Acessibilidade / Reportar erro

Corrective and maintenance phosphorus fertilization on sugarcane yield in Oxisols

Adubação fosfatada corretiva e de manutenção na produtividade de cana-de-açúcar em Latossolos

Abstract

The objective of this work was to evaluate sugarcane (Saccharum spp.) yield in response to corrective and maintenance phosphorus fertilization in Oxisols. Two experiments were carried out in randomized complete blocks with four replicates. In the corrective fertilization treatments, 150 kg ha-1 P2O5 were broadcast and incorporated before planting. In the maintenance fertilization treatments, 40 kg ha-1 P2O5 per year were applied over the trash blanket. All treatments, except the control, were fertilized with 170 kg ha-1 P2O5 in the planting furrow. The first experiment was carried out in a sugarcane expansion area and the second, in a replanting area, in Oxisols with a low and high phosphorus availability, respectively. In the first experiment, corrective fertilization increased cane yield in 13.4 Mg ha-1 for plant cane and in 14.6 Mg ha-1 for the average of four ratoon crops, whereas maintenance fertilization increased yield in 17.7 and 8.1 Mg ha-1 for the average of four ratoon crops for the treatments without and with corrective fertilization, respectively. In the second experiment, there were no significant differences between treatments regarding yield. Corrective and maintenance phosphorus fertilization should be considered for sugarcane in areas where soil phosphorus availability is limiting.

Index terms:
Saccharum ; fertilizer placement; phosphate rock; superphosphate

Resumo

O objetivo deste trabalho foi avaliar a produtividade da cana-de-açúcar (Saccharum spp.) em resposta à adubação fosfatada corretiva e de manutenção em Latossolos. Dois experimentos foram conduzidos em blocos ao acaso, com quatro repetições. Nos tratamentos com adubação corretiva, foram aplicados 150 kg ha-1 de P2O5 a lanço, com incorporação antes do plantio. Nos tratamentos de adubação de manutenção, foram aplicados 40 kg ha-1 de P2O5 por ano sobre o palhiço. Todos os tratamentos, exceto o testemunha, foram adubados com 170 kg ha-1 de P2O5 no sulco de plantio. O primeiro experimento foi realizado em área de expansão de cana-de-açúcar e o segundo, em área de reforma, em Latossolos com baixa e alta disponibilidade de fósforo, respectivamente. No primeiro experimento, a adubação corretiva propiciou aumentos na produtividade de colmos de 13,4 Mg ha-1 para cana-planta e 14,6 Mg ha-1 na média de quatro socas, enquanto a adubação de manutenção propiciou aumentos de produtividade de 17,7 e 8,1 Mg ha-1 na média das socas para os tratamentos sem e com adubação corretiva, respectivamente. No segundo experimento, não houve diferenças significativas entre os tratamentos em relação à produtividade. As adubações fosfatadas corretiva e de manutenção devem ser consideradas para cana-de-açúcar em áreas cuja disponibilidade de fósforo do solo é limitante.

Termos para indexação:
Saccharum ; localização do fertilizante; fosfato natural; superfosfato

Introduction

A great expansion has been observed in the sugar and ethanol sector in Brazil during the past two decades. In the Midwestern region, made up by the states of Goiás, Mato Grosso, and Mato do Grosso do Sul, and in the mesoregions of the Cerrado biome in the state of Minas Gerais, the area cultivated with sugarcane grew approximately 400 and 350% from 2000 to 2018, respectively, reaching 1.91 and 0.86 million hectares. Overall, in the country, the growth in sugarcane area was 110% (IBGE, 2020IBGE. Instituto Brasileiro de Geografia e Estatística. Produção Agrícola Municipal. Available at: <https://sidra.ibge.gov.br/pesquisa/pam/tabelas>. Accessed on: May 18 2020.
https://sidra.ibge.gov.br/pesquisa/pam/t...
).

The expansion of sugarcane in the Cerrado biome occurred mainly in areas of pastures and grain crops, and, to a lesser extent, in areas of native vegetation (Ribeiro et al., 2016RIBEIRO, N.V.; FERREIRA, L.G.; FERREIRA, N.C. Avaliação da expansão do cultivo da cana-de-açúcar no bioma Cerrado por meio de modelagem dinâmica da paisagem. Revista Brasileira de Cartografia, v.68, p.1-14, 2016.). Unlike crop areas, most of the pastures in the region are not fertilized and retain the inherited low soil fertility in the case of areas originally under cerrado vegetation (Franco et al., 2015FRANCO, I.O.; SCOPEL, I.; ASSUNÇÃO, H.F. Unidades de mapeamento de solos sob cultivo de cana-de-açúcar em 2011: análise da expansão da cultura no Sudoeste de Goiás (Brasil). Revista do Departamento de Geografia, v.30, p.1-18, 2015. DOI: https://doi.org/10.11606/rdg.v30i0.89964
https://doi.org/10.11606/rdg.v30i0.89964...
). The soils of these areas are acid and with generalized nutrient deficiencies, among which that of phosphorus stands out as the main limiting factor for agricultural production (Sousa et al., 2004SOUSA, D.M.G. de; LOBATO, E.; REIN, T.A. Adubação com fósforo. In: SOUSA, D.M.G. de; LOBATO, E. (Ed.). Cerrado: correção do solo e adubação. 2.ed. Brasília: Embrapa Informação Tecnológica, 2004. p.147-168.).

Phosphorus fertilization of sugarcane is traditionally based on high rates, up to 180 kg ha-1 P2O5, applied to the bottom of the planting furrow (Spironello et al., 1996SPIRONELLO, A.; RAIJ, B. van; PENATTI, C.P.; CANTARELLA, H.; MORELLI, J.L.; ORLANDO FILHO, J.; LANDELL, M.G. de A.; ROSSETTO, R. Cana-de-açúcar. In: RAIJ, B. van; CANTARELLA, H.; QUAGGIO, J.A.; FURLANI, A.M.C. (Ed.). Recomendações de adubação e calagem para o Estado de São Paulo. 2.ed. Campinas: Instituto Agronômico, 1996. p.237-239. (IAC. Boletim técnico, 100).). Broadcast-incorporated corrective fertilization to build-up the status of soil phosphorus, in addition to phosphorus fertilization in the planting furrow, is recommended for crops, in general, in the Cerrado region (Sousa et al., 2004SOUSA, D.M.G. de; LOBATO, E.; REIN, T.A. Adubação com fósforo. In: SOUSA, D.M.G. de; LOBATO, E. (Ed.). Cerrado: correção do solo e adubação. 2.ed. Brasília: Embrapa Informação Tecnológica, 2004. p.147-168.), as well as for sugarcane (Luz & Vitti, 2008LUZ, P.H. de C; VITTI, G.C. Manejo e uso de fertilizantes para cana-de-açúcar. In: MARQUES, M.O.; MUTTON, M.A.; NOGUEIRA, T.A.R.; TASSO JÚNIOR, L.C.; NOGUEIRA, G.A.; BERNARDI, J.H. (Ed.). Tecnologias na agricultura canavieira. Jaboticabal: FCAV, 2008. p.140-167.; Rein et al., 2015REIN, T.A.; SOUSA, D.M.G. de; SANTOS JÚNIOR, J. de D.G. dos; NUNES, R. de S.; KORNDÖRFER, G.H. Manejo da adubação fosfatada para cana-de-açúcar no Cerrado. Planaltina: Embrapa Cerrados, 2015. 12p. (Embrapa Cerrados. Circular técnica, 29).; Korndörfer et al., 2017KORNDÖRFER, G.H.; RAMOS, L.A.; REIN, T.A. Calagem, silicatagem, gessagem e fosfatagem para cana-de-açúcar. In: SILVA, F.C. da; ALVES, B.J.R.; FREITAS, P.L. de (Ed.). Sistema de produção mecanizada da cana-de-açúcar integrada à produção de energia e alimentos. Brasília: Embrapa, 2017. v.2, p.755-789.). However, it is still not a widespread practice for this crop. Sugarcane yield increases and economic returns due to corrective phosphorus fertilization have been reported in the northern part of the state of Goiás, in soils with a low phosphorus availability (Gama, 2007GAMA, A.J.M. Sistema de rotação e adubação fosfatada na cultura da cana-de-açúcar no Cerrado. 2007. 86p. Dissertação (Mestrado) - Universidade Federal de Uberlândia, Uberlândia.; Sousa et al., 2015SOUSA, R.T.X. de; KORNDÖRFER, G.H.; SOARES, R.A.B.; FONTOURA, P.R. Phosphate fertilizers for sugarcane used at pre-planting (phosphorus fertilizer application). Journal of Plant Nutrition, v.38, p.1444-1455, 2015. DOI: https://doi.org/10.1080/01904167.2014.990567
https://doi.org/10.1080/01904167.2014.99...
).

