Acessibilidade / Reportar erro

Genetic control of thermoinhibition tolerance in lettuce seeds

Controle genético da tolerância à termoinibição em sementes de alface

Abstract

The objective of this work was to assess the genetic control of tolerance to thermoinhibition in lettuce (Lactuca sativa) seeds. Seeds of the F1, F2, and F2:3 generations derived from the cross between cultivars Everglades (tolerant to thermoinhibition) and Verônica (sensitive to thermoinhibition) were used, besides seeds from the parents. Seed germination tests were conducted in a completely randomized design, with four replicates of each parent, eight of F1, and four of each of the 26 F2:3 progenies. The mean of the F2 population was considered as the mean of the sample of the 26 progenies. The genetic control of thermoinhibition tolerance in lettuce seeds is attributed to one or a few genes. The additive effects are more expressive than the nonadditive ones, and narrow-sense heritability is relatively high, allowing the prediction of success in selection.

Index terms:
Lactuca sativa ; genetic variability; heritability; seed germination

Resumo

O objetivo deste trabalho foi determinar o controle genético da tolerância à termoinibição em sementes de alface (Lactuca sativa). Utilizaram-se sementes das gerações F1, F2 e F2:3 oriundas do cruzamento entre as cultivares Everglades (tolerante à termoinibição) e Verônica (sensível à termoinibição), além de sementes dos próprios genitores. Realizaram-se testes de germinação das sementes em delineamento completamente casualizado, com quatro repetições para cada um dos genitores, oito para a F1 e quatro para cada uma das 26 progênies F2:3. A média da população F2 foi considerada como a média da amostra das 26 progênies. O controle genético da tolerância à termoinibição em sementes de alface é atribuído a um ou poucos genes. Os efeitos aditivos são mais expressivos do que os não aditivos, e a herdabilidade no sentido restrito é relativamente alta, o que permite antever sucesso com a seleção.

Termos para indexação:
Lactuca sativa ; variabilidade genética; herdabilidade; germinação de sementes

Introduction

Lettuce is a leafy plant of great economic importance in Brazil and is cultivated in almost all the regions of the country (Silva et al., 2019SILVA, O.M. dos P. da; LOPES, W. de A.R.; NUNES, G.H. de S.; NEGREIROS, M.Z. de; ESPÍNOLA SOBRINHO, J. Adaptability and phenotypic stability of lettuce cultivars in a semiarid region. Revista Caatinga, v.32, p.552-558, 2019. DOI: https://doi.org/10.1590/1983-21252019v32n228rc
https://doi.org/10.1590/1983-21252019v32...
). Temperature can act directly or indirectly on germination, affecting seed dormancy and viability (Deng & Song, 2012DENG, Z.; SONG, S. Sodium nitroprusside, ferricyanide, nitrite and nitrate decrese the thermo-dormancy of lettuce seed germination in a nitric oxide-dependent manner in light. South African Journal of Botany, v.78, p.139-146, 2012. DOI: https://doi.org/10.1016/j.sajb.2011.06.009
https://doi.org/10.1016/j.sajb.2011.06.0...
). In addition, germination problems can cause poor quality seeds and a delay in seedling production, resulting in low yields and direct losses for farmers (Bufalo et al., 2012BUFALO, T.; AMARO, A.C.E; ARAÚJO, H.S; de CORSATO, J.M; ONO, E.O; FERREIRA, G; RODRIGUES, J.D. Períodos de estratificação na germinação de sementes de alface (Lactuca sativa L.) sob diferentes condições de luz e temperatura. Semina: Ciências Agrárias, v.33, p.931-940, 2012. DOI: https://doi.org/10.5433/1679-0359.2012v33n3p931
https://doi.org/10.5433/1679-0359.2012v3...
; Nascimento et al., 2012NASCIMENTO, W.M.; CRODA, M.D.; LOPES, A.C.A. Produção de sementes, qualidade fisiológica e identificação de genótipos de alface termotolerantes. Revista Brasileira de Sementes, v.34, p.510-517, 2012. DOI: https://doi.org/10.1590/S0101-31222012000300020
https://doi.org/10.1590/S0101-3122201200...
).

In general, in autogamous species, the estimation of genetic and phenotypic parameters and the testing of the hypothesis of monogenic inheritance have been carried out using data from plants of the P1 and P2 contrasting lines, of the F1 (cross between P1 and P2) and F2 (self-fertilization of F1 plants) generations, and of RC1 (backcrosses between F1 and P1 individuals) and RC2 (backcrosses between F1 and P2 individuals) (Matos Filho et al., 2014MATOS FILHO, C.H.A.; GOMES, R.L.F.; FREIRE FILHO, F.R.; ROCHA, M.M.; LOPES, A.C. de A.; NUNES, J.A.R. Herança de caracteres relacionados à arquitetura da planta em feijão-caupi. Ciência Rural, v.44, p.599-604, 2014. DOI: https://doi.org/10.1590/S0103-84782014000400004
https://doi.org/10.1590/S0103-8478201400...
). In interparietal crosses between contrasting genitors, it is possible to identify hybrids by phenotypic characters, although this is better observed in adult plants (Silva et al., 2005SILVA, M.P. da; AMARAL, JÚNIOR, A.T. do; PEREIRA, M.G.; RODRIGUES, R.; DAHER, R.F.; POSSE, S.C.P. Diversidade genética e identificação de híbridos por marcadores RAPD em feijão-de-vagem. Acta Scientiarum. Agronomy, v.27 p.531-539, 2005. DOI: https://doi.org/10.4025/actasciagron.v27i3.1466
https://doi.org/10.4025/actasciagron.v27...
). Specifically in lettuce, it is difficult to ensure seeds derived from backcrosses, since these generations have intermediate phenotypic characteristics. In this case, the option is usually to use seeds of F2:3 progenies to confirm F2 segregation (Carvalho Filho et al., 2011CARVALHO FILHO, J.L.S. de; GOMES, L.A.A; MALUF, W.R.; OLIVEIRA, R.R.; COSTA, D.S.; FERREIRA, S.; MONTEIRO, A.B.; CARVALHO, R.R. da C. e. Resistance to Meloidogyne incognita race 1 in the lettuce cultivars Grand Rapids and Salinas-88. Euphytica, v.182, p.199-208, 2011. DOI: https://doi.org/10.1007/s10681-011-0429-7
https://doi.org/10.1007/s10681-011-0429-...
).

