Acessibilidade / Reportar erro

Optimal plot size estimation in field experiment with purple passion fruit

Estimação do tamanho ótimo de parcela em experimento em campo com maracujá-roxo

Abstract

The species P. edulis Sims f. edulis, native to Brazil, known as purple passion fruit, has purple fruits and lower acidity. With the growing demand for passion fruits, there is greater need for research on their cultivation to reduce production costs and improve fruit quality. The adequate determination of the size and number of plots has been a fundamental limitation in studies with several crops, as it is difficult to obtain constant data on plants per plot in most experiments, making it impossible to use usual methodologies for data analysis. As a result, testing can be performed with less labor and implementation costs, making plot size optimization a step of interest. Thus, this work aims to determine the ideal size of experimental plots with purple passion fruit in the field using three methods. The variables analyzed were fruit length, fruit diameter, peel thickness, juice yield, soluble solids content, citric acid, number of fruits, and average fruit weight. The use of optimal plot size of six basic units for fruit-related variables, five for pulp-related variables, and seven basic units for production variables, is recommended.

Index terms
Passiflora edulis Sims f. edulis; experimental planning; blank test; maximum curvature; quadratic plateau

Resumo

A espécie P. edulis Sims f. edulis é nativa do Brasil, conhecido como maracujá-roxo, possui frutos roxos e menor acidez. Com a crescente procura pelo maracujazeiro, há maior necessidade de pesquisas sobre seu cultivo para reduzir os custos de produção e melhorar a qualidade do serviço. A determinação adequada do tamanho e do número de parcelas tem sido uma limitação fundamental no estudo de várias culturas, pois é difícil obter dados de plantas por parcela, que sejam constantes, na maioria dos experimentos realizados, impossibilitando a utilização de metodologias habituais de análise de dados. Como resultado, os testes podem ser realizados com menos mão de obra e despesas de implementação, tornando a otimização do tamanho da parcela uma etapa de interesse. Com isso, tem-se que o objetivo do trabalho foi determinar o tamanho ideal de parcelas experimentais commaracujá-roxo em campo, utilizando três métodos. As variáveis analisadas foram: comprimento do fruto,diâmetro do fruto, espessura da casca, rendimento do suco, teor de sólidossolúveis, ácido cítrico, número de frutos e peso médio dos frutos. Recomenda-se utilizar otamanho ótimo de parcelas de seis unidades básicas para as variáveis relacionadas ao fruto,sendo cinco para as variáveis relacionadas à polpa e sete unidades básicas para asvariáveis de produção.

Termos para indexação
Passiflora edulis Sims f. edulis; planejamento experimental; ensaio em branco; máxima curvatura; platô quadrático

Introduction

Originating in Tropical America, the various passion fruit species are produced on a large scale in Brazil, Peru, and Colombia, and on a small scale in countries such as the United States, Argentina, Asia, and Australia (FALEIRO et al., 2017a FALEIRO, F.; JUNQUEIRA, N.T.V.; COSTA, A., JESUS, O.; MACHADO, C. de F. Maracujá. Cruz das Almas: Embrapa Mandioca e Fruticultura, 2017a. 32p. (Livro técnico) ), which also have some native species. Approximately 525 species of the genus Passiflora have been cataloged, of which 145 species are native to Brazil (FALEIRO et al., 2019 FALEIRO, F.G.; OLIVEIRA, J. da S.; JUNQUEIRA, N.T.V. Banco ativo de germoplasma de passiflora 'Flor da Paixão': aspectos históricos e a importância da conservação e caracterização de recursos genéticos. Brasília, DF: Embrapa Cerrados, 2019. 86p. ).

Of Brazilian origin, P. edulis Sims f. edulis, known as purple passion fruit, has purple fruits and low acidity and is highly cultivated in Colombia, where it is commonly called gulupa. The fruit grows well in high-tech orchards in countries such as Holland, Germany, Belgium, the United Kingdom, Canada, and Switzerland. Among these, Colombia stands out for being the world’s largest passion fruit producer, promoting its trade as exotic fruits. For this species, soils need light texture and pH between 5.5 and 7.0, altitude above 1000m and with ideal temperature between 15 °C and 20 °C. Fruits are round and vary in color from green to purple when ripe. Fruits are usually consumed fresh, as it is less acidic and stands out for its flavor and aroma (FALEIRO et al., 2017b FALEIRO, F.G.; JUNQUEIRA, N.T.V.; JESUS, O.; COSTA, A.; MACHADO, C. de F.; JUNQUEIRA, K.P.; ARAUJO, F.; JUNGHANS, T. Espécies de maracujazeiro no mercado internacional. In: JUNGHANS, T.; JESUS, O. Maracujá: do cultivo à comercialização Petrolina: Embrapa Semiárido, 2017b. 24p. ).