Maintenance phosphorus fertilization of ratoon crops is also not a widespread practice in the production of sugarcane in Brazil, although it has been increasing, but with controversies regarding yield responses and fertilizer use efficiency (Penatti, 2013PENATTI, C.P. Adubação da cana-de-açúcar: 30 anos de experiência. Itu: Ottoni Editora, 2013. 347p.). A compilation of experimental results showed frequent yield increases with maintenance phosphorus fertilization in soils with a low phosphorus availability (Rein et al., 2015REIN, T.A.; SOUSA, D.M.G. de; SANTOS JÚNIOR, J. de D.G. dos; NUNES, R. de S.; KORNDÖRFER, G.H. Manejo da adubação fosfatada para cana-de-açúcar no Cerrado. Planaltina: Embrapa Cerrados, 2015. 12p. (Embrapa Cerrados. Circular técnica, 29).). However, in soils representative of the southern part of the state of Goiás, an important sugar and ethanol production region in Brazil, no known experimental data is available on phosphorus fertilization management for the sugarcane crop.

The objective of this work was to evaluate sugarcane yield in response to corrective and maintenance phosphorus fertilization in Oxisols.

Materials and Methods

Two experiments were carried out in sugarcane (Saccharum spp.) production areas of the Goiasa-Goiatuba Álcool Ltda sugarcane mill, located in the municipality of Goiatuba, in the state of Goiás, Brazil. The climate of the region is classified as Aw, tropical with a dry winter season, according to Köppen’s classification. The average annual precipitation is 1,350 mm (91% between October and April), and the average minimum and maximum temperatures are 19.9 and 29.3°C, respectively (Climatempo, 2020CLIMATEMPO. Climatologia: Goiatuba-GO. Available at: <http://www.climatempo.com.br/climatologia/1012/goiatuba-go>. Accessed on: Jan. 6 2020.
http://www.climatempo.com.br/climatologi...
). Experiment 1 was established in a sugarcane expansion area (18°06'S, 49°37'W, at an altitude of 750 m) with a Latossolo Vermelho Ácrico according to the Brazilian classification system (Santos et al., 2018aSANTOS, H.G. dos; JACOMINE, P.K.T.; ANJOS, L.H.C. dos; OLIVEIRA, V.Á. de; LUMBRERAS, J.F.; COELHO, M.R.; ALMEIDA, J.A. de; ARAÚJO FILHO, J.C. de; OLIVEIRA, J.B. de; CUNHA, T.J.F. Sistema brasileiro de classificação de solos. 5.ed. rev. e ampl. Brasília: Embrapa, 2018a. 356p.), i.e., a sandy clay loam Anionic Acrustox (Soil Survey Staff, 2014SOIL SURVEY STAFF. Keys to Soil Taxonomy. 12th ed. Washington: USDA, 2014. 360p. Available at: <https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580>. Accessed on: Apr. 5 2021.
https://www.nrcs.usda.gov/wps/portal/nrc...
), derived from basic igneous rock and sandstone, previously under pasture of Urochloa brizantha (A.Rich.) R.D.Webster grass. Experiment 2 was established in a sugarcane replanting area (17°56'S, 49°45'W, at an altitude of 680 m) previously cropped with soybean [Glycine max (L.) Merr.], with a Latossolo Vermelho Acriférrico (Santos et al., 2018aSANTOS, H.G. dos; JACOMINE, P.K.T.; ANJOS, L.H.C. dos; OLIVEIRA, V.Á. de; LUMBRERAS, J.F.; COELHO, M.R.; ALMEIDA, J.A. de; ARAÚJO FILHO, J.C. de; OLIVEIRA, J.B. de; CUNHA, T.J.F. Sistema brasileiro de classificação de solos. 5.ed. rev. e ampl. Brasília: Embrapa, 2018a. 356p.), i.e., a clayey Anionic Acrustox (Soil Survey Staff, 2014SOIL SURVEY STAFF. Keys to Soil Taxonomy. 12th ed. Washington: USDA, 2014. 360p. Available at: <https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580>. Accessed on: Apr. 5 2021.
https://www.nrcs.usda.gov/wps/portal/nrc...
), derived from basic igneous rock. Table 1 shows the chemical characterization and textural analysis of the two soils sampled in December 2009, respectively, nine and seven months after experiments 1 and 2 were planted. The soils were sampled in the sugarcane interrow of the control treatment plots (without phosphorus fertilization), with 16 subsamples of each plot being taken at 0-20 and 20-40 cm depths. Analyses were performed following the methods described by Claessen (1997)CLAESSEN, M.E.C. (Org.). Manual de métodos de análise de solo. 2.ed. rev. e atual. Rio de Janeiro: Embrapa-CNPS, 1997. 212p. (Embrapa-CNPS. Documentos, 1). Available at: <https://ainfo.cnptia.embrapa.br/digital/bitstream/item/169149/1/Manual-de-metodos-de-analise-de-solo-2-ed-1997.pdf >. Accessed on: Nov. 2 2019.
https://ainfo.cnptia.embrapa.br/digital/...
, with the exception of pH in 0.01 mol L-1 CaCl2, titratable acidity at pH 7 (H+Al), and available phosphorus by the resin method (Raij et al., 2001RAIJ, B. van; ANDRADE, J.C. de; CANTARELLA, H.; QUAGGIO, J.A. (Ed.). Análise química para avaliação da fertilidade de solos tropicais. Campinas: IAC, 2001. 285p. Available at: <http://lab.iac.sp.gov.br/Publicacao/Raij_et_al_2001_Metod_Anal_IAC.pdf>. Accessed on: Aug. 31 2019.
http://lab.iac.sp.gov.br/Publicacao/Raij...
).

Experiment 1 was planted in mid-March 2009 and experiment 2 at the end of May of the same year in plots of 135 m2 (nine 10 m rows with 1.5 m row spacing) and 90 m2 (six 10 m rows with 1.5 m row spacing), respectively. A total of 3.7 and 3.5 Mg ha-1 dolomitic limestone (approximately 80% effective calcium carbonate equivalent) was applied in 2008 in the areas of experiments 1 and 2, respectively, and incorporated with a heavy disk harrow at a depth of approximately 20 cm. Crotalaria juncea L. was grown in the expansion area (experiment 1), without fertilization, broken up, and partially incorporated with a disk harrow in February 2009. The soybean crop grown in the replant area (experiment 2) was harvested in April 2009.

Both experiments were carried out in a randomized complete block design with four replicates. The treatments consisted of phosphorus sources (only in experiment 1), rates, and methods of application (Table 2). Since experiment 2 was planted in late May (“winter planting”), already in the dry season, the area was previously irrigated with a sprinkler system before the broadcast application of fertilizers and mechanized operations for incorporating the fertilizers and opening the planting furrows.