In the literature, there are few known reports on thermotolerant lettuce genotypes. Argyris et al. (2011)ARGYRIS, J.; TRUCO, M.J.; OCHOA, O.; MCHALE, L.; DAHAL, P.; VAN DEYNZE, A.; MICELMORE, R.W.; BRADFORD, K.J. A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.). Theoretical and Applied Genetics, v.122, p.95-108, 2011. DOI: https://doi.org/10.1007/s00122-010-1425-3
https://doi.org/10.1007/s00122-010-1425-...
, for example, mentioned the UC96US23 accession of Lactuca serriola L., which is capable of germinating at temperatures close to 37ºC, whereas Yoong et al. (2016)YOONG, F.Y.; O’BRIEN, L.K.; TRUCO, M.J.; HUO, H.; SIDEMAN, R.; HAYES, R.; MICHELMORE, R.W.; BRADFORD, K.J. Genetic variation for thermotolerance in lettuce seed germination is associated with temperature-sensitive regulation of Ethylene Response Factor 1 (ERF1). Plant Physiology, v.170, p.472-488, 2016. DOI: https://doi.org/10.1104/pp.15.01251
https://doi.org/10.1104/pp.15.01251...
referred to the primitive PI251246 accession of Lactuca sativa L., with seed germination capacity even at temperatures above 33ºC; this latter accession was obtained by crossing UC96US23 with cultivar Salinas (Schwember & Bradford, 2010SCHWEMBER, A.R.; BRADFORD, K.J. A genetic locus and gene expression patterns associated with the priming effect on lettuce seed germination at elevated temperatures. Plant Molecular Biology, v.73, p.105-118, 2010. DOI: https://doi.org/10.1007/s11103-009-9591-x
https://doi.org/10.1007/s11103-009-9591-...
). Catão et al. (2014)CATÃO, H.C.R.M.; GOMES, L.A.A.; SANTOS, H.O. dos; GUIMARÃES, R.M.; FONSECA, P.H.F.; CAIXETA, F. Aspectos fisiológicos e bioquímicos da germinação de sementes de alface em diferentes temperaturas. Pesquisa Agropecuária Brasileira, v.49, p.316-322, 2014. DOI: https://doi.org/10.1590/S0100-204X2014000400010
https://doi.org/10.1590/S0100-204X201400...
and Almeida et al. (2019)ALMEIDA, F.A. de; SILVA-MANN, R.; SANTOS, H.O. dos; PEREIRA, R.W.; BLANK, A.F. Germination temperatures affect the physiological quality of seeds of lettuce cultivars. Bioscience Journal, v.35, p.1143-1152, 2019. DOI: https://doi.org/10.14393/BJ-v35n4a2019-42196
https://doi.org/10.14393/BJ-v35n4a2019-4...
identified cultivar Everglades of L. sativa as tolerant to thermoinhibition.

The study of the genetic control of the thermotolerance trait is important for the implementation of breeding programs. This way, it is possible to better understand the behavior of generations obtained from the crossing of thermosensitive and thermotolerant genotypes, as well as to establish more suitable breeding methods for lettuce.

The objective of this work was to assess the genetic control of tolerance to thermoinhibition in lettuce seeds.

Materials and Methods

The used lettuce (L. sativa) seeds were produced in a protected environment, at the experimental facilities of Center for Development and Technology Transfer of Fazenda Palmital, belonging to Universidade Federal de Lavras, located in the municipality of Ijaci, in the state of Minas Gerais, Brazil (21ᵒ09'24"S, 44ᵒ55'34"W, at 831 m of altitude).

Two lettuce cultivars, Everglades and Verônica, were crossed. The Everglades cultivar has smooth, tender leaves and is tolerant to thermoinhibition (Catão et al., 2014CATÃO, H.C.R.M.; GOMES, L.A.A.; SANTOS, H.O. dos; GUIMARÃES, R.M.; FONSECA, P.H.F.; CAIXETA, F. Aspectos fisiológicos e bioquímicos da germinação de sementes de alface em diferentes temperaturas. Pesquisa Agropecuária Brasileira, v.49, p.316-322, 2014. DOI: https://doi.org/10.1590/S0100-204X2014000400010
https://doi.org/10.1590/S0100-204X201400...
; Almeida et al., 2019ALMEIDA, F.A. de; SILVA-MANN, R.; SANTOS, H.O. dos; PEREIRA, R.W.; BLANK, A.F. Germination temperatures affect the physiological quality of seeds of lettuce cultivars. Bioscience Journal, v.35, p.1143-1152, 2019. DOI: https://doi.org/10.14393/BJ-v35n4a2019-42196
https://doi.org/10.14393/BJ-v35n4a2019-4...
), while Verônica has wavy, puckered, and loose leaves and is sensitive to thermoinhibition (Kano et al., 2011KANO, C.; CARDOSO, A.I.I.; VILLAS BÔAS, R.L.; HIGUTI, A.R.O. Germinação de sementes de alface obtidas de plantas cultivadas com diferentes doses de fósforo. Semina: Ciências Agrárias, v.32, p.591-598, 2011. DOI: https://doi.org/10.5433/1679-0359.2011v32n2p591
https://doi.org/10.5433/1679-0359.2011v3...
; Villela et al., 2010VILLELA, R.P.; SOUZA, R.J. de; GUIMARÃES, R.M.; NASCIMENTO, W.M.; GOMES, L.A.A.; CARVALHO, B.O.; BUENO, A.C.R. Produção e desempenho de sementes de cultivares de alface em duas épocas de plantio. Revista Brasileira de Sementes, v.32, p.158-169, 2010. DOI: https://doi.org/10.1590/S0101-31222010000100018
https://doi.org/10.1590/S0101-3122201000...
).

