SciELO - Scientific Electronic Library Online

 
vol.37 issue3TREATMENT WITH CALCIUM CHLORIDE AT POSTHARVEST DELAYS THE DEGREENING AND LOSS OF FIRMNESS OF PAPAYA/UENF/CALIMAN01PARASITOIDS (HYMENOPTERA) OF FRUIT FLIES (DIPTERA: TEPHRITIDAE) IN SEMIARID AMBIENT, IN THE STATE OF CEARÁ, BRASIL author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Revista Brasileira de Fruticultura

Print version ISSN 0100-2945On-line version ISSN 1806-9967

Rev. Bras. Frutic. vol.37 no.3 Jaboticabal July/Sept. 2015

http://dx.doi.org/10.1590/0100-2945-114/14 

Defesa Fitossanitária

DISTRIBUIÇÃO ESPACIAL DO BICHO-FURÃO,Gymnandrosoma aurantiana (Lima, 1927)(LEPIDOPTERA: TORTRICIDAE),EM CITROS UTILIZANDO GEOESTATÍSTICA

Spatial distribution of citrus fruit borer, Gymnandrosoma aurantiana (Lima, 1927) (Lepidoptera: Tortricidae), on citrus by using geostatistics

JOÃO HENRIQUE SILVA CARVALHO2 

JOSÉ CARLOS BARBOSA3 

PEDRO TAKAO YAMAMOTO4 

IZABELA BEZZON BICALHO5 

2 UNESP/FCAV - Mestrando - Produção Vegetal. E-mail:joaohenriquecarvalhoo@gmail.com

3 UNESP/FCAV - Docente do Depto. de Ciências Exatas. Bolsista de produtividade em pesquisa do CNPq.E-mail: jcbarbosa@fcav.unesp.br

4 USP/ESALQ - Docente do Depto. de Entomologia e Acarologia. E-mail:pedro.yamamoto@usp.br

5 UNESP/FCAV - Engenheira Agrônoma.E-mail: izabbicalho@yahoo.com.br

RESUMO

O bicho-furão, Gymnandrosoma aurantiana (Lima, 1927), é uma das principais pragas da citricultura brasileira, pois os frutos atacados pelas lagartas tornam-se inviáveis para o consumo in natura e processamento industrial. Objetivou-se estudar a distribuição espacial dos danos causados por G. aurantiana utilizando geoestatística. Para tanto, foi conduzido um experimento em um pomar de laranjeira-doce da variedade ‘Valência’, enxertado sobre limoeiro ‘Cravo’, localizado em Taquaritinga-SP, Brasil. A área foi dividida em 88 parcelas, sendo cada parcela formada por 30 plantas dispostas em três linhas de 10 plantas, e em seguida foi obtido o número de frutos atacados para os anos de 2007 e 2008. A distribuição dos frutos atacados pela praga foi agregada ao longo das avaliações, com variância maior que a média para todas as amostragens. Os dados apresentaram ajuste adequado segundo o modelo esférico, e o alcance da dependência espacial (a) variou entre 40,66 e 135,40 m. A estimativa de frutos atacados nas áreas não amostradas foi obtida pela krigagem, e os principais focos da praga foram observados nas parcelas próximas aos limites da área experimental.

Termos para indexação krigagem; mariposa; reboleira; semivariograma

ABSTRACT

The citrus fruit borer, Gymnandrosoma aurantiana (Lima, 1927), is one of the most important pests of citrus in Brazil, mainly because the larvae render the fruit useless for both fresh consumption and industrial processing. It was aimed to study the spatial distribution of fruits attacked by G. aurantiana using geostatistics. Thus, an experiment was carried out in a ‘Valencia’ sweet orange orchard, located in the municipality of Taquaritinga, state of São Paulo, Brazil. The experimental area was divided into 88 sampling units, consisting of 30 plants (three rows x ten plants), and then it was recorded the number of fruits attacked by G. aurantianain 2007 and 2008. The spatial distribution of attacked fruits was aggregated for both sampling periods, and the variance was greater than the mean for all samplings. The data showed proper adjustment to the spherical model, and the range of spatial dependence (a) varied from 40.66 to 135.40 m. Kriging was used in order to estimate the attacked fruits at not sampled sites, and it was shown that the damage was mainly done at the sampling units that were near the border of the experimental field.