The fertilizers used for the corrective fertilization treatments were: granular triple superphosphate (47% total P2O5 and 46% soluble in neutral ammonium citrate + water), unground commercial Arad phosphate rock from Israel (33% total P2O5 and 10.6% soluble in 2% citric acid, 1:100 w/v), and a finely ground (96% < 0.074 mm) phosphate rock from Arraias, in the state of Tocantins, Brazil (20% total P2O5 and 6.5% soluble in 2% citric acid, 1:100 w/v). The fertilizers were manually broadcast at 150 or 125 kg ha-1 P2O5 in treatments D, E, F, and G in experiment 1 and in treatment E in experiment 2 (Table 2). The plots were split into four quadrants for a more homogeneous broadcast of the fertilizers, which were incorporated with a disk harrow at approximately 15 cm depth. The rate of 150 kg ha-1 P2O5 was chosen based on the recommendations for corrective phosphorus fertilization for sugarcane and other crops in general in the Cerrado region (Sousa et al., 2004SOUSA, D.M.G. de; LOBATO, E.; REIN, T.A. Adubação com fósforo. In: SOUSA, D.M.G. de; LOBATO, E. (Ed.). Cerrado: correção do solo e adubação. 2.ed. Brasília: Embrapa Informação Tecnológica, 2004. p.147-168.; Korndörfer et al., 2017KORNDÖRFER, G.H.; RAMOS, L.A.; REIN, T.A. Calagem, silicatagem, gessagem e fosfatagem para cana-de-açúcar. In: SILVA, F.C. da; ALVES, B.J.R.; FREITAS, P.L. de (Ed.). Sistema de produção mecanizada da cana-de-açúcar integrada à produção de energia e alimentos. Brasília: Embrapa, 2017. v.2, p.755-789.), as well as on the recommendations for sugarcane in the state of São Paulo in medium-textured soils with a low to medium phosphorous availability (Rosseto et al., 2010ROSSETTO, R.; CANTARELLA, H.; DIAS, F.L.F.; VITTI, A.C.; TAVARES, S. Cana-de-açúcar. In: PROCHNOW, L.I.; CASARIN, V.; STIPP, S.R. (Ed.). Boas práticas para uso eficiente de fertilizantes. Piracicaba: IPNI, 2010. v.3, p.161-230.; Vitti et al., 2015VITTI, G.C.; OTTO, R.; FERREIRA, L.R. de P. Nutrição e adubação da cana-de-açúcar: manejo nutricional da cultura da cana-de-açúcar: In: BELARDO, G. de C.; CASSIA, M.T.; SILVA, R.P. da (Ed.). Processos agrícolas e mecanização da cana-de-açúcar. Jaboticabal: SBEA, 2015. p.177-205.). The applied superphosphate rate was based on the content of P2O5 soluble in neutral ammonium citrate + water, whereas the rates of phosphate rocks were based on the total contents of P2O5.

Table 1
Chemical and physical characterization of the soil sampled in the interrow of the control treatment plots of the two experiments (averages of four plots)(1) (1) pH measured in 0.01 mol L .
Table 2
Treatments with sources, rates, and methods of application of phosphorus in experiment 1 with sugarcane (Saccharum spp.) expansion and a low phosphorus soil and in experiment 2 with sugarcane replant and a high phosphorus soil.

Afterwards, the planting furrows were mechanically opened at approximately 25 cm depth, with a furrow spacing of 1.5 m. A commercial bulk blend of monoammonium phosphate and single superphosphate (7% N, 40% P2O5 soluble in neutral ammonium citrate + water, and 4.3% S) was manually applied at the bottom of the planting furrows, at the corresponding rates of 0, 100, and 170 kg ha-1 P2O5, based on the content of P2O5 soluble in neutral ammonium citrate + water, according to the treatments shown in Table 2. Nitrogen and sulfur at the rates of 30 and 18 kg ha1, respectively, were leveled for all treatments with urea and ammonium sulfate. Micronutrients were also applied to all treatments at the rate of 40 kg ha-1 of the commercial granular product FTE BR-12 (Nutriplant Indústria e Comércio S.A., Barueri, SP, Brazil), supplying 0.72 kg ha-1 B, 0.32 kg ha-1 Cu, 0.8 kg ha-1 Mn, 0.04 kg ha-1 Mo, and 3.6 kg ha-1 Zn as oxisulfates. The fertilizers were lightly incorporated with a hoe into the bottom of the planting furrows.

Then, to ensure a good stand, three seed canes of two sugarcane varieties - SP 83-2847 and RB 86-7515 in experiments 1 and 2, respectively - were manually planted, chopped with a machete into billets of approximately 40 cm, and covered by hoe with 5 to 10 cm of soil. In experiment 1 (expansion area previously under pasture), before being covered with soil, the chopped canes were sprayed with the fipronil insecticide for termite control at 200 g ha-1 active ingredient. In experiment 2, planted in late May, already in the dry season, two sprinkler irrigations were carried out just after planting and at the beginning of cane sprouting, to ensure full sprouting.

In August 2009, fertilizers were side-dressed in experiment 1 just before the operation to level the soil along the row and interrow space (manual, with hoe), incorporating the fertilizers applied at both sides of the sugarcane rows. Nitrogen at 60 kg ha-1 N (ammonium sulfate) and potassium at 160 kg ha-1 K2O (potassium chloride) were applied in all treatments. In the H treatment plots (Table 2), 70 kg ha-1 P2O5 were applied as granular triple superphosphate, based on the neutral ammonium citrate + water soluble content. This split management of phosphorus fertilization for plant cane (100 kg ha-1 in the planting furrow + 70 kg ha-1 side-dressed) is already adopted at the Goiasa-Goiatuba Álcool Ltda sugar mill and was evaluated as a treatment in both experiments.

In experiment 2, the fertilizer side-dressing and soil leveling operations were carried out in November 2009. Nitrogen at 60 kg ha-1 N and potassium at 160 kg ha-1 K2O were applied for all treatments as a bulk blend of potassium chloride and ammonium nitrate. Triple superphosphate at 70 kg ha-1 P2O5 was applied for treatment C (Table 2), complementing the 100 kg ha-1 P2O5 rate in the planting furrow.

Manual harvesting of the plant cane and ratoon crops was done in May for both experiments, except for the first ratoon crop, which was harvested in June 2011. Five crops were harvested for experiment 1 and three for experiment 2. With the exception of plant cane in experiment 1, with pre-harvest burning, the experiments were green harvested. Millable stalk yield was evaluated in the five central rows of experiment 1 (52.5 m2) and in the four central rows of experiment 2 (42 m2), after excluding 1.5 m borders at each end of the row. Trash (green tops and most of the dry leaves) was separated from the stalks and left on the plots. The cane stacks at the plots were weighed with a dynamometer coupled to a grab loader.

Ten millable stalks from each plot were sampled and processed within 48 hours after harvesting for quality analysis at the Laboratory of Technological Analysis of the Goiasa-Goiatuba Álcool Ltda sugar mill, following the methodologies described in Consecana-SP (2006)CONSECANA-SP. Conselho dos Produtores de CanadeAçúcar, Açúcar e Álcool do Estado de São Paulo. Manual de instruções. 5.ed. Piracicaba, 2006. 111p.. Cane quality was expressed as total reducing sugars (kg Mg-1 millable stalks), computed from juice Brix and POL and fiber content, with juice being extracted with a hydraulic press. The ten stalk samples from all plots were analyzed in the first three harvests from 2010-2012 of both experiments, but samples from only a few treatments were analyzed in the fourth harvest of experiment 1, and no samples were taken for the last harvest of experiment 1.

For the maintenance fertilization of the ratoon crops (treatments C and E in experiment 1 and treatment D in experiment 2), triple superphosphate, at the rate of 40 kg ha-1 P2O5 (soluble in neutral ammonium citrate + water), was applied every year after harvesting at the beginning of the rainy season around October, on top of the trash blanket at both sides of the cane rows. At the same time, nitrogen and potassium were applied to all plots at 120 kg ha-1 N and 144 kg ha-1 K2O as a bulk blend of ammonium nitrate and potassium chloride.

Weeds were controlled with pre- and post-emergent herbicides, as well as with manual hoe weeding. The biological control of stem borers was carried out in some of the years by releasing the Cotesia flavipes (Cameron) wasp in the experiments.

The cane yield results of the plant cane and ratoon crops were subjected to the analysis of variance and the t-test, at 5% probability. Analyzes were performed with the SAS, version 9.3.1, software (SAS Institute Inc., Cary, NC, USA).

Results and Discussion

Significant cane yield increases were observed with phosphorus fertilization in experiment 1 (Table 3), a sugarcane expansion area after pasture in a sandy clay loam Oxisol, with phosphorous availability in the 0-20 cm layer (Table 1) that was classified as medium by the resin method and low by the Mehlich-1 method (Sousa et al., 2004SOUSA, D.M.G. de; LOBATO, E.; REIN, T.A. Adubação com fósforo. In: SOUSA, D.M.G. de; LOBATO, E. (Ed.). Cerrado: correção do solo e adubação. 2.ed. Brasília: Embrapa Informação Tecnológica, 2004. p.147-168.). The plant cane yield with 170 kg ha-1 P2O5 in the planting furrow (treatment B) was 13.2 Mg ha-1 higher than that of the control (treatment A). In addition, compared with treatment B, there was an average yield increase of 13.4 Mg ha-1 for plant cane in treatments D, F, and G (Table 3) with the corrective broadcast-incorporated fertilization with triple superphosphate and with the Arad and Arraias phosphate rocks, respectively, with no significant difference between the three sources. Moreover, the residual effect of corrective fertilization was pronounced. The average yield of the four ratoon crops with the three phosphorus sources was 14.6 Mg ha1 higher than that of treatment B without corrective fertilization, which is comparable to the yield response of the studied plant cane. As observed for the studied plant cane, similar yields were obtained for the ratoon crops with the three sources.

