Acessibilidade / Reportar erro

Association of swine wastewater and mineral fertilization on black oat production

ABSTRACT

Swine wastewater (SW) has high organic load, becoming an important source of macro and micronutrients to plants, promoting the improvement of soil quality and development in various cultures. However, when done without agronomic and environmental criteria, it can cause soil problems, nutrient leaching, water resource damage and plant toxicity. The objective of this study was to evaluate the soil chemical properties and the leachate in face of the association of swine wastewater and mineral fertilization (MF) in oat cultivation. An experiment in drainage lysimeter was carried out, using SW applications associated to MF or not, where treatments consisted of doses of 0, 100, 200 and 300 m3ha-1 with the absence or presence of MF, under field conditions. We concluded that swine wastewater provided significant increases in sodium, copper, zinc, and nitrite + nitrate as well as pH and calcium reductions in the soil; and in the leachate, significant increase in sodium. Moreover, the use of mineral fertilizer comprising nitrogen, phosphorus and potassium induced a significant increase in phosphorus, potassium and electrical conductivity and a significant reduction in magnesium in the soil; however, in the leachate, electrical conductivity was increased.

soil fertility; nutrient leaching; drainage lysimeters

INTRODUCTION

Pig farming is a key activity in rural areas of southern Brazil. In 2012, the national slaughter was over 36 million heads. Southern Brazil accounted for 64.0% of the national pig slaughtering, followed by Southeastern (17.8%), Center-Western (16.1%), Northeastern (1.2%) and Northern (0.1%) (IBGE, 2013IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Estatística de produção pecuária de 2012. Rio de Janeiro. 2013. Disponível em: <http://www.ibge.gov.br/home/estatistica/indicadores/agropecuaria/producaoagropecuaria/abate-leite-couro-ovos_201204_publ_completa.pdf>. Acesso em: ago. 2013.
http://www.ibge.gov.br/home/estatistica/...
).

Organic fertilization, or even its association with mineral fertilization, are economically viable alternatives for most farmers. In addition to promoting the improvement of soil quality, they are important sources of macro and micronutrients to plants (Steiner et al., 2011STEINER, F.; COSTA, M.S.S.M.; COSTA, L.A.M.; PIVETTA, L.A.; CASTOLDI, G. Disponibilidade de micronutrientes no sistema plantio direto, na presença e ausência de plantas de cobertura submetido a diferentes fontes de fertilizantes. Global Science and Technology, Goiânia, v.4, n.1, p.28–37, 2011.).

With the expressive pollutant charge in swine wastewater (SW), there is the concern that it will be carefully managed so as not to cause negative environmental impacts, such as eutrophication of water sources and contamination by metals which are often added to the pigs’ diets (FEY et al., 2010FEY, R.; LANA, M.C.; ZOZ, T; RICHART, A.; LUCHESE, E.B. Relações entre lixiviação de nitrato e produção de biomassa do milho com dejetos suínos provenientes de diferentes tratamentos. Revista Brasileira de Ciências Agrárias, Recife, v.5, n.2, p.212–218, 2010.).

However, despite the polluting potential, SW can contribute to reducing the use of commercial fertilizers (chemical or mineral) in crops. The use of SW might be effective as biofertilizer if performed properly (Cabral et al., 2011CABRAL, J.R; FREITAS, P.S.L.; REZENDE, R.; MUNIZ, A.S.; BERTONHA, A. Impacto da água residuária de suinocultura no solo e na produção de capim-elefante. Revista Brasileira Engenharia Agrícola e Ambiental, Campina Grande, v.15, n.8, p.823-831, 2011.).

There are difficulties to recommend an optimal dose of SW for each type of crop, due to the large variability in nutrient concentration in this type of wastewater, due to the different types of managements, both on the farm and in the waste treatment (FEY et al., 2010FEY, R.; LANA, M.C.; ZOZ, T; RICHART, A.; LUCHESE, E.B. Relações entre lixiviação de nitrato e produção de biomassa do milho com dejetos suínos provenientes de diferentes tratamentos. Revista Brasileira de Ciências Agrárias, Recife, v.5, n.2, p.212–218, 2010.). Thus, when applied successively, swine wastewater can cause disproportionate increases in the availability of mineral nutrients in the soil (CELA et al., 2010CELA, S.; BERENGUER, P.; SANTIVERI, F.; LLOVERAS, J. Potential phosphorus, potassium, and magnesium surpluses in an irrigated maize monoculture fertilized with pig slurry. Agronomy Journal, Madison, v.102, n.1, p.96-102, 2010.; SCHERER et al., 2010SCHERER, E.E.; NESI, C.N.; MASSOTTI, Z. Atributos químicos do solo influenciados por sucessivas aplicações de dejetos suínos em áreas agrícolas da Região Oeste Catarinense. Revista Brasileira de Ciências do Solo, Viçosa, v.34, n.4 p.1375-1383, 2010.; CASSOL et al., 2011CASSOL, P.C.; SILVA, D.C.P.R.; ERNANI, P.R.; KLAUBERG FILHO, O.; LUCRECIO, W. Atributos químicos em Latossolo Vermelho fertilizado com dejeto suíno e adubo solúvel. Revista Ciências Agroveterinárias, Lages, v.10, n.2, p103-112, 2011..).