Index terms clumped pattern; kriging; moth; semivariogram

INTRODUÇÃO

Apesar da grave crise do setor citrícola nos últimos anos, o Brasil continua sendo um dos principais produtores mundiais de laranja [Citrus sinensis (L.) Osbeck]. Dentre os fatores relacionados às perdas de produção e produtividade dos pomares nacionais, destacam-se os problemas fitossanitários, que representam entre 20 e 50% do custo de produção de citros.

A necessidade de controlar quimicamente as diversas pragas que atacam a cultura dos citros impulsionou o uso desmedido de produtos fitossanitários, ocasionando desequilíbrios na entomofauna dos agroecossistemas e dando espaço para o surgimento de novas pragas, como o bichofurão, no final dos anos de 1980 (PARRA et al., 2004). O bicho-furão, Gymnandrosoma aurantiana (Lima, 1927), tornou-se uma das principais pragas da citricultura, e nas últimas décadas constataram-se perdas na ordem de 50 milhões de dólares por ano (FUNDECITRUS, 2000), e/ou superiores a 50% da produção (PRATES, 1992), dependendo do grau de infestação da praga no campo.

As lagartas recém-eclodidas penetram nos frutos, verdes ou maduros, e formam galerias internas ao se alimentarem da polpa. Devido aos danos internos e à senescência prematura dos frutos, eles tornam-se inviáveis tanto para o consumo in natura quanto para o processamento industrial (PARRA et al., 2004). Seu ataque pode ser identificado pela presença de excrementos ao redor do orifício de penetração das lagartas, e dessa forma pode-se diferenciá-lo dos sintomas causados pela mosca-dasfrutas (GALLO et al., 2002).

Os adultos do bicho-furão possuem coloração escura com manchas esbranquiçadas e podem atingir 18 mm de envergadura. Possuem hábitos noturnos e, durante o dia, são dificilmente observados, pois mimetizam-se com os ramos. A oviposição é feita na superfície dos frutos, e a eclosão das lagartas ocorre após um intervalo de três a cinco dias (GARCIA et al., 1998; GARCIA; PARRA, 1999). As lagartas passam por quatro instares durante um período de aproximadamente 25 dias, e então deslocam-se para o solo, onde se transformam em pupas; dessa maneira, o ciclo de vida da praga varia entre 32 e 60 dias (NAKANO; SOARES, 1995; GARCIA et al., 1998).

Antes do desenvolvimento do feromônio sexual, o controle do bicho-furão era realizado pela observação dos primeiros frutos atacados nos pomares, porém não apresentava eficácia, pois as lagartas não podem ser controladas após penetrarem nos frutos (PARRA et al., 2004).

Após o desenvolvimento do feromônio sexual, o controle passou a ser realizado de forma mais eficaz e no momento correto. Estudos relacionados ao comportamento da praga são necessários, pois podem fornecer informações importantes para o desenvolvimento de métodos racionais de controle.

A geoestatística possibilita a análise dos parâmetros da dependência espacial, e desse modo define os padrões de distribuição da praga no campo.

Objetivou-se estudar a distribuição espacial de frutos atacados pelo bicho-furão por meio da geoestatística, para que as informações obtidas sobre seu comportamento possam ser somadas àquelas relacionadas ao controle racional desta praga.

