Acessibilidade / Reportar erro

Propagation of Annonaceous plants

Propagação de Anonáceas

Abstract

This review aims to present advances in studies on the propagation of the Annonaceae species, which includes species of economic importance such as: soursop, custard apple, atemoya and cherimoya. In sexual propagation, advances are mainly related to a better understanding of the stages of seed development, dormancy mechanisms, and germination. In asexual propagation, compatibility studies between grafts and rootstocks are presented, focusing on the expression of genes involved in tissue formation. The cutting method is also discussed, which is another option for the propagation for this group of plants considered difficult to root, approaching endogenous and exogenous factors related to the subject, as well as management strategies that affect the success of this technique.

Index terms
Annonaceae; seed dormancy; germination; grafting; cutting

Resumo

A presente revisão tem por objetivo apresentar os avanços nos estudos sobre a propagação de espécies da família Annonaceae, que inclui espécies de importância econômica como: graviola, fruta-do-conde, atemoia e cherimoia. Na propagação sexuada, os avanços estão relacionados, principalmente, com a melhor compreensão dos estádios de desenvolvimento das sementes, mecanismos de dormência, e germinação , em especial a fase de embebição das mesmas. Na propagação assexuada, são apresentados estudos de compatibilidade entre enxertos e porta-enxertos, com foco na expressão de genes envolvidos com a formação dos tecidos. Também é discutido o método da estaquia, outra opção de propagação para este grupo de plantas consideradas de difícil enraizamento, abordando-se fatores endógenos e exógenos relacionados ao tema, bem como as estratégias de manejo que interferem no sucesso desta técnica.

Termos para indexação
Annonaceae; dormência; germinação; sementes; enxertia; estaquia

Introduction

The Annonaceae family has pantropical distribution and is one of the oldest existing flower groups, with basal lineage estimated to be 112 million years old, with approximately 2100 species and 129 genera (STEVENS, 2016 STEVENS, P.F. Angiosperm phylogeny website. Version 12. 2016. Disponível em: http://www.mobot.org/MOBOT/research/APweb/.( ), significantly contributing to the diversity of forests, both for its abundance and its phenological characteristics that allow the survival of organisms that live with it (GOTTESBERGER, 2014; GOTTSBERGER, G. Evolutionary steps in the reproductive biology of Annonaceae. Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.1, p.32-42, 2014. GONZÁLEZ-ESQUINCA et al., 2016 GONZÁLEZ-ESQUINCA, A.R.; DE-LA-CRUZ-CHACÓN I.; CASTRO-MORENO M.; RILEY-SALDAÑA, C.A. Phenological strategies of Annona from deciduous forest of Chiapas, Mexico. Botanical Sciences, Ciudad de México, v.94, n.3, p.531-541. 2016. ). Four species have economic importance, Annona muricata L. (soursop), A. squamosa L. (custard apple), A. cherimola Mill. (cherimoya) and A. squamosa x A. cherimola hybrid (atemoya), due to their edible fruits and Cananga odorata, which produces aromatic substances for perfumery. In addition, the family is recognized as a source of active substances with potent pharmacological and pesticide activities, some of which are expected to be in the near future, new anticancer drugs (LIAW et al., 2016 LIAW C.C.; LIOU J.R.; WU T.Y.; CHANG F.R.; WU, Y.C. Acetogenins from Annonaceae. Progress in the Chemistry of Organic Natural Products, Wien, v.101, p.113-230, 2016. ).

The main means of perpetuating species of the Annonaceae family occurs through the seminiferous way, which often presents some dormancy mechanism. In addition, seeds are used for the production of commercial canopy rootstocks, with grafting being the main method of vegetative propagation. Cutting has also been used, but its application has been restricted to the production of seedlings destined to pathogen-free areas in the soil or for the production of rootstocks.

Seeds: development, germination and dormancy stages.

Although most Annonaceae flowers are selfcompatible, protogenic dicogamy acts against selfpollination.

Pollination is done predominantly by small beetles (cantarofilia) in diurnal flowers (e.g., Guatteria, Duguetia and Annona) and large beetles (Dynastinae, Scarabaeidae) in nocturnal flowers (e.g., Annona, Duguetia), but can also be done by thrips, flies, cockroaches and bees (GOTSTSBERG, 2014 GOTTSBERGER, G. Evolutionary steps in the reproductive biology of Annonaceae. Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.1, p.32-42, 2014. ). In Annona coriacea, pollination by Cyclocephala is more effective than self-pollination and manual cross-pollination (PAULINO-NETO, 2014 PAULINO-NETO, H.F. Polinização e biologia reprodutiva de araticum-liso (Annona coriacea Mart.: Annonaceae) em uma área de cerrado paulista: implicações para fruticultura. Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.1, p.132-140, 2014. ).

Pollination is followed by coupling, copulation, zygote formation and seed development, which can be divided into three phases, the first characterized by cell divisions, histodifferentiation and morphogenesis of the basic plane of the embryo, as well as high water content ( BEWLEY et al, 2013 BEWLEY, J.D.; BRADFORD, K.J.; HILHORST, H.W.M.; NONOGAKI, H. Seeds: physiology of development, germination and dormancy. 3rd ed. New York: Springer, 2013. 392p. ). In A. squamosa, the early development of the embryo and endosperm occur after 24h of pollination (SANTOS et al., 2014 SANTOS, R.C.; RIBEIRO, L.M.; MERCADANTE-SIMÕES, M.O.; COSTA, M.R.; NIETSCHE, S.; PEREIRA, M.C.T. Stenospermy and seed development in the “Brazilian seedless” variety of sugar apple (Annona squamosa). Anais da Academia Brasileira de Ciências, São Paulo, v.86, n.4, p.2101-2108, 2014. ). In Annona emarginata, high cell division was observed, but the embryo was not yet differentiated at 49 days after flowering (DAF), at 91 DAF, the embryo already had differentiated axes and cotyledons and germination capacity (CORSATO, 2014 CORSATO, J. M. Maturação e aquisição da tolerância a dessecação das sementes de Annona emarginata (Schldtl.) H. Rainer. 2014. 186f. Tese (Doutorado em Ciências Biológicas/Botânica) – Instituto de Biociências, Universidade Estadual Paulista, Botucatu, 2014. ).

In the second phase of seed development, accumulation of reserves and dry mass in A. emarginata occurs between 91 and 116 DAF (CORSATO, 2014 CORSATO, J. M. Maturação e aquisição da tolerância a dessecação das sementes de Annona emarginata (Schldtl.) H. Rainer. 2014. 186f. Tese (Doutorado em Ciências Biológicas/Botânica) – Instituto de Biociências, Universidade Estadual Paulista, Botucatu, 2014. ).

In Annonaceae, the main reserves are lipids, which correspond to 19 to 38% of the dry endosperm mass (RBG Kew, 2016 RBG Kew - Royal Botanic Gardens Kew. SID - Seed information database. Version 7.1. Disponível em: http://data.kew.org/sid/ . Acesso em: 15 ago. 2016.
http://data.kew.org/sid/...
). In A. squamosa seeds, 22% of lipids composed of oleic, linoleic, stearic and palmitic acid (47,23, 13 and 12% respectively) were quantified (RANA, 2015 RANA, V.S. Fatty oil and fatty acid composition of Annona squamosa Linn. seed kernels. International Journal of Fruit Science, Lincoln, v.15, p.79-84, 2015. ).

In the third stage of development, seeds go through a pre-programmed period of desiccation, when they are orthodox or are dispersed with high water content when they are recalcitrant. In the Annonaceae family, most of the reports are of species with orthodox characteristics (Table 1). However, some seeds require further studies for their classification, such as those of A. emarginata, which present during maturation reduction of water content and the presence of mechanisms of desiccation tolerance (accumulation of sugars and proteins of late embryogenesis-LEA) and allow the maintenance of high germination (70%) when the water content is reduced to 5%, but storage does not exceed 60 days, which may be indicative of intermediate species (CORSATO, 2014 CORSATO, J. M. Maturação e aquisição da tolerância a dessecação das sementes de Annona emarginata (Schldtl.) H. Rainer. 2014. 186f. Tese (Doutorado em Ciências Biológicas/Botânica) – Instituto de Biociências, Universidade Estadual Paulista, Botucatu, 2014. ).

