Acessibilidade / Reportar erro

DNA content estimation of Fig and Black Mulberry using flow cytometry

Conteúdo de ADN estimado de Figueira e Amoreira-Preta utilizando citometria de fluxo

Abstract

In this study, fig and black mulberry DNA contents were estimated using DAPI fluorescence stain in flow cytometry. The 2C DNA contents of the fig and black mulberry were found as 0.82 pg and 8.34 pg, respectively. The calculated 1C value of genome size of fig is 401.8 Mbp and that of black mulberry is 4086.6 Mbp. The ratio of 2C DNA content and 1C genome of the black mulberry was 10.17 times that of the fig although fig is diploid and black mulberry is decosaploid.

Index terms
Ficus carica; Morus nigra; DAPI; DNA content; flow cytometry; genome size

Resumo

Neste estudo, os teores de ADN de figueira e amoreira-preta foram estimados utilizando a coloração fluorescente DAPI em citometria de fluxo. Os conteúdos de ADN 2C da figueira e da amoreira-preta foram encontrados na faixa de 0,82 pg e 8,34 pg, respectivamente. O valor calculado de 1C para os tamanhos do genoma da figueira e da amoreira-preta foi alterado de 401,8 Mpb e 4.086,6 Mpb, respectivamente. A proporção do conteúdo de ADN 2C e do genoma 1C da amoreira-preta foi de 10,17 vezes a da figueira, embora figueira seja diploide e amoreira-preta decosaploide.

Termos para indexação
Ficus carica; Morus nigra; DAPI; conteúdo de ADN; citometria de fluxo; tamanho do genoma

Introduction

The fig (Ficus carica L., 2n=2x=26, diploid, CONDIT, 1928) and black mulberry (Morus nigra L., 2n=22x=308, decosaploid, AGAEV; FEDOROVA, 1970 AGAEV, Y.M.; FEDOROVA, H.E. Investigation on the meiosis of diploid (M. alba L.) and 22-ploid (M.nigra L.) mulberry species and their hybrid relative to the problem of the origin of species M.nigra L. Pakistan Journal of Botany, Karachi, v.2, p.65-76, 1970. ; BASAVAIAH et al., 1990 BASAVAIAH, S.B.D.; ANIL DHAR; SENGUPTA, K. Meiosis in natural decosaploid (22x) Morus nigra L. Cytologia, Tokyo, v.55, p.505-509, 1990. ) belong to the Eusyce section and Moreae tribe, respectively, of the Urticales order Moraceae family which comprises 37 genera and approximately 1,100 species. Fig is the most produced in Turkey and black mulberry is one of the relatives of fig in the Moraceae. These two fruit species have of economic and social importance in agriculture, and health benefits.

Both genera are perennial and evergreen in tropics and deciduous in subtropics and temperate climates (WEIBLEN, 2000 WEIBLEN, G.D. Phylogenetic relationships of functionally dioecious Ficus (Moraceae) based on ribosomal DNA sequences and morphology. American Journal of Botany, St. Louis, v.87, p.1342-1357, 2000. ; FLAISHMAN et al., 2008 FLAISHMAN, M.A.; RODOV, V.; STOVER, E. The fig: botany, horticulture, and breeding. Horticultural Reviews, Hoboken, v.34, p.113-196, 2008. ; HE et al., 2013 HE, N.; ZHANG, C.; QI, X., et al. Draft genome sequence of the mulberry tree Morus notabilis. Nature Communications, London, v.4, p.2445, 2013. ; VIJAYAN et al., 2014 VIJAYAN, K.; JAYARAMA RAJU, P.; TIKADER, A.; SARATCHNADRA, B. Biotechnology of mulberry (Morus L.) - a review. Emirates Journal of Food and Agriculture, Abu Dhabi, v.26, p.472-496, 2014. ). The genus Ficus includes approximately 700 dioecious and gynodioecious species.

The fertilization of fig is carried out by the symbiotic fig wasp, Blastophaga psenes L. The fig is the oldest cultivated plant according to the fossil records of dried fruit (syconia) and seeds (drupelets) found in the ancient ruins in the Gilgal Village of the lower Jordan Valley dated back to 11,400 years before present (KISLEV et al., 2006 KISLEV, M.E.; HARTMANN, A.; BAR-YOSEF, O. Early domesticated fig in the Jordan Valley. Science, Washington, DC, v.312, p.1372-1374, 2006. ).

Anatolia is in the center of origin of the cultivated figs.

Turkey (274,535 t, 25.1%) is the leading country for fig production in the world (1,093,189 t) (FAOSTAT, 2012 FAOSTAT. Food and agricultural organization. Rome. 2012. Disponível em: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor, Acesso em: 16 mar. 2014.
http://faostat.fao.org/site/567/DesktopD...
).