MATERIAL E MÉTODOS

Levantamento dos dados

O experimento foi conduzido no município de Taquaritinga, Estado de São Paulo, Brasil (48º29’W, 21º24’S), em um pomar de laranjeira- doce [Citrus sinensis (L.) Osbeck], variedade ‘Valência’, enxertada sobre limoeiro ‘Cravo’. O pomar experimental era formado por plantas de 10 anos de idade, com espaçamento de 6,5 m entre linhas e 3 m entre plantas, totalizando 2.640 plantas. Durante a condução do experimento, as plantas do talhão receberam tratos culturais, como adubação, controle de plantas daninhas, e aplicação de produtos fitossanitários recomendados à cultura. Para o estudo da distribuição da praga, a área experimental foi dividida em 88 unidades experimentais (parcelas) contendo 30 plantas cada (três linhas x dez plantas). As amostragens, realizadas mensalmente, consistiram na contagem de frutos atacados pelo bicho-furão nas seis plantas centrais da linha central de cada unidade experimental. O estudo foi realizado nos anos agrícolas de 2006/2007, entre junho e outubro, e 2007/2008, entre maio e setembro, sendo que o início das avaliações se deu com a mudança de cor dos frutos e finalizou na colheita da safra.

A dependência espacial da variável em estudo foi modelada por meio da geoestatística, considerando o centroide da parcela como coordenada para o número de frutos atacados. A partir destes modelos, foram realizadas interpolações para a obtenção de mapas de krigagem, que forneceram informações referentes aos pontos não amostrados na área em estudo.

Análise geoestatística

A geoestatística baseia-se na teoria das variáveis regionalizadas (MATHERON, 1963), ou seja, uma determinada variável distribuída no espaço apresenta correlação espacial de modo que amostras próximas tendem a ser mais semelhantes se comparadas àquelas mais distantes. A variabilidade espacial de uma variável regionalizada pode ser obtida pela análise do semivariograma. A variância é estimada em intervalos de distância crescentes e em diversas direções, de acordo com a seguinte fórmula:

em que: Z(xi) é o valor da variável Z no ponto xi, e N(h) é o número de pares de pontos amostrados Z(xi), Z(xi+h), separados pela distância representada pelo vetor h (JOURNEL; HUIJBREGTS, 1978).

Quando a distância h tende a zero, a semivariância ?(h) aproxima-se de um valor não negativo, chamado efeito pepita, simbolizado por C0. Este valor representa a descontinuidade do semivariograma para distâncias inferiores à menor distância entre as unidades amostrais.

Conforme a distância de separação h aumenta, a semivariância ? (h) também aumenta até atingir um valor máximo no qual ela se estabiliza. Este valor representa a variância dos dados na ausência de dependência espacial e é denominado patamar, simbolizado por C1. A distância na qual a semivariância ?(h) atinge o patamar é chamada de alcance (a), sendo a distância limite da dependência espacial, ou seja, o raio de agregação da variável analisada; medições realizadas a distâncias superiores ao alcance apresentarão distribuição aleatória, sendo independentes entre si.

Neste trabalho, foram testados os ajustes aos seguintes modelos matemáticos:

Modelo linear

A relação C1/a é o coeficiente angular para 0 < h < a.É relacionado à inclinação da reta que passa pelos primeiros pontos de ?(h). O efeito pepita (C0) está relacionado com o ponto de interseção da reta no eixo y, ou seja, o valor de ?(h) para h=0; o valor de h correspondente ao cruzamento da reta inicial com o patamar é o alcance (a); e C1 é a diferença entre o patamar e o efeito pepita.

Modelo esférico

A obtenção do modelo esférico consiste na seleção de valores do efeito pepita (C0) e do patamar (C0+C1), e posterior posicionamento de uma reta que intercepte o eixo y em C0, e tangente aos primeiros pontos próximos de h=0. Esta reta cruza o patamar à distância a’=2/3a. Dessa forma, o alcance (a) é dado por a=3a’/2, e o modelo é linear até aproximadamente 1/3a.

