Acessibilidade / Reportar erro

Selection of roselle genotypes tolerant/resistant to spots induced by Corynespora cassiicola in Guerrero, Mexico

Seleção de genótipos de vinagreira tolerantes/resistentes à mancha foliar induzida por Corynespora cassiicola em Guerrero, México

ABSTRACT

Roselle spot caused by Corynespora cassiicola affects calyx production in Mexico. The aim of the present study was to evaluate twenty-two roselle genotypes against C. cassiicola under greenhouse conditions. The area under the disease progress curve (AUDPC) was used to detect susceptible, tolerant and resistant genotypes. Considering the incidence in leaves, susceptible genotypes were Conpoz, Sudlaz, Morcot and Sudigua (AUDPC values of 7379.2 to 5891.7); tolerant genotypes were Conayu and Chinxal (AUDPC 1341.6 and 1313.2). Based on the severity in leaves, susceptible genotypes were Sudigua, Conpoz and Morena2 (AUDPC from 788.4 to 436.3); tolerant genotypes were Almatech, Crioxal, Rojatec and Conayu (37.7 to 28.76 AUDPC). Assessment of the incidence in calyces indicated that susceptible genotypes were Morena2, Morena, Conpoz, Descop and Chinayu (AUDPC from 6572.1 to 2319.4); for the severity in calices, susceptible genotypes were Morena2, Descop, Morena, Cabxal, Chinayu and Conpoz (AUDPC from 3355.4 to 779.2). Incidence and severity on calyces evidenced resistant genotypes, which were Almatech, Criolaz2, Criocot, Criolaz, Rojatec, Criopoz, Crioxal, Chinxal and Conayu (0.0 AUDPC). In the present study, tolerant and resistant genotypes were detected to leaf and calyx spot caused by C. cassiicola in roselle.

Keywords
Hibiscus sabdariffa ; fungal disease; disease management; screening

RESUMO

A doença manchada de vinagreira causada por Corynespora cassiicola afeta a produção de cálice no México. O objetivo deste estudo foi avaliar vinte e dois genótipos de vinagreira contra C. cassiicola em casa de vegetação. Com base nas área abaixo da curva de progresso da doença (AACPD) foi possível detectar genótipos suscetíveis, tolerantes e resistentes. Dada a incidência nas folhas, os genótipos suscetíveis foram Conpoz, Sudlaz, Morcot e Sudigua (valores de AACPD 7379,2 a 5891,7); tolerantes foram Conayu e Chinxal (AACPD 1341,6 e 1313,2). Enquanto isso, pela severidade nas folhas, os suscetíveis foram Sudigua, Conpoz e Morena2 (AACPD de 788,4 a 436,3); tolerantes foram Almatech, Crioxal, Rojatec e Conayu (37,7 a 28,76 de AACPD). Enquanto, avaliando a incidência em cálices, genótipos suscetíveis foram; Morena2, Morena, Conpoz, Descop e Chinayu (AACPD de 6572,1 a 2319,4); para a gravidade suscetível foram Morena2, Descop, Morena, Cabxal, Chinayu e Conpoz (AACPD de 3355,4 a 779,2). A incidência e severidade nos cálices detectaram genótipos resistentes, que foram Almatech, Criolaz2, Criocot, Criolaz, Rojatec, Criopoz, Crioxal, Chinxal e Conayu (0,0 de AACPD). Neste estudo, foram detectados genótipos tolerantes e resistentes à mancha foliar e cálice causada por C. cassiicola em vinagreira.

Palavras-chave
Hibiscus sabdariffa ; doença fúngica; manejo de doenças; rastreamento

Roselle (Hibiscus sabdariffa) is a plant belonging to the Malvaceae family, which is cultivated in tropical and sub-tropical regions (2525 Shruthi, V.H.; Ramachandra, C.T. Roselle (Hibiscus sabdariffa L.) calyces: a potential source of natural color and its health benefits. In: Deka, S.C.; Seth, D.; Hulle, N.R.S.; Food Bioactives: Functionality and Applications in Human Health, Palm Bay: Apple Academic Press, 2019. p.169-190.). The major countries producing calyces of roselle are Egypt, Sudan, Mexico, Thailand and China (99 FAO. FAOSTAT. Roma: FAO, 2018. Available at: http://www.fao.org/giews/english/cpfs/index.htm#, Access on: 20 September 2020.
http://www.fao.org/giews/english/cpfs/in...
). Roselle is cultivated principally for its calyces, which are used to prepare various foods and beverages (44 Bako, I.G.; Abubakar, M.S.; Mabrouk, M.A.; Mohammed, A. Lactogenic study of the effect of ethyl-acetate fraction of Hibiscus sabdariffa Linn (Malvaceae) seed on serum prolactin level in lactating albino rats. Advance Journal of Food Science and Technology, Brooklyn, v.6, p.292-296, 2014. DOI: https://doi.org/10.19026/ajfst.6.26
https://doi.org/10.19026/ajfst.6.26...
), i.e., sweet drinks, jam, syrup, wine, juice, ice cream or tea (11 Al-Hashimi, GA. Antioxidant and antibacterial activities of Hibiscus sabdariffa L. extracts. African Journal of Food Science, Sapele, v.6, p. 506-511, 2012. DOI: https://doi.org/10.5897/AJFS12.099
https://doi.org/10.5897/AJFS12.099...
). Additionally, roselle extracts have medicinal properties such as antimicrobial, anti-inflammatory and antioxidant properties (1313 Mardiah, Z.F.R.; Pragdimurti, E.; Damanik, R. Anti-inflammatory of purple roselle extract in diabetic rats induced by Streptozotocin. Procedia Food Science, London, v.3, p.182-189, 2015. DOI: https://doi.org/10.1016/j.profoo.2015.01.02
https://doi.org/10.1016/j.profoo.2015.01...
, 2626 Sarima, A.R.I.; Meryandini, A. Modulation of Aging in Yeast Saccharomyces cerevisiae by Roselle Petal Extract (Hibiscus sabdariffa L.). American Journal of Biochemistry and Biotechnology, Dubai, v.15, 23-32, 2019. DOI: https://doi.org/10.3844/ajbbsp.2019.23.32
https://doi.org/10.3844/ajbbsp.2019.23.3...
).