Mature seeds are dispersed dormant or quiescent.

When quiescent, favorable environmental conditions guarantee the germination process, which begins with the acquisition of water and ends with the protrusion of the primary root (BEWLEY et al., 2013 BEWLEY, J.D.; BRADFORD, K.J.; HILHORST, H.W.M.; NONOGAKI, H. Seeds: physiology of development, germination and dormancy. 3rd ed. New York: Springer, 2013. 392p. ).

The acquisition of water by seeds occurs according to the three-phase pattern (BEWLEY et al., 2013 BEWLEY, J.D.; BRADFORD, K.J.; HILHORST, H.W.M.; NONOGAKI, H. Seeds: physiology of development, germination and dormancy. 3rd ed. New York: Springer, 2013. 392p. ), which in annonaceous has the peculiarity of occurring slowly. The first phase (PHASE I) of water acquisition, called imbibition, varies from 5 hours in A. squamosa seeds, 36 to 47 h in Annona x atemoya seeds, 50 h in A. macroprophyllata and 70 h in A. purpurea and A. emarginata (reviewed in FERREIRA et al., 2014 FERREIRA, G.; GONZÁLEZ-ESQUINCA, A.R.; DE-LA-CRUZ-CHACÓN, I. Water uptake by Annona diversifolia Saff. and A. purpurea Moc. e Sessé ex Dunal seeds (Annonaceae). Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.l, p.288-295, 2014. ).

This period not only helps detecting the integument impermeability but has been used to determine seed treatments in immersion with plant regulators, or for osmotic conditioning, since it is the period of greatest water acquisition by seeds (GIMENEZ et al., 2014 GIMENEZ, J.I.; FERREIRA, G.; CORSATO, J.M. Soluble sugars and germination of Annona emarginata (Schltdl.) H. Rainer seeds submitted to immersion in GA3 up to different water contents. Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.1, p.281-287, 2014. ; FERREIRA et al., 2014 FERREIRA, G.; GONZÁLEZ-ESQUINCA, A.R.; DE-LA-CRUZ-CHACÓN, I. Water uptake by Annona diversifolia Saff. and A. purpurea Moc. e Sessé ex Dunal seeds (Annonaceae). Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.l, p.288-295, 2014. ).

In phase II, water acquisition is slow and dependent on the degradation of reserves. In stage III, a substantial increase of water acquired due to the embryo growth is observed, whose emergence of the primary root ends the germinative process. In annonaceous plants, the protrusion of the primary root takes from 9 to 12 days in A.macroprophyllata and A. purpurea seeds (FERREIRA et al., 2014 FERREIRA, G.; GONZÁLEZ-ESQUINCA, A.R.; DE-LA-CRUZ-CHACÓN, I. Water uptake by Annona diversifolia Saff. and A. purpurea Moc. e Sessé ex Dunal seeds (Annonaceae). Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.l, p.288-295, 2014. , GONZÁLEZ-ESQUINCA et al., 2015), and 15- 20 days in A. emarginata seeds (GIMENEZ et al., 2011 GIMENEZ, J.I.; CORSATO, J.M; FERREIRA, G.; PINHO, S.Z. Curva de adquisición del agua en semillas de Annona emarginata (Schltdl) H. Rainer sometidas al condicionamiento osmótico. In: GONZÁLEZ-ESQUINCA, A.R.; LUNA-CAZÁRES, L.M.; GUTIÉRREZ-JÍMENEZ, J.; SCHLLIE-GUZMAN, M.A.; VIDAL-LÓPEZ, D.G. Anonáceas: plantas antiguas, estudios recientes. Tuxtla Gutiérrez: UNICACH, 2011. p.237-304. ).

The seeds of several annonaceous trees present dormancy, which by definition is the inability of viable seeds to germinate in a specific period of time under optimal environmental conditions (BASKIN and BASKIN, 2014 BASKIN, C. C.; BASKIN, J. M. Seeds ecology, biogeography, and evolution of dormancy and germination. 2nd ed. San Diego: Elsevier, 2014. 1586p. ). Reports of dormancy in the family involve mainly morphological and physiological characteristics of the embryo, with some factors related to the integument (Table 1).

Table 1
Seed biological characteristics from Annonaceae species.

Regarding the embryo morphology, the presence of small embryos is characteristic of seeds of this family, being reported with dimensions from 1.2 mm in length in A. emarginata (CORSATO et al., 2012 CORSATO, J.M.; FERREIRA, G.; BARBEDO, C.J. Desiccation tolerance in seeds of Annona emarginata (Schltdl.) H. Rainer and action of plant growth regulators on germination. Brazilian Journal of Plant Physiology, Piracicaba, v.24, n.4, p.253-260, 2012. ) to 3.6 mm in A. Squamosa L. (MARTÍNEZ et al., 2013 MARTÍNEZ, F.M.; MIRANDA, D.L.; MAGNITSKIY, S. Anatomy of sugar apple (Annona squamosa L.) seeds (Annonaceae). Agronomía Colombiana, Bogotá, v.31, n.3, p.279-287, 2013. ). Size does not necessarily mean they are undifferentiated or dormant.

Annona squamosa, A. reticulata and A. emarginata present small differentiated embryos in hypocotyls and cotyledons without dormancy (RIZZINI, 1973 RIZZINI, C.T. Dormancy in seeds of Annona crassiflora Mart. Journal of Experimental Botany, Oxford, v.24, n.78, p.117-123, 1973. ; CORSATO et al., 2012 CORSATO, J.M.; FERREIRA, G.; BARBEDO, C.J. Desiccation tolerance in seeds of Annona emarginata (Schltdl.) H. Rainer and action of plant growth regulators on germination. Brazilian Journal of Plant Physiology, Piracicaba, v.24, n.4, p.253-260, 2012. ); on the other hand, A. crassiflora, A. macroprophyllata and A. purpurea present embryos similar to the former, but germination occurs only after 5 to 9 months, which characterizes the physiological component of dormancy (DA SILVA et al., 2007 DA SILVA, E.A.A.; MELO, D.L.B.; DAVIDE, A.C.; BODE, N.; ABREU, G.B.; FARIA, J.M.R.; HILHORST, H.W.M. Germination Ecophysiology of Annona crassiflora seeds. Annals of Botany, London, v. 99, p.893-830, 2007. ; GONZALEZ-ESQUINCA et al., 2015 GONZÁLEZ-ESQUINCA, A.R.; DE-LA-CRUZ-CHACÓN, I.; DOMÍNGUEZ-GUTÚ, L.M. Dormancy and germination of Annona macroprophyllata (Annonaceae): the importance of the micropylar plug and seed position in fruits. Botanical Sciences, Ciudad de México, v.93, n.3, p.1-7, 2015. ).

Table 2 shows treatments for overcoming dormancy of anonaceous plants, in most cases with the use of plant regulators, either alone or in mixtures. Annona macroprophyllata, A. purpurea and Xylopia aromatica seeds respond to the application of isolated plant regulators such as GA3, although they present higher germination rates when mixtures are used to overcome dormancy (200 to 250 mg L-1 of GA 4+7 + benziladenine), with germination rate of 77%, 30% and 63%, respectively (SOCOLOWSKI, CICERO, 2011 SOCOLOWSKI, F.; CICERO, S.M. Use of growth regulators to overcome seed dormancy in Xylopia aromatica (Annonaceae). Seed Science and Technology, Zurich, v.39, p.21-28, 2011. ; FERREIRA et al., 2016 FERREIRA, G.; DE-LA-CRUZ-CHACÓN, I.; GONZÁLEZ-ESQUINCA, A.R. Overcoming seed dormancy in Annona macroprophyllata and Annona purpurea using plant growth regulator. Revista Brasileira de Fruticultura, Jaboticabal, v. 38, n.3, e-234, 2016. ).

Table 2
Seed germination of Annonaceae species.