Modelo exponencial

O modelo exponencial atinge o patamar de modo assintótico, enquanto o modelo esférico o atinge no alcance. O alcance (a) é determinado visualmente e consiste na distância após a qual o semivariograma se estabiliza, e a máxima distância na qual o semivariograma é definido é dada pela letra d. Os parâmetros C0 e C1 são determinados da mesma maneira que os demais modelos: exponencial, gaussiano e esférico.

Modelo gaussiano

Caso o semivariograma se apresentar constante e igual ao patamar para quaisquer valores da distância de separação h, tem-se o efeito pepita puro, ou ausência total de dependência espacial. Neste caso, a distribuição espacial é considerada independente, uma vez que o alcance (a) para os dados analisados é menor que o menor espaçamento utilizado entre as unidades amostrais.

Após o ajuste dos modelos teóricos aos semivariogramas experimentais, é possível obter informações mais específicas sobre a população das espécies. A krigagem é um método interpolador utilizado para estimar valores não amostrados (z*) para quaisquer coordenadas da área em estudo, x0. Este processo é uma combinação linear dos valores amostrados, sem tendência, e apresenta variância mínima representado por:

em que : N é o número de valores amostrados z(xi) que estão envolvidos na estimativa, e ?i é o peso atribuído a cada um destes valores, os quais são calculados com base nos parâmetros obtidos no semivariograma.

Foram utilizados os programas: Excel 2003 para o cálculo das estatísticas descritivas; GS+ para a obtenção dos semivariogramas e ajuste de modelos matemáticos a estes; e Surfer 8 (Golden Software) para a krigagem e a obtenção dos mapas de superfícies.

RESULTADOS E DISCUSSÃO

A média de frutos atacados por G. aurantiana não aumentou linearmente durante o período de avaliações, sendo que, no primeiro ano de amostragens, observou-se um pico em 29-06-2007, com número médio de 4,59 frutos atacados, ao passo que a maior média encontrada no segundo ano de amostragens ocorreu em 05-09-2007, equivalente a 3,48 frutos atacados (Tabela 1). As condições ambientais são determinantes na incidência da praga, pois o acasalamento e a postura do bicho-furão estão relacionados com modificações fisiológicas desencadeadas pela diminuição da luminosidade e da temperatura, e aumento da umidade relativa (BENTO et al., 2001). A irregularidade observada na média dos frutos atacados durante o período amostral também pode estar relacionada ao fato de que estes caem prematuramente, influenciando a contagem no momento das avaliações. A baixa incidência de frutos atacados nas avaliações de ambos os anos pode estar relacionada aos picos populacionais da espécie nos pomares, pois, segundo Prates (1992), o ataque de G. aurantiana é geralmente mais intenso no período chuvoso, entre fevereiro e março, uma vez que a umidade relativa e a temperatura são maiores nestes meses.

Assim como observado neste trabalho, Yamamoto et al. (2006) constataram baixo número de frutos atacados em relação ao total de frutos produzidos pelas plantas de laranjeira ‘Valência’, e este fato foi atribuído à baixa umidade relativa da região durante as amostragens.

Foram observados valores altos para o coeficiente de variação, o qual variou entre 62,83 e 197,47%. Esta grande variabilidade na área experimental é comum no estudo da distribuição espacial de pragas nos ecossistemas agrícolas. Além disso, os valores da variância foram maiores que a média em todas as amostragens, indicando que os frutos atacados pelo bicho-furão estão distribuídos de forma agregada no talhão (Tabela 1).

Na análise geoestatística dos dados, a dependência espacial dos frutos atacados pela praga foi analisada por meio de semivariogramas, e,neste caso, o modelo que apresentou o melhor ajuste aos dados foi o esférico. O alcance da dependência espacial (a) ao longo das avaliações variou entre 40,66 m, na amostragem realizada em 02-08-2007 (A2), e 135,40 m, na amostragem de 03-10-2007 (A4) (Tabela 2).