The genus Morus has about 10-13 recognized species (HE et al., 2013 HE, N.; ZHANG, C.; QI, X., et al. Draft genome sequence of the mulberry tree Morus notabilis. Nature Communications, London, v.4, p.2445, 2013. ). There are at least 24 species (KAFKAS et al., 2008 KAFKAS, S.; ÖZGEN, M.; DOGAN, Y.; ÖZCAN, B.; ERCISLI, S.; SERÇE, S. Molecular characterization of mulberry accessions in Turkey by AFLP markers. Journal of the American Society for Horticultural Science, Alexandria, v.133, p.593-597, 2008. ) or 68 species having different ploidy levels (ANIL KUMAR et al., 2012 ANIL KUMAR, H.V.; MURALIDHAR MUNIRAJAPPA, T.S. RAPD analysis of EMS mutagenised mulberry genotype RFS135. International Journal of Current Research, Paris, v.4, p.53-58, 2012. ) species. The fertilization of mulberry trees is carried out by wind. The mulberry originated from the Himalayan foothills and has distributed between 50°N and 10°S latitudes in Asia, Middle Asia, Europe, North, Central, and South America, and Africa. Its leaves have been used for feeding of silkworms, Bombyx mori L. (VIJAYAN et al., 2014 VIJAYAN, K.; JAYARAMA RAJU, P.; TIKADER, A.; SARATCHNADRA, B. Biotechnology of mulberry (Morus L.) - a review. Emirates Journal of Food and Agriculture, Abu Dhabi, v.26, p.472-496, 2014. ). Turkey produces 76,400 t mulberries (TÜİK, 2013 TÜIK. Statistics organization of Turkey. Ankara, 2013. Disponível em: http://tuikapp.tuik.gov.tr/bitkiselapp/bitkisel.zul. Acesso em: 02 fev. 2015.
http://tuikapp.tuik.gov.tr/bitkiselapp/b...
). According to the recently published draft genome sequence of Morus notabilis (HE et al., 2013 HE, N.; ZHANG, C.; QI, X., et al. Draft genome sequence of the mulberry tree Morus notabilis. Nature Communications, London, v.4, p.2445, 2013. ), its estimated genome size is 357 Mbp and contains 330 Mb genome assembly, 128 Mb repetitive sequences, and 29,338 genes, 60.8% of which are supported by transcriptome sequencing. The 1C DNA value corresponds to the DNA amount in the unreplicated haploid nucleus chromosome complement where the letter C stands for a “constant” (TUNA et al., 2001 TUNA, M.; VOGEL, K.P.; ARUMUGANATHAN, K.; GILL, K.S. DNA Content and ploidy determination of bromegrass germplasm accessions by flow cytometry. Crop Science, Madison, v.41, p.1629-1634, 2001. ; BENNETT; LEITCH, 2011 BENNETT, M.D.; LEITCH, I.J. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany, London, v.107, p.467-590, 2011. ). The 2C DNA values represent the DNA content of a diploid somatic nucleus. The conversion factor is as follows: 1 pg = 980 Mbp (TUNA et al., 2001 TUNA, M.; VOGEL, K.P.; ARUMUGANATHAN, K.; GILL, K.S. DNA Content and ploidy determination of bromegrass germplasm accessions by flow cytometry. Crop Science, Madison, v.41, p.1629-1634, 2001. ).

There are 6,287 angiosperm species listed at the Plant DNA C-values database (BENNETT; LEITCH, 2010 BENNETT, M.D.; LEITCH, I.J. Plant DNA C-values database. Release 5.0. Kew: Royal Botanic Gardens, 2010. ).

Feulgen densitometry (FD) and flow cytometry (FC) are the two mostly used methods in DNA content estimation.