It should be noted that phytoregulators are used in some cases as in A. emarginata (CORSATO et al., 2012 CORSATO, J.M.; FERREIRA, G.; BARBEDO, C.J. Desiccation tolerance in seeds of Annona emarginata (Schltdl.) H. Rainer and action of plant growth regulators on germination. Brazilian Journal of Plant Physiology, Piracicaba, v.24, n.4, p.253-260, 2012. ) and A. x atemoya (BRAGA et al., 2010 BRAGA, J.F.; FERREIRA, G.; PINHO, S.Z.; BRAGA, L.F.; SOUSA, M.P. Germination of atemoya (Annona cherimola Mill. x A. squamosa L.) CV. Gefner seeds subjected to treatments with plant growth regulators. International Journal of Science and Nature, Daca, v.1, n. 2, p.120-126, 2010. ) to synchronize and / or increase germination rate.

In relation to the dormancy characteristics related to the integument, it has been demonstrated that Annonaceae seeds are not impermeable, not characterizing this factor as dormancy mechanism (FERREIRA et al., 2014 FERREIRA, G.; GONZÁLEZ-ESQUINCA, A.R.; DE-LA-CRUZ-CHACÓN, I. Water uptake by Annona diversifolia Saff. and A. purpurea Moc. e Sessé ex Dunal seeds (Annonaceae). Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.l, p.288-295, 2014. ). It is noteworthy that the slow imbibition may be responsible for the uneven germination. In this case, the integument removal can aid the entry of water and oxygen regulators in seeds, in the same way that it can facilitate the elimination of inhibitory substances, favoring the germinative process (DALANHOL et al., 2014 DALANHOL, S.J.; MOMBACH, T.C.; TODERKE, M.L.; NOGUEIRA, A.V.; BORTOLINI, M.F. Dormência em sementes de Annona cacans Warm. (Annonaceae). Revista Acadêmica: Ciências Agrárias e Ambientais, Curitiba, v.11, supl.1, p.S183-S189, 2013. ).

However, they may also result in negative effects as in A. macroporphyllata, the removal of the micropylar plug from seeds led to increased contamination by pathogenic organisms, perhaps because water acquisition was faster and contamination did not allow embryo germination (GONZÁLEZ-ESQUINCA et al. Al., 2015 GONZÁLEZ-ESQUINCA, A.R.; DE-LA-CRUZ-CHACÓN, I.; DOMÍNGUEZ-GUTÚ, L.M. Dormancy and germination of Annona macroprophyllata (Annonaceae): the importance of the micropylar plug and seed position in fruits. Botanical Sciences, Ciudad de México, v.93, n.3, p.1-7, 2015. ).

Grafting in Annonaceous plants Propagation by grafting aims at the formation of a plant with canopy obtained from commercially productive clones and rootstock tolerant to biotic stress factors (pests and diseases) and abiotic stress factors (lack or excess of water, soil salinity), which requires union techniques that favor the formation of meristematic tissues in the grafted region and their differentiation into a functional vascular system (LEMOS, 2013 LEMOS, E.E.P. Bases anatômicas e aspectos fisiológicos da enxertia em anonáceas. In: FERREIRA, G. et al. (Ed.). Anonaceas: propagação e produção de mudas. Botucatu: FEPAF, 2013. p.45-58. ). In annonaceous plants, for the union of parts, the main grafting methods are ‘budding’ and ‘cleft’ (BARON et al., 2016 BARON, D.; BRAVO, J.P.; MAIA, I.G.; PINA, A.; FERREIRA, G. UGP gene expression and UDP-glucose pyrophosphorylase enzymatic activity in grafting annonaceous plants. Acta Physiologiae Plantarum, Cracóvia, v.38, p.1-8, 2016. ).

For parts to reestablish the new individual, there are several factors involved that deserve to be studied, such as hormone synthesis (ALONI et al., 2010 ALONI, B.; COHEN, R.; KARNI, L.; AKTAS, H.; EDELSTEIN, M. Hormonal signaling in rootstock–scion interactions. Scientia Horticulturae, Amsterdam, v.127, n.2, p.119-126, 2010. ), phenolic compounds, the activity of antioxidant enzymes and the expression of genes involved in tissue formation (PINA; ERREA, 2008 cited by BARON et al., 2016 BARON, D.; BRAVO, J.P.; MAIA, I.G.; PINA, A.; FERREIRA, G. UGP gene expression and UDP-glucose pyrophosphorylase enzymatic activity in grafting annonaceous plants. Acta Physiologiae Plantarum, Cracóvia, v.38, p.1-8, 2016. ). For annonaceous plants, researches reveal that compatible combinations present greater expression of the UGP gene soon after grafting, which is involved with the synthesis of tissues in the grafted region (BARON et al., 2016 BARON, D.; BRAVO, J.P.; MAIA, I.G.; PINA, A.; FERREIRA, G. UGP gene expression and UDP-glucose pyrophosphorylase enzymatic activity in grafting annonaceous plants. Acta Physiologiae Plantarum, Cracóvia, v.38, p.1-8, 2016. ).

Thus, the choice of the rootstock should consider not only reactions caused by the canopy / rootstock combination soon after grafting but also photosynthetic responses and nutritional needs.

For Annona x atemoya the most commonly used rootstock is Annona emarginata (var. terra-fria) a plant tolerant to root rot, trunk drill, and tolerance to dry and flooded soils. As for stress due to lack of water, the species shows recovery of gas exchange and the activity of the enzymes superoxide dismutase and peroxidase, without the detection of lipid peroxidation after 38 days without irrigation (MANTOAN et al., 2016 MANTOAN, L.P.B; ALMEIDA, L.F.R.; MACEDO, A.C.; FERREIRA, G.; BOARO, C.S.F. Photosynthetic adjustment after rehydration in Annona emarginata. Acta Physiologiae Plantarum, Cracóvia, v.38, n.157, 2016. ). In addition, there are no changes in the photochemical efficiency between plants maintained under irrigation and rehydrated after stress establishment, indicating photochemical apparatus tolerant to water stress (MANTOAN et al., 2015 MANTOAN, L.P.B.; FERREIRA, G.; BOARO, C.S.F. Chlorophyll a fluorescence in Annona emarginata (Schltdl.) H. Rainer plants subjected to water stress and after rehydration. Scientia Horticulturae, Amsterdam, v.184, p.23-30, 2015. ).

In relation to tissue formation in the grafted region, both araticum (terra-fria variety), araticum mirim (A. emarginata, mirim variety), and biribá (Annona mucosa) were shown to be compatible with atemoya. After grafting on araticum terra-fria variety, there is an increase in the relative expression of the UGP gene, which indicates a faster tissue formation in the grafted region (BARON et al., 2016 BARON, D.; BRAVO, J.P.; MAIA, I.G.; PINA, A.; FERREIRA, G. UGP gene expression and UDP-glucose pyrophosphorylase enzymatic activity in grafting annonaceous plants. Acta Physiologiae Plantarum, Cracóvia, v.38, p.1-8, 2016. ), since the gene is involved with cell wall synthesis and was suggested as a candidate in the process of compatibility among woody species (PINA; ERREA, 2008 cited by BARON et al., 2016 BARON, D.; BRAVO, J.P.; MAIA, I.G.; PINA, A.; FERREIRA, G. UGP gene expression and UDP-glucose pyrophosphorylase enzymatic activity in grafting annonaceous plants. Acta Physiologiae Plantarum, Cracóvia, v.38, p.1-8, 2016. ). This faster formation of tissues in the grafted region reinforces the compatibility and use of the species for atemoya. On the other hand, A.mucosa presented about 100% establishment, being the formation of tissues and expression of the UGP gene in the grafted region similar to that observed in araticum terra fria variety. When atemoya was grafted on araticum-mirim, there was a reduction of the relative expression of the UGP gene and a smaller size of nursery seedlings compared to the combination of atemoya grafted on biribá and araticum terra fria variety (BARON et al., 2016 BARON, D.; BRAVO, J.P.; MAIA, I.G.; PINA, A.; FERREIRA, G. UGP gene expression and UDP-glucose pyrophosphorylase enzymatic activity in grafting annonaceous plants. Acta Physiologiae Plantarum, Cracóvia, v.38, p.1-8, 2016. ). A. squamosa and A. emarginata are considered alternatives for grafting with atemoya under climatic conditions at high temperatures, although A. squamosa does not show tolerance to root diseases (KAVATI, 2013 KAVATI, R. Porta-enxertos em anonáceas. In: FERREIRA, G. et al. (Ed.). Anonaceas: propagação e produção de mudas. Botucatu: FEPAF, 2013. p.111-123. ). A. cherimola could also be an alternative to subtropical or tropical altitude conditions; however, its use is discarded because it is susceptible to anthracnose (Coletotrichum gloeosporioides), annoneaceous-rust (Phakopsora neocherimoliae) and rot of branches (Botryodiplodia theobromae) (JUNQUEIRA; JUNQUEIRA, 2014 JUNQUEIRA, N.T.V.; JUNQUEIRA, K.P. Principais doenças de Anonáceas no Brasil: descrição e controle. Revista Brasileira de Fruticultura, Jaboticabal, v.36, p.55-64, 2014. ).