O ajuste a este modelo foi obtido para quase todas as amostragens, exceto para a avaliação realizada em 15-08-08 (A9), onde foi constatado efeito pepita puro, ou seja, não houve dependência espacial dos frutos no campo. Este resultado pode ser atribuído a dois fatores: o padrão de distribuição desta variável foi aleatório, ou a distância entre os pontos amostrais foi maior do que o necessário para a detecção da dependência espacial entre estes (Figura 1). Como foi observada variância maior que a média para todas as amostragens, o que configura distribuição contagiosa, pode-se inferir que a dependência espacial entre as parcelas não foi obtida, pois as distâncias entre estas foram grandes demais. O efeito pepita puro é comumente relatado nos estudos relacionados à entomologia, pois a dependência espacial pode ocorrer em uma escala menor que as utilizadas em alguns experimentos (LIEBHOLD et al., 1993).

Os parâmetros dos semivariogramas foram ajustados com base nos modelos que proporcionaram os maiores valores para o coeficiente de determinação (R²), e estes variaram entre 0,65 e 0,99 (Tabela 2).

As análises variográficas foram realizadas para uma direção global isotrópica da variável no espaço, de modo que modelos matemáticos foram ajustados aos semivariogramas experimentais. Para a busca por pares de pontos na área experimental, foi estabelecido um ângulo de tolerância de 90°, uma vez que as parcelas eram equidistantes. A adoção de um grid regular baseou-se na falta de informações relacionadas às escalas de correlação espacial de G. aurantiana em citros, e, segundo McBratney et al.(1982), a amostragem em grids regulares é o método mais eficiente quando não há conhecimento prévio do modelo de comportamento da praga.

A relação C0/(C0+C1) corresponde à estimativa do grau de aleatoriedade existente nas amostragens. Para os modelos ajustados, os valores variaram entre 0,33 e 0,53, indicando que houve uma variação máxima de 53% nas amostragens de frutos atacados. Estes valores indicaram agregação dos frutos atacados pelo bicho-furão, pois segundo Journel e Huijbregts (1978), valores maiores que 80% são considerados indicadores de distribuição aleatória da variável em estudo (Tabela 2).

Após o ajuste dos semivariogramas, foi possível estimar os frutos atacados em pontos não amostrados por meio da krigagem. Foram obtidos os mapas de superfície para as amostragens nas quais o modelo esférico foi satisfatoriamente ajustado aos dados, uma vez que a interpolação é dependente das estimativas dos parâmetros dos semivariogramas FIGURA 2.

A interpolação não foi realizada para a amostragem realizada em 15-08-08 (A9), pois não foi constatada continuidade espacial nos dados amostrados, e dessa forma o uso da krigagem como interpolador não é justificado.

Os mapas de krigagem podem ser muito úteis ao analisar a dinâmica de determinada variável no campo ao longo do período de avaliações. De acordo com os mapas de contorno obtidos para a primeira amostragem, realizada em 29-06-07 (A1), o foco inicial dos frutos atacados ocorreu nas parcelas próximas aos limites do talhão, sendo o ataque inicial de G. aurantiana dependente da posição geográfica do pomar (PARRA et al., 2004) (Figura 2).

As áreas adjacentes à área experimental eram constituídas por pomares de citros (variedades ‘Ponkan’ e ‘Murcote’), uma área com mata e um talhão de cana-de-açúcar. Embora os frutos atacados e as reboleiras tenham assumido valores e formas diferentes ao longo das amostragens, as reboleiras com maior número de frutos atacados pelo bichofurão foram observadas nas parcelas mais próximas às áreas cultivadas com citros e com mata. Este comportamento pode estar relacionado ao fato de que o ataque do bicho-furão se inicia em pontos próximos a outros pomares de citros e também a áreas com plantas arbóreas, onde G. aurantianapode encontrar hospedeiros selvagens (PARRA et al., 2004).

