Acessibilidade / Reportar erro

Prenylated flavonoids from maclura tinctoria fruits

Abstract

A phytochemical investigation of Maclura tinctoria fruits yielded five flavonoids, including one prenylated flavonol (licoflavonol) and four prenylated isoflavones (wighteone, derrone, alpinum isoflavone, and 6-(2,2-dimethyl-2H-chromen-6-yl)-2-(1-hydroxy-1-methylethyl)-2,3-dihydro-5H-furo[3,2-g]chromen-5-one). The structures of the isolates were established by analyzing their spectroscopic data. Compound 6-(2,2-dimethyl-2H-chromen-6-yl)-2-(1-hydroxy-1-methylethyl)-2,3-dihydro-5H-furo[3,2-g]chromen-5-one is new and the other isolates are described for the first time in this species.

Moraceae; Maclura tinctoria; prenylated flavonoids


ARTICLE

Prenylated flavonoids from maclura tinctoria fruits

Sayuri de Oliveira OyamaI; Luiz Antonio de SouzaI; Debora Cristina BaldoquiII; Maria Helena SarragiottoII; Adriano Antônio SilvaIII, * * e-mail: aasilva@ufac.br

IDepartamento de Biologia, Universidade Estadual de Maringá, 87025-500 Maringá - PR, Brasil

IIDepartamento de Química, Universidade Estadual de Maringá, 87025-500 Maringá - PR, Brasil

IIIDepartamento de Ciências da Natureza, Universidade Federal do Acre, 69915-900 Rio Branco - AC, Brasil

ABSTRACT

A phytochemical investigation of Maclura tinctoria fruits yielded five flavonoids, including one prenylated flavonol (licoflavonol) and four prenylated isoflavones (wighteone, derrone, alpinum isoflavone, and 6-(2,2-dimethyl-2H-chromen-6-yl)-2-(1-hydroxy-1-methylethyl)-2,3-dihydro-5H-furo[3,2-g]chromen-5-one). The structures of the isolates were established by analyzing their spectroscopic data. Compound 6-(2,2-dimethyl-2H-chromen-6-yl)-2-(1-hydroxy-1-methylethyl)-2,3-dihydro-5H-furo[3,2-g]chromen-5-one is new and the other isolates are described for the first time in this species.

Keywords: Moraceae; Maclura tinctoria; prenylated flavonoids.

INTRODUCTION

Maclura tinctoria (L.) D. Don ex Steudel (Chlorophora tinctoria Gaud.) according to Barroso,1 popularly known as "amoreira," "amora-do-mato" or "taíuva," is a tree having a height of 10 - 20 m and a diameter of 40 - 60 cm, belonging to the family Moraceae and growing in humid and dry tropical forests of Central and South America.1,2 Its wood has been used in carpentry, furniture manufacturing, and civil construction, as well as for extraction of morin, a yellowish pigment employed for spot testing of certain metal ions.3,4M. tinctoria bark infusions have been reported to be used against toothache by the Kaiowá and Guarani indigenous populations living in the Caarapó Reserve in Mato Grosso do Sul state, Brazil.5 The resin of the plant is used for the same purpose in the Amazonian indigenous community of Porvenir, Bajo Paragua Indian Reservation, Bolivia.6 The species also furnishes diuretic and anti-venereal agents and is used in Latin America to treat urinary infections, cough, gout, pharyngitis, rheumatism, sore throat, and syphilis.7

Chemical studies of the Maclura genus have revealed prenylated flavonoids as main constituents. In M. pomifera, the most studied species of the genus, several flavonoids have been described, including isoflavones from the fruits, root, bark, and heartwood of the plant.8-13 Five prenylated flavones and three prenylated isoflavones have been isolated from chloroform extracts of stems and leaves.11