To obtain the seeds, cultivars Everglades and Verônica were initially sown in polystyrene trays with 128 cells, each of them with three seeds and filled with an organomineral substrate. After germination and seedling emergence, thinning was done, leaving only one plant per cell.

The seedlings were placed on concrete benches, with a 30% shading screen. Then, the seedlings were irrigated as needed and, 25 days after germination, they were transplanted into 10 L pots, containing a 2:1:1 mixture of soil, sand, and organic compost, respectively.

During the conduction of the plants until seed harvesting, spraying, fertilization, and irrigation were performed, according to the needs of the culture (Ribeiro et al., 1999RIBEIRO, A.C.; GUIMARÃES, P.T.G.; ALVAREZ V., V.H. (Ed.). Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5ª aproximação. Viçosa: Comissão de Fertilidade do Solo do Estado de Minas Gerais, 1999. 359p.).

At the time of flowering, crossings were carried out in the morning, with the emasculation of the flowers of the ‘Everglades’ female parent before sunrise, at 4:00 a.m., to avoid cutting the stigmas. The flowers from the ‘Verônica’ male parent were collected for pollination after flower opening at around 8:30 a.m.

The stigmas were pollinated after being fully developed, i.e., when they became bifid with open flowers. Pollination was done manually with an open flower of the Verônica cultivar, which was rubbed directly on the stigmas of the emasculated flower of the female parent. After their development and maturation, seeds were harvested and identified as F1. The F1 seeds were sown and cultivated as previously described, to generate the F2 and F2:3 seeds.

After obtaining the seeds of the F2 generation, new seeds from all generations were needed for the study, but they had to be collected at the same time and under the same conditions. This was done to avoid any effect of different environmental conditions, especially temperature at the time of seed formation.

These seeds were sown simultaneously with those of the parents and of the F1 and F2 generations, and were harvested 15 days after anthesis, at the physiological maturity point (Clemente et al., 2013CLEMENTE, A. da C.S.; GUIMARÃES, R.M.; MARTINS, D.C.; LIMA, A.A.; GOMES, L.A.A.; BALDONI, A. Gene expression associated with the biosynthetic pathway of abscisic acid, gibberellin and ethylene during lettuce seed development. African Journal of Biotechnology, v.12, p.3676-3684, 2013.). During the seed production process, the maximum and minimum average temperatures were estimated, being, respectively, 44.3 and 31.5ºC.

Afterwards, the seeds from the ‘Everglades’ and ‘Verônica’ parents and from the F1 generation, with F2 in bulk, were collected. The 26 F2:3 progenies were also collected individually. The purity of the F1 seeds was assessed by sowing the parents and the F1 generation in a polypropylene tray, in which the occurrence of contamination was determined by differences in leaf edge: frilled and curled edges for cultivar Verônica (Silva et al., 2008SILVA, R.R.; GOMES, L.A.A.; MONTEIRO, A.B.; MALUF, W.R.; CARVALHO FILHO, J.L.S. de; MASSAROTO, J.A. Linhagens de alface-crespa para o verão resistentes ao Meloidogyne javanica e ao vírus mosaico-da-alface. Pesquisa Agropecuária Brasileira, v.43, p.1349-1356, 2008. DOI: https://doi.org/10.1590/S0100-204X2008001000013
https://doi.org/10.1590/S0100-204X200800...
), smooth edges for cultivar Everglades (Catão et al., 2016CATÃO, H.C.R.M.; GOMES, L.A.A.; GUIMARÃES, R.M.; FONSECA, P.H.F.; CAIXETA, F.; MARODIN, J.C. Physiological and isozyme alterations in lettuce seeds under different conditions and storage periods. Journal of Seed Science, v.38, p.305-313, 2016. DOI: https://doi.org/10.1590/2317-1545v38n4163863
https://doi.org/10.1590/2317-1545v38n416...
), and intermediate edges for F1 (Silva et al., 2005SILVA, M.P. da; AMARAL, JÚNIOR, A.T. do; PEREIRA, M.G.; RODRIGUES, R.; DAHER, R.F.; POSSE, S.C.P. Diversidade genética e identificação de híbridos por marcadores RAPD em feijão-de-vagem. Acta Scientiarum. Agronomy, v.27 p.531-539, 2005. DOI: https://doi.org/10.4025/actasciagron.v27i3.1466
https://doi.org/10.4025/actasciagron.v27...
). The seeds of the F2:3 progeny were used to detect the proportion of segregation observed in F2, which allows inferring about the number of genes involved in the trait (Ramalho et al., 2012RAMALHO, M.A.P.; ABREU, A. de F.B.; SANTOS, J.B. dos; NUNES, J.A.R. Aplicações da genética quantitativa no melhoramento de plantas autógamas. Lavras: Ed. UFLA, 2012. 522p.).