The latter has been used to estimate the nuclear DNA content and genome size of an unknown sample comparing with a reference standard (GALBRAITH et al., 1983 GALBRAITH, D.W.; HARKINS, K.R.; MADDOX, J.M.; AYRES, N.M.; SHARMA, D.P.; FIROOZABADY, E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science, Washington, v.220, p.1049-1051, 1983. ; DOLEŽEL et al., 1998 DOLEŽEL, J.; GREILHUBER, J.; LUCRETTI, S.; MEISTER, A.; LYSÁK, M.A.; NARDI, L.; OBERMAYER, R. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Annals of Botany, Supplement A, London, v.82, p.17-26, 1998. ; DOLEŽEL; GREILHUBER, 2010 DOLEŽEL, J.; GREILHUBER, J. Nuclear genome size: are we getting closer? Cytometry A, Hoboken, v.77, p.635-642, 2010. ; TİRYAKİ; TUNA, 2012 TIRYAKI, I.; TUNA, M. Determination of intraspecific nuclear DNA content variation in common vetch (Vicia sativa L.) lines and cultivars based on two distinct internal reference standards. Turkish Journal of Agriculture and Forestry, Ankara, v.36, p.645-653, 2012. ). Different fluorochromes (fluorescent dyes) are used in FC. DAPI, DIPI, Hoechst 33258, and Hoechst 33342 bind to AT-rich regions whereas chromomycin A3, mithramycin, and olivomycin bind to GC-rich regions. Ethidium bromide (EB) and PI intercalate to DNA molecules independent of base sequences (DOLEŽEL et al., 1998 DOLEŽEL, J.; GREILHUBER, J.; LUCRETTI, S.; MEISTER, A.; LYSÁK, M.A.; NARDI, L.; OBERMAYER, R. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Annals of Botany, Supplement A, London, v.82, p.17-26, 1998. ). DAPI has been chosen for staining the nuclear DNA in FC since it is cheaper, safer, and more environment friendly than the others (OCHATT, 2008 OCHATT, S.J. Flow cytometry in plant breeding. Cytometry A, Hoboken, v.73, p.581-598, 2008. ). The published nuclear DNA contents of some fruit trees change as follows: diploid banana, Musa spp. 2n=2x=22, 2C=1.108 pg, 1C=534 Mbp (LYSÁK et al., 1999 LYSÁK, M.A.; DOLEŽELOVÁ, M.; HORRY, J.P.; SWENNEN, R.; DOLEŽEL, J. Flow cytometric analysis of nuclear DNA content in Musa. Theoretical and Applied Genetics, Heidelberg, v.98, p.1344-1350, 1999. ; ASIF et al., 2001 ASIF, M.J.; MAK, C.; OTHMAN, R.T. Characterization of indigenous Musa species based on flow cytometric analysis of ploidy and nuclear DNA content. Caryologia, London, v.54, p.161-168, 2001. ); diploid olive, Olea spp. 2n=2x=46, 2C=2.90-3.07 pg, 1C=1,453-1,502 Mbp (LOUREIRO et al., 2007a LOUREIRO, J.; RODRIGUEZ, E.; COSTA, A.; SANTOS, C. Nuclear DNA content estimations in wild olive (Olea europaea L. ssp.europaea var. sylvestris) and Portuguese cultivars of O.europaea using flow cytometry. Genetic Resources and Crop Evolution, Heidelberg, v.54, p.21-25, 2007a. ; BRITO et al., 2008 BRITO, G.; LOUREIRO, J.; LOPES, T.; RODRIGUEZ, E.; SANTOS, C. Genetic characterization of olive trees from Madeira Archipelago using flow cytometry and microsatellite markers. Genetic Resources and Crop Evolution, Heidelberg, v.55, p.657-664, 2008. ); diploid coffee, Coffea spp. 2n=2x=22, 2C=0.95 pg (CROS et al., 1995 CROS, J.; COMBES, M.C.; CHABRILLANGE, N.; DUPERRAY, C.; MONNOT DES ANGLES, A.; HAMON, S. Nuclear DNA content in the subgenus Coffea (Rubiaceae): inter- and intra-specific variation in African species. Canadian Journal of Botany, Ottawa, v.73, p.14-20, 1995. ; OHRI, 1998 OHRI, D. Genome size variation and plant systematic. Annals of Botany, London, v.82 p.75-83, 1998. Supplement A ). Diploid barley (Hordeum vulgare L., 2n=2x=14, 2C=10.65-10.68 pg, 1C=5,022-5,218 Mbp, TİRYAKİ; TUNA, 2012 TIRYAKI, I.; TUNA, M. Determination of intraspecific nuclear DNA content variation in common vetch (Vicia sativa L.) lines and cultivars based on two distinct internal reference standards. Turkish Journal of Agriculture and Forestry, Ankara, v.36, p.645-653, 2012. ; TUNA et al., 2001 TUNA, M.; VOGEL, K.P.; ARUMUGANATHAN, K.; GILL, K.S. DNA Content and ploidy determination of bromegrass germplasm accessions by flow cytometry. Crop Science, Madison, v.41, p.1629-1634, 2001. ; BENNETT; LEITCH, 2011 BENNETT, M.D.; LEITCH, I.J. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany, London, v.107, p.467-590, 2011. ) and diploid common vetch (Vicia sativa L., 2n=2x=12, 2C=3.69-3.79 pg, 1C=1,808-1,857 Mbp, KAHLAOUI et al., 2009 KAHLAOUI, S.; WALKER, D. J.; CORREAL, E.; MARTÍNEZ-GÓMEZ, P.; HASSEN, H.; BOUZID, S. The morphology, chromosome number and nuclear DNA content of Tunisian populations of three Vicia species. African Journal of Biotechnology, Ebène, v.8, p.3184-3191, 2009. ) are among the internal reference standards used in FC. The 2C DNA contents per nucleus for diploid fig were estimated as 1.41±0.01 pg using FD (OHRI; KHOSHOO, 1987 OHRI, D.; KHOSHOO, T.N. Nuclear DNA contents in the genus Ficus (Moraceae). Plant Systematics and Evolution, Heidelberg, v.156, p.1-4, 1987. ) and as 0.73±0.03 pg using propidium iodide (PI) (LOUREIRO et al., 2007b LOUREIRO, J.; RODRIGUEZ, E.; DOLEŽEL, J.; SANTOS, C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Annals of Botany, London, v.100, p.875-888, 2007b. ). The estimated genome size of F. carica is 1C=356-357 Mbp (LOUREIRO et al., 2007b LOUREIRO, J.; RODRIGUEZ, E.; DOLEŽEL, J.; SANTOS, C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Annals of Botany, London, v.100, p.875-888, 2007b. ; BENNETT; LEITCH, 2011 BENNETT, M.D.; LEITCH, I.J. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany, London, v.107, p.467-590, 2011. ).