M. tinctoria is relatively well studied from a phytochemical viewpoint; however, the studies reported have used only the bark and leaves of the plant. Five prenylated flavonoids, four prenylated chalcones and one diprenylisoflavone, were isolated from an ethanol extract of M. tinctoria leaves and identified as 2',4',4,2'-tetrahydroxy-3'-(3'-methylbut-3'-enyl)-chalcone, isobavachalcone, bakuchalcone, bavachromanol, and 5,7,3:4'-tetrahydroxy-6,8-diprenylisoflavone (6,8-diprenylorobol).14 Bioassay-guided fractionation of the bark extract by tracking of HIV-inhibitory activity afforded seven prenylated phenolic derivatives from the active fractions, including the prenylated xanthones macluraxanthone B, macluraxanthone C, gartanin, and desoxygartanin, along with the prenylated flavones cudraflavone C, dihydrocudraflavone B, and isocyclomulberrin.15 The flavonoids steppogenin, steppogenin 4'-O-β-D-glucoside, orobol, orobol 5,3'-di-O-methyl-8-C-glucoside, orobol 7-O-β-D-glucoside, aromadendrin, and dihydromorin were isolated from the M. tinctoria bark extract.16 Antioxidant chalcone glycosides and flavanones were also reported from the stem bark of this plant. The isolated compounds were characterized as eriodictyol 7-O-a-D-glucopyranoside, naringenin, naringenin 4′-O-a-D-glucopyranoside, 3'-(3-methyl-2-butenyl)-4'-O-a-D-glucopyranosyl-4,2'-dihydroxychalcone, 4'-O-α-D-(2"-p-coumaroyl)glucopyranosyl-4,2',3'-trihydroxychalcone, 4'-O-α-D-(2"-p-coumaroyl-6"-acetyl)glucopyranosyl-4,2',3'-trihydroxychalcone, and 4'-O-α-D-(2"-acetyl-6"-cinnamoyl)glucopyranosyl-4,2',3'-trihydroxychalcone.17

In this study, we report the isolation and structural elucidation of a new compound, identified as 6-(2,2-dimethyl-2H-chromen-6-yl)-2-(1-hydroxy-1-methylethyl)-2,3-dihydro-5H-furo[3,2-g]chromen-5-one), along with four known prenylated flavonoids from the fruits of M. tinctoria.

EXPERIMENTAL

General experimental

1H and 13C NMR spectra were recorded on a Varian Mercury Plus spectrometer at 300 and 75.5 MHz, respectively, using (CD3)2CO as solvent and TMS as reference. High resolution mass spectra were obtained in a LTQ-Orbitrap hybrid mass spectrometer (Thermo Fischer Scientific, Bremen, Germany). EI-MS spectra were recorded on a Thermoelectron Corporation Focus-DSQ II spectrometer at 70 eV. Column chromatography (CC) was performed using Sephadex LH-20 or silica gel 60 Merck (70 - 30 mesh ASTM). TLC was performed on precoated silica gel 60G or 60GF254 Merck. All solvents were redistilled before use.

Plant material

Fruits of M. tinctoria were collected in December 2008 at the Bosque dos Pinheiros, a remnant forest in an urban area in Maringá - PR, Brazil. The plant was identified by Dr. Sergio Romaniuc Neto (Instituto de Botânica, São Paulo, Brazil). A voucher specimen has been deposited in the herbarium of the Biology Department, Universidade Estadual de Maringá (HUEM 16499).