In order to graft A. squamosa, the use of several rootstocks, such as A. cherimola, A. glabra (araticum-dobrejo), A. montana (falsa-graviola), A. reticulata (frutada- condessa), A. muricata, A. senegalensis (graviola silvestre), A. x atemoya (KAVATI, 2013 KAVATI, R. Porta-enxertos em anonáceas. In: FERREIRA, G. et al. (Ed.). Anonaceas: propagação e produção de mudas. Botucatu: FEPAF, 2013. p.111-123. ), has been reported. A. reticulata provides greater canopy vigor, tolerance to rot and drill (Heilipus sp.) in trunk and roots (MANICA, 2003 MANICA, I.; ICUMA, I.M.; JUNQUEIRA, K.P. Frutas anonáceas: ata ou pinha, atemólia, cherimólia e graviola: tecnologia de produção, colheita, mercado. Porto Alegre: Cinco continentes, 2003. 596p. ). However, there is differentiated growth in the grafted region, with “elephant leg” formation. Grafting pine cone in A. mucosa was incompatible, with high mortality at 45 days after grafting and establishment between 4 and 19.2% (DOS SANTOS et al., 2005 DOS SANTOS, C.E; ROBERT, S. R.; MARTINS, A. B. G. Propagação do biribá (Rollinia mucosa) e sua utilização como porta-enxerto de pinha (Annona squamosa). Acta Scientiarum. Agronomy, Maringá, v.27, n.3, p.433-436, 2005. ). Species such as Annona neosalicifolia should be evaluated for locations with high temperatures (KAVATI, 2013 KAVATI, R. Porta-enxertos em anonáceas. In: FERREIRA, G. et al. (Ed.). Anonaceas: propagação e produção de mudas. Botucatu: FEPAF, 2013. p.111-123. ).

For A. muricata, the most recommended rootstocks are graviola, A. reticulata, A. montana, A. mucosa and A. glabra (KAVATI, 2013 KAVATI, R. Porta-enxertos em anonáceas. In: FERREIRA, G. et al. (Ed.). Anonaceas: propagação e produção de mudas. Botucatu: FEPAF, 2013. p.111-123. ). When graviola was grafted onto itself, A. montana, A. glabra and A. mucosa, the percentage of successful grafts was equal to or greater than 90%, and grafting on graviola or A. montana resulted in a greater length and diameter of branches and number of leaves and the combination with A. glabra showed the worse development, giving indications of the dwarfing characteristic that is demonstrated in the field (CARVALHO et al., 2000 CARVALHO, J.E.U de; NASCIMENTO, W.M.O do; MULLER, C.H. Tolerância de sementes de araticum-do-brejo (Annona glabra L.) ao dessecamento e ao congelamento. Revista Brasileira de Fruticultura, Jaboticabal, v.23, n.1, p.179-182, 2001. ).

The grafting of A. cherimola has been carried out mainly in cherimoia itself (PADILLA; ENCINA, 2011 PADILLA, I.M.G., ENCINA, C.L. The use of consecutive micrografting improves micropropagation of cherimoya (Annona cherimola Mill.) cultivars. Scientia Horticulturae, Amsterdam, v.129, n.1, p.167-169, 2011. ), because as cultivation must be under conditions of subtropical climate without frost or tropical attitude, the number of species to be used as rootstock is quite restricted. Alternative has been A. emarginata (terra-fria variety) for presenting resistance at low temperatures.

Cutting in Annonaceous plants The maintenance of the genetic characteristics among generations of allogamous plants is only possible through the use of asexual propagation techniques. The cutting technique is one of the most common, simple and fast methods of cloning woody fruit trees, and it is based on the ability of an organ of a plant (stem, leaf or root) to regenerate another complete plant; however, the rooting process is very complex, whose genes and molecular mechanisms that respond for the formation of adventitious roots have not yet been fully identified (HARTMANN et al., 2011 HARTMANN, H.T.; KESTER, D.E.; DAVIES JR, F.T.; GENEVE, R.L. Plant propagation: principles and practices. 8th ed. New York: Prentice-Hall, 2011. 915p. ). The cutting technique in annonaceous plants has been studied for several decades, being previously described as a very limited success practice, because it is a group of species with difficult rooting (SANTOS et al., 2011 SANTOS, M.Q.C.; LEMOS, E.E.P.; SALVADOR, T.L.; REZENDE, L.P.; LIMA SALVADOR, T.; SILVA, J.W.; BARROS, P.G.; CAMPOS, R.S. Rooting soft cuttings of soursop (Annona muricata) ‘GIANT OF ALAGOAS’. Acta Horticulturae, Wageningen, v.923, p.241-245, 2011. ).

In A. x atemoya, the rooting ability of cuttings appears to be cultivar-dependent. Studies with African Pride cultivar showed a success rate of 15% higher than Pink’s Mamooth of 5% (SANEWSKI, 1988 SANEWSKI, G.M. Growing custard apples. Brisbane: Queensland Department of Primary Industries, 1988. ). Ferreira and Ferrari (2008) FERREIRA, G.; FERRARI, T.B.; SAVAZAKI, E.T. Enraizamento de estacas de atemoieira ‘Gefner' tratadas com auxinas. Revista Brasileira de Fruticultura, Jaboticabal, v.30, n.4, p.1083-1088, 2008. obtained with Gefner cultivar more than 80% of the rooting in the surviving cuttings.

The formation of adventitious roots can occur directly from the multiplication of meristematic cells around the vascular cambium. In the indirect formation, root primordia begin with callus tissues that form first and evolve to a connection with the vascular system, which is a typical characteristic of species of difficult rooting (HARTMANN et al., 2011 HARTMANN, H.T.; KESTER, D.E.; DAVIES JR, F.T.; GENEVE, R.L. Plant propagation: principles and practices. 8th ed. New York: Prentice-Hall, 2011. 915p. ).

Longitudinal histological cuts performed at the bases of Annona squamosa cuttings revealed that the radicular primordia always arise from parenchymal tissues initiated from the region of the vascular cambium. In this species, from 15 days, root primordia could already be observed, and the roots could be externally visible from 25 days (LEMOS, BLAK, 1996 LEMOS, E.E.P.; BLAKE, J. Control of leaf abscission in nodal cultures of Annona squamosa L. Journal of Horticultural Science, Ashford, v.71, n.5, p.721-728, 1996. ). For atemoya, roots appear between 8 and 12 weeks (FERREIRA; FERRARI, 2010 FERREIRA, G.; FERRARI, T.B. Enraizamento de estacas de atemoieira (Annona cherimola Mill. x A. squamosa L.) cv. ‘Gefner' submetidas a tratamento lento e rápido com auxinas. Ciência e Agrotecnologia, Lavras, v.34, p.329-336. 2010. ).

The formation of calli at the base of cuttings is a fact independent of root induction, many rooted cuttings are poor or without calli. In some annonaceous such as Annona glabra and A. montana, the early appearance of roots prevented the development of calli on cuttings, which showed roots in quantity and quality to ensure good establishment of seedlings (SCALOPPI JUNIOR et al., 2007 SCALOPPI JUNIOR, E.J. Propagação de especiais de Annonaceae com estacas caulinares. 2007. 279f. Tese (doutorado) - Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 2007. ).

Soft temperatures favor the formation of calli, and higher temperatures rooting. In experiments with A. glabra and A. montana, the lowest rooting in the autumn (20% and 8% respectively) and winter months (4% and 14%) was related to the higher production of calli in cuttings, while in the summer months, rooting was 94% and 48%, accompanied by a small presence of calli (SCALOPPI JÚNIOR; MARTINS, 2003 SCALOPPI JUNIOR, E.J.; MARTINS, A.B.G. Clonagem de quatro espécies de Annonaceae potenciais como porta-enxertos. Revista Brasileira de Fruticultura, Jaboticabal, vol.25, n.2, p.286-289, 2003. ).