For the first count and germination (%) tests (Brasil, 2009BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília, 2009. 399p.), an experiment was carried out in a completely randomized design with replicates of 50 seeds per treatment, with four replicates of each parent, eight replicates of F1, and four replicates of each of the 26 F2:3 progenies, totaling 120 plots. To estimate the mean of the F2 population, the sample mean of the 26 progenies was used.

For the germination tests, the seeds were spread on blotting paper moistened with distilled water and placed in BOD chambers, at 35ºC, under a 12 hour photoperiod (Brasil, 2009BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília, 2009. 399p.). The first and second germination counts were carried out four and seven days after sowing, respectively. To ensure that the remaining seeds were in thermoinhibition and not thermodormancy, temperature was reduced to 20ºC after the second count. New counts were done four and seven days later, in order to assess the thermoinhibition effect, using seed germination data at 20ºC. Both counts were performed as recommended by Brasil (2009)BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília, 2009. 399p..

After the test was completed, the seeds that failed to germinate, even at 20ºC, had their integuments removed and were subjected to the tetrazolium test (2,3,5-triphenyltetrazolium chloride) (Brasil, 2009BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília, 2009. 399p.). The results were expressed as percentage of viable seeds.

Data were subjected to the analysis of variance according to the F-test using the Sisvar software (Ferreira, 2011FERREIRA, D.F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, v.35, p.1039-1042, 2011. DOI: https://doi.org/10.1590/S1413-70542011000600001
https://doi.org/10.1590/S1413-7054201100...
), and the R, version 3.1.3 (R Core Team, 2015R CORE TEAM. R: a language and environment for statistical computing. Version 3.1.2. Vienna: R Foundation for Statistical Computing, 2015.), software was used to estimate the components of mean and variance.

The mean components, mean estimator (m), deviations of the homozygote from the mean (â), and deviation of the heterozygote from the mean (d^) were estimated using the method of the weighted least squares, considering the additive and dominant model without epistasis (Ramalho et al., 2012RAMALHO, M.A.P.; ABREU, A. de F.B.; SANTOS, J.B. dos; NUNES, J.A.R. Aplicações da genética quantitativa no melhoramento de plantas autógamas. Lavras: Ed. UFLA, 2012. 522p.), according to the expression:

β^=(CNS-1C)-1(CNS-1Y)β^=|ma^d^|C=|1-10110101100.5|Y=|P¯1P¯2F¯1F¯2|N=|n10000n20000n30000n4|S=|VP10000VP20000VF10000VF2|
where β^ is the vector of the estimates, in which m is the mean estimator, â is the estimator of deviations of the homozygote from the mean, and d^ is the deviation of the heterozygote from the mean; C is the model matrix referring to populations P1, P2, F1, and F2; Y is the vector of the means of each population; N is the matrix associated with the number of plants evaluated, in which n1, n2, n3, and n4 are the number of plants from populations P1, P2, F1, and F2, respectively; and S is the matrix of variances associated with the populations, in which VP1, VP2, VF1, and VF2 are the variances among the plants of generations P1, P2, F1, and F2, respectively.

The components of phenotypic variance - V^E,V^A, and V^D - were estimated using the weighted least squares method, according to Ramalho et al. (2012)RAMALHO, M.A.P.; ABREU, A. de F.B.; SANTOS, J.B. dos; NUNES, J.A.R. Aplicações da genética quantitativa no melhoramento de plantas autógamas. Lavras: Ed. UFLA, 2012. 522p. and Cruz et al. (2012)CRUZ, C.D.; REGAZZI, A.J.; CARNEIRO, P.C. Modelos biométricos aplicados ao melhoramento genético. 4.ed. Viçosa: UFV, 2012., considering the same populations and according to the following expression:

β^=(CNS-1C)-1(CNS-1Y)β^=|V^AV^EV^D|C=|1-10110101111|Y=|VP1VP2VF1VF2|N=|DFP10000DFP20000DFF10000DFF2| S=|VP10000VP20000VF10000VF2|
where β^ is the vector of the estimates, in which V^A, is the additive genetic variance, V^E, is the environmental variance, and V^D, is the dominance variance; C is the model matrix; Y is the vector of the variances estimated from the observations of the different populations; N is the matrix constructed according to the model matrix, with DF corresponding to the degrees of freedom associated with each source of variation; and S is the weighting matrix that corresponds to the variances observed for each population.

Narrow-sense heritability (h2r) was obtained for the trait germination percentage, using the estimates of the variance components:

hr2=V^AV^A+V^D+V^E

Accuracy (rgg’) was estimated by the formula:

 rgg' =1-(1/F)
where F (Snedecor) is the value of the variance ratio for the effects of treatments associated with the analysis of variance (Resende, 2002RESENDE, M.D.V. de. Genética biométrica e estatística no melhoramento de plantas perenes. Brasília: Embrapa Informação Tecnológica; Colombo: Embrapa Florestas, 2002. 975p.).

Finally, incomplete dominance was given by d, which was obtained by the following formula:

d=mF1(P1+P2)2
where m is the mean of the F1 generation.

Results and Discussion

Initially, the F-test of the analysis of variance showed differences among the genotypes at 1% probability, confirming variability for the trait thermoinhibition tolerance in seeds - germinated at 35ºC - of the Everglades and Verônica lettuce cultivars and of the generations derived from the cross between them (Table 1).

