UFPR), Rua Bom Jesus, 650, CEP 82501970 Curitiba, PR.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License