Embora as informações relacionadas à distribuição espacial de G. aurantiana sejam escassas, diversos autores têm estudado a distribuição espacial de outras pragas e/ou doenças em citros por meio da geoestatística, tais como Clorose Variegada dos Citrus (CVC) (ROBERTO et al., 2002), cigarrinhas vetoras de Xylella fastidiosa (FARIAS et al., 2004), Ceratitis capitata(Wiedemann) (ALEMANY, et al. 2006) e huanglongbing (HLB) em citros (LEAL et al., 2010), entre outros.

No Brasil, várias variedades cítricas são cultivadas sob diferentes condições ambientais, e estes fatores podem interferir na distribuição espacial de G. aurantiana. Assim, estudos complementares são necessários para a obtenção de uma estimativa confiável da população da praga em diferentes ecossistemas agrícolas.

TABELA 1 Estatística descritiva para o número total de frutos por parcela atacados por Gymnandrosoma aurantiana em citros. Taquaritinga – SP, Brasil . 

TABELA 2 Estimativas para os parâmetros do semivariograma para a distribuição espacial do total de frutos por parcela atacados por Gymnandrosoma aurantiana em citros. Taquaritinga – SP, Brasil. 

FIGURA 1  Semivariogramas da distribuição espacial do total de frutos por parcela atacados por Gymnandrosoma aurantiana (A1 = 29-06-07; A2 = 02-08-07; A3 = 05-09-07; A4 = 03-10-07; A5 = 30-10-07; A6 = 13-05-08; A7 = 17-06-08; A8 = 15-07-08; A9 = 15-08-08; e A10 = 16-09-08) em citros. Taquaritinga – SP, Brasil. 

FIGURA 2 Mapas de krigagem mostrando a distribuição espacial do total de frutos atacados por Gymnandrosoma aurantiana (A1 = 29-06-07; A2 = 02-08-07; A3 = 05-09-07; A4 = 03-10-07; A5 = 30-10-07; A6 = 13-05-08; A7 = 17-06-08; A8 = 15-07-08; e A10 = 16-09-08) em citros. Taquaritinga – SP, Brasil. 

CONCLUSÃO

Dessa forma, pode-se concluir que o uso da geoestatística é viável para avaliar a distribuição espacial de frutos atacados por G. aurantiana em citros, e a variável em estudo apresentou-se de forma agregada na área experimental, com raio de agregação variando entre 40,66 e 135,40 m.

AGRADECIMENTOS

Agradeço ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela concessão de bolsa de iniciação científica, e ao Fundo de Defesa da Citricultura (FUNDECITRUS), pela estrutura oferecida para a realização deste trabalho.

REFERENCES

ALEMANY, A.; MIRANDA, M.A.; ALONSO, R.ESCORZA, M. Changes in the spatial and temporal population density of the Mediterranean fruit fly (Diptera: Tephritidae) in a citrus orchard. Spanish Journal of Agricultural Research, Madrid, v.4, n.2, p.161-166, 2006. [ Links ]

BENTO, J.M.S.; PARRA, J.R.P.; VILELA, E.F.;WALDER, J.M.; LEAL, W.S. Sexual behavior and diel activity of citrus fruit borerEdcytolopha aurantiana. Journal of Chemical Ecology,Gainesville, v.27, n.10, p.2053-2065, 2001. [ Links ]

FARIAS, P.R.S.; ROBERTO, S.R.; LOPES, J.R.S;PERECIN, D. Geostatistical characterization of the spatial distribution ofXylella fastidiosa Sharpshooter vectors on citrus. Neotropical Entomology,Londrina, v.33, n.1, p.13-20, 2004. [ Links ]

FUNDECITRUS. Tecnologia conta o bicho-furão.Revista do Fundecitrus, Araraquara, v.96, p.8-10,2000. [ Links ]