Extraction and isolation

Dried fruits with seeds (670 g) of M. tinctoria were powdered and exhaustively extracted with methanol at room temperature. Vacuum concentration yielded the crude methanol extract (123 g), which was suspended in MeOH:H2O (1:1) and partitioned into CH2Cl2, EtOAc, and BuOH. The solvents were evaporated to give CH2Cl2 (24.7 g), EtOAc (9.60 g), BuOH (32.4 g), and aqueous (57.1 g) fractions. An aliquot of the CH2Cl2 fraction (3 g) was passed through a Sephadex LH-20 chromatographic column using MeOH as eluent, yielding 18 fractions of 15 mL each. This procedure was repeated four times, and the fractions were grouped on the basis of TLC similarity (A1 to A15). Fraction A4 (543 mg) was purified using CC on silica gel with a mixture of n-hexane, CH2Cl2, and EtOAc in increasing polarity as eluent, followed by preparative TLC (CH2Cl2:EtOAc; 7:3) of the subfraction eluted from CC with CH2Cl2:EtOAc (6:4), to yield pure compound 1 (8 mg). Fraction A9 (376 mg) was subjected to CC on silica gel, using n-hexane containing increasing amounts of EtOAc (up to 100%) as eluent, to give 108 fractions of 20 mL each (A9.1 to A9.108). Subfraction A9.20 (72 mg) was subjected to preparative TLC with CH2Cl2 (100%) elution. The fraction with Rf = 0.28 was dissolved in CHCl3 and subjected to precipitation with hexane. The precipitate (10 mg) was identified as pure compound 2, and the supernatant yielded a mixture of compounds 2 and 3 (12 mg). Fraction A15 (84 mg) was subjected to preparative TLC with hexane:CH2Cl2 (2:8) elution. The fraction with Rf = 0.20 was subjected to subsequent preparative TLC using hexane:CH2Cl2 (2:8) as eluent, to yield pure compounds 4 (9 mg) and 5 (11 mg).

RESULTS AND DISCUSSION

Fractionation of the CH2Cl2 fraction by gel permeation chromatography using a Sephadex LH-20 column, followed by CC on silica gel and preparative TLC of subfractions, afforded five prenylated flavonoids (1 - 5) (Figure 1). The structures of the isolated compounds were determined by analysis of their spectral data (MS and 1D and 2D NMR).


The new prenylated isoflavone (1), 6-(2,2-dimethyl-2H-chromen-6-yl)-2-(1-hydroxy-1-methylethyl)-2,3-dihydro-5H-furo[3,2-g]chromen-5-one, was obtained as an amorphous yellow powder. The HR-ESIMS of 1, in the positive-ion mode, exhibited a molecular ion peak [M + H]+ at m/z 435.1800, consistent with the molecular formula C26H26O6. The 13C NMR spectra (Table 1) of compound 1 revealed characteristic signals for C-2, C-3, and C-4 of an isoflavone at d 151.5, 122.7, and 175.1, respectively. The additional signals for twelve aromatic carbons, eight non-hydrogenated, and four methine sp2-carbons, evidenced an isoflavone skeleton with di- and tri-substituted aromatic rings. This was confirmed by the signals of one aromatic hydrogen as singlet at 6.49 (s, H-8) and of the coupled aromatic hydrogens at d 7.19 (d, J = 2.1 Hz, H-2'), 6.72 (d, J = 8.4 Hz, H-5') and d 7.25 (dd, J = 8.4 and 2.1 Hz, H-6'), in the 1H NMR spectra. The signals at d 3.29 (m, 2H, H-3'") and d 4.74 (t, J = 7.20 Hz, 1H, H-2'") and of two methyl groups at d 1.24 (s, 3H) and d 1.21 (s, 3H) evidenced the presence of the 2-(1-hydroxy-1-methylethyl)-2,3-dihydrofuran system, which was confirmed by the corresponding 13C NMR signals at d 28.0 (C-3'"), 92.0 (C-2'"), and d 71.4 (C-4'"). The linkage of this group at C-6 and C-7 of ring A was established by the correlation between H-3'" (d 3.29) and C-6 (d 118.4) in the HMBC experiment (Table 1). In addition, the 1H and 13C NMR spectra indicated the presence of a dimethylchromene system at d 7.19 (d, 2.1 Hz, H-2'), 6.72 (d, 8.4 Hz, H-5'), 7.25 (dd, 8.4 Hz and 2.1 Hz, H-6'), 6.37 (d, 9.9 Hz, H-4"), and 5.68 (d, 9.9 Hz, H-5").