The passion fruit planting area is approximately 47 thousand hectares. Among the major regions, the Northeastern region of Brazil stands out as the largest passion fruit producer, with production of about 491 thousand tons, followed by the Southeastern region with about 84 thousand tons, the Southern region, with 65 thousand tons, the Northern region, with 36 thousand tons and finally, the Midwestern region, with around 14 thousand tons. The states with the largest planting areas are Bahia (17,414 ha), Ceará (8,278 ha), and Pernambuco (2,637 ha) (SIDRA – IBGE, 2021 SIDRA/IBGE. Sistema de Recuperação Automática. Área destinada à colheita, área colhida, quantidade produzida, rendimento médio e valor da produção das lavouras permanentes. Rio de Janeiro, 2021. Disponível em: https://sidra.ibge.gov.br/Tabela/1613. Acesso em: 7 abr. 2022.
https://sidra.ibge.gov.br/Tabela/1613...
).

However, according to Storck et al. (2014) STORCK, L.; LÚCIO, A. D. C.; KRAUSE, W.; ARAÚJO, D. V. D.; SILVA, C. A. Scaling the number of plants per plot and number of plots per genotype of yellow passion fruit plants. Acta Scientiarum. Agronomy, Maringá, v.36, n.1, p.73-8, 2014. , passion fruit production requires a considerable amount of labor and is considered an agricultural activity requiring large growing areas. With the increasing demand for passion fruits, there is greater need for research on their cultivation to reduce production costs and improve fruit quality. Field test procedures are crucial tools to ensure the reliability of results; therefore, adequately planned, implemented and evaluated experiments generate reliable results.

The appropriate determination of the size and number of plots has been a fundamental limitation in the study of several crops, since it is challenging to obtain sustained data on the number of plants per plot in most experiments, impairing the use of usual methodologies for data analysis (RAMALHO et al., 2012 RAMALHO, M.A.P.; FERREIRA, D.F.; OLIVEIRA, A.C. Experimentation in genetics and plant breeding, Lavras: UFLA, 2012. 326p. ).As a result, testing can be performed with less labor and implementation costs, making plot size optimization a step of interest.

In fruticulture, optimal plot size has been calculated for Passiflora in the field (STORCK et al., 2014 STORCK, L.; LÚCIO, A. D. C.; KRAUSE, W.; ARAÚJO, D. V. D.; SILVA, C. A. Scaling the number of plants per plot and number of plots per genotype of yellow passion fruit plants. Acta Scientiarum. Agronomy, Maringá, v.36, n.1, p.73-8, 2014. ), Passiflora in vitro (PEIXOTO et al., 2011 PEIXOTO, A.P.B.; FARIA, G.A.; MORAIS, A.R.D. Modelos de regressão com platô na estimativa do tamanho de parcelas em experimento de conservação in vitro de maracujazeiro. Ciência Rural, Santa Maria, v.41, n.11, p.1907-13, 2011. ; FARIA et al., 2020a FARIA, G.A.; LOPES, B.G.; PEIXOTO, A.P.B.; FERREIRA, A.F.A.; MALTONI, K.L.; PIGARI, L.B. Experimental plot size of passion fruit. Revista Brasileira de Fruticultura, Jaboticabal, v.42, n.1, p.e-125, 2020a. b FARIA, G.A.; PEIXOTO, A.P.B.; MORAIS, A.R.; COSTA, T.F.; OLIVEIRA, C.P.M.; LOPES, B.G.; ROCHA, P.S.; OLIVEIRA, T.A.; FELIZARDO, L.M. Tamanho ótimo de parcelas para experimentos de estabelecimento in vitro em espécies do gênero passiflora. Research, Society and Development, Vargem Grande Paulista, v.9, n.10, p.e8859109354, 2020b. ), banana (DONATO et al., 2008 DONATO, S.L.R.; SIQUEIRA, D.L.; SILVA, S.O.E; CECON, P.R.; SILVA, J.A.; SALOMÃO, L.C.C. Estimativas de tamanho de parcelas para avaliação de descritores fenotípicos em bananeira. Pesquisa Agropecuária Brasileira, Brasília, DF, v.43, n.8, p.957-69, 2008. ; SILVA et al., 2019a SILVA, L.L.da; BATISTA, C.B.; COSTA, V.M. da; CARDOSO, A.C.; CALIMAN, C. da S.; CASTRO, H.C.J.V. de; LIMA, J.M.; VENTURA, J.A.; CAETANO, L.C.S.; PAVAN, J.R.; PEREIRA, L.L.; FAVARATO, L.F.; GUARÇONI, R.C. Tamanho de amostra para avaliar características de banana. Revista Científica Intelletto, Venda Nova do Imigrante, v.4, n.2, p.96-104, 2019a. ), greenhouse papaya (BRITO et al., 2012 BRITO, M.C.M.; FARIA, G.A.; MORAIS, A.R.; SOUZA, E.D.; DANTAS, J.L. L. Estimação do tamanho ótimo de parcela via regressão antitônica.Revista Brasileira de Biometria, v. 30, n. 3, p.353-366, 2012. ; CELANTI et al., 2016a CELANTI, H.F.; SCHMILDT, O.; ALEXANDRE, R.S.; CATTANEO, L.F.; SCHMILDT, E.R. Plot size in the evaluation of papaya seedlings 'Baixinho de Santa Amália' in tubes. Revista Brasileira de Fruticultura, Jaboticabal, v.38, n.3, 2016. b CELANTI, H.F.; SCHMILDT, E.R.; SCHMILDT, O.; ALEXANDRE, R.S.; CATTANEO, L.F. Optimal plot size in the evaluation of papaya scions: proposal and comparison of methods. Revista Ceres, Viçosa, MG, v.63, p.469-76, 2016b. ; FARIA et al., 2020c FARIA, G.A.; COSTA, T.F.; FELIZARDO, L.M.; LOPES, B.G.; OLIVEIRA, C.P.M.; LIMA, J.F.; FONSECA, A.D.; ROCHA, P.S.; PEIXOTO, A.P.B.; OLIVEIRA, T.A. Regressão com platô na estimação do tamanho ótimo de parcelas em experimentos com mamoeiro em casa de vegetação. Research, Society and Development, Vargem Grande Paulista,v.9, n.10, p.e9159109289, 2020c. ), papaya in the field (SILVA et al., 2019b SILVA, M. dos S. da; SILVA, S. de O.; DONATO, S.L.R.; LEDO, C.A. da S.; SAMPAIO FILHO, O.M.; SILVA, G. DE M.A.; CONCEIÇÃO, A.L. da S. Optimal experimental plot size for papaya cultivation. Pesquisa Agropecuária Brasileira, Brasília, DF, v.54, p.e00768, 2019b. ) and castor bean (PALUDO et. al., 2015 PALUDO, A.L; LOPES, B.B.; STORCK, L.; SANTOS, D.; HAESBAERT, F.M. Tamanho de parcela e número de repetições para mamoneira em diferentes espaçamentos entre plantas. Revista Caatinga, Mossoró, v. 28, n.4, p.253-8, 2015. ).