GALLO, D.; NAKANO, O.; SILVEI RA NETO, S.;CARVAL HO, R.P.L.; BATISTA, G.C. de; BERTI FILHO, E.; PARRA, J.R.P.; ZUCCHI, R.A.; ALVES,S.B.; VENDRAMIM, J.D.; MARCHINI, L.C.;LOPES, J.R.S.; OMOTO, C. Entomologia Agrícola.Piracicaba: FEALQ, 2002. [ Links ]

GARCIA, M.S.; PARRA, J.R.P.Comparação de dietas artificiais, com fontes protéicas variáveis, para criação de E. aurantiana (Lima 1927) (Lepidoptera:Tortricidae).Anais da Sociedade Entomológica do Brasil, Londrina, v.28, n.2, p.219-232, 1999. [ Links ]

GARCIA, M.S.; PARRA, J.R.P.; IAROSSI, A.R.;KASTEN JÚNIOR, P.Bioecologia do bicho-furão e perspectivas de controle. Laranja, Cordeirópolis,v.19, n.2, p.249-260, 1998. [ Links ]

JOURNEL, A.G.HUIJBREGTS, C.J.Mining geostatistics.London:Academic Press, 1978. [ Links ]

LEAL, R.M; BARBOSA, J.C.; COSTA, M.G.;BELASQUE JUNIOR, J.; YAMAMOTO,P.T.; DRAGONE, J. Distribuição espacial de huanglongbing (greening) em citros utilizando a geoestatística.Revista Brasileira de Fruticultura,Jaboticabal, v.32, n.3, p.808-818, 2010. [ Links ]

LIEBHOLD, A.M.; ROSSI, R.E.; KEMP,W.P.Geostatistic and geographic information system in applied insect ecology.Annual Review of Entomology, Palo Alto, v.38, n.1, p.303-327, 1993. [ Links ]

MATHERON, G. Principles of geostatistics.Economic Geology, Lancaster, v.58, p.1246-1266,1963. [ Links ]

McBRATNEY, A.B., WEBSTER, R.; McLAREN,R.G.; SPIERS, R.E.B. Regional variation of extractable copper and cobalt in the topsoil of southwest Scotland. Agronomie, Paris, v.2, n.10,p.969-982, 1982. [ Links ]

NAKANO, O., SOARES, M.G. Bicho-furão:Biologia, hábitos e controle.Laranja, Cordeirópolis,v.16, n.2, p.209-221, 1995. [ Links ]

PARRA, J.R.P.; BENTO, J.M.S.; GARCIA, M.S.;YAMAMOTO, P.T.; VILELA, E.F.; LEAL, W.S.Development of a control alternative for the citrus fruit borer,Ecdytolopha aurantiana (Lepidoptera,Tortricidae): from basic research to the grower. Revista Brasileira de Entomologia, Curitiba, v.48,n.4, p.561-567, 2004. [ Links ]

PRATES, H.S. Resultados recentes do controle do bicho-furão - lagarta da mariposa das laranjas -Gymnandrosoma aurantianum(Lima, 1927) em citros 1992. Informativo Coopercitrus, Campinas,v.71, p.20-21, 1992. [ Links ]

ROBERTO, S.R.; FARIAS, P.R.S.; BERGAMIM FILHO, A. Geostatistical analysis of spatial dynamics of citrus variegated chlorosis. Fitopatologia Brasileira, Brasília, v.27, n.6, p.599-604, 2002. [ Links ]

YAMAMOTO, P.T.; MOLINA, J.P.; FELIPPE, M.R.;NOCITI, L.A.S. Monitoramento deEcdytolopha aurantiana (Lima) em laranjeira Valência com feromônio sexual. BioAssay, Piracicaba, v.1, n.3,p.1-6, 2006. [ Links ]

Received: March 28, 2014; Accepted: April 14, 2015

Creative Commons License  Este é um artigo publicado em acesso aberto (Open Access) sob licença Creative Commons Attribution, que permite uso, distribuição e reprodução em qualquer meio, sem restrições desde que o trabalho original seja corretamente citado.