The 2C DNA content of F. elastica was estimated to 1.52 pg using DAPI and PI (KOLÁŘ et al., 2012 KOLÁR, F.; LUCANOVÁ, M.; TEŠITEL, J.; LOUREIRO, J.; SUDA, J. Glycerol-treated nuclear suspensions-an efficient preservation method for flow cytometric analysis of plant samples. Chromosome Research, Heidelberg, v.20, p.303-315, 2012. ). The 2C DNA content of F. bengalensis was 1.45±0.01 pg using FD (OHRI; KUMAR, 1986 OHRI, D.; KUMAR, A. Nuclear DNA amounts in some tropical hardwoods. Cytologia, Firenze, v.39, p.303-307, 1986. ). These were the four records for Ficus spp. DNA content determination. There were only three published articles on Morus spp. The 2C nuclear DNA content of diploid Morus alba, M. bombycis, M. latifolia, and M. rotunbiloba were 2C=0.79 pg using EB (HORJALES et al., 2003 HORJALES, M.; REDONDO, N.; BLANCO, A.; RODRIGUEZ, M.A. Cantidades de DNA nuclear en árboles y arbutos. Nova Acta Científica Compostelana (Bioloxia), Santiago de Compostela, v.13, p.23-33, 2003. ). The 2C=0.704-0.746 pg was found using DAPI (4’,6-diamidino-2-phenylindole) and PI (YAMANOUCHI et al., 2010 YAMANOUCHI, H.; KOYAMA, A.; TAKYU, T.; MURAMATSU, N. Nuclear DNA amounts in diploid mulberry species (Morus spp.). Journal Insect Biotechnology and Sericology, Tokyo, v.79, 1-8, 2010. ). The 2C DNA content was 1.70±0.02 pg using FD (OHRI; KUMAR, 1986 OHRI, D.; KUMAR, A. Nuclear DNA amounts in some tropical hardwoods. Cytologia, Firenze, v.39, p.303-307, 1986. ).

The estimated genome size of M. alba is 1C=345-366 Mbp (YAMANOUCHI et al., 2010 YAMANOUCHI, H.; KOYAMA, A.; TAKYU, T.; MURAMATSU, N. Nuclear DNA amounts in diploid mulberry species (Morus spp.). Journal Insect Biotechnology and Sericology, Tokyo, v.79, 1-8, 2010. ) or 1C=386 Mbp (HORJALES et al., 2003 HORJALES, M.; REDONDO, N.; BLANCO, A.; RODRIGUEZ, M.A. Cantidades de DNA nuclear en árboles y arbutos. Nova Acta Científica Compostelana (Bioloxia), Santiago de Compostela, v.13, p.23-33, 2003. ). During the literature search, no report was observed on M. nigra 2C DNA content. To acquire some knowledge on the DNA content on cultivated fig and black mulberry will help to facilitate genomics studies. The objective of this study was to determine 2C DNA content of fig and black mulberry using DAPI in flow cytometry. This is the first report on determining of 2C DNA content of fig and black mulberry using DAPI.

Material and Methods

The nuclear DNA content was determined from leafs of barley, common vetch, fig, and black mulberry plants. The methods were used from TUNA et al. (2001) TUNA, M.; VOGEL, K.P.; ARUMUGANATHAN, K.; GILL, K.S. DNA Content and ploidy determination of bromegrass germplasm accessions by flow cytometry. Crop Science, Madison, v.41, p.1629-1634, 2001. and TAVARES et al. (2014) TAVARES, A.C.; LOUREIRO, J.; CASTRO, S.; COUTINHO, A.P.; PAIVA, J.; CAVALEIRO, C.; SALGUEIRO, L.; CANHOTO, J.M. Assessment of Daucus carota L. (Apiaceae) subspecies by chemotaxonomic and DNA content analyses. Biochemical Systematics and Ecology, Heidelberg, v.55, p.222-230, 2014. with some modifications. For intact nuclei isolation, leaf tissues of sample and standard species were used alone and then simultaneously in flow cytometry. Each of 1.0 cm2 (20-50 mg) of leaf tissues of H. vulgare, V. sativa, F. carica, and M. nigra analyzed one by one to observe corresponding G1 and G2 peaks.