The effect of age is fundamental in the promotion of rooting on cuttings of young Annona cherimola (25%) and Annona mucosa plants (40%) when compared to cuttings of adult plants without rooting (SCALOPPI JR .; MARTINS, 2014 SCALOPPI JÚNIOR; MARTINS, A.B.G. Estaquia em anonas. Revista Brasileira de Fruticultura, Jaboticabal, v. 36, n.1, p.147-156, 2014. Número especial ). A similar result was described by Geneve et al. (2007) GENEVE, R.; KESTER, S.; POMPER, K. Autonomous shoot production in pawpaw (Asimina triloba (L.) DUNAL) on plant growth regulador free media. Propagation of Ornamental Plants, Lexington, v.7, n.2, p.51-56, 2007. with pawpaw (Asimina triloba), only cuttings of plants less than two months old treated with various Indole Butiric Acid (IBA) concentrations by rapid immersion were able to rooting.

The age of plants is not an impediment to the rooting of cuttings when adult plants are suitably conditioned for the removal of propagules. In A. cherimola, Encina and González-Padilla (2011) ENCINA, C.L.; GONZALEZ-PADILLA, I.M. The use of consecutive micrografting improves micropropagation of cherimoya (Annona cherimola Mill.) cultivars. Scientia Horticulturae, Amsterdam, v.129, n.1, p.167–169, 2011. observed that microcuttings collected from adult ‘Fino de Jete’, ‘Bonita’ and ‘Pazicas’ plant cultivars had very poor rooting but could be rejuvenated through sequential grafting. After three consecutive grafts, rooting percentages increased significantly to up to 70%. For A. squamosa (SALVADOR et al., 2014 SALVADOR, T.L.; LIMA SALVADOR, T.;LEMOS, E.E.P.; BARROS, P.G.; CAMPOS, R.S. Enraizamento de estacas de pinheira (Annona squamosa L.) com ácido indolbutírico. Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.1, p.310-314, 2014. Número especial. ), A. muricata (SANTOS et al., 2013 SANTOS, M.Q.C.; LEMOS, E.E.P.; SALVADOR, T.L.; CAMPOS, R.; BARROS, P.G.; LIMA SALVADOR, T. Enraizamento de estacas de gravioleira coletadas de diferentes posições do ramo e tratadas com ácido indolbutírico. Interciencia, Caracas, v.38, n.6, p.461-464, 2013. ) and A. x atemoya, (FERREIRA; FERRARI, 2010 FERREIRA, G.; FERRARI, T.B. Enraizamento de estacas de atemoieira (Annona cherimola Mill. x A. squamosa L.) cv. ‘Gefner' submetidas a tratamento lento e rápido com auxinas. Ciência e Agrotecnologia, Lavras, v.34, p.329-336. 2010. ) rooting of cuttings of adult plants was possible when propagules were removed from young vigorous shoots of pruned plants (sugar apple and atemoya) or plants of a clonal garden in a permanent vegetative state through frequent pruning (A. muricata).

A strategy widely used in propagation by cutting is the use of auxins to stimulate rooting, whose effectiveness is IBA>NAA>IAA (Indole Butiric Acid > NaphthalenAcetic Acid > Indole Acetic Acid) individually applied (KESARI et al., 2009 KESARI, V.; KRISHNAMACHARI, A.; RANGAN, L. Effect of auxins on adventitious rooting from stem cuttings of candidate plus tree Pongamia pinnata (L.), a potential biodiesel plant. Trees, Dordrecht, v.23, p.597–604, 2009. ). The method of IBA application in the form of powder showed to be significantly superior to the liquid form in A. squamosa, presenting 86% of rooting of cuttings against 66% for the same IBA concentration used (SALVADOR et al., 2014 SALVADOR, T.L.; LIMA SALVADOR, T.;LEMOS, E.E.P.; BARROS, P.G.; CAMPOS, R.S. Enraizamento de estacas de pinheira (Annona squamosa L.) com ácido indolbutírico. Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.1, p.310-314, 2014. Número especial. ). Better responses in the form of powder were also obtained for A. muricata (SANTOS et al., 2011 SANTOS, M.Q.C.; LEMOS, E.E.P.; SALVADOR, T.L.; REZENDE, L.P.; LIMA SALVADOR, T.; SILVA, J.W.; BARROS, P.G.; CAMPOS, R.S. Rooting soft cuttings of soursop (Annona muricata) ‘GIANT OF ALAGOAS’. Acta Horticulturae, Wageningen, v.923, p.241-245, 2011. ). The greater efficiency of the solid form in the application of auxins seems to be related to a longer and moderate exposure of the hormone to target tissues, once auxin crystals are insoluble in water and, in contact with the wound tissues and cutting exudates are slowly dissolved.

The presence of leaves on the cuttings and, consequently, the higher rooting index of Annona emarginata were strongly influenced by the spray system combined with the spray frequency and droplet size in the maintenance of relative air humidity (SCALOPPI JÚNIOR, 2007 SCALOPPI JUNIOR, E.J. Propagação de especiais de Annonaceae com estacas caulinares. 2007. 279f. Tese (doutorado) - Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 2007. ). Ultrasonic nebulizers were the most recommended to maintain high relative humidity and reduce transpiration and the fall of A. muricata leaves (MARINHO et al., 2007 MARINHO, G.A.; LEMOS, E.E.P.; SANTIAGO, A.D.; MOURA FILHO, G.; REZENDE, L.P. Enraizamento de estacas de gravioleira (Annona muricata L.). Ciência Agrícola, Rio Largo, v.8, n.1, p.19-23, 2007. ; SANTOS et al., 2011 SANTOS, M.Q.C.; LEMOS, E.E.P.; SALVADOR, T.L.; REZENDE, L.P.; LIMA SALVADOR, T.; SILVA, J.W.; BARROS, P.G.; CAMPOS, R.S. Rooting soft cuttings of soursop (Annona muricata) ‘GIANT OF ALAGOAS’. Acta Horticulturae, Wageningen, v.923, p.241-245, 2011. ).

Herbaceous or semi-woody cuttings are preferred for annonaceous cuttings; however, only cuttings obtained from vigorous shoots are properly rooted. Adult or decaying trees do not always produce such sprouts, but they can be induced by canopy pruning. Sub-apical cuttings obtained from vigorous shoots of A. squamosa pruned at 12 years of age, maintained with one or two pairs of leaves cut in half, had rooting rates higher than 80% (SALVADOR et al., 2014 SALVADOR, T.L.; LIMA SALVADOR, T.;LEMOS, E.E.P.; BARROS, P.G.; CAMPOS, R.S. Enraizamento de estacas de pinheira (Annona squamosa L.) com ácido indolbutírico. Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.1, p.310-314, 2014. Número especial. ). Vigorous branches of the green pruning of atemoya performed with the function of promoting greater aeration and decrease vigor are the best for the cutting practice (SCALOPPI JÚNIOR; MARTINS, 2014 SCALOPPI JÚNIOR; MARTINS, A.B.G. Estaquia em anonas. Revista Brasileira de Fruticultura, Jaboticabal, v. 36, n.1, p.147-156, 2014. Número especial ).

In vitro tissue culture In vitro tissue culture (micropropagation) is among propagation methods successfully applied to species such as A. cherimola. Advances in this area are presented in a recent literature review by Encina et al. (2014), who reported micropropagation with juvenile A. muricata material and protocol for micropropagation of adult A. cherimola genotypes. The authors also presented several in vitro methodologies, such as adventitious organogenesis and regeneration of cell cultures; manipulation of the ‘ploidy’ of A. cherimola to obtain haploid, tetraploid, triploid (seedless) plants; genetic transformation with introduction of genes aiming to control the post-harvest processes and to provide resistance to pathogens and insects; and micropropagation and regeneration of other wild species of the genus Annona, such as A. senegalensis, A. scleroderma, A. montana, among others.