Material and methods

Data used in this work come from an experiment carried out with Passiflora edulis Sims f. edulis (purple passion fruit); whose original data were collected in 2008 at Embrapa Mandioca e Fruticultura, located in the municipality of Cruz das Almas, Bahia. The experiment was carried out in a completely randomized design, conducted as a blank (or uniformity) test. Since this species presents allogamy, a mechanism that leads to self-incompatibility, 77 plants from 12 distinct families have been chosen to carry out uniformity tests. Seedlings were planted in a vertical spreader at spacing of 2.0 x 5.0 m.

The variables analyzed were the main agronomic characteristics: fruit length (FL, mm), fruit diameter (FD, mm), peel thickness (PT, mm), juice yield (JY, mL), soluble solids content (Brix, °Bx), citric acid (acidity, % citric acid), number of fruits (NF) and average fruit weight (FW, g).

In the experiment, 77 replicates were obtained, in which each plant was considered a basic unit (bu) distributed in 11 rows by seven columns. Different combinations between row (X1 basic units) and column (X2 basic units) were used; thus, plot sizes were simulated by grouping X1 and X2 so that X1 X2 = x represents x plot sizes in basic units.

Thus, 16 plot sizes (X) were simulated with 28 different shapes, where the number of plots varied from 77 to 2 and the plot size from 1 to 30 basic units per plot (Table 1).

Table 1
Number of simulations (NS), number of plots (NP), plot size (PS) and plot shape (PSH) for the basic units of a field experiment with passion fruit in the field.

Based on the different plot sizes and shapes, of same size, the averages of the coefficients of variation for each variable under study were calculated.

Methods to estimate the optimum plot size

Maximum curvature method (MC)

The maximum curvature method, proposed by Federer (1963) FEDERER, W.T. Experimental design, theory and application. 2.ed. New York: Mcmillan, 1963. 473p. , uses data from blank tests, which is one of the first methods applied to field experiments.

To simulate experimental plots of different sizes, the method establishes basic units of blank tests so that at least one measure of variability can be found, which could be the coefficient of variation, standard error of the mean, or plot size variance. After simulation, a two-dimensional graph is constructed, where the plot size (X) is on the abscissa axis (x) with its corresponding coefficients of variation (CVx) on the ordinate axis (y).

Therefore, the plot size is determined by visual inspection, where the point of maximum inflection of the curve (point of maximum curvature) corresponds to the stability of the curve; therefore, the optimal plot size is given by the value found in the abscissa (MOREIRA et al., 2016 MOREIRA, J.M.; MELO, A.F.; OLIVEIRA, J.M.; ATAIDES, D.S.; RIBEIRO, M.C.; BORTOLINI, J. Parcela ótima para a cultura do cafeeiro obtido por simulação de dados com variâncias conhecidas. Pubvet, Maringá, v.10, n.9, p.636-720, 2016. ).

Graphs were constructed considering the CV values calculated with their respective plot sizes, thus obtaining the curve that illustrates the relationship between them for each variable under study.