There are diverse plant pathogens that affect roselle, such as Phytophthora parasitica, which causes the “black leg” disease; Fusarium oxysporum, which induces vascular wilt, and Ralstonia pseudosolanacearum and R. solanacearum, which lead to bacterial wilt (22 Amusa, N.; Adegbite, A.; Oladapo, M. Vascular wilt of roselle (Hibiscus sabdariffa L. var. sabdariffa) in the humid forest region of southwestern Nigeria. Plant Pathology Journal, Seoul, v.4, p.122-125, 2005. DOI: https://doi.org/10.3923/ppj.2005.122.125
https://doi.org/10.3923/ppj.2005.122.125...
, 2020 Ortega-Acosta, S.A.; Hernández-Morales, J.; Sandoval-Islas, J.S.; Ayala-Escobar, V.; Soto-Rojas, L.; Alejo-Jaimes, A. Distribution and frequency of organisms associated to disease “black leg” of roselle (Hibiscus sabdariffa L.) in Guerrero, México. Revista Mexicana de Fitopatologia, Texcoco, v.33, p.173-194, 2015., 55 Balendres, M.A.; Oraye, C.; Maghirang, R.; Cueva, F.D. 2020. Resistance of roselle to bacterial wilt caused by Ralstonia pseudosolanacearum and R. solanacearum. International Journal of Vegetable Science, London, v.27, n.3, p.231-237, 2020. DOI: https://doi.org/10.1080/19315260.2020.1765447
https://doi.org/10.1080/19315260.2020.17...
).

In Mexico, in the state of Guerrero, the annual production of roselle calyces is affected by roselle spot, a disease caused by the fungus Corynespora cassiicola (1919 Ortega-Acosta, S.A.; Hernández-Morales, L.; Ochoa-Martínez, D.; Ayala-Escobar, V. First report of Corynespora cassiicola causing leaf and calyx spot on roselle in Mexico. Plant Disease, Saint Paul, v.99, p.1041, 2015. DOI: https://doi.org/10.1094/pdis-04-14-0438-pdn
https://doi.org/10.1094/pdis-04-14-0438-...
); this pathogen is widely distributed in the major roselle-producing municipalities in Guerrero State (1515 Ortega-Acosta, S.Á.; Mora-Aguilera, J.A.; Velasco-Cruz, C.; Ochoa-Martínez, D.L.; Leyva-Mir, S.G.; Hernández-Morales, J. Temporal progress of roselle (Hibiscus sabdariffa L.) leaf and calyx spot disease (Corynespora cassiicola) in Guerrero, Mexico. Journal of Plant Pathology, Portici, v.102, p.1007-1013, 2020. DOI: https://doi.org/10.1007/s42161-020-00550-1
https://doi.org/10.1007/s42161-020-00550...
). Calyx and leaf spot in roselle has been especially managed with conventional and alternative chemical substances (1717 Ortega-Acosta, S.A.; Ochoa-Martínez, D.L.; Leyva-Mir, S.G.; Velasco-Cruz, C.; Mora-Aguilera, J.A.; Hernández-Morales, J. Control químico del manchado de hojas y cálices de jamaica en Guerrero, México. Summa Phytopathologica, Botucatu v.45, p.38-43, 2019. DOI: https://doi.org/10.1590/0100-5405/182006
https://doi.org/10.1590/0100-5405/182006...
). However, sustainable alternatives should be searched for the management of this disease. Host tolerance could be an option for farmers, as this would reduce production costs and minimize the use of chemical pesticides; papaya and cucumber genotypes tolerant to C. cassiicola have been detected (2222 Paz, D.S.; Gusmão-Araujo, J.B.; Costa-Rodrigues, A.A.; Candido, E.K.; Bandeira-Diniz, S.N. Reaction of papaya genotypes to target spot and activity of plant extracts and Bacillus spp. on Corynespora cassiicola. Revista Brasileira de Fruticultura, São Paulo, v40, pe-927, 2018. DOI: https://dx.doi.org/10.1590/0100-29452018927
https://doi.org/10.1590/0100-29452018927...
, 2828 Teramoto, A.M.; Ferreira, M.C.; Luciene, C.; Marcos, C.G. Reaction of hybrids, inhibition in vitro and target spot control in cucumber. Horticultura Brasileira, Dois Irmãos, v.293, p.342-348, 2011. DOI: https://dx.doi.org/10.1590/S0102-05362011000300014
https://doi.org/10.1590/S0102-0536201100...
, 66 Bezerra, E.J.S.; Bentes, J.L.S. Reação de híbridos de pepino a Corynespora cassiicola no Amazonas. Summa Phytopathologyca, Botucatu, v.41, n.1, p.71-72, 2015.).