Conclusion

There are a number of studies that have characterized the processes of propagation of 38 annonaceous, including the five most cultivated species, which means that in 98% of species of the family, the physiological aspects reported in this article are unknown. The major challenge remains to characterize the mechanisms involved in desiccation tolerance seeds and the physiological factors of dormancy seed, since mature seeds are dispersed with differentiated dormant or not embryos. Regarding grafting, although advances have been made in relation to compatible combinations, further studies should be directed to understand the physiological mechanisms of the process, including the influence that the rootstock exerts on the gaseous exchanges, mineral nutrition and canopy productivity. Cutting is the least used propagation method in Annonaceae due to the rooting difficulty, which can be reversed when advances already obtained experimentally are incorporated into the protocols for seedling production.

  • ALONI, B.; COHEN, R.; KARNI, L.; AKTAS, H.; EDELSTEIN, M. Hormonal signaling in rootstock–scion interactions. Scientia Horticulturae, Amsterdam, v.127, n.2, p.119-126, 2010.
  • BARON, D.; BRAVO, J.P.; MAIA, I.G.; PINA, A.; FERREIRA, G. UGP gene expression and UDP-glucose pyrophosphorylase enzymatic activity in grafting annonaceous plants. Acta Physiologiae Plantarum, Cracóvia, v.38, p.1-8, 2016.
  • BASKIN, C. C.; BASKIN, J. M. Seeds ecology, biogeography, and evolution of dormancy and germination. 2nd ed. San Diego: Elsevier, 2014. 1586p.
  • BATTILANI, J.L.; SANTIAGO, E.F.; SOUZA A.L.T. Aspectos morfológicos de frutos, sementes e desenvolvimento de plântulas e plantas jovens de Unonopsis lindmanii Fries (Annonaceae). Acta Botanica Brasilica, Belo Horizonte, v.21, n.4, p.897-907, 2007.
  • BEWLEY, J.D.; BRADFORD, K.J.; HILHORST, H.W.M.; NONOGAKI, H. Seeds: physiology of development, germination and dormancy. 3rd ed. New York: Springer, 2013. 392p.
  • BRAGA, J.F.; FERREIRA, G.; PINHO, S.Z.; BRAGA, L.F.; SOUSA, M.P. Germination of atemoya (Annona cherimola Mill. x A. squamosa L.) CV. Gefner seeds subjected to treatments with plant growth regulators. International Journal of Science and Nature, Daca, v.1, n. 2, p.120-126, 2010.
  • CARVALHO, J.E.U de; NASCIMENTO, W.M.O do; MULLER, C.H. Tolerância de sementes de araticum-do-brejo (Annona glabra L.) ao dessecamento e ao congelamento. Revista Brasileira de Fruticultura, Jaboticabal, v.23, n.1, p.179-182, 2001.
  • CAVALCANTE, T.R.M.; NAVES, R.V.; BRAGA FILHO, J.R.; SILVA, L.B. Influência de substratos e do armazenamento de sementes sobre a emergência e crescimento de plântulas de araticum (Annonaceae). Bioscience Journal, Uberlandia, v.23, n.4, p.11-20. 2007.
  • CHAGAS, P.C.; SOBRAL, M.T.S.; DE OLIVEIRA R.R.; CHAGAS E.A.; PIO, R.; DOS SANTOS A.V. Physical and chemical methods to breach seed dormancy of sugar apple dormancy of sugar apple. Amazonian Journal of Agricultural and Environmental Sciences, Manaus, v.56, p.1-6, 2013.
  • CHEN, S.Y.; TSAI, Y.H.; BASKIN, C.C.; BASKIN, J.M.; CHIEN, C.T. Seed dormancy and germination of the three tropical medicinal species Gomphandra luzoniensis (Stemonuraceae), Nothapodytes nimmoniana (Icacinaceae) and Goniothalamus amuyon (Annonaceae). Seed Science Research, Cambridge, v.25, n.1, p.57-63. 2015.
  • COATES-ESTRADA, R.; ESTRADA, A. Frugivory and seed dispersal in Cymbopetalum baillonii (Annonaceae) at Los Tuxtlas, Mexico. Journal of Tropical Ecology, Cambridge, v.4, n.2, p.157-172. 1998.
  • CORSATO, J. M. Maturação e aquisição da tolerância a dessecação das sementes de Annona emarginata (Schldtl.) H. Rainer. 2014. 186f. Tese (Doutorado em Ciências Biológicas/Botânica) – Instituto de Biociências, Universidade Estadual Paulista, Botucatu, 2014.
  • CORSATO, J.M.; FERREIRA, G.; BARBEDO, C.J. Desiccation tolerance in seeds of Annona emarginata (Schltdl.) H. Rainer and action of plant growth regulators on germination. Brazilian Journal of Plant Physiology, Piracicaba, v.24, n.4, p.253-260, 2012.
  • COSTA, P.N.; BUENO, S.S.C.; FERREIRA, G. Fases da germinação de sementes de Annona emarginata (Schltdl.) H.Rainer em diferentes temperaturas. Revista Brasileira de Fruticultura, Jaboticabal, v.33, n.1, p.253-260, 2011.
  • DA SILVA, E.A.A.; MELO, D.L.B.; DAVIDE, A.C.; BODE, N.; ABREU, G.B.; FARIA, J.M.R.; HILHORST, H.W.M. Germination Ecophysiology of Annona crassiflora seeds. Annals of Botany, London, v. 99, p.893-830, 2007.
  • DALANHOL, S.J.; MOMBACH, T.C.; TODERKE, M.L.; NOGUEIRA, A.V.; BORTOLINI, M.F. Dormência em sementes de Annona cacans Warm. (Annonaceae). Revista Acadêmica: Ciências Agrárias e Ambientais, Curitiba, v.11, supl.1, p.S183-S189, 2013.
  • DAWS, M.I.; GARWOOD, N.C.; PRITCHARD, H.W. Traits of recalcitrant seeds in a semi-deciduous tropical forest in Panamá: some ecological implications. Functional Ecology, Oxford, v.19, n.5, p.874-885, 2005.
  • DOS SANTOS, C.E; ROBERT, S. R.; MARTINS, A. B. G. Propagação do biribá (Rollinia mucosa) e sua utilização como porta-enxerto de pinha (Annona squamosa). Acta Scientiarum. Agronomy, Maringá, v.27, n.3, p.433-436, 2005.
  • DRESCH, D.M.; SCALON, S.P.Q.; MASETTO, T.E. Effect of storage in overcoming seed dormancy of Annona coriacea Mart. Seeds. Anais da Academia Brasileira de Ciências, Rio de Janeiro, v.86, n.4, p.2077-2085, 2014.
  • ENCINA, C.L.; GONZALEZ-PADILLA, I.M. The use of consecutive micrografting improves micropropagation of cherimoya (Annona cherimola Mill.) cultivars. Scientia Horticulturae, Amsterdam, v.129, n.1, p.167–169, 2011.
  • ENCINA, C.L.; MARTIN, E.C.; LOPEZ, A.A.; PADILLA, I.M.G. Biotechnology applied to Annona species: a review. Revista Brasileira de Fruticultura, Jaboticabal , v.36, n.1, p.17-21, 2014.
  • FERREIRA, G.; DE-LA-CRUZ-CHACÓN, I.; GONZÁLEZ-ESQUINCA, A.R. Overcoming seed dormancy in Annona macroprophyllata and Annona purpurea using plant growth regulator. Revista Brasileira de Fruticultura, Jaboticabal, v. 38, n.3, e-234, 2016.
  • FERREIRA, G.; FERRARI, T.B. Enraizamento de estacas de atemoieira (Annona cherimola Mill. x A. squamosa L.) cv. ‘Gefner' submetidas a tratamento lento e rápido com auxinas. Ciência e Agrotecnologia, Lavras, v.34, p.329-336. 2010.
  • FERREIRA, G.; FERRARI, T.B.; SAVAZAKI, E.T. Enraizamento de estacas de atemoieira ‘Gefner' tratadas com auxinas. Revista Brasileira de Fruticultura, Jaboticabal, v.30, n.4, p.1083-1088, 2008.