The Everglades and Verônica cultivars, corresponding to genotypes 1 and 2, respectively, had a germination percentage of 93 and 17% at 35°C (Figure 1). These results are indicative of the divergence between both parents for thermoinhibition tolerance, which may be attributed to the activity of the endo-β-mannanase enzyme that was greater in Everglades than in the thermosensitive cultivar. Therefore, the highest germination percentage in Everglades may be explained by the higher enzymatic activity in the seeds of this cultivar (Catão et al., 2014CATÃO, H.C.R.M.; GOMES, L.A.A.; SANTOS, H.O. dos; GUIMARÃES, R.M.; FONSECA, P.H.F.; CAIXETA, F. Aspectos fisiológicos e bioquímicos da germinação de sementes de alface em diferentes temperaturas. Pesquisa Agropecuária Brasileira, v.49, p.316-322, 2014. DOI: https://doi.org/10.1590/S0100-204X2014000400010
https://doi.org/10.1590/S0100-204X201400...
, 2018CATÃO, H.C.R.M.; GOMES, L.A.A.; GUIMARÃES, R.M.; FONSECA, P.H.F.; CAIXETA, F.; GALVÃO, A.G. Physiological and biochemical changes in lettuce seeds during storage at different temperatures. Horticultura Brasileira, v.36, p.118-125, 2018. DOI: https://doi.org/10.1590/S0102-053620180120
https://doi.org/10.1590/S0102-0536201801...
).

Compared with the parents, generations F1, represented by genotype 3, and F2, represented by genotype 4, had intermediate germination percentages of 81 and 65%, respectively, indicating that the predominant allelic interaction, which conditions thermoinhibition tolerance, is additive. Additive allelic interactions are common for several traits in autogamous species (Baldissera et al., 2014BALDISSERA, J.N. da C.; VALENTINI, G.; COAN, M.M.D.; GUIDOLIN, A.F.; COIMBRA, J.L.M. Fatores genéticos relacionados com a herança em populações de plantas autógamas. Revista de Ciências Agroveterinárias, v.13, p.181-189, 2014.).

The analysis of variance showed a significant difference for germination among the plants of generation F2 (F2:3 progenies) (Table 2). The germination means of the F2:3 progenies, corresponding to the 26 genotypes numbered from 5 to 30 (Figure 1), ranged from 9 to 96%, with an overall mean of 65%, which is considered the mean of the F2 generation. This variation in germination within the progenies is due to segregation, which is fundamental for the selection of genetic parameters of interest, such as heritability, reflecting the proportion of phenotypic variance that can be inherited (Baldissera et al., 2014BALDISSERA, J.N. da C.; VALENTINI, G.; COAN, M.M.D.; GUIDOLIN, A.F.; COIMBRA, J.L.M. Fatores genéticos relacionados com a herança em populações de plantas autógamas. Revista de Ciências Agroveterinárias, v.13, p.181-189, 2014.).

Additive effects (â = 38.78) are more important than nonadditive ones (d^ = 26.28) for the thermoinhibition tolerance trait (Table 3). Since the additive effect is related to characteristics that can be passed on to subsequent generations, its greater magnitude means that a large part of the traits that confer thermotolerance will be passed on to other generations (Labroo et al., 2021LABROO, M.R.; STUDER, A.J.; RUTKOSKI, J.E. Heterosis and hybrid crop breeding: a multidisciplinary review. Frontiers in Genetics, v.12, art.643761, 2021. DOI: https://doi.org/10.3389/fgene.2021.643761
https://doi.org/10.3389/fgene.2021.64376...
). The same happens for resistance to the Meloidogyne javanica nematode in lettuce seeds, considering the predominance of the additive effect in relation to the nonadditive effects (Maluf et al., 2002MALUF, W.R.; AZEVEDO, S.M.; GOMES, L.A.A.; OLIVEIRA, A.C.B. de. Inheritance of resistance to the root-knot nematode Meloidogyne javanica in lettuce. Genetics and Molecular Research, v.1, p.64-71, 2002. DOI: https://doi.org/10.4238/vol1-1gmr006
https://doi.org/10.4238/vol1-1gmr006...
).

Table 1
Analysis of variance of the germination percentage of lettuce seeds (Lactuca sativa) at 35°C(1) (1) DF, degree of freedom; SS, sum of squares; MS, mean square; and CV, coefficient of variation. .

The estimate of the mean degree of dominance (MDD) indicates a greater dominance regarding thermotolerance (Table 3), which, however, is still lower than that of the additive effects found to control this characteristic (Cruz et al., 2012CRUZ, C.D.; REGAZZI, A.J.; CARNEIRO, P.C. Modelos biométricos aplicados ao melhoramento genético. 4.ed. Viçosa: UFV, 2012.). According to Cheverud & Routman (1995)CHEVERUD, J.M.; ROUTMAN, E.J. Epistasis and its contribution to genetic variance components. Genetics, v.139, p.1455-1461, 1995. DOI: https://doi.org/10.1093/genetics/139.3.1455
https://doi.org/10.1093/genetics/139.3.1...
, the biologically dominant or epistatic gene action is largely captured by statistical average effects, because both statistical dominance and epistasis are residual deviations from these effects. Since lettuce is an autogamous species, with a high cleistogamous effect, the high value of the MDD estimate is an important information for the genetic improvement of the crop.

Figure 1
Dispersion of the germination percentage of lettuce (Lactuca sativa) seeds at 35°C for: cultivars Everglades (1) and Verônica (2) as parents; generations F1 (3) and F2 (4); and 26 F2:3 progenies (5 to 30).
Table 2
Analysis of variance of the germination percentage of lettuce (Lactuca sativa) seeds collected from plants of generation F2 (progenies F2:3 of ‘Everglades’ x 'Verônica') at 35°C(1) (1) DF, degree of freedom; SS, sum of squares; MS, mean square; and CV, coefficient of variation. .