In Mexico, no tolerant/resistant roselle genotypes have been identified for the disease caused by C. cassiicola; thus, the aim of the current study was to evaluate the response of twenty-two roselle genotypes against C. cassiicola.

MATERIALS AND METHODS

Experimental site

The study was conducted at Facultad de Ciencias Agropecuarias y Ambientales de la Universidad Autónoma de Guerrero, located in Iguala de la Independencia, Guerrero State, Mexico, at an altitude of 730 meters above sea level and at the latitude coordinates: 18°20’59”N and 99°33’00”W. The experimental area has an average temperature of 25.9°C and average rainfall of 1,050.6 mm (88 Ciudad de México. Servicio Meteorológico Nacional. Comisión Nacional del Agua, Normales Climatológicas por Estado. Ciudad de México: Secretaría de Medio Ambiente y Recursos Naturales, 2010. Available at: https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado?estado=gro. Accessed on: 11 Sep. 2020
https://smn.conagua.gob.mx/es/informacio...
). The evaluation was carried out under greenhouse conditions.

Sampling and sowing roselle genotypes

In March 2018, roselle genotypes were collected from the major roselle producing areas in the state of Guerrero, Mexico, at the municipalities of Ayutla, Tecoanapa, Copalillo and Iguala (Table 1).

Table 1
Roselle (H. sabdariffa) genotypes used in the experiment to evaluate tolerance against leaf and calyx spot induced by C. cassiicola under greenhouse conditions.

The genotypes selected for the experiment (Table 1) were planted in June 2018, in polyethylene (15 x 25 cm) pots. The planting medium was composed of 30% compost and 70% soil as substrate.

Experimental design

Each genotype (Table 1) was considered a treatment; four replicates/treatment were established, and each replicate comprised two plants/pot. The experiment was arranged as completely randomized design under greenhouse conditions.

Inoculum source

For the inoculation of roselle genotypes, the strain CC47GRO of Corynespora cassiicola was used (GenBank: MF000875) (1616 Ortega-Acosta, S.A.; Ochoa-Martínez, D.L.; Hernández-Morales, J.; Palemón-Alberto, F. Morphological and genetic characterization of Corynespora cassiicola isolates obtained from roselle and associated weeds. Mexican Journal of Phytopathology, Texcoco, v.38, p.62-78, 2020. DOI: https://doi.org/10.18781/r.mex.fit.1909-2
https://doi.org/10.18781/r.mex.fit.1909-...
). To obtain sufficient inoculum, the fungus was increased in Petri dishes containing Potato Dextrose Agar (PDA) culture medium (BIOXON®) and subsequently placed in an incubator (NOVATECH®) for 14 days at 28°C (1414 Onesirosan, P.T.; Arny, D.C.; Durbin, R.D. Host specitify of Nigerian and North American isolates of Corynespora cassiicola. Phytopathology, Saint Paul, v.64, p.1367-1367, 1974.).

Inoculation of C. cassiicola

The fungal inoculum concentration was 2 x 105 conidia mL-1 (1919 Ortega-Acosta, S.A.; Hernández-Morales, L.; Ochoa-Martínez, D.; Ayala-Escobar, V. First report of Corynespora cassiicola causing leaf and calyx spot on roselle in Mexico. Plant Disease, Saint Paul, v.99, p.1041, 2015. DOI: https://doi.org/10.1094/pdis-04-14-0438-pdn
https://doi.org/10.1094/pdis-04-14-0438-...
). Two inoculations of C. cassiicola were conducted by means of drip sprays of the inoculum onto the foliage, at 40 and 60 days after sowing (DAS), and onto the calyces, from maturation according to their vegetative cycle (early, intermediate and late) (2727 Servicio Nacional de Inspección y Certificación de Semillas. Guía técnica para la descripción varietal de Jamaica [Hibiscus sabdariffa (L.) Torr.]. Primera Edición, Ciudad de México: SAGARPA, 2014. 32p. Available in: <https://www.gob.mx/cms/uploads/attachment/file/120828/Jamaica.pdf>. Accessed on: 10 Oct. 2020
https://www.gob.mx/cms/uploads/attachmen...
); the last inoculation in the calyces was performed after 20 days. For each inoculation, plants were covered with transparent plastic bags for 72 h.