Then, leaf tissues of fig or black mulberry were mixed together with 1.0 cm2 (20-50 mg) of leaf tissues of diploid common vetch and barley as internal reference standards. While fig leaf sample was used with common vetch leaf standard (1:1), black mulberry leaf sample was used with barley leaf standard (1:1) since their peak sizes were comparable. Leaf samples from both plants of each species pair were simultaneously chopped with a sharp razor blade for approximately 30 s in a plexiglass Petri dish containing 400 μl of ice-cold extraction buffer (stock: 24 ml MgSO4, 25 mg dithiothreitol, 625 μl Triton X-100 stock (1.0 g Triton X-100 in 10 ml ddH2O)). The nuclear suspension was filtered through a 30 μm nylon filter (Partec CellTrics®, Görlitz, Germany) to remove cell fragments and large leaf debris. Then, nuclei were stained using the kit CyStain® UV Precise P (Partec GmbH., Münster, Germany) with 1600 μl of DAPI (1×) solution. After a 2-3 min incubation period in darkness, the relative fluorescence intensity (FI) of nuclei per G1 peak was analyzed in a CyFlow® Space flow cytometer (Partec GmbH., Münster, Germany) equipped with a green solid state laser for monitoring DAPI fluorescent dye excitation (>435 nm, YAMANOUCHI et al., 2008, or 365 nm YAMANOUCHI et al., 2010 YAMANOUCHI, H.; KOYAMA, A.; TAKYU, T.; MURAMATSU, N. Nuclear DNA amounts in diploid mulberry species (Morus spp.). Journal Insect Biotechnology and Sericology, Tokyo, v.79, 1-8, 2010. ). It is recommended to10- 15 particles per second during the excitation recording.

DNA content was calculated as follows: 2C or Nuclear DNA content (pg) = (mean position of unknown sample peak)/(mean position of known standard peak) × DNA content of known standard.1C = (nuclear DNA content (pg) × 980 Mbp) / 2.

Results and discussion

In the beginning of the experiment, barley, common vetch, fig, and black mulberry leaf samples were analyzed alone (data not presented). Their corresponding G1 and G2 peaks were observed and compared. When fig and common vetch leaf samples were analyzed, ıt was seen that G1 peak of fig (115.94) was 4.5 folds smaller than common vetch (517.96) (Fig 1, Table 1). G1 peak of black mulberry (163.53) was 1.2 fold smaller than that of barley (208.77) (Fig 2, Table 1). The estimated 2C DNA contents of fig and black mulberry were 0.82 pg and 8.34 pg, respectively (Table 1). The ratio of 2C DNA content of the black mulberry was 10.17 times of the fig. The calculated 1C values (1C=980 Mbp) of fig and black mulberry genomes were 401.8 Mbp and 4086.6 Mbp, respectively. The ratio of 1C genome of the black mulberry was 10.17 times of the fig. The estimated 2C DNA content and calculated 1C genome values of fig were more than those of LOUREIRO et al. (2007b) LOUREIRO, J.; RODRIGUEZ, E.; DOLEŽEL, J.; SANTOS, C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Annals of Botany, London, v.100, p.875-888, 2007b. . The reason for this discrepancy can be attributed to a fluorochrome difference used in this study. While DAPI was used in the current study, PI was used in LOUREIRO et al. (2007b) LOUREIRO, J.; RODRIGUEZ, E.; DOLEŽEL, J.; SANTOS, C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Annals of Botany, London, v.100, p.875-888, 2007b. .

The CV values of the current study were deviated from 2.53 to 4.67. PI-stained F. elastica samples had higher CVs than DAPI-stained samples (KOLÁŘ et al. 2012 KOLÁR, F.; LUCANOVÁ, M.; TEŠITEL, J.; LOUREIRO, J.; SUDA, J. Glycerol-treated nuclear suspensions-an efficient preservation method for flow cytometric analysis of plant samples. Chromosome Research, Heidelberg, v.20, p.303-315, 2012. ). The 2C DNA content of black mulberry was much higher than in the work done by HORJALES et al. (2003) HORJALES, M.; REDONDO, N.; BLANCO, A.; RODRIGUEZ, M.A. Cantidades de DNA nuclear en árboles y arbutos. Nova Acta Científica Compostelana (Bioloxia), Santiago de Compostela, v.13, p.23-33, 2003. . In their work, HORJALES et al. (2003) HORJALES, M.; REDONDO, N.; BLANCO, A.; RODRIGUEZ, M.A. Cantidades de DNA nuclear en árboles y arbutos. Nova Acta Científica Compostelana (Bioloxia), Santiago de Compostela, v.13, p.23-33, 2003. used intercalating EB stain.

They used diploid Morus spp. whose 2C DNA content is very similar to that of diploid F. carica in the current study. In other words, the 2C DNA contents of diploid Morus spp. and diploid F. carica are similar in number.