The dominant additive model without epistasis explained the observed means, since the chi-square test was not significant and the model fit (R2) estimate between the observed and estimated means was practically 1.0 (Table 4). Likewise, high values of R2 were verified by Oliveira et al. (2019)OLIVEIRA, A.H.G. de; MACIEL, G.M.; SIQUIEROLI, A.C.S.; JACINTO, A.C.P.; SILVEIRA, A.J. de; SILVA, E.C. da. Estimates of genetic parameters of pigments and agronomic traits in green and purple lettuce. Ciência e Agrotecnologia, v.43, e013219, 2019. DOI: https://doi.org/10.1590/1413-7054201943013219
https://doi.org/10.1590/1413-70542019430...
in a study about pigment genetic parameters and agronomic traits in lettuce, in which the authors also proposed a dominant additive model. Therefore, when superior genotypes for resistance to thermotolerance in lettuce seeds are selected in one generation, the next would have similar results regarding this trait.

The estimate of heritability in the narrow sense was also high (Table 4). This means that the phenotypic variability of thermoinhibition can be attributed to additive variance, that is, to the proportion of genetic variance that can be fixed with selection. Furthermore, it has been reported that the studied trait must be controlled by few genes (Ramalho et al., 2012RAMALHO, M.A.P.; ABREU, A. de F.B.; SANTOS, J.B. dos; NUNES, J.A.R. Aplicações da genética quantitativa no melhoramento de plantas autógamas. Lavras: Ed. UFLA, 2012. 522p.). Therefore, selection based on phenotype is promising for breeding programs that aim to obtain thermotolerant lettuce cultivars, since the genetic control of this trait is known and the additive effects can be fixed.

Table 3
Estimation of the mean components of the germination percentage of lettuce (Lactuca sativa) seeds at 35°C(1) (1) m, mean estimator; â, deviations of the homozygote from the mean; d^, deviation of the heterozygote from the mean; MDD, values of the mean degree of dominance; F1 and F2, plant generations; χ .
Table 4
Estimation of the variance components of the germination percentage of lettuce (Lactuca sativa) seeds at 35°C.

The germination percentage, at 35ºC, for the F1 generation (81%) was considered intermediate, between those obtained for the ‘Everglades’ (93%) and ‘Verônica’ (17%) female and male parents, respectively, but tending to approach that of the tolerant mother, as it was higher than the parental mean (55%) (Table 3). This result differs from incomplete dominance, possibly due to a maternal effect, as the F1 mean is close to that of the female parent (Ramalho et al., 2012RAMALHO, M.A.P.; ABREU, A. de F.B.; SANTOS, J.B. dos; NUNES, J.A.R. Aplicações da genética quantitativa no melhoramento de plantas autógamas. Lavras: Ed. UFLA, 2012. 522p.).

The deviation of the heterozygote from the parental average () was 26.28, corresponding to the deviation of the mean of the F1 generation (81%) from the mean of the two parents (55%) (Table 3), indicating incomplete dominance. When the additive effects for a trait are high in a given cross, the mean of the parents does not differ from that of the progeny, differently from the results found in the present work. However, with nonadditive effects (dominance and/or epistasis) in the control of a characteristic, the mean of the parents differs from that of the F1 progeny (Allard, 1999ALLARD, R.W. Principles of plant breeding. 2nd ed. New York: J. Wiley & Sons, 1999. 254p.). In addition, there is a possibility of maternal effect in the F1 generation, as the germination percentage is close to that of the ‘Everglades’ female parent (Table 3).

It was found that there was a predominance of the gene action of additivity in controlling the thermoinhibition trait. However, there is also the possibility of the gene action of nonadditive effects, such as the maternal effect. Therefore, to detect the action of the maternal effect, it is necessary to carry out reciprocal crossings (Nascimento et al., 2016NASCIMENTO, W.M.; ANDRADE, K.P.; FREITAS, R.A.; SILVA, G.O.; BOITEUX, L.S. Germinação de sementes de tomateiro em diferentes temperaturas: variabilidade fenotípica e heterose. Horticultura Brasileira, v.1, p.216-222, 2016. DOI: https://doi.org/10.1590/S0102-053620160000200011
https://doi.org/10.1590/S0102-0536201600...
).

Conclusions

  1. Thermoinhibition tolerance in lettuce (Lactuca sativa) seeds is a trait controlled by one or a few genes.

  2. Additive effects are more significant than nonadditive effects for the trait thermoinhibition tolerance in lettuce seeds.

  3. Narrow-sense heritability is relatively high for the trait thermoinhibition tolerance in lettuce seeds, allowing the prediction of selection gain.

  4. Conventional breeding of lettuce aiming at thermoinhibition tolerance is feasible from crosses between contrasting genotypes.

Acknowledgments

To Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and to Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig), for scholarships granted; and to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), for financing, in part, this study (Finance Code 001).