Assessment of incidence and severity

The incidence was measured and used to divide each plant into three strata: low, medium, and high (1717 Ortega-Acosta, S.A.; Ochoa-Martínez, D.L.; Leyva-Mir, S.G.; Velasco-Cruz, C.; Mora-Aguilera, J.A.; Hernández-Morales, J. Control químico del manchado de hojas y cálices de jamaica en Guerrero, México. Summa Phytopathologica, Botucatu v.45, p.38-43, 2019. DOI: https://doi.org/10.1590/0100-5405/182006
https://doi.org/10.1590/0100-5405/182006...
). For each stratum, three leaves or calyces were recorded, according to the phenological stage of the studied genotypes. Incidence (%) was determined as percentage of symptomatic leaves or calyces in the total observed leaves or calyces.

Disease severity (%) was estimated based on a diagrammatic logarithmic scale for leaves: 0=0, 1= (>0-2 to 4), 2 = (>4-7 to 12), 3 = (>12-19 to 29), 4 = (>29-42 to 57) and 5 = (>57- 70 to ≤100), and for calyces: 0=0, 1 = (>0-3 to 5), 2 = (>5-10 to 18), 3 = (>18-30 to 46), 4 = (>46-63 to 77) and 5 = (>77-87 to ≤100) (1818 Ortega-Acosta, S.A.; Velasco-Cruz, C.; Hernández-Morales, J.; Ochoa-Martínez, D.L.; Hernández-Ruiz, J. Diagrammatic logarithmic scales for assess the severity of spotted leaves and calyces of roselle. Mexican Journal of Phytopathology, Texcoco, v.34, p.270-285, 2016. DOI: https://doi.org/10.18781/r.mex.fit.1606-6
https://doi.org/10.18781/r.mex.fit.1606-...
). Nine evaluations were carried out at weekly intervals for leaves and calyces.

Recording of agronomic characteristics

Periodic monitoring was carried out, and the vegetative cycle and calyx coloration were recorded for each roselle genotype (2727 Servicio Nacional de Inspección y Certificación de Semillas. Guía técnica para la descripción varietal de Jamaica [Hibiscus sabdariffa (L.) Torr.]. Primera Edición, Ciudad de México: SAGARPA, 2014. 32p. Available in: <https://www.gob.mx/cms/uploads/attachment/file/120828/Jamaica.pdf>. Accessed on: 10 Oct. 2020
https://www.gob.mx/cms/uploads/attachmen...
).

Recording of environmental variables

During the experiment, constant monitoring was carried out with a digital hygrothermograph (Extech Instruments® RHT10), programmed to record relative humidity and temperature at two-hour intervals. Relative humidity in the greenhouse was kept constant by using two humidifiers throughout the experiment.

Statistical analysis

The area under the disease progress curve (AUDPC) was estimated for each roselle genotype (treatment), based on the trapezoidal integration method described by Campbell and Madden (77 Campbell, CL.; Madden, LV. Introduction to plant disease epidemiology. John Wiley and Sons Inc. New York, USA, p.532 p, 1990.), using estimated incidence and severity data of roselle leaves and calyces, while analysis of variance and separation of means were conducted according to Tukey’s test (p≤0.05). Statistical analyses were performed using SAS® version 9.4 statistical program.

RESULTS

The evaluated roselle genotypes (Table 1) presented diverse phenological stages and were classified as early, intermediate and late. A high phenotypic diversity was also observed for calyx coloration (2727 Servicio Nacional de Inspección y Certificación de Semillas. Guía técnica para la descripción varietal de Jamaica [Hibiscus sabdariffa (L.) Torr.]. Primera Edición, Ciudad de México: SAGARPA, 2014. 32p. Available in: <https://www.gob.mx/cms/uploads/attachment/file/120828/Jamaica.pdf>. Accessed on: 10 Oct. 2020
https://www.gob.mx/cms/uploads/attachmen...
). Under greenhouse conditions, the materials showed four shades of calyx colors, which were pale red, light red, red and intense red (Table 2).

Table 2
Analysis of the incidence and severity (AUDPC) for leaves and calyces of 22 roselle genotypes before artificial inoculation under greenhouse conditions.

The average temperature and relative humidity recorded during the experiment was 26 °C and 82%, respectively. This environmental condition is within the optimal range for the development of C. cassiicola (1111 Jones, J.P.; Jones, J.B. Target spot of tomato: epidemiology and control. Proceedings of the Florida State Horticultural Society, Crystal River, v.97, p.216 – 218, 1984., 1010 Godoy, C.V.; Utiamada, C.M.; Meyer, M.C.; Campos, H.D.; Pimenta, C.B.; Borges, E.P. Eficiéncia de fungicidas para o controle da mancha-alvo, Corynespora cassiicola, nasafra: Resultados sumarizados dos ensaios cooperativos. Londrina: Embrapa Soja, 2012. (Circular Técnica, 94).).

Analysis of AUDPC for incidence and severity in leaves and calyces

Based on the AUDPC analysis for the disease incidence and severity induced by C. cassiicola, the response differed according to the evaluated roselle genotype. The AUDPC analysis was used to describe the plants according to severity and incidence as susceptible, intermediate and tolerant for the leaves, and as susceptible, intermediate, tolerant and resistant for the calyces (Table 2).