On the other hand, YAMANOUCHI et al. (2010) YAMANOUCHI, H.; KOYAMA, A.; TAKYU, T.; MURAMATSU, N. Nuclear DNA amounts in diploid mulberry species (Morus spp.). Journal Insect Biotechnology and Sericology, Tokyo, v.79, 1-8, 2010. found 2C DNA content (0.704-0.746 pg) close to that obtained by HORJALES et al. (2003) HORJALES, M.; REDONDO, N.; BLANCO, A.; RODRIGUEZ, M.A. Cantidades de DNA nuclear en árboles y arbutos. Nova Acta Científica Compostelana (Bioloxia), Santiago de Compostela, v.13, p.23-33, 2003. (0.79 pg). It can be said that the results obtained from decosaploid M. nigra in the current study is in agreement with both YAMANOUCHI et al. (2010) YAMANOUCHI, H.; KOYAMA, A.; TAKYU, T.; MURAMATSU, N. Nuclear DNA amounts in diploid mulberry species (Morus spp.). Journal Insect Biotechnology and Sericology, Tokyo, v.79, 1-8, 2010. and HORJALES et al. (2003) HORJALES, M.; REDONDO, N.; BLANCO, A.; RODRIGUEZ, M.A. Cantidades de DNA nuclear en árboles y arbutos. Nova Acta Científica Compostelana (Bioloxia), Santiago de Compostela, v.13, p.23-33, 2003. since they used diploid Morus spp. Nevertheless, OHRI; KUMAR (1986) OHRI, D.; KUMAR, A. Nuclear DNA amounts in some tropical hardwoods. Cytologia, Firenze, v.39, p.303-307, 1986. used probably a tetraploid Morus sp. (2C=1.70 pg) in their work which can be in accordance with a decosaploid M. nigra (2C=8.34 pg) in the current study. The results obtained from the current study after nuclei staining with DAPI (binding preferentially to AT-rich regions) did not agree with those obtained using FD (OHRI; KHOSHOO 1987 OHRI, D.; KHOSHOO, T.N. Nuclear DNA contents in the genus Ficus (Moraceae). Plant Systematics and Evolution, Heidelberg, v.156, p.1-4, 1987. , DOLEŽEL et al. 1998 DOLEŽEL, J.; GREILHUBER, J.; LUCRETTI, S.; MEISTER, A.; LYSÁK, M.A.; NARDI, L.; OBERMAYER, R. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Annals of Botany, Supplement A, London, v.82, p.17-26, 1998. ). Higher FI was obtained using laser FC compared to FD (DOLEŽEL et al. 1998 DOLEŽEL, J.; GREILHUBER, J.; LUCRETTI, S.; MEISTER, A.; LYSÁK, M.A.; NARDI, L.; OBERMAYER, R. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Annals of Botany, Supplement A, London, v.82, p.17-26, 1998. ).

The present work showed that samples of unknown DNA content and the standards of known DNA content should be first prepared one by one and then, simultaneously with each other in order to see the peak positions. DAPI can give a better resolution of DNA content histograms using with lamp-based FC (BUITENDIJK et al. 1997 BUITENDIJK, J.H.; BOON, E.J.; RAMANNA, M.S. Nuclear DNA content in twelve species of Alstromeria L. and some of their hybrids. Annals of Botany, London, v.79, p.343-353, 1997. ). Due to preferential binding of DAPI to AT-rich regions of DNA, the estimation of DNA content observed after DAPI staining might be expected to differ from that of PI staining. It was stated that DAPI may be preferred as the fluorochrome for genome size estimation and PI was found to be less reliable (RAYBURN et al. 1992 RAYBURN, A.L.; AUGER, J.A.; MCMURPHY, L.M. Estimating percentage constitutive heterochromatin by flow cytometry. Experimental Cell Research, Heidelberg, v.198, p.175-178, 1992. ). It would be interesting to compare DAPI with PI in fig and black mulberry. PI dye could be used to make DNA content estimation for fig and black mulberry in the future. This is a preliminary study to estimate the DNA content and genome size of black mulberry. The DNA content and genome size of diploid M. alba and M. rubra, and decosaploid M. nigra (AGAEV; FEDOROVA 1970 AGAEV, Y.M.; FEDOROVA, H.E. Investigation on the meiosis of diploid (M. alba L.) and 22-ploid (M.nigra L.) mulberry species and their hybrid relative to the problem of the origin of species M.nigra L. Pakistan Journal of Botany, Karachi, v.2, p.65-76, 1970. ) need to be determined in the same study. Previous knowledge from the published results can help to choose reliable internal standards before start to analyze the sample plant. Both common vetch and barley can be used to estimate DNA contents of fig and black mulberry, respectively. In the following experiments, other standards could be used for F. carica such as Arabidopsis thaliana (L.) Heynh. accession Stoc (0.9 pg, 435 Mbp), Raphanus sativus L. (1.11 pg, 544 Mbp), Lycopersicon esculentum (syn. Solanum lycopersicum L.) (1.96 pg, 1C=960 Mbp), and that for M. nigra, such as Zea mays L. (5.43 pg, 1C=2,261 Mbp), Pisum sativum L. (9.09 pg, 1C=4,454 Mbp), Secale cereale L. (16.19 pg, 1C=7,933 Mbp) (DOLEŽEL; GREILHUBER 2010 DOLEŽEL, J.; GREILHUBER, J. Nuclear genome size: are we getting closer? Cytometry A, Hoboken, v.77, p.635-642, 2010. ). The peaks for these suggested standards appear less than three orders of the DNA content of the sample need of fig and mulberry.

Figure 1
Fluorescence intensity (relative DNA content) of Ficus carica (peak 2) and Vicia sativa (peak 3) in flow cytometry. The first peak was a default for the DNA or cell noise signal.
Figure 2
Fluorescence intensity (relative DNA content) of Morus nigra (peak 2) and Hordeum vulgare (peak 3) in flow cytometry. The first peak was a default for the DNA or cell noise signal.
Table 1
Expected DNA amount of fig (Ficus carica) and black mulberry (Morus nigra) compared to that of standards, barley (Hordeum vulgare) and common vetch (Vicia sativa)

Conclusion

The 2C DNA contents of the fig and black mulberry were found as 0.82 pg and 8.34 pg, respectively. The calculated 1C value of fig and black mulberry genomes were 401.8 Mbp and 4086.6 Mbp, respectively. The ratio of 2C DNA content and 1C genome value of the black mulberry was 10.17 times that of the fig although F. carica is diploid and M. nigra decosaploid.