  • FERREIRA, G.; GONZÁLEZ-ESQUINCA, A.R.; DE-LA-CRUZ-CHACÓN, I. Water uptake by Annona diversifolia Saff. and A. purpurea Moc. e Sessé ex Dunal seeds (Annonaceae). Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.l, p.288-295, 2014.
  • FERREIRA, M.G.; SANTOS, M.R.A.; SILVA, E.O.; GONÇALVES, E.P.; ALVES, E. U.; BRUNO, R. L. A. Superação de dormência em sementes de biribá (Rollinia mucosa (Jacq.) Baill). Revista Brasileira de Sementes, Londrina, v.31, n.4, p.95-99, 2009.
  • FINNESETH, C.H.; LAYNE, D.R.; GENEVE, R.L. Requirements for seed germination in North American pawpaw (Asimina triloba (L.) Dunal). Seed Science and Technology, Zürich, v.26, n.2, p.471-480. 1998.
  • GENEVE, R.; KESTER, S.; POMPER, K. Autonomous shoot production in pawpaw (Asimina triloba (L.) DUNAL) on plant growth regulador free media. Propagation of Ornamental Plants, Lexington, v.7, n.2, p.51-56, 2007.
  • GIMENEZ, J.I.; FERREIRA, G.; CAVARIANI, C. Tetrazolium test for assessment of seed viability of atemoya (Annona cherimola Mill. x A. squamosa L.). Journal of Seed Science, Londrina, v.36, n.3, p.357-361, 2014.
  • GIMENEZ, J.I.; CORSATO, J.M; FERREIRA, G.; PINHO, S.Z. Curva de adquisición del agua en semillas de Annona emarginata (Schltdl) H. Rainer sometidas al condicionamiento osmótico. In: GONZÁLEZ-ESQUINCA, A.R.; LUNA-CAZÁRES, L.M.; GUTIÉRREZ-JÍMENEZ, J.; SCHLLIE-GUZMAN, M.A.; VIDAL-LÓPEZ, D.G. Anonáceas: plantas antiguas, estudios recientes. Tuxtla Gutiérrez: UNICACH, 2011. p.237-304.
  • GIMENEZ, J.I.; FERREIRA, G.; CORSATO, J.M. Soluble sugars and germination of Annona emarginata (Schltdl.) H. Rainer seeds submitted to immersion in GA3 up to different water contents. Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.1, p.281-287, 2014.
  • GOMEZ-CASTAÑEDA, J.A.; RAMÍREZ, H.; BENAVIDES-MENDOZA, A.; ENCINA-RODRIGUEZ, I. Germination and seedling development of soncoya (Annona purpurea Moc &Sessé) in relation to gibberelins and abscisic levels. Revista Chapingo Serie Horticultura, Texcoco, v.9, n.2, p.243-253, 2003.
  • GONZÁLEZ-ESQUINCA, A.R.; DE-LA-CRUZ-CHACÓN I.; CASTRO-MORENO M.; RILEY-SALDAÑA, C.A. Phenological strategies of Annona from deciduous forest of Chiapas, Mexico. Botanical Sciences, Ciudad de México, v.94, n.3, p.531-541. 2016.
  • GONZÁLEZ-ESQUINCA, A.R.; DE-LA-CRUZ-CHACÓN, I.; DOMÍNGUEZ-GUTÚ, L.M. Dormancy and germination of Annona macroprophyllata (Annonaceae): the importance of the micropylar plug and seed position in fruits. Botanical Sciences, Ciudad de México, v.93, n.3, p.1-7, 2015.
  • GOTTSBERGER, G. Evolutionary steps in the reproductive biology of Annonaceae. Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.1, p.32-42, 2014.
  • HARTMANN, H.T.; KESTER, D.E.; DAVIES JR, F.T.; GENEVE, R.L. Plant propagation: principles and practices. 8th ed. New York: Prentice-Hall, 2011. 915p.
  • JUNQUEIRA, N.T.V.; JUNQUEIRA, K.P. Principais doenças de Anonáceas no Brasil: descrição e controle. Revista Brasileira de Fruticultura, Jaboticabal, v.36, p.55-64, 2014.
  • KAVATI, R. Porta-enxertos em anonáceas. In: FERREIRA, G. et al. (Ed.). Anonaceas: propagação e produção de mudas. Botucatu: FEPAF, 2013. p.111-123.
  • KESARI, V.; KRISHNAMACHARI, A.; RANGAN, L. Effect of auxins on adventitious rooting from stem cuttings of candidate plus tree Pongamia pinnata (L.), a potential biodiesel plant. Trees, Dordrecht, v.23, p.597–604, 2009.
  • LEMOS, E.E.P.; BLAKE, J. Control of leaf abscission in nodal cultures of Annona squamosa L. Journal of Horticultural Science, Ashford, v.71, n.5, p.721-728, 1996.
  • LEMOS, E.E.P. Bases anatômicas e aspectos fisiológicos da enxertia em anonáceas. In: FERREIRA, G. et al. (Ed.). Anonaceas: propagação e produção de mudas. Botucatu: FEPAF, 2013. p.45-58.
  • LIAW C.C.; LIOU J.R.; WU T.Y.; CHANG F.R.; WU, Y.C. Acetogenins from Annonaceae. Progress in the Chemistry of Organic Natural Products, Wien, v.101, p.113-230, 2016.
  • MANICA, I.; ICUMA, I.M.; JUNQUEIRA, K.P. Frutas anonáceas: ata ou pinha, atemólia, cherimólia e graviola: tecnologia de produção, colheita, mercado. Porto Alegre: Cinco continentes, 2003. 596p.
  • MANTOAN, L.P.B.; FERREIRA, G.; BOARO, C.S.F. Chlorophyll a fluorescence in Annona emarginata (Schltdl.) H. Rainer plants subjected to water stress and after rehydration. Scientia Horticulturae, Amsterdam, v.184, p.23-30, 2015.
  • MANTOAN, L.P.B; ALMEIDA, L.F.R.; MACEDO, A.C.; FERREIRA, G.; BOARO, C.S.F. Photosynthetic adjustment after rehydration in Annona emarginata. Acta Physiologiae Plantarum, Cracóvia, v.38, n.157, 2016.
  • MARINHO, G.A.; LEMOS, E.E.P.; SANTIAGO, A.D.; MOURA FILHO, G.; REZENDE, L.P. Enraizamento de estacas de gravioleira (Annona muricata L.). Ciência Agrícola, Rio Largo, v.8, n.1, p.19-23, 2007.
  • MARTÍNEZ M.F.E; LASPRILLA D.M.; MAGNITSKIY, S.; MELGAREJO L.M. Germination, protein contents and soluble carbohydrates during storage of sugar apple seeds (Annona squamosa L.). Journal of Applied Botany and Food Quality, Quedlinburg, v.88, n.308, p.313, 2015.
  • MARTÍNEZ M.F.E.; MIRANDA L.D.; MAGNITSKIY, S. Sugar apple (Annona squamosa L.) seed germination affected by the application of Gibberellins. Agronomía Colombiana, Bogotá, v.34, n.1, p.17-24, 2016.
  • MARTÍNEZ, F.E.; MIRANDA, D.; MAGNITSKIY, S. Germination temperature of sugar apple (Annona squamosa L.) seeds. Revista Colombiana de Ciencias Hortícolas, Bogotá, v.6, n.2, p.129-139, 2012.
  • MARTÍNEZ, F.M.; MIRANDA, D.L.; MAGNITSKIY, S. Anatomy of sugar apple (Annona squamosa L.) seeds (Annonaceae). Agronomía Colombiana, Bogotá, v.31, n.3, p.279-287, 2013.
  • MAYER, J.L.S.; ALVES, A.C.A.; SOUZA, L.A.D.; BONA, C. Rollinia sylvatica (A. St.-Hil.) Mart.(Annonaceae) seedling and tirodendro morphology and anatomy. Brazilian Journal of Botany, São Paulo, v.31, n.4, p.689-700. 2008.
  • MENGES, E.S., STEPHENS, E.L., QUINTANA-ASCENCIO, P.F., FERRER-CERVANTES, M.E. Seed germination and seedling survival of Asimina obovata in Florida scrub. Florida Scientist, Orlando, v.75, n.1, p.41-50, 2012.
  • MEZA, N.; BAUTISTA, D. Efecto de remojo y escarificación sobre la germinación de semillas y emergencia de plántulas en guanábana. Agronomía Tropical, Maracay, v.54, n.3, p.331-342, 2004.