Regarding incidence in the leaves, the most statistically susceptible material was: Conpoz, followed by Sudlaz, Morcot and Sudigua, the AUDPC values of which were 7379.2, 6835.3, 6348.6 and 5891.7, respectively; the most tolerant genotypes were Conayu and Chinxal, showing AUDPC values of 1341.6 and 1313.2, respectively. The remaining genotypes presented intermediate tolerance according to the recorded AUDPC values (Table 2).

For severity in the leaves, the most susceptible genotype was Sudigua, followed by Conpoz and Morena2 , which had AUDPC values of 788.43, 470.14 and 436.32, respectively; the most tolerant genotypes were Almatech, Crioxal, Rojatec and Conayu, reaching AUDPC values of 37.70, 34.18, 30.94 and 28.76, respectively (Table 2; Figure 1A and B). The remaining genotypes can be considered intermediate based on their AUDPC values (Table 2).

Figure 1
Representative symptoms after artificial inoculation with C. cassiicola isolate CC47GRO, under greenhouse conditions, in roselle (H. sabdariffa) genotypes. For leaves, susceptible: A= Morena2 and tolerant: B = Conayu. For calyces, susceptible: C= Morena2 and resistant: D= Chinxal.

As to calyces, the recorded incidence evidenced the following genotypes as susceptible: Morena2, Morena, Conpoz, Descop and Chinayu, which showed AUDPC values of 6572.1, 5516.7, 4432.0, 2950.0 and 2319.4, respectively. On the other hand, nine genotypes did not present infections and were considered resistant: Almatech, Criolaz2, Criocot, Criolaz, Rojatec, Criopoz, Crioxal, Chinxal and Conayu, presenting values of 0.0 AUDPC. The remaining genotypes were classified as intermediate to the infection induced by C. cassiicola (Table 2).

Considering the severity in calyces, the most susceptible genotype was Morena2, followed by Descop, Morena, Cabxal, Chinayu and Conpoz, which had AUDPC values of 3355.4, 2207.9, 1753.2, 982.7, 839.3 and 779.2; again, the genotypes Almatech, Criolaz2, Criocot, Criolaz, Rojatec, Criopoz, Crioxal, Chinxal and Conayu did not present calyx infection (0.0 AUDPC). Seven materials had intermediate severity values and can be considered tolerant based on the AUDPC analysis (Table 1; Figure 1B).

The roselle genotypes evaluated in this study showed wide diversity in terms of phenological characteristics and calyx coloration (Table 2).

DISCUSSION

The present results based on the AUDPC analysis suggest a wide variation in terms of susceptibility and tolerance for leaves. Susceptible, tolerant and resistant genotypes were detected for calyces (Table 2).

Considering C. cassiicola-induced infection in the leaves, susceptible roselle genotypes were Conpoz, Sudlaz, Morcot, Sudigua and Morena2, collected from the municipalities of Ayutla, Tecoanapa, Iguala and Copalillo (Table 1); the most tolerant genotypes were Conayu, Chinxal, Almatech, Crioxal, Rojatec and Conayu, collected from Ayutla and Tecoanapa. This may be justifiable since the disease is endemic to these municipalities and some materials have been under constant natural selection against C. cassiicola, the pathogen that causes roselle leaf and calyx spots, resulting in possible development of tolerance (2323 Ribeiro, D.V.F.X.; Parlevliet, J.E.; Zambolim, L. Concepts in plant disease resistance. Fitopatologia Brasileira, Lavras, v.26, p.577-589, 2001.).

As regards calyces, the genotypes that expressed the highest susceptibility were Morena2, Morena, Conpoz, Descop, Chinayu and Cabxal, collected from Ayutla, Tecoanapa and Copalillo. Of these, three Copalillo genotypes were most affected (Table 2; Figure 1A and C), probably because the disease has not been reported in the said municipality and the said genotypes have not developed defense mechanisms against C. cassiicola (2323 Ribeiro, D.V.F.X.; Parlevliet, J.E.; Zambolim, L. Concepts in plant disease resistance. Fitopatologia Brasileira, Lavras, v.26, p.577-589, 2001., 1212 Jain, A.; Sarsaiya, S.; Wu, Q.; Lu, Y.; Shi, J. A review of plant leaf fungal diseases and its environment speciation. Bioengineered, London, v.10, p.409-424, 2019. DOI: https://doi.org/10.1080/21655979.2019.1649520
https://doi.org/10.1080/21655979.2019.16...
).

Absence of infection by C. cassiicola was recorded for nine genotypes (Table 2), which should, however, be continuously evaluated under different inoculum densities so that their resistance can be validated for calices (2121 Parlevliet, J.E. Identification and evaluation of quantitative resistance. In: Leonard, K.J.; Fry, W.E. (ed.). Plant disease epidemiology: Genetics, Resistance and Management. New York: McGraw-Hill, 1989. v.2, p.215-248.); the tolerance of calyces was different from that of leaves, the latter organs showed infection in a potato crop (Solanum tuberosum), when resistance to late blight caused by Phytophthora infestans in foliage was detected and was poorly correlated with resistance in tubers, suggesting that different genes are involved depending on the plant organ (33 Beschrijvende Rassenlijst voor Landbouwgewassen. [65th Descriptive List of Agricultural Varieties]. Maastricht: Leiter/Nypels, 1990. 65e.).