For this purpose, the original method for constructing graphs (freehand) was not used. Graphs were generated with the aid of the R software (R DEVELOPMENT CORE TEAM, 2020 R CORE TEAM. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. 2021. Disponível em: https://www.r-project.org/ . Acesso em: 10 ago. 2022.
https://www.r-project.org/...
), and an analysis of the optimal plot size was performed according to Federer (1963) FEDERER, W.T. Experimental design, theory and application. 2.ed. New York: Mcmillan, 1963. 473p. and LeClerg (1966) LE CLERG, E.L. Significance of experimental design in plant breeding. In: FREY. K.J. A symposium held at Iowa State University. Ames: Iowa State University, p. 243–313, 1966. , who consider that the optimal size is determined where there is greater influence on CV caused by the increase in plot size.

Modified maximum curvature method(MCM)

The modified maximum curvature method proposed by Meier and Lessman (1971) MEIER, V.D.; LESSMAN, K.J. estimation of optimum field plot shape and size for testing yield in crambe abyssinica hochst. Crop Science, Madison, v.11, n.5, p.648-50, 1971. and the exponential model to be used to estimate the optimal plot size considering the relationship between coefficient of variation (CV) and plot size with X basic units is explained by

1 C V = a X - b

where a and b are the parameters to be estimated.

From the curvature function given by this model, the value of the abscissa at which the point of maximum curvature occurs was determined, given by:

2 X C = a 2 b 2 ( 2 b + 1 ) b + 2 1 2 b + 2

where Xc is the value of the abscissa at the point of maximum curvature, which corresponds to the optimal size estimation of the experimental plot (MEIER; LESSMAN, 1971 MEIER, V.D.; LESSMAN, K.J. estimation of optimum field plot shape and size for testing yield in crambe abyssinica hochst. Crop Science, Madison, v.11, n.5, p.648-50, 1971. ).

Coefficients of determination are also estimated to verify the goodness of the model’s fit.

Segmented quadratic model method with plateau (QMP)

The quadratic model segmented with plateau (PARANAÍBA et al., 2009 PARANAIBA, P.F.; FERREIRA, D.F.; DE MORAIS, A.R. Tamanho ótimo de parcelas experimentais: proposição de métodos de estimação. Revista Brasileira de Biometria, Lavras, v.27, n. 2, p.255-68, 2009. ) has two segments, in which the first consists of X ≤ XC presenting CV values explained by a quadratic model, and in the second segment, when X > XC, it could be said that the explanatory equation is constant and parallel to the abscissa (MOREIRA et al., 2016 MOREIRA, J.M.; MELO, A.F.; OLIVEIRA, J.M.; ATAIDES, D.S.; RIBEIRO, M.C.; BORTOLINI, J. Parcela ótima para a cultura do cafeeiro obtido por simulação de dados com variâncias conhecidas. Pubvet, Maringá, v.10, n.9, p.636-720, 2016. ).

Therefore, the following regression model was used:

3 C V X = β 0 + β 1 X + β 2 X 2 + ε i , s e X X C P + ε i , s e X #62; X C

whereβ0, β1, and β2 are the parameters to be estimated. Xc is the optimal plot size to be estimated, in which the quadratic model becomes a plateau, with respect to the abscissa.

The optimal plot size can be calculated as follows:

4 X C = - β 1 2 β 2

Replace Xc in expression(3) to obtain the value corresponding to the plateau, given by

5 P = β 0 - β 1 2 4 β 2

Therefore, it could be considered that such parameters are effective, since Xc and P are determined by β0, β1, and β2.

Results and discussion

Maximum curvature method (MC)

For the maximum curvature method, 28 simulations were performed in different ways, and the coefficients of variation were calculated for each one, resulting in 16 plot sizes. Figure 1 was generated considering the relationship between CV and its respective plot size. It was observed that as the plot size values increase, the CV values decrease; however, at some point, the curve reaches particular stability, suggesting that from this point on, there is no gain in experimental precision, and larger plot sizes are not required.

Figure 1
Relationship between coefficient of variation (CV%) and plot size ( ), by the maximum curvature method, in basic units for the variables under study in the uniformity test with purple passion fruit. A) FL: fruit length (mm), FD: fruit diameter (mm), and FW: average fruit weight (g); B) PT: peel thickness (mm), JY: juice yield (mL), Brix: soluble solids content (°Bx), and Acidity: citric acid (%); C) NF: number of fruits (NF). Source: Authors.

Therefore, this method consists of visual inspection (FEDERER, 1963 FEDERER, W.T. Experimental design, theory and application. 2.ed. New York: Mcmillan, 1963. 473p. ) to identify the optimal plot size, which does not guarantee the accuracy of results, since it depends on the criterion used for decision-making.

Thus, the optimal plot size, following the criterion of Federer (1963) FEDERER, W.T. Experimental design, theory and application. 2.ed. New York: Mcmillan, 1963. 473p. and LeClerg (1966) LE CLERG, E.L. Significance of experimental design in plant breeding. In: FREY. K.J. A symposium held at Iowa State University. Ames: Iowa State University, p. 243–313, 1966. (which is the point of greatest change in the coefficient of variation curve regarding the plot size), is six basic units (bu) per plot for variables FL, PT and Brix and seven bu for variables FD, JY, acidity, NF and FW (Figure 1). Therefore, optimal plot size that cover all the variables under study is recommended, that is, seven bu. Therefore, it could be said that from seven bu onwards, there is no accuracy gain.