In experiment 2, a replanting area following a soybean crop in summer, there were no significant responses of the plant cane and ratoon crops to the phosphorus fertilization treatments (Table 4). These results are consistent with the phosphorus availability in the 0-20 cm layer of this very clayey Oxisol (Table 1), which is of 6.3 and 30.6 mg dm-3 by the Mehlich-1 and resin methods, respectively, classified as high according to Sousa et al. (2004)SOUSA, D.M.G. de; LOBATO, E.; REIN, T.A. Adubação com fósforo. In: SOUSA, D.M.G. de; LOBATO, E. (Ed.). Cerrado: correção do solo e adubação. 2.ed. Brasília: Embrapa Informação Tecnológica, 2004. p.147-168..

Table 3
Millable cane yields of plant cane and four ratoon crops in experiment 1 with sugarcane (Saccharum spp.) expansion and a low phosphorus soil(1) (1) The average total reducing sugars was 136.8, 145.7, 137.5, and 142.4 kg Mg-1 cane, respectively, in 2010, 2011, 2012, and 2013. .

The increase in sugarcane yield with corrective fertilization complementing phosphorus fertilization in the planting furrow, as observed in experiment 1 (Table 3), has been reported for soils with a low phosphorus availability in the state of Goiás and other regions in Brazil (Morelli et al., 1987MORELLI, J.L.; DEMATTÊ, J.L.I.; SILVA, J.A.V.; BAPTISTELLA, J.R.; GIOVANETTI, L.Z. Efeitos da aplicação do superfosfato simples em área total e dentro do sulco. In: CONGRESSO NACIONAL DA SOCIEDADE DOS TÉCNICOS AÇUCAREIROS E ALCOOLEIROS DO BRASIL, 4.; CONVENÇÃO DA ACTALAC, 7., 1987, Olinda. Anais. Olinda: STAB, 1987. p.76-83., 1991MORELLI, J.L.; NELLI, E.J.; BAPTISTELA, J.R.; DEMATTÊ, J.L.I. Termofosfato na produtividade da cana-de-açúcar e nas propriedades químicas de um solo arenoso de baixa fertilidade. Revista Brasileira de Ciência do Solo, v.15, p.57-61, 1991.; Rossetto et al., 2002ROSSETTO, R.; FARHAT, M.; FURLAN, R.; GIL, M.A.; SILVA, S.F. Eficiência agronômica do fosfato natural na cultura da cana-de-açúcar. In: CONGRESSO NACIONAL DA SOCIEDADE DOS TÉCNICOS AÇUCAREIROS E ALCOOLEIROS DO BRASIL, 8., 2002, Recife. Anais. Recife: STAB, 2002. p.276-282.; Gama, 2007GAMA, A.J.M. Sistema de rotação e adubação fosfatada na cultura da cana-de-açúcar no Cerrado. 2007. 86p. Dissertação (Mestrado) - Universidade Federal de Uberlândia, Uberlândia.; Sousa et al., 2015SOUSA, R.T.X. de; KORNDÖRFER, G.H.; SOARES, R.A.B.; FONTOURA, P.R. Phosphate fertilizers for sugarcane used at pre-planting (phosphorus fertilizer application). Journal of Plant Nutrition, v.38, p.1444-1455, 2015. DOI: https://doi.org/10.1080/01904167.2014.990567
https://doi.org/10.1080/01904167.2014.99...
; Lisboa et al., 2016LISBOA, L.A.M.; VIANA, R. da S.; PASCOALOTO, I.M.; HEINRICHS, R.; FIGUEIREDO, P.A.M. de. Efeitos da fosfatagem no desenvolvimento da cana-de-açúcar. Ciência e Tecnologia, v.8, p.31-41, 2016.). This is explained, not only by the higher total rate of applied phosphorus, but also by phosphorus use efficiency in terms of higher cane yields when granular superphosphate or finely ground magnesium thermal phosphate (nearly 100% soluble in 2% citric acid, 1:100 w/v ratio) are exclusively broadcast-incorporated instead of traditionally applied in the planting furrow, as shown in experiments with sandy soils (Reis & Caballa-Rosand, 1986REIS, E.L.; CABALA-ROSAND, P. Respostas da cana-de-açúcar ao nitrogênio, fósforo e potássio em solo de tabuleiro do sul da Bahia. Revista Brasileira de Ciência do Solo, v.10, p.129-134, 1986.; Morelli et al., 1987MORELLI, J.L.; DEMATTÊ, J.L.I.; SILVA, J.A.V.; BAPTISTELLA, J.R.; GIOVANETTI, L.Z. Efeitos da aplicação do superfosfato simples em área total e dentro do sulco. In: CONGRESSO NACIONAL DA SOCIEDADE DOS TÉCNICOS AÇUCAREIROS E ALCOOLEIROS DO BRASIL, 4.; CONVENÇÃO DA ACTALAC, 7., 1987, Olinda. Anais. Olinda: STAB, 1987. p.76-83., 1991MORELLI, J.L.; NELLI, E.J.; BAPTISTELA, J.R.; DEMATTÊ, J.L.I. Termofosfato na produtividade da cana-de-açúcar e nas propriedades químicas de um solo arenoso de baixa fertilidade. Revista Brasileira de Ciência do Solo, v.15, p.57-61, 1991.; Rossetto et al., 2002ROSSETTO, R.; FARHAT, M.; FURLAN, R.; GIL, M.A.; SILVA, S.F. Eficiência agronômica do fosfato natural na cultura da cana-de-açúcar. In: CONGRESSO NACIONAL DA SOCIEDADE DOS TÉCNICOS AÇUCAREIROS E ALCOOLEIROS DO BRASIL, 8., 2002, Recife. Anais. Recife: STAB, 2002. p.276-282.) and a very clayey Oxisol (Rein & Sousa, 2013REIN, T.A.; SOUSA, D.M.G. de. Sugarcane response to phosphorus sources and placement in a very clayey Oxisol of the Brazilian Cerrado. In: CONGRESS OF THE INTERNATIONAL SOCIETY OF SUGARCANE TECHNOLOGISTS, 28., 2013, São Paulo. Proceedings. São Paulo: International Society of Sugarcane Technologists, 2013. p.477-485. Available at: <https://issct.org/wp-content/uploads/proceedings/2013/Agronomy.pdf>. Accessed on: Sept. 26 2019.
https://issct.org/wp-content/uploads/pro...
). However, Santos et al. (2018b)SANTOS, V.R. dos; SOLTANGHEISI, A.; FRANCO, H.C.J.; KOLLN, O.; VITTI, A.C.; DIAS, C.T. dos S.; PAVINATO, P.S. Phosphate sources and their placement affecting soil phosphorus pools in sugarcane. Agronomy, v.8, p.1-15, 2018b. DOI: https://doi.org/10.3390/agronomy8120283
https://doi.org/10.3390/agronomy8120283...
did not find any significant difference in cane yield between broadcast-incorporation and furrow application of phosphorus.

Therefore, in most of the mentioned cases, phosphorus use efficiency by sugarcane in low phosphorus soils increases when fertilizers are applied to a much larger soil volume instead of at the bottom of the planting furrows (with 1.5 m row spacing). Given the low mobility of phosphorus in the soil (Sousa et al., 2016SOUSA, D.M.G. de; NUNES, R. de S.; REIN, T.A.; SANTOS JUNIOR, J. de D.G. dos. Manejo do fósforo na região do Cerrado. In: FLORES, R.A.; CUNHA, P.P. da. Práticas de manejo do solo para adequada nutrição de plantas no Cerrado. Goiânia: UFG, 2016. p.291-357.), broadcast-incorporation, compared with furrow application, allows a higher fraction of the root system to have access to the applied phosphorus, though much more diluted in the soil.