In Mexico, research was carried out to find resistance sources in roselle cultivars (H. sabdariffa L.) against root “black leg” caused by Phytophthora parasitica, evaluating genotypes with different tolerance degrees (2424 Rojas-Rojas, R.; Aguilar-Rincón, V.; García, C.; Velasco-Cruz, C.; Valadez-Moctezuma, H.; Hernández-Morales, J.; Caro-Velarde, F. Response of native roselle varieties (Hibiscus sabdarifa L.) to infection by Phytophthora parasitica Dastur in Mexico. Academia Journal of Biotechnology, New York, v5, p.172-179, 2017. DOI: https://doi.org/10.15413/ajb.2017.0306.
https://doi.org/10.15413/ajb.2017.0306...
); the obtained results were similar to those observed in the present study. In Philippines, similar studies were conducted to determine the resistance level of roselle to bacterial wilt caused by Ralstonia solanacearum and R. pseudosolanacearum (55 Balendres, M.A.; Oraye, C.; Maghirang, R.; Cueva, F.D. 2020. Resistance of roselle to bacterial wilt caused by Ralstonia pseudosolanacearum and R. solanacearum. International Journal of Vegetable Science, London, v.27, n.3, p.231-237, 2020. DOI: https://doi.org/10.1080/19315260.2020.1765447
https://doi.org/10.1080/19315260.2020.17...
).

Studies performed in Brazil have found tolerant Carica papaya genotypes against C. cassiicola; the authors determined that the genotypes Grampola, Golden Verde Oscuro and Gran Golden, presented tolerance (2222 Paz, D.S.; Gusmão-Araujo, J.B.; Costa-Rodrigues, A.A.; Candido, E.K.; Bandeira-Diniz, S.N. Reaction of papaya genotypes to target spot and activity of plant extracts and Bacillus spp. on Corynespora cassiicola. Revista Brasileira de Fruticultura, São Paulo, v40, pe-927, 2018. DOI: https://dx.doi.org/10.1590/0100-29452018927
https://doi.org/10.1590/0100-29452018927...
). Similarly, other studies have detected genotypes of Cucumis sativus (Taisho, Nikkey, Yoshinari and Safira) presenting resistance to leaf spot caused by C. cassiicola (2828 Teramoto, A.M.; Ferreira, M.C.; Luciene, C.; Marcos, C.G. Reaction of hybrids, inhibition in vitro and target spot control in cucumber. Horticultura Brasileira, Dois Irmãos, v.293, p.342-348, 2011. DOI: https://dx.doi.org/10.1590/S0102-05362011000300014
https://doi.org/10.1590/S0102-0536201100...
). A study with hybrids of C. sativus (Hokuchim, Soudai, Long Green and Natsubayashi), under greenhouse conditions, showed that they may be an alternative to the high damage caused by C. cassiicola for presenting low damage levels (66 Bezerra, E.J.S.; Bentes, J.L.S. Reação de híbridos de pepino a Corynespora cassiicola no Amazonas. Summa Phytopathologyca, Botucatu, v.41, n.1, p.71-72, 2015.).

The present investigation represents the possibility of incorporating desirable tolerance and resistance traits through genetic improvement. Finally, evaluations should be performed under natural field conditions for C. cassiicola inoculum.

Based on the AUDPC analysis, the present study detected that the following genotypes were tolerant to leaf and calyx spot induced by C. cassiicola: Conayu, Chinxal, Almatech, Crioxal, Rojatec and Conayu, presenting moderate infection percentages. On the other hand, nine genotypes were detected as resistant: Almatech, Criolaz2, Criocot, Criolaz, Rojatec, Criopoz, Crioxal, Chinxal and Conayu. The latter have the potential to be used under protected greenhouse conditions and represent new cultivation options for farmers.

  • Disclosure statement

    There is no potential conflict of interest in the submitted paper.