Separating variables into groups of agronomic characteristics of interest, the optimal plot size for fruit-related variables (FL, FD, PT) is seven bu, equal to the optimal plot size for pulp-related variables (JY, Brix, Acidity), and production variables (NF, FW).

Modified maximum curvature method(MCM)

The lowest coefficient of determination (R2) value was found for variable JY (85%); therefore, the model explains at least 85% of the variability and the highest R2 value for variable CF (98%). However, except for the JY variable, all variables have R2 greater than or equal to 90%, so only 10% of the variability was not explained by the model, which guarantees good fit for the method used (Table 2).

Table 2
Estimates of the parameter of the model, by the modified maximum curvature method, coefficient of variation corresponding to the maximum curvature point (CV%), the value of the abscissa at which the maximum curvature point (Xc ) occurs, coefficient of determination (R2 ) for the variables under study in the uniformity test with purple passion fruit.

Evaluating the estimation of there is â wide variation in values, since the lowest value is 6.21 (FL) and the highest value is 36.53 (FW), suggesting great divergence between variables. As for the estimation of b it was observed that only variables Brix and acidity showed low variability (b< 0.5), suggesting that the other variables are possibly heterogeneous data. It appears that the optimal plot sizes ranged from 2.15 (FD) to 6.54 (NF) (Table 2, Figure 2).

Figure 2
Relationship between the coefficient of variation (CV%) and plot size (Xc), by the modified maximum curvature method, in basic units for the variables under study in the uniformity test with purple passion fruit. A) FL: fruit length (mm), FD: fruit diameter (mm), and FW: average fruit weight (g); B) PT: peel thickness (mm), JY: juice yield (mL), Brix: soluble solids content (°Bx), and Acidity: citric acid (%); C) NF: number of fruits (NF). Source: Authors.

From figure 2, it is possible to visually identify the optimal plot sizes (Xc) with their corresponding points of maximum curvature (CV (%)) where the lowest Xc value of 2.15 corresponds to a point of maximum curvature CV (%) of 3.95 and the highest Xc value of 6.54 bu corresponds to CV (%) of 16.36.

Therefore, optimal plot size of seven bu is recommended, which is the minimum required plot size that includes all variables using the modified maximum curvature method (Table 2, Figure 2).

However, separating variables into groups of agronomic characteristics of interest, the optimal plot size for fruit-related variables such as FL, FD, and PT is six bu for pulp-related variables such as JY, Brix, and acidity the optimal plot size is five bu, and for production variables such as NF and FW the optimal plot size is seven bu.

Segmented quadratic model method with plateau (QMP)

Coefficient of determination (R²) values ranged from 85% (JY) to 95% (NF), thus ensuring good fit. The optimal plot sizes ranged from 5.79 bu (NF) to 17.16 bu (FW), which compared to the previous model, generated higher Xc values. There is also a wide variation in the coefficient of variation, ranging from 0.72 to 8.56 (Table 3).

Table 3
Estimates of the parameters of the segmented quadratic model method with plateau. coef-ficient of variation corresponding to the point of maximum curvature (P), the value of the abscissa at which the point of maximum curvature (Xc) occurs, coefficient of determination (R2) for the vari¬ables under study in the uniformity test with purple passion fruit.

The segmented quadratic model with plateau response determines the optimal plot size at the meeting between curves generated by the quadratic model and the plateau, so after this point, there is no experimental accuracy gain. Figure 3 shows the point at which the optimal plot size for each variable under study occurs. The lowest Xc value is 5.79 bu (NF) with P value corresponding to 8.56, and the highest Xc value is 17.16 (FW) with P value corresponding to 1.42.

Figure 3
Relationship between the coefficient of variation (CV%) and plot size (Xc) by the Segmented quadratic model with plateau, in basic units for the variables under study in the uniformity test with purple passion fruit. A) FL: fruit length (mm), FD: fruit diameter (mm), and FW: average fruit weight (g); B) PT: peel thickness (mm), JY: juice yield (mL), Brix: soluble solids content (°Bx) and Acidity: citric acid (%); C) NF: number of fruits (NF). Source: Authors.

Comparing models it is possible to detect that the coefficient of determination (R²) values are on average higher (better adjusted) than in previous models. In this case, it is recommended to use the average between optimal plot sizes in order to recommend the one that would bring the lower financial impact; therefore, the ideal size would be 12 basic units.

Separating the variables into groups of agronomic characteristics of interest, the optimal plot size for the fruit variables (FL, FD, PT) is 12 bu with average of nine bu, for pulp variables (JY, Brix, Acidity) it is 17 bu with average of 14 bu. As for production variables (NF, FW) the optimal plot size is 18 bu, with average of 12 bu.