The assignment of all signals observed in 1H and 13C NMR spectra of 1 was corroborated by HMQC and HMBC experiments (Table 1). These data revealed that 1 is closely related to ulexin D, isolated from Ulex airensis,18 differing by the presence of a 5-OCH3 instead of a 5-OH group in ulexin D. The linkage of the methoxyl group (dH 3.87, s, 3H) at C-5 was confirmed by the downfield (approximately 6 - 9 ppm) shift observed for C-6 and C-10 of compound 1 owing to the methylation effect, compared with the corresponding carbons of ulexin D. This evidence was also corroborated by the carbonyl signal at d 175.1 in the 13C NMR spectrum of 1, instead of at d 181.7 as seen in ulexin D, in agreement with the lack of a free 5-OH group.

The known prenylated isoflavones derrone (2),19 alpinum isoflavone (3),19,20 and wighteone (4),18 were identified by comparing their NMR data with those reported in the literature. Derrone (2) and alpinum isoflavone (3) are isomers, possessing isoprenyl groups linked at C-8 and C-6, respectively. In the 1H and 13C NMR spectra of derrone (2), the H-6 and C-6 appears at d 6.19 (s, 1H) and d 101.9, respectively, whereas in alpinum isoflavone (3) the signals for H-8 and C-8 are observed at d 6.36 (s, 1H) and d 95.5, respectively.

Derrone (2) and alpinum isoflavone (3) along with other prenylated isoflavones have been isolated from Ficus nymphaefolia, a species of Moraceae.21 Wighteone (4) was previously isolated from M. pomifera leaves11 and Erythrina indica stem bark. Its potential cytotoxicity to human KB cells has also been reported.22

The prenylated flavonol 5 was first isolated from Glycyrrhiza glabra roots23 and identified as licoflavonol by comparing its data with those previously reported. 23,24

CONCLUSION

Excepting wighetone (4), all isolated compounds are being described for the first time from Maclura genus. However, several prenylated isoflavones have been reported to occur in M. pomifera8-12 and other species of the Moraceae family.21,25,26 The isolation of prenylated isoflavones from M. tinctoria may contribute to further chemotaxonomic studies on the genus Maclura and family Moraceae.

SUPPLEMENTARY MATERIAL

The RMN and mass spectra for compounds 1 - 5 are available at http://quimicanova.sbq.org.br as a free-access PDF file.

ACKNOWLEDGMENTS

The authors are grateful to CAPES and CNPq for fellowships (SOO and AAS), to Dr. A. J. Marsaioli (UNICAMP) for HRMS spectra, and to Fundação Araucária (Paraná State, Brazil) for financial support.

Recebido em 13/8/12

Aceito em 4/2/13

Publicado na web em 24/5/13

Material Suplementar

O material suplementar está disponível em pdf: [Material Suplementar]