References

  • ALLARD, R.W. Principles of plant breeding 2nd ed. New York: J. Wiley & Sons, 1999. 254p.
  • ALMEIDA, F.A. de; SILVA-MANN, R.; SANTOS, H.O. dos; PEREIRA, R.W.; BLANK, A.F. Germination temperatures affect the physiological quality of seeds of lettuce cultivars. Bioscience Journal, v.35, p.1143-1152, 2019. DOI: https://doi.org/10.14393/BJ-v35n4a2019-42196
    » https://doi.org/10.14393/BJ-v35n4a2019-42196
  • ARGYRIS, J.; TRUCO, M.J.; OCHOA, O.; MCHALE, L.; DAHAL, P.; VAN DEYNZE, A.; MICELMORE, R.W.; BRADFORD, K.J. A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.). Theoretical and Applied Genetics, v.122, p.95-108, 2011. DOI: https://doi.org/10.1007/s00122-010-1425-3
    » https://doi.org/10.1007/s00122-010-1425-3
  • BALDISSERA, J.N. da C.; VALENTINI, G.; COAN, M.M.D.; GUIDOLIN, A.F.; COIMBRA, J.L.M. Fatores genéticos relacionados com a herança em populações de plantas autógamas. Revista de Ciências Agroveterinárias, v.13, p.181-189, 2014.
  • BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes Brasília, 2009. 399p.
  • BUFALO, T.; AMARO, A.C.E; ARAÚJO, H.S; de CORSATO, J.M; ONO, E.O; FERREIRA, G; RODRIGUES, J.D. Períodos de estratificação na germinação de sementes de alface (Lactuca sativa L.) sob diferentes condições de luz e temperatura. Semina: Ciências Agrárias, v.33, p.931-940, 2012. DOI: https://doi.org/10.5433/1679-0359.2012v33n3p931
    » https://doi.org/10.5433/1679-0359.2012v33n3p931
  • CARVALHO FILHO, J.L.S. de; GOMES, L.A.A; MALUF, W.R.; OLIVEIRA, R.R.; COSTA, D.S.; FERREIRA, S.; MONTEIRO, A.B.; CARVALHO, R.R. da C. e. Resistance to Meloidogyne incognita race 1 in the lettuce cultivars Grand Rapids and Salinas-88. Euphytica, v.182, p.199-208, 2011. DOI: https://doi.org/10.1007/s10681-011-0429-7
    » https://doi.org/10.1007/s10681-011-0429-7
  • CATÃO, H.C.R.M.; GOMES, L.A.A.; GUIMARÃES, R.M.; FONSECA, P.H.F.; CAIXETA, F.; GALVÃO, A.G. Physiological and biochemical changes in lettuce seeds during storage at different temperatures. Horticultura Brasileira, v.36, p.118-125, 2018. DOI: https://doi.org/10.1590/S0102-053620180120
    » https://doi.org/10.1590/S0102-053620180120
  • CATÃO, H.C.R.M.; GOMES, L.A.A.; GUIMARÃES, R.M.; FONSECA, P.H.F.; CAIXETA, F.; MARODIN, J.C. Physiological and isozyme alterations in lettuce seeds under different conditions and storage periods. Journal of Seed Science, v.38, p.305-313, 2016. DOI: https://doi.org/10.1590/2317-1545v38n4163863
    » https://doi.org/10.1590/2317-1545v38n4163863
  • CATÃO, H.C.R.M.; GOMES, L.A.A.; SANTOS, H.O. dos; GUIMARÃES, R.M.; FONSECA, P.H.F.; CAIXETA, F. Aspectos fisiológicos e bioquímicos da germinação de sementes de alface em diferentes temperaturas. Pesquisa Agropecuária Brasileira, v.49, p.316-322, 2014. DOI: https://doi.org/10.1590/S0100-204X2014000400010
    » https://doi.org/10.1590/S0100-204X2014000400010
  • CHEVERUD, J.M.; ROUTMAN, E.J. Epistasis and its contribution to genetic variance components. Genetics, v.139, p.1455-1461, 1995. DOI: https://doi.org/10.1093/genetics/139.3.1455
    » https://doi.org/10.1093/genetics/139.3.1455
  • CLEMENTE, A. da C.S.; GUIMARÃES, R.M.; MARTINS, D.C.; LIMA, A.A.; GOMES, L.A.A.; BALDONI, A. Gene expression associated with the biosynthetic pathway of abscisic acid, gibberellin and ethylene during lettuce seed development. African Journal of Biotechnology, v.12, p.3676-3684, 2013.
  • CRUZ, C.D.; REGAZZI, A.J.; CARNEIRO, P.C. Modelos biométricos aplicados ao melhoramento genético 4.ed. Viçosa: UFV, 2012.
  • DENG, Z.; SONG, S. Sodium nitroprusside, ferricyanide, nitrite and nitrate decrese the thermo-dormancy of lettuce seed germination in a nitric oxide-dependent manner in light. South African Journal of Botany, v.78, p.139-146, 2012. DOI: https://doi.org/10.1016/j.sajb.2011.06.009
    » https://doi.org/10.1016/j.sajb.2011.06.009
  • FERREIRA, D.F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, v.35, p.1039-1042, 2011. DOI: https://doi.org/10.1590/S1413-70542011000600001
    » https://doi.org/10.1590/S1413-70542011000600001
  • KANO, C.; CARDOSO, A.I.I.; VILLAS BÔAS, R.L.; HIGUTI, A.R.O. Germinação de sementes de alface obtidas de plantas cultivadas com diferentes doses de fósforo. Semina: Ciências Agrárias, v.32, p.591-598, 2011. DOI: https://doi.org/10.5433/1679-0359.2011v32n2p591
    » https://doi.org/10.5433/1679-0359.2011v32n2p591
  • LABROO, M.R.; STUDER, A.J.; RUTKOSKI, J.E. Heterosis and hybrid crop breeding: a multidisciplinary review. Frontiers in Genetics, v.12, art.643761, 2021. DOI: https://doi.org/10.3389/fgene.2021.643761
    » https://doi.org/10.3389/fgene.2021.643761