  • MORENO, N.E; MIRANDA, D.; MARTÍNEZ, F.E. Zeatin promotes sugar apple seed germination (Annona squamosa L.) Revista Colombiana de Ciencias Hortícolas, Bogotá, v.7, n.1, p.9-19, 2013.
  • NWACHUKWU, O.C.; ARONU, A.J.; ADEBAYO, O. Influence of stages of seed maturity on germination rate of (Dennettia tripetala) pepper fruit. Journal of Environmental Issues and Agriculture in Developing Countries, Ikot Ekpene, v.2, n.2-3, p.87-91, 2010.
  • OUMAR, B.; SAGNA, M.; OURÈYE, M. S.Y. Germination capacity of Annonaceae Seeds (Annona muricata L., A. squamosa L. and A. senegalensis Pers.) cultivated under axenic conditions. International Journal of Science and Advanced Technology, Dhaka, v.2, p.21-34, 2012.
  • PADILLA, I.M.G., ENCINA, C.L. The use of consecutive micrografting improves micropropagation of cherimoya (Annona cherimola Mill.) cultivars. Scientia Horticulturae, Amsterdam, v.129, n.1, p.167-169, 2011.
  • PARMAR, R.; PATEL, M.; THAKKAR, R.; TSOMU, T. Influence of seed priming of treatments on germination and seedling vigour of custard apple (Annona squamosa L.) Cv. local. The Bioscan, Jharkhand, v.11, n.1, p.389-393, 2016. Supplement on Agronomy.(
  • PAROLIN, P.; FERREIRA, L.V.; JUNK, W.J. Germination characteristics and establishment of trees from central Amazonian flood plains. Tropical Ecology, Varanasi, v.44, n.2, p.155-168, 2003.
  • PAULINO-NETO, H.F. Polinização e biologia reprodutiva de araticum-liso (Annona coriacea Mart.: Annonaceae) em uma área de cerrado paulista: implicações para fruticultura. Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.1, p.132-140, 2014.
  • RANA, V.S. Fatty oil and fatty acid composition of Annona squamosa Linn. seed kernels. International Journal of Fruit Science, Lincoln, v.15, p.79-84, 2015.
  • RBG Kew - Royal Botanic Gardens Kew. SID - Seed information database. Version 7.1. Disponível em: http://data.kew.org/sid/ . Acesso em: 15 ago. 2016.
    » http://data.kew.org/sid/
  • RIZZINI, C.T. Dormancy in seeds of Annona crassiflora Mart. Journal of Experimental Botany, Oxford, v.24, n.78, p.117-123, 1973.
  • SALVADOR, T.L.; LIMA SALVADOR, T.;LEMOS, E.E.P.; BARROS, P.G.; CAMPOS, R.S. Enraizamento de estacas de pinheira (Annona squamosa L.) com ácido indolbutírico. Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.1, p.310-314, 2014. Número especial.
  • SANEWSKI, G.M. Growing custard apples. Brisbane: Queensland Department of Primary Industries, 1988.
  • SANTOS, M.Q.C.; LEMOS, E.E.P.; SALVADOR, T.L.; CAMPOS, R.; BARROS, P.G.; LIMA SALVADOR, T. Enraizamento de estacas de gravioleira coletadas de diferentes posições do ramo e tratadas com ácido indolbutírico. Interciencia, Caracas, v.38, n.6, p.461-464, 2013.
  • SANTOS, M.Q.C.; LEMOS, E.E.P.; SALVADOR, T.L.; REZENDE, L.P.; LIMA SALVADOR, T.; SILVA, J.W.; BARROS, P.G.; CAMPOS, R.S. Rooting soft cuttings of soursop (Annona muricata) ‘GIANT OF ALAGOAS’. Acta Horticulturae, Wageningen, v.923, p.241-245, 2011.
  • SANTOS, R.C.; RIBEIRO, L.M.; MERCADANTE-SIMÕES, M.O.; COSTA, M.R.; NIETSCHE, S.; PEREIRA, M.C.T. Stenospermy and seed development in the “Brazilian seedless” variety of sugar apple (Annona squamosa). Anais da Academia Brasileira de Ciências, São Paulo, v.86, n.4, p.2101-2108, 2014.
  • SAUTU, A.; BASKIN, J.M.; BASKIN, C.C.; CONDIT, R. Studies on the seed biology of 100 native species of trees in a seasonal moist tropical forest, Panama, Central America. Forest Ecology and Management, Amsterdam, v.234, n.1, p.245-263. 2006.
  • SAUTU, A.; BASKIN, J.M.; BASKIN, C.C.; DEAGO, J.; CONDIT, R. Classification and ecological relationships of seed dormancy in a seasonal moist tropical forest, Panama, Central America. Seed Science Research, Cambridge, v.17, p.127-140. 2007.
  • SCALOPPI JUNIOR, E.J.; MARTINS, A.B.G. Clonagem de quatro espécies de Annonaceae potenciais como porta-enxertos. Revista Brasileira de Fruticultura, Jaboticabal, vol.25, n.2, p.286-289, 2003.
  • SCALOPPI JUNIOR, E.J. Propagação de especiais de Annonaceae com estacas caulinares. 2007. 279f. Tese (doutorado) - Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 2007.
  • SCALOPPI JÚNIOR; MARTINS, A.B.G. Estaquia em anonas. Revista Brasileira de Fruticultura, Jaboticabal, v. 36, n.1, p.147-156, 2014. Número especial
  • SETTER, S.D.; SETTER, M.J.; GRAHAM, M.F.; VITELLI, J.S. Buoyancy and germination of pond apple (Annona glabra L.) propagules in fresh and salt water. In: AUSTRALIAN WEEDS CONFERENCE, 16., 2008, Cairns. Proceedings...
  • SOCOLOWSKI, F.; CICERO, S.M. Use of growth regulators to overcome seed dormancy in Xylopia aromatica (Annonaceae). Seed Science and Technology, Zurich, v.39, p.21-28, 2011.
  • SOUSA, S.A.; DANTAS, A.C.V.L; PELACANI, C.R.; VIEIRA, E.L.; LEDO, C.A.S. Superação da dormência em sementes de pinha. Revista Caatinga, Mossoró, v.21, n.4, p.118-121, 2008.
  • STEVENS, P.F. Angiosperm phylogeny website. Version 12. 2016. Disponível em: http://www.mobot.org/MOBOT/research/APweb/.(
  • VASCONCELOS, L.H.C.; VENDRUSCULO, E.P.; VASCONCELOS, R.F.; SANTOS, M. M.; SELEGUINI, A. Utilização de métodos físicos e de fitorreguladores para superação de dormência em sementes de pinha. Revista de Agricultura Neotropical, Cassilândia, v.2, n.4, p.20–24, 2015.
  • VIDAL-LEZAMA, E.; AYALA-VILLEGAS, M.J.; CURIEL-RODRÍGUEZ, A., MARROQUÍN-ANDRADE, L.M.; MARTÍNEZ-SOLÍS, J. Effect of storage temperature and gibberellic acid on germination of sugar apple (Annona squamosa L.) Seeds. Acta Horticulturae, The Hague, n.918, p.765-770, 2011.
  • WAGNER JÚNIOR, A.; PIMENTEL, L.D.; NEGREIROS, J.R.S.; NERES, C.R.L.; ALEXANDRE, R.S.; DINIZ, E.R.; BRUCKNER, C.H. Influência do tempo de embebição em água sobre a dormência de sementes de pinha (Annona squamosa L.). Revista Ceres, Vinosa, MG, v.53, n.307, p.317-32, 2006.
  • ZAMORA-CORNELIO, L.F.; OCHOA-GAONA, S.; VARGAS SIMÓN, G.; CASTELLANOS ALBORES, J.; DE JONG, H.J.B. Germinación de semillas y clave para la identificación de plántulas de seis especies arbóreas nativas de humedales del sureste de México. Revista de Biología Tropical, San Jose, v.58, n.2, p.717-732, 2010.

Publication Dates

  • Publication in this collection
    2019

History

  • Received
    08 June 2018
  • Accepted
    21 Sept 2018
Sociedade Brasileira de Fruticultura Via de acesso Prof. Paulo Donato Castellane, s/n , 14884-900 Jaboticabal SP Brazil, Tel.: +55 16 3209-7188/3209-7609 - Jaboticabal - SP - Brazil
E-mail: rbf@fcav.unesp.br