A comparison analysis was performed between methods (Table 4), where the model that presented the best fit was the segmented quadratic model with plateau; however, not very different from the modified maximum curvature model. Nonetheless, when using segmented models a “false plateau” can occur, since the simulated plot sizes do not guarantee amplitude capable of reaching a response plateau (PEIXOTO et al., 2011 PEIXOTO, A.P.B.; FARIA, G.A.; MORAIS, A.R.D. Modelos de regressão com platô na estimativa do tamanho de parcelas em experimento de conservação in vitro de maracujazeiro. Ciência Rural, Santa Maria, v.41, n.11, p.1907-13, 2011. ).

Table 4
Range of variation of the coefficient of determination (R²) for the modified maximum cur-vature method (MCM), and segmented quadrat¬ic model with plateau (QMP) method.

The modified maximum curvature method works better for determining the ideal plot size, since it avoids under or overestimating the optimum plot size which can occur with the linear plateau and quadratic plateau methods (SOUSA et al., 2015 SOUSA, R.P.; SILVA, P.S.; ASSIS, J.P.; SILVA, J.; OLIVEIRA, V.R.; OLIVEIRA, A.M. de P. Tamanho ótimo de parcela para avaliação do rendimento de grãos do girassol. Revista Brasileira de Engenharia Agricola e Ambiental, Campina Grande, v.19, n.1, p.21-6, 2015. ). The modified maximum curvature approach is one of the most popular methods for assessing plot size, and it can to be used to compare one or more methods for estimating the size of experimental units (BAKKE, 1988 BAKKE, O.A. Tamanho e forma ótimos de parcelas em delineamentos experimentais. 1988. Tese (Doutorado (Estatística e Experimentação Agronômica) - Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, 1988. ).

According to Henriques Neto et al. (2004) HENRIQUES NETO, D.; SEDIYAMA, T.; SOUZA, M.A.; CECON, P.R.; YAMANAKA, C.H.; SEDIYAMA, M.A.N.; VIANA, A.E.S. Tamanho de parcelas em experimentos com trigo irrigado sob plantio direto e convencional. Pesquisa Agropecuária Brasileira, Brasília, DF, v.39, n.6, p.517-24, 2004. , the modified maximum curvature method estimates small plot size values. with the possibility of decreasing the coefficient of variation with increasing plot size in the region above the maximum curvature point, a behavior also observed by Faria et al.(2020a) FARIA, G.A.; LOPES, B.G.; PEIXOTO, A.P.B.; FERREIRA, A.F.A.; MALTONI, K.L.; PIGARI, L.B. Experimental plot size of passion fruit. Revista Brasileira de Fruticultura, Jaboticabal, v.42, n.1, p.e-125, 2020a. . However, as the plot size is algebraically estimated, the values obtained are not necessarily integers, which leads to the possibility of rounding up the numbers.

Optimal plot size studies with purple passion fruit were not found; however, Storck et al.(2014) STORCK, L.; LÚCIO, A. D. C.; KRAUSE, W.; ARAÚJO, D. V. D.; SILVA, C. A. Scaling the number of plants per plot and number of plots per genotype of yellow passion fruit plants. Acta Scientiarum. Agronomy, Maringá, v.36, n.1, p.73-8, 2014. with yellow passion fruit. observed that the optimal plot size is less than five plants per plot. In other fruit trees, such as papaya, eight plants per plot was found by Silva et al. (2019) SILVA, L.L.da; BATISTA, C.B.; COSTA, V.M. da; CARDOSO, A.C.; CALIMAN, C. da S.; CASTRO, H.C.J.V. de; LIMA, J.M.; VENTURA, J.A.; CAETANO, L.C.S.; PAVAN, J.R.; PEREIRA, L.L.; FAVARATO, L.F.; GUARÇONI, R.C. Tamanho de amostra para avaliar características de banana. Revista Científica Intelletto, Venda Nova do Imigrante, v.4, n.2, p.96-104, 2019a. , and Schmildt et al. (2015) SCHMILDT, E.R.; SCHMILDT, O.; CRUZ, C.D.; CATTANEO, L.F.; FERREGUETTI, G.A. Optimum plot size and number of replications in papaya field experiment. Revista Brasileira de Fruticultura, Jaboticabal, v.38, n.2, p.e-373, 2016. observed six plants per plot. For castor beans, Paludo et al. (2015) PALUDO, A.L; LOPES, B.B.; STORCK, L.; SANTOS, D.; HAESBAERT, F.M. Tamanho de parcela e número de repetições para mamoneira em diferentes espaçamentos entre plantas. Revista Caatinga, Mossoró, v. 28, n.4, p.253-8, 2015. observed eight plants per plot.

Conclusion

In experiments with purple passion fruit.the optimal plot size varied according to each method. However, the use of optimal plot size based on the modified maximum curvature method is recommended, which showed the best results: six plants per plot for fruit-related variables (length, diameter and peel thickness), five plants per plot for pulp-related variables (juice yield, soluble solids contente, and citric acid), and seven plants per plot for production variables (number of fruits, and average fruit weight).