  • 1
    Barroso, G. M.; Morrim, M. P.; Peixoto, A. L.; Ichaso, C. L. F.; Frutos e Sementes. Morfologia Aplicada à Sistemática de Dicotiledôneas, 1st ed., UFV: Viçosa, 1999.
  • 2
    Carvalho, P. E. R.; Espécies Arbóreas Brasileiras (Volume 1), 1st ed., Embrapa: Distrito Federal, 2003.
  • 3
    Paula, J. E.; Alves, J. H. L.; Madeiras Nativas - Anatomia, Dendrologia, Dendrometria, Produção e Uso, 1st ed., Cinco continentes: Brasília, 1997.
  • 4
    Wu, T. W.; Zeng, L. H.; Wu, J.; Fung, K. P.; Biochem. Pharmacol 1994, 47, 1099.
  • 5
    Bueno, N. R.; Castilho, R. O.; Costa, R. B.; Pott, A.; Pott, V. J.; Scheidt, G. N.; Batista, M. S.; Acta Bot. Bras. 2005, 19, 39.
  • 6
    Hajdu, Z.; Hohmann, J.; J. Ethnopharmacol. 2012, 139, 838.
  • 7
    http://www.ars-grin.gov/duke/syllabus/module8.htm, accessed November 2012.
  • 8
    Kupeli, E.; Orhan, I.; Toker, G.; Yesilada, E.; J. Ethnopharmacol. 2006, 107, 169.
  • 9
    Tian, L.; Blount, J. W.; Dixo, R. A.; FEBS Letters 2006, 580, 6915.
  • 10
    Tsao, R.; Yang, R.; Young, J. C.; J. Agric. Food Chem. 2003, 51, 6445.
  • 11
    Lee, S.; Wood, A. R.; Maier, C. G.; Dixon, R. A.; Mabry, T. J.; Phytochemistry 1998, 49, 2573.
  • 12
    Delle Monache, G.; Scurria, R.; Vitali, A.; Botta, B.; Monacelli, B.; Pasqua, G.; Palocci, C.; Cernia, E.; Phytochemistry 1994, 37, 893.
  • 13
    Geber, N. N.; Phytochemistry 1986, 25, 1697.
  • 14
    ElSohly, H. N.; Joshi, A. S.; Ninrod, A. C.; Walker, L. A.; Clark, A. M.; Planta Medica 2001, 67, 87.
  • 15
    Groweiss, A.; Cardellina, J. H.; Boyd, M. R.; J. Nat. Prod. 2000, 63, 1537.
  • 16
    ElSohly, H. N.; Joshi, A. S.; Li, X. C.; Ross, S. A.; Phytochemistry 1999, 52, 141.
  • 17
    Cioffi, G.; Escobar, L. M.; Braca, A.; Tommasi, N.; J. Nat. Prod. 2003, 66, 1061.
  • 18
    Inghan, J. L.; Keen, N. T.; Hymowitz, T.; Phytochemistry 1977, 16, 1943.
  • 19
    Máximo, P.; Lourenço, A.; Feio, S. S.; Roseiro, J. C.; Z. Naturforsch. 2002, 57, 609.
  • 20
    Oh, W. K.; Lee, H. S.; Ahn, S. C.; Ahn, J. S.; Mbafor, J. T.; Wandji, J.; Fomum, Z. T.; Chang, H. K.; Kim, Y. H.; Phytochemistry 1999, 51, 1147.
  • 21
    Darbour, N.; Bayet, C.; Rodin-Bercion, S.; Elkhomsi, Z.; Lurel, F.; Chaboud, A.; Guilet, D.; Nat. Prod. Res. 2007, 21, 461.
  • 22
    Nkengfack, A. E.; Azebaze, A. G. B.; Waffo, A. K.; Fomum, Z. T.; Meyer, M.; van Heerden, F. R.; Phytochemistry 2001, 58, 1113.
  • 23
    Saitoh, T.; Kinoshita, T.; Shibata,S.; Chem. Pharm. Bull. 1976, 24, 1242.
  • 24
    Montoro, P.; Maldini, M.; Russo, M.; Postorino, S.; Piacente, S.; Pizza, C.; J. Pharm. Biomed. Anal. 2011, 54, 535.
  • 25
    Han, X. H.; Hong, S. S.; Jin, Q.; Li, D.; Kim, H.; Lee, J.; Kwon, S. H.; Lee, D.; Lee, C.; Lee, M. K.; Hwang, B. Y.; J. Nat. Prod. 2009, 72, 164.
  • 26
    Darbour, N.; Bayet, C.; Rodin-Bercion, S.; Elkhomsi, Z.; Lurel, F.; Chaboud, A.; Guilet, D.; Nat. Prod. Res. 2007, 21, 461.
  • *
    e-mail:
  • Publication Dates

    • Publication in this collection
      08 Aug 2013
    • Date of issue
      2013

    History

    • Received
      13 Aug 2012
    • Accepted
      04 Feb 2013
    Sociedade Brasileira de Química Secretaria Executiva, Av. Prof. Lineu Prestes, 748 - bloco 3 - Superior, 05508-000 São Paulo SP - Brazil, C.P. 26.037 - 05599-970, Tel.: +55 11 3032.2299, Fax: +55 11 3814.3602 - São Paulo - SP - Brazil
    E-mail: quimicanova@sbq.org.br