REFERENCES

  • 1
    Al-Hashimi, GA. Antioxidant and antibacterial activities of Hibiscus sabdariffa L. extracts. African Journal of Food Science, Sapele, v.6, p. 506-511, 2012. DOI: https://doi.org/10.5897/AJFS12.099
    » https://doi.org/10.5897/AJFS12.099
  • 2
    Amusa, N.; Adegbite, A.; Oladapo, M. Vascular wilt of roselle (Hibiscus sabdariffa L. var. sabdariffa) in the humid forest region of southwestern Nigeria. Plant Pathology Journal, Seoul, v.4, p.122-125, 2005. DOI: https://doi.org/10.3923/ppj.2005.122.125
    » https://doi.org/10.3923/ppj.2005.122.125
  • 3
    Beschrijvende Rassenlijst voor Landbouwgewassen. [65th Descriptive List of Agricultural Varieties] Maastricht: Leiter/Nypels, 1990. 65e.
  • 4
    Bako, I.G.; Abubakar, M.S.; Mabrouk, M.A.; Mohammed, A. Lactogenic study of the effect of ethyl-acetate fraction of Hibiscus sabdariffa Linn (Malvaceae) seed on serum prolactin level in lactating albino rats. Advance Journal of Food Science and Technology, Brooklyn, v.6, p.292-296, 2014. DOI: https://doi.org/10.19026/ajfst.6.26
    » https://doi.org/10.19026/ajfst.6.26
  • 5
    Balendres, M.A.; Oraye, C.; Maghirang, R.; Cueva, F.D. 2020. Resistance of roselle to bacterial wilt caused by Ralstonia pseudosolanacearum and R. solanacearum International Journal of Vegetable Science, London, v.27, n.3, p.231-237, 2020. DOI: https://doi.org/10.1080/19315260.2020.1765447
    » https://doi.org/10.1080/19315260.2020.1765447
  • 6
    Bezerra, E.J.S.; Bentes, J.L.S. Reação de híbridos de pepino a Corynespora cassiicola no Amazonas. Summa Phytopathologyca, Botucatu, v.41, n.1, p.71-72, 2015.
  • 7
    Campbell, CL.; Madden, LV. Introduction to plant disease epidemiology John Wiley and Sons Inc. New York, USA, p.532 p, 1990.
  • 8
    Ciudad de México. Servicio Meteorológico Nacional. Comisión Nacional del Agua, Normales Climatológicas por Estado Ciudad de México: Secretaría de Medio Ambiente y Recursos Naturales, 2010. Available at: https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado?estado=gro Accessed on: 11 Sep. 2020
    » https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado?estado=gro
  • 9
    FAO. FAOSTAT Roma: FAO, 2018. Available at: http://www.fao.org/giews/english/cpfs/index.htm#, Access on: 20 September 2020.
    » http://www.fao.org/giews/english/cpfs/index.htm#
  • 10
    Godoy, C.V.; Utiamada, C.M.; Meyer, M.C.; Campos, H.D.; Pimenta, C.B.; Borges, E.P. Eficiéncia de fungicidas para o controle da mancha-alvo, Corynespora cassiicola, nasafra: Resultados sumarizados dos ensaios cooperativos. Londrina: Embrapa Soja, 2012. (Circular Técnica, 94).
  • 11
    Jones, J.P.; Jones, J.B. Target spot of tomato: epidemiology and control. Proceedings of the Florida State Horticultural Society, Crystal River, v.97, p.216 – 218, 1984.
  • 12
    Jain, A.; Sarsaiya, S.; Wu, Q.; Lu, Y.; Shi, J. A review of plant leaf fungal diseases and its environment speciation. Bioengineered, London, v.10, p.409-424, 2019. DOI: https://doi.org/10.1080/21655979.2019.1649520
    » https://doi.org/10.1080/21655979.2019.1649520
  • 13
    Mardiah, Z.F.R.; Pragdimurti, E.; Damanik, R. Anti-inflammatory of purple roselle extract in diabetic rats induced by Streptozotocin. Procedia Food Science, London, v.3, p.182-189, 2015. DOI: https://doi.org/10.1016/j.profoo.2015.01.02
    » https://doi.org/10.1016/j.profoo.2015.01.02
  • 14
    Onesirosan, P.T.; Arny, D.C.; Durbin, R.D. Host specitify of Nigerian and North American isolates of Corynespora cassiicola Phytopathology, Saint Paul, v.64, p.1367-1367, 1974.
  • 15
    Ortega-Acosta, S.Á.; Mora-Aguilera, J.A.; Velasco-Cruz, C.; Ochoa-Martínez, D.L.; Leyva-Mir, S.G.; Hernández-Morales, J. Temporal progress of roselle (Hibiscus sabdariffa L.) leaf and calyx spot disease (Corynespora cassiicola) in Guerrero, Mexico. Journal of Plant Pathology, Portici, v.102, p.1007-1013, 2020. DOI: https://doi.org/10.1007/s42161-020-00550-1
    » https://doi.org/10.1007/s42161-020-00550-1
  • 16
    Ortega-Acosta, S.A.; Ochoa-Martínez, D.L.; Hernández-Morales, J.; Palemón-Alberto, F. Morphological and genetic characterization of Corynespora cassiicola isolates obtained from roselle and associated weeds. Mexican Journal of Phytopathology, Texcoco, v.38, p.62-78, 2020. DOI: https://doi.org/10.18781/r.mex.fit.1909-2