  • MALUF, W.R.; AZEVEDO, S.M.; GOMES, L.A.A.; OLIVEIRA, A.C.B. de. Inheritance of resistance to the root-knot nematode Meloidogyne javanica in lettuce. Genetics and Molecular Research, v.1, p.64-71, 2002. DOI: https://doi.org/10.4238/vol1-1gmr006
    » https://doi.org/10.4238/vol1-1gmr006
  • MATOS FILHO, C.H.A.; GOMES, R.L.F.; FREIRE FILHO, F.R.; ROCHA, M.M.; LOPES, A.C. de A.; NUNES, J.A.R. Herança de caracteres relacionados à arquitetura da planta em feijão-caupi. Ciência Rural, v.44, p.599-604, 2014. DOI: https://doi.org/10.1590/S0103-84782014000400004
    » https://doi.org/10.1590/S0103-84782014000400004
  • NASCIMENTO, W.M.; ANDRADE, K.P.; FREITAS, R.A.; SILVA, G.O.; BOITEUX, L.S. Germinação de sementes de tomateiro em diferentes temperaturas: variabilidade fenotípica e heterose. Horticultura Brasileira, v.1, p.216-222, 2016. DOI: https://doi.org/10.1590/S0102-053620160000200011
    » https://doi.org/10.1590/S0102-053620160000200011
  • NASCIMENTO, W.M.; CRODA, M.D.; LOPES, A.C.A. Produção de sementes, qualidade fisiológica e identificação de genótipos de alface termotolerantes. Revista Brasileira de Sementes, v.34, p.510-517, 2012. DOI: https://doi.org/10.1590/S0101-31222012000300020
    » https://doi.org/10.1590/S0101-31222012000300020
  • OLIVEIRA, A.H.G. de; MACIEL, G.M.; SIQUIEROLI, A.C.S.; JACINTO, A.C.P.; SILVEIRA, A.J. de; SILVA, E.C. da. Estimates of genetic parameters of pigments and agronomic traits in green and purple lettuce. Ciência e Agrotecnologia, v.43, e013219, 2019. DOI: https://doi.org/10.1590/1413-7054201943013219
    » https://doi.org/10.1590/1413-7054201943013219
  • R CORE TEAM. R: a language and environment for statistical computing. Version 3.1.2. Vienna: R Foundation for Statistical Computing, 2015.
  • RAMALHO, M.A.P.; ABREU, A. de F.B.; SANTOS, J.B. dos; NUNES, J.A.R. Aplicações da genética quantitativa no melhoramento de plantas autógamas Lavras: Ed. UFLA, 2012. 522p.
  • RESENDE, M.D.V. de. Genética biométrica e estatística no melhoramento de plantas perenes Brasília: Embrapa Informação Tecnológica; Colombo: Embrapa Florestas, 2002. 975p.
  • RIBEIRO, A.C.; GUIMARÃES, P.T.G.; ALVAREZ V., V.H. (Ed.). Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5ª aproximação. Viçosa: Comissão de Fertilidade do Solo do Estado de Minas Gerais, 1999. 359p.
  • SCHWEMBER, A.R.; BRADFORD, K.J. A genetic locus and gene expression patterns associated with the priming effect on lettuce seed germination at elevated temperatures. Plant Molecular Biology, v.73, p.105-118, 2010. DOI: https://doi.org/10.1007/s11103-009-9591-x
    » https://doi.org/10.1007/s11103-009-9591-x
  • SILVA, M.P. da; AMARAL, JÚNIOR, A.T. do; PEREIRA, M.G.; RODRIGUES, R.; DAHER, R.F.; POSSE, S.C.P. Diversidade genética e identificação de híbridos por marcadores RAPD em feijão-de-vagem. Acta Scientiarum. Agronomy, v.27 p.531-539, 2005. DOI: https://doi.org/10.4025/actasciagron.v27i3.1466
    » https://doi.org/10.4025/actasciagron.v27i3.1466
  • SILVA, O.M. dos P. da; LOPES, W. de A.R.; NUNES, G.H. de S.; NEGREIROS, M.Z. de; ESPÍNOLA SOBRINHO, J. Adaptability and phenotypic stability of lettuce cultivars in a semiarid region. Revista Caatinga, v.32, p.552-558, 2019. DOI: https://doi.org/10.1590/1983-21252019v32n228rc
    » https://doi.org/10.1590/1983-21252019v32n228rc
  • SILVA, R.R.; GOMES, L.A.A.; MONTEIRO, A.B.; MALUF, W.R.; CARVALHO FILHO, J.L.S. de; MASSAROTO, J.A. Linhagens de alface-crespa para o verão resistentes ao Meloidogyne javanica e ao vírus mosaico-da-alface. Pesquisa Agropecuária Brasileira, v.43, p.1349-1356, 2008. DOI: https://doi.org/10.1590/S0100-204X2008001000013
    » https://doi.org/10.1590/S0100-204X2008001000013
  • VILLELA, R.P.; SOUZA, R.J. de; GUIMARÃES, R.M.; NASCIMENTO, W.M.; GOMES, L.A.A.; CARVALHO, B.O.; BUENO, A.C.R. Produção e desempenho de sementes de cultivares de alface em duas épocas de plantio. Revista Brasileira de Sementes, v.32, p.158-169, 2010. DOI: https://doi.org/10.1590/S0101-31222010000100018
    » https://doi.org/10.1590/S0101-31222010000100018
  • YOONG, F.Y.; O’BRIEN, L.K.; TRUCO, M.J.; HUO, H.; SIDEMAN, R.; HAYES, R.; MICHELMORE, R.W.; BRADFORD, K.J. Genetic variation for thermotolerance in lettuce seed germination is associated with temperature-sensitive regulation of Ethylene Response Factor 1 (ERF1). Plant Physiology, v.170, p.472-488, 2016. DOI: https://doi.org/10.1104/pp.15.01251
    » https://doi.org/10.1104/pp.15.01251

Publication Dates

  • Publication in this collection
    29 Nov 2021
  • Date of issue
    2021

History

  • Received
    12 Nov 2020
  • Accepted
    27 July 2021
Embrapa Secretaria de Pesquisa e Desenvolvimento; Pesquisa Agropecuária Brasileira Caixa Postal 040315, 70770-901 Brasília DF Brazil, Tel. +55 61 3448-1813, Fax +55 61 3340-5483 - Brasília - DF - Brazil
E-mail: pab@embrapa.br