Acknowledgements

The authors would like to thank the financial support provided by the Coordination for the Improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES) - Financing Code 001 and the authors would also like to thank “Embrapa Mandioca e Fruticultura” (Cruz das Almas. BA. Brazil) for technical support.

  • BAKKE, O.A. Tamanho e forma ótimos de parcelas em delineamentos experimentais 1988. Tese (Doutorado (Estatística e Experimentação Agronômica) - Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, 1988.
  • BRITO, M.C.M.; FARIA, G.A.; MORAIS, A.R.; SOUZA, E.D.; DANTAS, J.L. L. Estimação do tamanho ótimo de parcela via regressão antitônica.Revista Brasileira de Biometria, v. 30, n. 3, p.353-366, 2012.
  • CELANTI, H.F.; SCHMILDT, O.; ALEXANDRE, R.S.; CATTANEO, L.F.; SCHMILDT, E.R. Plot size in the evaluation of papaya seedlings 'Baixinho de Santa Amália' in tubes. Revista Brasileira de Fruticultura, Jaboticabal, v.38, n.3, 2016.
  • CELANTI, H.F.; SCHMILDT, E.R.; SCHMILDT, O.; ALEXANDRE, R.S.; CATTANEO, L.F. Optimal plot size in the evaluation of papaya scions: proposal and comparison of methods. Revista Ceres, Viçosa, MG, v.63, p.469-76, 2016b.
  • DONATO, S.L.R.; SIQUEIRA, D.L.; SILVA, S.O.E; CECON, P.R.; SILVA, J.A.; SALOMÃO, L.C.C. Estimativas de tamanho de parcelas para avaliação de descritores fenotípicos em bananeira. Pesquisa Agropecuária Brasileira, Brasília, DF, v.43, n.8, p.957-69, 2008.
  • FALEIRO, F.G.; OLIVEIRA, J. da S.; JUNQUEIRA, N.T.V. Banco ativo de germoplasma de passiflora 'Flor da Paixão': aspectos históricos e a importância da conservação e caracterização de recursos genéticos. Brasília, DF: Embrapa Cerrados, 2019. 86p.
  • FALEIRO, F.; JUNQUEIRA, N.T.V.; COSTA, A., JESUS, O.; MACHADO, C. de F. Maracujá Cruz das Almas: Embrapa Mandioca e Fruticultura, 2017a. 32p. (Livro técnico)
  • FALEIRO, F.G.; JUNQUEIRA, N.T.V.; JESUS, O.; COSTA, A.; MACHADO, C. de F.; JUNQUEIRA, K.P.; ARAUJO, F.; JUNGHANS, T. Espécies de maracujazeiro no mercado internacional. In: JUNGHANS, T.; JESUS, O. Maracujá: do cultivo à comercialização Petrolina: Embrapa Semiárido, 2017b. 24p.
  • FARIA, G.A.; LOPES, B.G.; PEIXOTO, A.P.B.; FERREIRA, A.F.A.; MALTONI, K.L.; PIGARI, L.B. Experimental plot size of passion fruit. Revista Brasileira de Fruticultura, Jaboticabal, v.42, n.1, p.e-125, 2020a.
  • FARIA, G.A.; PEIXOTO, A.P.B.; MORAIS, A.R.; COSTA, T.F.; OLIVEIRA, C.P.M.; LOPES, B.G.; ROCHA, P.S.; OLIVEIRA, T.A.; FELIZARDO, L.M. Tamanho ótimo de parcelas para experimentos de estabelecimento in vitro em espécies do gênero passiflora. Research, Society and Development, Vargem Grande Paulista, v.9, n.10, p.e8859109354, 2020b.
  • FARIA, G.A.; COSTA, T.F.; FELIZARDO, L.M.; LOPES, B.G.; OLIVEIRA, C.P.M.; LIMA, J.F.; FONSECA, A.D.; ROCHA, P.S.; PEIXOTO, A.P.B.; OLIVEIRA, T.A. Regressão com platô na estimação do tamanho ótimo de parcelas em experimentos com mamoeiro em casa de vegetação. Research, Society and Development, Vargem Grande Paulista,v.9, n.10, p.e9159109289, 2020c.
  • FEDERER, W.T. Experimental design, theory and application 2.ed. New York: Mcmillan, 1963. 473p.
  • HENRIQUES NETO, D.; SEDIYAMA, T.; SOUZA, M.A.; CECON, P.R.; YAMANAKA, C.H.; SEDIYAMA, M.A.N.; VIANA, A.E.S. Tamanho de parcelas em experimentos com trigo irrigado sob plantio direto e convencional. Pesquisa Agropecuária Brasileira, Brasília, DF, v.39, n.6, p.517-24, 2004.
  • LE CLERG, E.L. Significance of experimental design in plant breeding. In: FREY. K.J. A symposium held at Iowa State University Ames: Iowa State University, p. 243–313, 1966.
  • MEIER, V.D.; LESSMAN, K.J. estimation of optimum field plot shape and size for testing yield in crambe abyssinica hochst. Crop Science, Madison, v.11, n.5, p.648-50, 1971.