Corrective broadcast-incorporated phosphorus fertilization has been recommended in the Cerrado region for sugarcane (Rein et al., 2015REIN, T.A.; SOUSA, D.M.G. de; SANTOS JÚNIOR, J. de D.G. dos; NUNES, R. de S.; KORNDÖRFER, G.H. Manejo da adubação fosfatada para cana-de-açúcar no Cerrado. Planaltina: Embrapa Cerrados, 2015. 12p. (Embrapa Cerrados. Circular técnica, 29).; Korndörfer et al., 2017KORNDÖRFER, G.H.; RAMOS, L.A.; REIN, T.A. Calagem, silicatagem, gessagem e fosfatagem para cana-de-açúcar. In: SILVA, F.C. da; ALVES, B.J.R.; FREITAS, P.L. de (Ed.). Sistema de produção mecanizada da cana-de-açúcar integrada à produção de energia e alimentos. Brasília: Embrapa, 2017. v.2, p.755-789.) and for crops in general (Sousa et al., 2004SOUSA, D.M.G. de; LOBATO, E.; REIN, T.A. Adubação com fósforo. In: SOUSA, D.M.G. de; LOBATO, E. (Ed.). Cerrado: correção do solo e adubação. 2.ed. Brasília: Embrapa Informação Tecnológica, 2004. p.147-168., 2016; Zancanaro et al., 2019ZANCANARO, L.; ONO, F.B.; KAPPES, C.; SEMLER, T.D.; VALENDORFF, J.D.P.; CORADINI, D.; VIDOTTI, M.V. Correção do solo e manejo da adubação. In: KAPPES, C. (Ed.). Boletim de Pesquisa 2019/2020. Rondonópolis: Fundação MT, 2019. p.111-136.). Fertilizer rates are recommended according to soil phosphorus availability and clay content as a surrogate of phosphorus adsorption capacity. This corrective fertilization is justified by the well-known and long residual effect of phosphorus application, which, in the case of annual crops, seems to be even more pronounced under no-tillage management (Sousa et al., 2016SOUSA, D.M.G. de; NUNES, R. de S.; REIN, T.A.; SANTOS JUNIOR, J. de D.G. dos. Manejo do fósforo na região do Cerrado. In: FLORES, R.A.; CUNHA, P.P. da. Práticas de manejo do solo para adequada nutrição de plantas no Cerrado. Goiânia: UFG, 2016. p.291-357.; Oliveira et al., 2019OLIVEIRA, L.E.Z. de; NUNES, R. de S.; SOUSA, D.M.G. de; BUSATO, J.G.; FIGUEIREDO, C.C. de. Response of maize to different soil residual phosphorus conditions. Agronomy Journal, v.111, p.3291-3300, 2019. DOI: https://doi.org/10.2134/agronj2018.11.0710
https://doi.org/10.2134/agronj2018.11.07...
), a condition analogous to sugarcane ratooning. Under no-tillage, the long term recovery of broadcast-incorporated phosphorus in harvested products reached nearly 80% in a clayey Oxisol (Oliveira et al., 2020OLIVEIRA, L.E.Z. de; SOUSA, D.M.G. de; FIGUEIREDO, C.C. de; NUNES, R. de S.; MALAQUIAS, J.V. Long-term phosphate fertilization strategies evaluation in a Brazilian Oxisol. Agronomy Journal, v.112, p.4303-4320, 2020. DOI: https://doi.org/10.1002/agj2.20324
https://doi.org/10.1002/agj2.20324...
). Contrary to previous views that applied phosphorus is largely converted to forms unavailable to the plant, particularly in highly weathered soils, current analyses based on worldwide long-term experiments have pointed out that, once the soil phosphorus critical level is reached, phosphorus use efficiency by crops can exceed 80-90%, sustaining near maximum yields in the long run (Syers et al., 2008SYERS, J.K.; JOHNSTON, A.E.; CURTIN, D. Efficiency of soil and fertilizer phosphorus use: reconciling changing concepts of soil phosphorus behavior with agronomic information. Rome: Food and Agriculture Organization of the United Nations, 2008. 108p. (FAO. Fertilizer and Plant Nutrition Bulletin, 18).; Johnston et al., 2014JOHNSTON, A.E.; POULTON, P.R.; FIXEN, P.E.; CURTIN, D. Phosphorus: its efficient use in agriculture. Advances in Agronomy, v.123, p.177-228, 2014. DOI: https://doi.org/10.1016/B978-0-12-420225-2.00005-4
https://doi.org/10.1016/B978-0-12-420225...
).

In experiment 1, the plant cane yield of treatment H for which the rate of 170 kg ha-1 P2O5 was split (100 kg ha-1 in the planting furrow + 70 kg ha-1 side-dressed before leveling soil surface) was comparable to that of treatment B with the same total rate applied exclusively to the planting furrow, but was, on average, 10.6 Mg ha-1 higher than that of treatment B for the ratoon crops (Table 3). This result is consistent with a higher phosphorus use efficiency when the fertilizer is applied to a larger volume of soil, allowing of a higher fraction of the root system to have access to this nutrient.

Table 4
Millable cane yields of plant cane and two ratoon crops in experiment 2 with sugarcane (Saccharum spp.) replant and a high phosphorus soil(1) (1) The average total reducible sugars was 184.6, 167.0, and 137.5 kg Mg-1 cane, respectively, in 2010, 2011, and 2012. .

The commercial unground Arad phosphate rock and the finely ground (96% < 0.074 mm) Arraias phosphate rock showed a similar performance to that of the superphosphate for corrective fertilization in treatments D, F, and G of experiment 1 (Table 3), which could make them attractive alternative sources for moderately acid soils if prices per unit P2O5 are lower than those for water-soluble fertilizers and if further experimental works confirm the present findings. Both phosphate rocks, with a solubility in 2% citric acid higher than 30%, are classified as “reactive” by Brazilian regulations (Brasil, 2018BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 39, de 8 de agosto de 2018. [Estabelece as regras sobre definições, exigências, especificações, garantias, registro de produto, autorizações, embalagem, rotulagem, documentos fiscais, propaganda e tolerâncias dos fertilizantes minerais destinados à agricultura]. Diário Oficial da União, 10 ago. 2018. 49p. Available at: <https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-39-2018-fert-minerais-versao-publicada-dou-10-8-2018.pdf>. Accessed on: Apr. 8 2021.
https://www.gov.br/agricultura/pt-br/ass...
). These and other reactive phosphate rocks have actually been evaluated for sugarcane, broadcast and incorporated in soils responsive to phosphorus fertilization, and shown to be equivalent or slightly inferior for plant cane, when compared with water-soluble sources (Rossetto et al., 2002ROSSETTO, R.; FARHAT, M.; FURLAN, R.; GIL, M.A.; SILVA, S.F. Eficiência agronômica do fosfato natural na cultura da cana-de-açúcar. In: CONGRESSO NACIONAL DA SOCIEDADE DOS TÉCNICOS AÇUCAREIROS E ALCOOLEIROS DO BRASIL, 8., 2002, Recife. Anais. Recife: STAB, 2002. p.276-282.; Tomaz, 2009TOMAZ, H.V. de Q. Fontes, doses e formas de aplicação de fósforo na cana-de-açúcar. 2009. 93p. Dissertação (Mestrado) - Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba.; Caione et al., 2013CAIONE, G.; FERNANDES, F.M.; LANGE, A. Efeito residual de fontes de fósforo nos atributos químicos do solo, nutrição e produtividade de biomassa da cana-de-açúcar. Revista Brasileira de Ciências Agrárias, v.8, p.189-196, 2013. DOI: https://doi.org/10.5039/agraria.v8i2a2016
https://doi.org/10.5039/agraria.v8i2a201...
; Rein & Sousa, 2013REIN, T.A.; SOUSA, D.M.G. de. Sugarcane response to phosphorus sources and placement in a very clayey Oxisol of the Brazilian Cerrado. In: CONGRESS OF THE INTERNATIONAL SOCIETY OF SUGARCANE TECHNOLOGISTS, 28., 2013, São Paulo. Proceedings. São Paulo: International Society of Sugarcane Technologists, 2013. p.477-485. Available at: <https://issct.org/wp-content/uploads/proceedings/2013/Agronomy.pdf>. Accessed on: Sept. 26 2019.
https://issct.org/wp-content/uploads/pro...
; Sousa et al., 2015SOUSA, R.T.X. de; KORNDÖRFER, G.H.; SOARES, R.A.B.; FONTOURA, P.R. Phosphate fertilizers for sugarcane used at pre-planting (phosphorus fertilizer application). Journal of Plant Nutrition, v.38, p.1444-1455, 2015. DOI: https://doi.org/10.1080/01904167.2014.990567
https://doi.org/10.1080/01904167.2014.99...
; Santos et al., 2018bSANTOS, V.R. dos; SOLTANGHEISI, A.; FRANCO, H.C.J.; KOLLN, O.; VITTI, A.C.; DIAS, C.T. dos S.; PAVINATO, P.S. Phosphate sources and their placement affecting soil phosphorus pools in sugarcane. Agronomy, v.8, p.1-15, 2018b. DOI: https://doi.org/10.3390/agronomy8120283
https://doi.org/10.3390/agronomy8120283...
).