Acknowledgements

The authors thank to Prof. Dr. Metin TUNA for his support and help during the analysis, and Prof. Dr. Eliezer S. LOUZADA for his reviewing the manuscript and writing the resumo.

  • AGAEV, Y.M.; FEDOROVA, H.E. Investigation on the meiosis of diploid (M. alba L.) and 22-ploid (M.nigra L.) mulberry species and their hybrid relative to the problem of the origin of species M.nigra L. Pakistan Journal of Botany, Karachi, v.2, p.65-76, 1970.
  • ANIL KUMAR, H.V.; MURALIDHAR MUNIRAJAPPA, T.S. RAPD analysis of EMS mutagenised mulberry genotype RFS135. International Journal of Current Research, Paris, v.4, p.53-58, 2012.
  • ASIF, M.J.; MAK, C.; OTHMAN, R.T. Characterization of indigenous Musa species based on flow cytometric analysis of ploidy and nuclear DNA content. Caryologia, London, v.54, p.161-168, 2001.
  • BASAVAIAH, S.B.D.; ANIL DHAR; SENGUPTA, K. Meiosis in natural decosaploid (22x) Morus nigra L. Cytologia, Tokyo, v.55, p.505-509, 1990.
  • BENNETT, M.D.; LEITCH, I.J. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany, London, v.107, p.467-590, 2011.
  • BENNETT, M.D.; LEITCH, I.J. Plant DNA C-values database. Release 5.0. Kew: Royal Botanic Gardens, 2010.
  • BRITO, G.; LOUREIRO, J.; LOPES, T.; RODRIGUEZ, E.; SANTOS, C. Genetic characterization of olive trees from Madeira Archipelago using flow cytometry and microsatellite markers. Genetic Resources and Crop Evolution, Heidelberg, v.55, p.657-664, 2008.
  • BUITENDIJK, J.H.; BOON, E.J.; RAMANNA, M.S. Nuclear DNA content in twelve species of Alstromeria L. and some of their hybrids. Annals of Botany, London, v.79, p.343-353, 1997.
  • CONDIT, I.J. Cytological and morphological studies in the genus Ficus I. Chromosome number and morphology in seven species. University of California Publication Botany, Oakland, v.11, p.233-244, 1928.
  • CROS, J.; COMBES, M.C.; CHABRILLANGE, N.; DUPERRAY, C.; MONNOT DES ANGLES, A.; HAMON, S. Nuclear DNA content in the subgenus Coffea (Rubiaceae): inter- and intra-specific variation in African species. Canadian Journal of Botany, Ottawa, v.73, p.14-20, 1995.
  • DOLEŽEL, J.; GREILHUBER, J. Nuclear genome size: are we getting closer? Cytometry A, Hoboken, v.77, p.635-642, 2010.
  • DOLEŽEL, J.; GREILHUBER, J.; LUCRETTI, S.; MEISTER, A.; LYSÁK, M.A.; NARDI, L.; OBERMAYER, R. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Annals of Botany, Supplement A, London, v.82, p.17-26, 1998.
  • FAOSTAT. Food and agricultural organization. Rome. 2012. Disponível em: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor, Acesso em: 16 mar. 2014.
    » http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor
  • FLAISHMAN, M.A.; RODOV, V.; STOVER, E. The fig: botany, horticulture, and breeding. Horticultural Reviews, Hoboken, v.34, p.113-196, 2008.
  • GALBRAITH, D.W.; HARKINS, K.R.; MADDOX, J.M.; AYRES, N.M.; SHARMA, D.P.; FIROOZABADY, E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science, Washington, v.220, p.1049-1051, 1983.
  • HE, N.; ZHANG, C.; QI, X., et al. Draft genome sequence of the mulberry tree Morus notabilis. Nature Communications, London, v.4, p.2445, 2013.
  • HORJALES, M.; REDONDO, N.; BLANCO, A.; RODRIGUEZ, M.A. Cantidades de DNA nuclear en árboles y arbutos. Nova Acta Científica Compostelana (Bioloxia), Santiago de Compostela, v.13, p.23-33, 2003.
  • KAFKAS, S.; ÖZGEN, M.; DOGAN, Y.; ÖZCAN, B.; ERCISLI, S.; SERÇE, S. Molecular characterization of mulberry accessions in Turkey by AFLP markers. Journal of the American Society for Horticultural Science, Alexandria, v.133, p.593-597, 2008.
  • KAHLAOUI, S.; WALKER, D. J.; CORREAL, E.; MARTÍNEZ-GÓMEZ, P.; HASSEN, H.; BOUZID, S. The morphology, chromosome number and nuclear DNA content of Tunisian populations of three Vicia species. African Journal of Biotechnology, Ebène, v.8, p.3184-3191, 2009.