    » https://doi.org/10.18781/r.mex.fit.1909-2
  • 17
    Ortega-Acosta, S.A.; Ochoa-Martínez, D.L.; Leyva-Mir, S.G.; Velasco-Cruz, C.; Mora-Aguilera, J.A.; Hernández-Morales, J. Control químico del manchado de hojas y cálices de jamaica en Guerrero, México. Summa Phytopathologica, Botucatu v.45, p.38-43, 2019. DOI: https://doi.org/10.1590/0100-5405/182006
    » https://doi.org/10.1590/0100-5405/182006
  • 18
    Ortega-Acosta, S.A.; Velasco-Cruz, C.; Hernández-Morales, J.; Ochoa-Martínez, D.L.; Hernández-Ruiz, J. Diagrammatic logarithmic scales for assess the severity of spotted leaves and calyces of roselle. Mexican Journal of Phytopathology, Texcoco, v.34, p.270-285, 2016. DOI: https://doi.org/10.18781/r.mex.fit.1606-6
    » https://doi.org/10.18781/r.mex.fit.1606-6
  • 19
    Ortega-Acosta, S.A.; Hernández-Morales, L.; Ochoa-Martínez, D.; Ayala-Escobar, V. First report of Corynespora cassiicola causing leaf and calyx spot on roselle in Mexico. Plant Disease, Saint Paul, v.99, p.1041, 2015. DOI: https://doi.org/10.1094/pdis-04-14-0438-pdn
    » https://doi.org/10.1094/pdis-04-14-0438-pdn
  • 20
    Ortega-Acosta, S.A.; Hernández-Morales, J.; Sandoval-Islas, J.S.; Ayala-Escobar, V.; Soto-Rojas, L.; Alejo-Jaimes, A. Distribution and frequency of organisms associated to disease “black leg” of roselle (Hibiscus sabdariffa L.) in Guerrero, México. Revista Mexicana de Fitopatologia, Texcoco, v.33, p.173-194, 2015.
  • 21
    Parlevliet, J.E. Identification and evaluation of quantitative resistance. In: Leonard, K.J.; Fry, W.E. (ed.). Plant disease epidemiology: Genetics, Resistance and Management. New York: McGraw-Hill, 1989. v.2, p.215-248.
  • 22
    Paz, D.S.; Gusmão-Araujo, J.B.; Costa-Rodrigues, A.A.; Candido, E.K.; Bandeira-Diniz, S.N. Reaction of papaya genotypes to target spot and activity of plant extracts and Bacillus spp. on Corynespora cassiicola Revista Brasileira de Fruticultura, São Paulo, v40, pe-927, 2018. DOI: https://dx.doi.org/10.1590/0100-29452018927
    » https://doi.org/10.1590/0100-29452018927
  • 23
    Ribeiro, D.V.F.X.; Parlevliet, J.E.; Zambolim, L. Concepts in plant disease resistance. Fitopatologia Brasileira, Lavras, v.26, p.577-589, 2001.
  • 24
    Rojas-Rojas, R.; Aguilar-Rincón, V.; García, C.; Velasco-Cruz, C.; Valadez-Moctezuma, H.; Hernández-Morales, J.; Caro-Velarde, F. Response of native roselle varieties (Hibiscus sabdarifa L.) to infection by Phytophthora parasitica Dastur in Mexico. Academia Journal of Biotechnology, New York, v5, p.172-179, 2017. DOI: https://doi.org/10.15413/ajb.2017.0306.
    » https://doi.org/10.15413/ajb.2017.0306
  • 25
    Shruthi, V.H.; Ramachandra, C.T. Roselle (Hibiscus sabdariffa L.) calyces: a potential source of natural color and its health benefits. In: Deka, S.C.; Seth, D.; Hulle, N.R.S.; Food Bioactives: Functionality and Applications in Human Health, Palm Bay: Apple Academic Press, 2019. p.169-190.
  • 26
    Sarima, A.R.I.; Meryandini, A. Modulation of Aging in Yeast Saccharomyces cerevisiae by Roselle Petal Extract (Hibiscus sabdariffa L.). American Journal of Biochemistry and Biotechnology, Dubai, v.15, 23-32, 2019. DOI: https://doi.org/10.3844/ajbbsp.2019.23.32
    » https://doi.org/10.3844/ajbbsp.2019.23.32
  • 27
    Servicio Nacional de Inspección y Certificación de Semillas. Guía técnica para la descripción varietal de Jamaica [Hibiscus sabdariffa (L.) Torr.] Primera Edición, Ciudad de México: SAGARPA, 2014. 32p. Available in: <https://www.gob.mx/cms/uploads/attachment/file/120828/Jamaica.pdf>. Accessed on: 10 Oct. 2020
    » https://www.gob.mx/cms/uploads/attachment/file/120828/Jamaica.pdf
  • 28
    Teramoto, A.M.; Ferreira, M.C.; Luciene, C.; Marcos, C.G. Reaction of hybrids, inhibition in vitro and target spot control in cucumber. Horticultura Brasileira, Dois Irmãos, v.293, p.342-348, 2011. DOI: https://dx.doi.org/10.1590/S0102-05362011000300014
    » https://doi.org/10.1590/S0102-05362011000300014

Publication Dates

  • Publication in this collection
    23 Sept 2022
  • Date of issue
    Apr-Jun 2022

History

  • Received
    07 Feb 2021
  • Accepted
    13 Jan 2022
Grupo Paulista de Fitopatologia FCA/UNESP - Depto. De Produção Vegetal, Caixa Postal 237, 18603-970 - Botucatu, SP Brasil, Tel.: (55 14) 3811 7262, Fax: (55 14) 3811 7206 - Botucatu - SP - Brazil
E-mail: summa.phyto@gmail.com