The economic return of corrective phosphorus fertilization can be assessed considering the current costs (US$1.00 ≈ R$4.10) in 2019: R$3.70 kg-1 P2O5 for the soluble fertilizer (triple superphosphate or monoammonium phosphate); R$35.00 ha-1 for broadcasting the fertilizer (200-400 kg ha-1); R$90.00 ha-1 for incorporating the fertilizer with a disk harrow; R$85.00 Mg-1 for the price of millable stalks delivered to the sugar mill; and R$30.00 Mg-1 for harvesting, loading, and transporting stalks to the sugar mill. These figures allow to compute that the purchasing and application costs of 150 kg ha-1 P2O5 (R$680.00 ha1) are equivalent to 12.4 Mg stalks [680/(85 - 30)]. In the case of experiment 1, the yield increase with corrective fertilization was 13.4 Mg ha-1 for plant cane and 17.7 Mg ha-1 for the average of the four ratoon crops (Table 3). Therefore, the investment would be paid off in less than two years after the purchase of the fertilizer, which makes corrective fertilization very profitable in the studied soil condition.

Significant yield increases in experiment 1 were also obtained with the annual maintenance phosphorus fertilization with triple superphosphate (40 kg ha-1 P2O5 per year) side-dressed over the trash blanket (Table 3). The average yield increase of the four ratoon crops for treatment C with phosphorus fertilization in the planting furrow and annual maintenance was 17.7 Mg ha-1 per year, in comparison with that of treatment B with phosphorus fertilization only in the planting furrow. The trend of higher yields in response to maintenance phosphorus fertilization was also observed for the treatments with corrective fertilization with triple superphosphate. The average yield increase for the ratoon crops under treatment E with corrective and annual maintenance fertilization was 8.1 Mg ha-1 per year in relation to treatment D without phosphorus maintenance fertilization. Over the five crops, the cumulative cane yield increase with the corrective fertilization of 150 kg ha-1 P2O5 as triple superphosphate was 77.6 Mg ha-1 for treatment C minus B, whereas the cumulative yield increase with the annual maintenance fertilization of 160 kg ha-1 P2O5 over the four ratoon crops was 73.7 Mg ha-1 for treatment D minus B.

A compilation of experimental results (Rein et al., 2015REIN, T.A.; SOUSA, D.M.G. de; SANTOS JÚNIOR, J. de D.G. dos; NUNES, R. de S.; KORNDÖRFER, G.H. Manejo da adubação fosfatada para cana-de-açúcar no Cerrado. Planaltina: Embrapa Cerrados, 2015. 12p. (Embrapa Cerrados. Circular técnica, 29).) showed frequent cane yield increases around 10 Mg ha-1 per year with maintenance phosphorus fertilization of ratoon crops in low phosphorus soils in Brazil, but a lack of responses in other cases, most of them in soils with a higher phosphorus availability. It should be noted that the majority of these experiments was managed with pre-harvest burning and side-dress fertilizers incorporated into the soil. However, high yield increases were also reported for superphosphate applied over the trash blanket in low phosphorus Oxisols (Moberly & Wood, 1970MOBERLY, P.K.; WOOD, G.H. A comparison of methods of phosphate application to ratoon cane. In: ANNUAL CONGRESS OF THE SOUTH AFRICAN SUGAR TECHNOLOGISTS’ ASSOCIATION, 44., 1970, Mount Edgecombe. Proceedings. Mount Edgecombe: South African Sugar Technologists’ Association, 1970. p.155-161.; Zambrosi, 2021ZAMBROSI, F.C.B. Phosphorus fertilizer reapplication on sugarcane ratoon: opportunities and challenges for improvements in nutrient efficiency. Sugar Tech, v.23, p.704-708, 2021. DOI: https://doi.org/10.1007/s12355-020-00925-9
https://doi.org/10.1007/s12355-020-00925...
). Given the low mobility of phosphorus in the soil, particularly in Oxisols (Nunes et al., 2011NUNES, R. de S.; SOUSA, D.M.G. de; GOEDERT, W.J.; VIVALDI, L.J. Distribuição de fósforo no solo em razão do sistema de cultivo e manejo da adubação fosfatada. Revista Brasileira de Ciência do Solo, v.35, p.877-888, 2011. DOI: https://doi.org/10.1590/S0100-06832011000300022
https://doi.org/10.1590/S0100-0683201100...
; Sousa et al., 2016SOUSA, D.M.G. de; NUNES, R. de S.; REIN, T.A.; SANTOS JUNIOR, J. de D.G. dos. Manejo do fósforo na região do Cerrado. In: FLORES, R.A.; CUNHA, P.P. da. Práticas de manejo do solo para adequada nutrição de plantas no Cerrado. Goiânia: UFG, 2016. p.291-357.), in experiment 1, the efficient use of surface applied phosphorus by sugarcane is likely due to a high density of superficial roots in the soil-trash interface (Vitti et al., 2008VITTI, A.C.; TRIVELIN, P.C.O.; CANTARELLA, H.; FRANCO, H.C.J.; FARONI, C.E.; OTTO, R.; TRIVELIN, M.O.; TOVAJAR, J.G. Mineralização da palhada e crescimento de raízes de cana-de-açúcar relacionados com a adubação nitrogenada de plantio. Revista Brasileira de Ciência do Solo, v.32, p.2757-2762, 2008. Número especial. DOI: https://doi.org/10.1590/S0100-06832008000700020
https://doi.org/10.1590/S0100-0683200800...
; Castro et al., 2021CASTRO, S.A.Q. de; OTTO, R.; SANCHÉZ, C.E.B.; TENELLI, S.; SERMARINI, R.A.; TRIVELIN, P.C.O. Sugarcane straw preservation results in limited immobilization and improves crop N-fertilizer recovery. Biomass and Bioenergy, v.144, 105889, 2021. DOI: https://doi.org/10.1016/j.biombioe.2020.105889
https://doi.org/10.1016/j.biombioe.2020....
), which is easily observed in sugarcane fields. Improved moisture and temperature conditions on soil surface in the presence of trash (Dourado-Neto et al., 1999DOURADO-NETO, D.; TIMM, L.C.; OLIVEIRA, J.C.M. de; REICHARDT, K.; BACCHI, O.O.S.; TOMINAGA, T.T.; CÁSSARO, F.A.M. State-space approach for the analysis of soil water content and temperature in a sugarcane crop. Scientia Agricola, v.56, p.1215-1221, 1999. Supl. DOI: https://doi.org/10.1590/S0103-90161999000500025
https://doi.org/10.1590/S0103-9016199900...
) may also play a role in the efficient use of phosphorus applied onto the trash blanket of sugarcane crops.

Conclusions

  1. The cane yields of the plant cane and ratoon sugarcane (Saccharum spp.) crops increase significantly with corrective phosphorus fertilization complementing the traditional application of phosphorus in the planting furrow, in a low phosphorus Oxisol.

  2. The cane yields of the ratoon crops increase significantly with annual maintenance phosphorus fertilization in a low phosphorus Oxisol, being more pronounced in the absence of corrective phosphorus fertilization.

  3. No significant yield increases with corrective or maintenance phosphorus fertilization are observed in the high phosphorus soil.

  4. Both corrective and maintenance phosphorus fertilization practices, in addition to the traditional phosphorus application in the planting furrow, should be considered in sugarcane expansion or replanting areas for which soil phosphorus availability is below adequate.

Acknowledgments

To the Goiasa-Goiatuba Álcool Ltda sugar mill and to its staff, for providing the experimental areas, agricultural inputs, field labor, mechanization services, and technical support that made this work possible; and to Mr. José Carlos Pereira Barbosa, Mr. Jesuino de Souza Caldas, and Mr. Edson Douglas de Oliveira of Embrapa Cerrados, for their field work assistance.