  • KISLEV, M.E.; HARTMANN, A.; BAR-YOSEF, O. Early domesticated fig in the Jordan Valley. Science, Washington, DC, v.312, p.1372-1374, 2006.
  • KOLÁR, F.; LUCANOVÁ, M.; TEŠITEL, J.; LOUREIRO, J.; SUDA, J. Glycerol-treated nuclear suspensions-an efficient preservation method for flow cytometric analysis of plant samples. Chromosome Research, Heidelberg, v.20, p.303-315, 2012.
  • LOUREIRO, J.; RODRIGUEZ, E.; COSTA, A.; SANTOS, C. Nuclear DNA content estimations in wild olive (Olea europaea L. ssp.europaea var. sylvestris) and Portuguese cultivars of O.europaea using flow cytometry. Genetic Resources and Crop Evolution, Heidelberg, v.54, p.21-25, 2007a.
  • LOUREIRO, J.; RODRIGUEZ, E.; DOLEŽEL, J.; SANTOS, C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Annals of Botany, London, v.100, p.875-888, 2007b.
  • LYSÁK, M.A.; DOLEŽELOVÁ, M.; HORRY, J.P.; SWENNEN, R.; DOLEŽEL, J. Flow cytometric analysis of nuclear DNA content in Musa. Theoretical and Applied Genetics, Heidelberg, v.98, p.1344-1350, 1999.
  • OCHATT, S.J. Flow cytometry in plant breeding. Cytometry A, Hoboken, v.73, p.581-598, 2008.
  • OHRI, D. Genome size variation and plant systematic. Annals of Botany, London, v.82 p.75-83, 1998. Supplement A
  • OHRI, D.; KHOSHOO, T.N. Nuclear DNA contents in the genus Ficus (Moraceae). Plant Systematics and Evolution, Heidelberg, v.156, p.1-4, 1987.
  • OHRI, D.; KUMAR, A. Nuclear DNA amounts in some tropical hardwoods. Cytologia, Firenze, v.39, p.303-307, 1986.
  • RAYBURN, A.L.; AUGER, J.A.; MCMURPHY, L.M. Estimating percentage constitutive heterochromatin by flow cytometry. Experimental Cell Research, Heidelberg, v.198, p.175-178, 1992.
  • TAVARES, A.C.; LOUREIRO, J.; CASTRO, S.; COUTINHO, A.P.; PAIVA, J.; CAVALEIRO, C.; SALGUEIRO, L.; CANHOTO, J.M. Assessment of Daucus carota L. (Apiaceae) subspecies by chemotaxonomic and DNA content analyses. Biochemical Systematics and Ecology, Heidelberg, v.55, p.222-230, 2014.
  • TIRYAKI, I.; TUNA, M. Determination of intraspecific nuclear DNA content variation in common vetch (Vicia sativa L.) lines and cultivars based on two distinct internal reference standards. Turkish Journal of Agriculture and Forestry, Ankara, v.36, p.645-653, 2012.
  • TÜIK. Statistics organization of Turkey. Ankara, 2013. Disponível em: http://tuikapp.tuik.gov.tr/bitkiselapp/bitkisel.zul Acesso em: 02 fev. 2015.
    » http://tuikapp.tuik.gov.tr/bitkiselapp/bitkisel.zul
  • TUNA, M.; VOGEL, K.P.; ARUMUGANATHAN, K.; GILL, K.S. DNA Content and ploidy determination of bromegrass germplasm accessions by flow cytometry. Crop Science, Madison, v.41, p.1629-1634, 2001.
  • VIJAYAN, K.; JAYARAMA RAJU, P.; TIKADER, A.; SARATCHNADRA, B. Biotechnology of mulberry (Morus L.) - a review. Emirates Journal of Food and Agriculture, Abu Dhabi, v.26, p.472-496, 2014.
  • WEIBLEN, G.D. Phylogenetic relationships of functionally dioecious Ficus (Moraceae) based on ribosomal DNA sequences and morphology. American Journal of Botany, St. Louis, v.87, p.1342-1357, 2000.
  • YAMANOUCHI, H.; KOYAMA, A.; TAKYU, T.; MURAMATSU, N. Nuclear DNA amounts in diploid mulberry species (Morus spp.). Journal Insect Biotechnology and Sericology, Tokyo, v.79, 1-8, 2010.
  • YAMANOUCHI, H.; KOYAMA, A.; TAKYU, T.; YOSHIOKA, T. Flow cytometric analysis of various organs and cytochimeras of mulberry (Morus spp.). Journal Insect Biotechnology and Sericology, Tokyo, v.77, p.95-108, 2008.

Publication Dates

  • Publication in this collection
    2018

History

  • Received
    05 Jan 2017
  • Accepted
    11 July 2017
Sociedade Brasileira de Fruticultura Via de acesso Prof. Paulo Donato Castellane, s/n , 14884-900 Jaboticabal SP Brazil, Tel.: +55 16 3209-7188/3209-7609 - Jaboticabal - SP - Brazil
E-mail: rbf@fcav.unesp.br