  • MOREIRA, J.M.; MELO, A.F.; OLIVEIRA, J.M.; ATAIDES, D.S.; RIBEIRO, M.C.; BORTOLINI, J. Parcela ótima para a cultura do cafeeiro obtido por simulação de dados com variâncias conhecidas. Pubvet, Maringá, v.10, n.9, p.636-720, 2016.
  • PALUDO, A.L; LOPES, B.B.; STORCK, L.; SANTOS, D.; HAESBAERT, F.M. Tamanho de parcela e número de repetições para mamoneira em diferentes espaçamentos entre plantas. Revista Caatinga, Mossoró, v. 28, n.4, p.253-8, 2015.
  • PARANAIBA, P.F.; FERREIRA, D.F.; DE MORAIS, A.R. Tamanho ótimo de parcelas experimentais: proposição de métodos de estimação. Revista Brasileira de Biometria, Lavras, v.27, n. 2, p.255-68, 2009.
  • PEIXOTO, A.P.B.; FARIA, G.A.; MORAIS, A.R.D. Modelos de regressão com platô na estimativa do tamanho de parcelas em experimento de conservação in vitro de maracujazeiro. Ciência Rural, Santa Maria, v.41, n.11, p.1907-13, 2011.
  • R CORE TEAM. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. 2021. Disponível em: https://www.r-project.org/ . Acesso em: 10 ago. 2022.
    » https://www.r-project.org/
  • RAMALHO, M.A.P.; FERREIRA, D.F.; OLIVEIRA, A.C. Experimentation in genetics and plant breeding, Lavras: UFLA, 2012. 326p.
  • SCHMILDT, E.R.; SCHMILDT, O.; CRUZ, C.D.; CATTANEO, L.F.; FERREGUETTI, G.A. Optimum plot size and number of replications in papaya field experiment. Revista Brasileira de Fruticultura, Jaboticabal, v.38, n.2, p.e-373, 2016.
  • SILVA, L.L.da; BATISTA, C.B.; COSTA, V.M. da; CARDOSO, A.C.; CALIMAN, C. da S.; CASTRO, H.C.J.V. de; LIMA, J.M.; VENTURA, J.A.; CAETANO, L.C.S.; PAVAN, J.R.; PEREIRA, L.L.; FAVARATO, L.F.; GUARÇONI, R.C. Tamanho de amostra para avaliar características de banana. Revista Científica Intelletto, Venda Nova do Imigrante, v.4, n.2, p.96-104, 2019a.
  • SILVA, M. dos S. da; SILVA, S. de O.; DONATO, S.L.R.; LEDO, C.A. da S.; SAMPAIO FILHO, O.M.; SILVA, G. DE M.A.; CONCEIÇÃO, A.L. da S. Optimal experimental plot size for papaya cultivation. Pesquisa Agropecuária Brasileira, Brasília, DF, v.54, p.e00768, 2019b.
  • SIDRA/IBGE. Sistema de Recuperação Automática. Área destinada à colheita, área colhida, quantidade produzida, rendimento médio e valor da produção das lavouras permanentes Rio de Janeiro, 2021. Disponível em: https://sidra.ibge.gov.br/Tabela/1613 Acesso em: 7 abr. 2022.
    » https://sidra.ibge.gov.br/Tabela/1613
  • SOUSA, R.P.; SILVA, P.S.; ASSIS, J.P.; SILVA, J.; OLIVEIRA, V.R.; OLIVEIRA, A.M. de P. Tamanho ótimo de parcela para avaliação do rendimento de grãos do girassol. Revista Brasileira de Engenharia Agricola e Ambiental, Campina Grande, v.19, n.1, p.21-6, 2015.
  • STORCK, L.; LÚCIO, A. D. C.; KRAUSE, W.; ARAÚJO, D. V. D.; SILVA, C. A. Scaling the number of plants per plot and number of plots per genotype of yellow passion fruit plants. Acta Scientiarum. Agronomy, Maringá, v.36, n.1, p.73-8, 2014.

Data availability

Data citations

R CORE TEAM. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. 2021. Disponível em: https://www.r-project.org/ . Acesso em: 10 ago. 2022.

SIDRA/IBGE. Sistema de Recuperação Automática. Área destinada à colheita, área colhida, quantidade produzida, rendimento médio e valor da produção das lavouras permanentes Rio de Janeiro, 2021. Disponível em: https://sidra.ibge.gov.br/Tabela/1613 Acesso em: 7 abr. 2022.

Publication Dates

  • Publication in this collection
    30 Oct 2023
  • Date of issue
    2023

History

  • Received
    23 Jan 2023
  • Accepted
    16 May 2023
Sociedade Brasileira de Fruticultura Via de acesso Prof. Paulo Donato Castellane, s/n , 14884-900 Jaboticabal SP Brazil, Tel.: +55 16 3209-7188/3209-7609 - Jaboticabal - SP - Brazil
E-mail: rbf@fcav.unesp.br