References

  • BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 39, de 8 de agosto de 2018. [Estabelece as regras sobre definições, exigências, especificações, garantias, registro de produto, autorizações, embalagem, rotulagem, documentos fiscais, propaganda e tolerâncias dos fertilizantes minerais destinados à agricultura]. Diário Oficial da União, 10 ago. 2018. 49p. Available at: <https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-39-2018-fert-minerais-versao-publicada-dou-10-8-2018.pdf>. Accessed on: Apr. 8 2021.
    » https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-39-2018-fert-minerais-versao-publicada-dou-10-8-2018.pdf
  • CAIONE, G.; FERNANDES, F.M.; LANGE, A. Efeito residual de fontes de fósforo nos atributos químicos do solo, nutrição e produtividade de biomassa da cana-de-açúcar. Revista Brasileira de Ciências Agrárias, v.8, p.189-196, 2013. DOI: https://doi.org/10.5039/agraria.v8i2a2016
    » https://doi.org/10.5039/agraria.v8i2a2016
  • CASTRO, S.A.Q. de; OTTO, R.; SANCHÉZ, C.E.B.; TENELLI, S.; SERMARINI, R.A.; TRIVELIN, P.C.O. Sugarcane straw preservation results in limited immobilization and improves crop N-fertilizer recovery. Biomass and Bioenergy, v.144, 105889, 2021. DOI: https://doi.org/10.1016/j.biombioe.2020.105889
    » https://doi.org/10.1016/j.biombioe.2020.105889
  • CLAESSEN, M.E.C. (Org.). Manual de métodos de análise de solo 2.ed. rev. e atual. Rio de Janeiro: Embrapa-CNPS, 1997. 212p. (Embrapa-CNPS. Documentos, 1). Available at: <https://ainfo.cnptia.embrapa.br/digital/bitstream/item/169149/1/Manual-de-metodos-de-analise-de-solo-2-ed-1997.pdf >. Accessed on: Nov. 2 2019.
    » https://ainfo.cnptia.embrapa.br/digital/bitstream/item/169149/1/Manual-de-metodos-de-analise-de-solo-2-ed-1997.pdf
  • CLIMATEMPO. Climatologia: Goiatuba-GO. Available at: <http://www.climatempo.com.br/climatologia/1012/goiatuba-go>. Accessed on: Jan. 6 2020.
    » http://www.climatempo.com.br/climatologia/1012/goiatuba-go
  • CONSECANA-SP. Conselho dos Produtores de CanadeAçúcar, Açúcar e Álcool do Estado de São Paulo. Manual de instruções 5.ed. Piracicaba, 2006. 111p.
  • DOURADO-NETO, D.; TIMM, L.C.; OLIVEIRA, J.C.M. de; REICHARDT, K.; BACCHI, O.O.S.; TOMINAGA, T.T.; CÁSSARO, F.A.M. State-space approach for the analysis of soil water content and temperature in a sugarcane crop. Scientia Agricola, v.56, p.1215-1221, 1999. Supl. DOI: https://doi.org/10.1590/S0103-90161999000500025
    » https://doi.org/10.1590/S0103-90161999000500025
  • FRANCO, I.O.; SCOPEL, I.; ASSUNÇÃO, H.F. Unidades de mapeamento de solos sob cultivo de cana-de-açúcar em 2011: análise da expansão da cultura no Sudoeste de Goiás (Brasil). Revista do Departamento de Geografia, v.30, p.1-18, 2015. DOI: https://doi.org/10.11606/rdg.v30i0.89964
    » https://doi.org/10.11606/rdg.v30i0.89964
  • GAMA, A.J.M. Sistema de rotação e adubação fosfatada na cultura da cana-de-açúcar no Cerrado 2007. 86p. Dissertação (Mestrado) - Universidade Federal de Uberlândia, Uberlândia.
  • IBGE. Instituto Brasileiro de Geografia e Estatística. Produção Agrícola Municipal Available at: <https://sidra.ibge.gov.br/pesquisa/pam/tabelas>. Accessed on: May 18 2020.
    » https://sidra.ibge.gov.br/pesquisa/pam/tabelas
  • JOHNSTON, A.E.; POULTON, P.R.; FIXEN, P.E.; CURTIN, D. Phosphorus: its efficient use in agriculture. Advances in Agronomy, v.123, p.177-228, 2014. DOI: https://doi.org/10.1016/B978-0-12-420225-2.00005-4
    » https://doi.org/10.1016/B978-0-12-420225-2.00005-4
  • KORNDÖRFER, G.H.; RAMOS, L.A.; REIN, T.A. Calagem, silicatagem, gessagem e fosfatagem para cana-de-açúcar. In: SILVA, F.C. da; ALVES, B.J.R.; FREITAS, P.L. de (Ed.). Sistema de produção mecanizada da cana-de-açúcar integrada à produção de energia e alimentos Brasília: Embrapa, 2017. v.2, p.755-789.
  • LISBOA, L.A.M.; VIANA, R. da S.; PASCOALOTO, I.M.; HEINRICHS, R.; FIGUEIREDO, P.A.M. de. Efeitos da fosfatagem no desenvolvimento da cana-de-açúcar. Ciência e Tecnologia, v.8, p.31-41, 2016.
  • LUZ, P.H. de C; VITTI, G.C. Manejo e uso de fertilizantes para cana-de-açúcar. In: MARQUES, M.O.; MUTTON, M.A.; NOGUEIRA, T.A.R.; TASSO JÚNIOR, L.C.; NOGUEIRA, G.A.; BERNARDI, J.H. (Ed.). Tecnologias na agricultura canavieira Jaboticabal: FCAV, 2008. p.140-167.
  • MOBERLY, P.K.; WOOD, G.H. A comparison of methods of phosphate application to ratoon cane. In: ANNUAL CONGRESS OF THE SOUTH AFRICAN SUGAR TECHNOLOGISTS’ ASSOCIATION, 44., 1970, Mount Edgecombe. Proceedings Mount Edgecombe: South African Sugar Technologists’ Association, 1970. p.155-161.
  • MORELLI, J.L.; DEMATTÊ, J.L.I.; SILVA, J.A.V.; BAPTISTELLA, J.R.; GIOVANETTI, L.Z. Efeitos da aplicação do superfosfato simples em área total e dentro do sulco. In: CONGRESSO NACIONAL DA SOCIEDADE DOS TÉCNICOS AÇUCAREIROS E ALCOOLEIROS DO BRASIL, 4.; CONVENÇÃO DA ACTALAC, 7., 1987, Olinda. Anais Olinda: STAB, 1987. p.76-83.
  • MORELLI, J.L.; NELLI, E.J.; BAPTISTELA, J.R.; DEMATTÊ, J.L.I. Termofosfato na produtividade da cana-de-açúcar e nas propriedades químicas de um solo arenoso de baixa fertilidade. Revista Brasileira de Ciência do Solo, v.15, p.57-61, 1991.
  • NUNES, R. de S.; SOUSA, D.M.G. de; GOEDERT, W.J.; VIVALDI, L.J. Distribuição de fósforo no solo em razão do sistema de cultivo e manejo da adubação fosfatada. Revista Brasileira de Ciência do Solo, v.35, p.877-888, 2011. DOI: https://doi.org/10.1590/S0100-06832011000300022
    » https://doi.org/10.1590/S0100-06832011000300022
  • OLIVEIRA, L.E.Z. de; NUNES, R. de S.; SOUSA, D.M.G. de; BUSATO, J.G.; FIGUEIREDO, C.C. de. Response of maize to different soil residual phosphorus conditions. Agronomy Journal, v.111, p.3291-3300, 2019. DOI: https://doi.org/10.2134/agronj2018.11.0710
    » https://doi.org/10.2134/agronj2018.11.0710
  • OLIVEIRA, L.E.Z. de; SOUSA, D.M.G. de; FIGUEIREDO, C.C. de; NUNES, R. de S.; MALAQUIAS, J.V. Long-term phosphate fertilization strategies evaluation in a Brazilian Oxisol. Agronomy Journal, v.112, p.4303-4320, 2020. DOI: https://doi.org/10.1002/agj2.20324
    » https://doi.org/10.1002/agj2.20324
  • PENATTI, C.P. Adubação da cana-de-açúcar: 30 anos de experiência. Itu: Ottoni Editora, 2013. 347p.
  • RAIJ, B. van; ANDRADE, J.C. de; CANTARELLA, H.; QUAGGIO, J.A. (Ed.). Análise química para avaliação da fertilidade de solos tropicais Campinas: IAC, 2001. 285p. Available at: <http://lab.iac.sp.gov.br/Publicacao/Raij_et_al_2001_Metod_Anal_IAC.pdf>. Accessed on: Aug. 31 2019.
    » http://lab.iac.sp.gov.br/Publicacao/Raij_et_al_2001_Metod_Anal_IAC.pdf
  • REIN, T.A.; SOUSA, D.M.G. de. Sugarcane response to phosphorus sources and placement in a very clayey Oxisol of the Brazilian Cerrado. In: CONGRESS OF THE INTERNATIONAL SOCIETY OF SUGARCANE TECHNOLOGISTS, 28., 2013, São Paulo. Proceedings. São Paulo: International Society of Sugarcane Technologists, 2013. p.477-485. Available at: <https://issct.org/wp-content/uploads/proceedings/2013/Agronomy.pdf>. Accessed on: Sept. 26 2019.
    » https://issct.org/wp-content/uploads/proceedings/2013/Agronomy.pdf
  • REIN, T.A.; SOUSA, D.M.G. de; SANTOS JÚNIOR, J. de D.G. dos; NUNES, R. de S.; KORNDÖRFER, G.H. Manejo da adubação fosfatada para cana-de-açúcar no Cerrado Planaltina: Embrapa Cerrados, 2015. 12p. (Embrapa Cerrados. Circular técnica, 29).
  • REIS, E.L.; CABALA-ROSAND, P. Respostas da cana-de-açúcar ao nitrogênio, fósforo e potássio em solo de tabuleiro do sul da Bahia. Revista Brasileira de Ciência do Solo, v.10, p.129-134, 1986.
  • RIBEIRO, N.V.; FERREIRA, L.G.; FERREIRA, N.C. Avaliação da expansão do cultivo da cana-de-açúcar no bioma Cerrado por meio de modelagem dinâmica da paisagem. Revista Brasileira de Cartografia, v.68, p.1-14, 2016.
  • ROSSETTO, R.; CANTARELLA, H.; DIAS, F.L.F.; VITTI, A.C.; TAVARES, S. Cana-de-açúcar. In: PROCHNOW, L.I.; CASARIN, V.; STIPP, S.R. (Ed.). Boas práticas para uso eficiente de fertilizantes Piracicaba: IPNI, 2010. v.3, p.161-230.
  • ROSSETTO, R.; FARHAT, M.; FURLAN, R.; GIL, M.A.; SILVA, S.F. Eficiência agronômica do fosfato natural na cultura da cana-de-açúcar. In: CONGRESSO NACIONAL DA SOCIEDADE DOS TÉCNICOS AÇUCAREIROS E ALCOOLEIROS DO BRASIL, 8., 2002, Recife. Anais. Recife: STAB, 2002. p.276-282.
  • SANTOS, H.G. dos; JACOMINE, P.K.T.; ANJOS, L.H.C. dos; OLIVEIRA, V.Á. de; LUMBRERAS, J.F.; COELHO, M.R.; ALMEIDA, J.A. de; ARAÚJO FILHO, J.C. de; OLIVEIRA, J.B. de; CUNHA, T.J.F. Sistema brasileiro de classificação de solos 5.ed. rev. e ampl. Brasília: Embrapa, 2018a. 356p.
  • SANTOS, V.R. dos; SOLTANGHEISI, A.; FRANCO, H.C.J.; KOLLN, O.; VITTI, A.C.; DIAS, C.T. dos S.; PAVINATO, P.S. Phosphate sources and their placement affecting soil phosphorus pools in sugarcane. Agronomy, v.8, p.1-15, 2018b. DOI: https://doi.org/10.3390/agronomy8120283
    » https://doi.org/10.3390/agronomy8120283
  • SOIL SURVEY STAFF. Keys to Soil Taxonomy 12th ed. Washington: USDA, 2014. 360p. Available at: <https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580>. Accessed on: Apr. 5 2021.
    » https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580
  • SOUSA, D.M.G. de; LOBATO, E.; REIN, T.A. Adubação com fósforo. In: SOUSA, D.M.G. de; LOBATO, E. (Ed.). Cerrado: correção do solo e adubação. 2.ed. Brasília: Embrapa Informação Tecnológica, 2004. p.147-168.
  • SOUSA, D.M.G. de; NUNES, R. de S.; REIN, T.A.; SANTOS JUNIOR, J. de D.G. dos. Manejo do fósforo na região do Cerrado. In: FLORES, R.A.; CUNHA, P.P. da. Práticas de manejo do solo para adequada nutrição de plantas no Cerrado Goiânia: UFG, 2016. p.291-357.
  • SOUSA, R.T.X. de; KORNDÖRFER, G.H.; SOARES, R.A.B.; FONTOURA, P.R. Phosphate fertilizers for sugarcane used at pre-planting (phosphorus fertilizer application). Journal of Plant Nutrition, v.38, p.1444-1455, 2015. DOI: https://doi.org/10.1080/01904167.2014.990567
    » https://doi.org/10.1080/01904167.2014.990567
  • SPIRONELLO, A.; RAIJ, B. van; PENATTI, C.P.; CANTARELLA, H.; MORELLI, J.L.; ORLANDO FILHO, J.; LANDELL, M.G. de A.; ROSSETTO, R. Cana-de-açúcar. In: RAIJ, B. van; CANTARELLA, H.; QUAGGIO, J.A.; FURLANI, A.M.C. (Ed.). Recomendações de adubação e calagem para o Estado de São Paulo 2.ed. Campinas: Instituto Agronômico, 1996. p.237-239. (IAC. Boletim técnico, 100).
  • SYERS, J.K.; JOHNSTON, A.E.; CURTIN, D. Efficiency of soil and fertilizer phosphorus use: reconciling changing concepts of soil phosphorus behavior with agronomic information. Rome: Food and Agriculture Organization of the United Nations, 2008. 108p. (FAO. Fertilizer and Plant Nutrition Bulletin, 18).
  • TOMAZ, H.V. de Q. Fontes, doses e formas de aplicação de fósforo na cana-de-açúcar 2009. 93p. Dissertação (Mestrado) - Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba.
  • VITTI, A.C.; TRIVELIN, P.C.O.; CANTARELLA, H.; FRANCO, H.C.J.; FARONI, C.E.; OTTO, R.; TRIVELIN, M.O.; TOVAJAR, J.G. Mineralização da palhada e crescimento de raízes de cana-de-açúcar relacionados com a adubação nitrogenada de plantio. Revista Brasileira de Ciência do Solo, v.32, p.2757-2762, 2008. Número especial. DOI: https://doi.org/10.1590/S0100-06832008000700020
    » https://doi.org/10.1590/S0100-06832008000700020
  • VITTI, G.C.; OTTO, R.; FERREIRA, L.R. de P. Nutrição e adubação da cana-de-açúcar: manejo nutricional da cultura da cana-de-açúcar: In: BELARDO, G. de C.; CASSIA, M.T.; SILVA, R.P. da (Ed.). Processos agrícolas e mecanização da cana-de-açúcar Jaboticabal: SBEA, 2015. p.177-205.
  • ZAMBROSI, F.C.B. Phosphorus fertilizer reapplication on sugarcane ratoon: opportunities and challenges for improvements in nutrient efficiency. Sugar Tech, v.23, p.704-708, 2021. DOI: https://doi.org/10.1007/s12355-020-00925-9
    » https://doi.org/10.1007/s12355-020-00925-9
  • ZANCANARO, L.; ONO, F.B.; KAPPES, C.; SEMLER, T.D.; VALENDORFF, J.D.P.; CORADINI, D.; VIDOTTI, M.V. Correção do solo e manejo da adubação. In: KAPPES, C. (Ed.). Boletim de Pesquisa 2019/2020 Rondonópolis: Fundação MT, 2019. p.111-136.

Publication Dates

  • Publication in this collection
    29 Nov 2021
  • Date of issue
    2021

History

  • Received
    28 Aug 2020
  • Accepted
    12 May 2021
Embrapa Secretaria de Pesquisa e Desenvolvimento; Pesquisa Agropecuária Brasileira Caixa Postal 040315, 70770-901 Brasília DF Brazil, Tel. +55 61 3448-1813, Fax +55 61 3340-5483 - Brasília - DF - Brazil
E-mail: pab@embrapa.br