When available in the soil, ions found in SW can be absorbed by plants or leached from the surface to deeper layers. When leached, nutrients are incorporated into groundwater by internal drainage process and are thus transported over large distances, contaminating groundwater and drinking water sources (SAMPAIO et al., 2010SAMPAIO, S.C.; CAOVILLA, F.A.; OPAZO, M.A.U.; NÓBREGA, L.H.P.; SUSZEK, M.; SMANHOTTO, A. Lixiviação de íons em colunas de solo deformado e indeformado. Engenharia Agrícola, Jaboticabal, v.30, n.1, p.150-159, 2010.).

This context shows the importance of obtaining data on the quality and quantity of nutrients present in the soil and leachate, observing the swine wastewater application rates in the soil, in order to verify the most consistent with the replacement of nutrients removed by the plant, considering soil type, SW characteristics, region climate conditions and cultivated crop.

Thus, the aim of this study was to evaluate the effects of swine wastewater associated with the presence or absence of mineral fertilization on soil chemical properties and the leachate, in the cultivation of black oats in drainage lysimeter.

MATERIAL AND METHODS

The experiment was conducted at an Experimental Center under the coordinates 24°54'02" S and 53°32'00" W, with average altitude of 760 meters. The climate is super humid mesothermal subtropical, with average annual rainfall of 1800 mm, average temperature of 20° C and relative average air humidity of 75% (Caviglione et al., 2000)CAVIGLIONE, J.H.; KIIHL, L.R.B.; CARAMORI, P.H.; OLIVEIRA, D. Cartas climáticas do Paraná. Londrina: IAPAR, 2000. CD-ROM.. The average rainfall, temperatures and relative air humidity in 2012 can be seen in Figure 1, and the months for the experiment are August, September and October. The soil of the experimental area is classified as typical dystroferric Red Latosol (EMBRAPA, 2006)EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. 2. ed., Rio de Janeiro. Embrapa, 2006. p.374..

FIGURE 1
Monthly rainfall distribution, average temperature and relative air humidity in the period from January to October 2012. Source: SIMEPAR (2012).

The experimental area consists of 24 drainage lysimeters installed since 2005 (PRIOR et al., 2009PRIOR, M.; SMANHOTTO, A.; SAMPAIO, S.C.; NÓBREGA, L.H.P.; OPAZO, M.A.U.; DIETER, J. Acúmulo e percolação de fósforo no solo devido a aplicação de água residuária da suinocultura na cultura do milho (Zea mays L.). Pesquisa Aplicada e Agrotecnologia, Guarapuava, v.2, n.1, p.89-96, 2009.). Each lysimeter is an experimental plot of 1.0 m3 of volume and 1.60 m2 of surface area, with a depth of 0.91 m and diameter of 1.43 m. Lysimeters are distributed in three rows with eight lysimeters each, spaced 0.4 m vertically and 0.5 m horizontally.

The first experiment conducted in the field was in 2006 with corn crops (Zea mays L.) (1st) and soybeans (Glycine max (L.) Merrill) (2nd), in 2007 black oat (Avena strigosa Schreb.) (3rd) and soybeans (4th); in 2008 with black oat (5th) and baby corn (6th); in 2009 with corn (7th), black oat (8th) and soybean (9th); in 2010 corn (10th) and black oat (11th); in 2011 soybeans (12th) and corn (13th). This paper discusses the black oat crop (14th) in 2012. Treatments are presented in Table 1 and history of nutrients is shown in Table 2.

TABLE 1
Treatment with swine wastewater (SW) associated with mineral fertilization (MF) applied in the lysimeters for black oat cultivation.

TABLE 2
History of nutrients applied for (kg ha-1) with MF and SW in the experimental area in six consecutive years, per treatment.

The SW (Table 3) came from pig farms of the full cycle type, located in Toledo - PR. The gross SW applied in the experiment was collected in the collection box prior to the outlet for the biodigester. After SW application (2 days), we proceeded to fertilization and seeding in direct planting system with spacing of 20 cm between rows, a total of 5 lines per lysimeter. MF applied was NPK: 8:20:20 in the dose 400 kg ha-1. The black oat used was cultivar IAPAR 61 with a density of 155 kg ha-1.

TABLE 3
Characterization of the swine wastewater used in the experiment.

Because the experiment was long-term, systematic soil collection was carried out before and after experiment implementation. However, only the soil collection after crop cultivation was used in statistical analysis to evaluate the effects of treatments. Therefore, soil collection was carried out 60 days after sowing (DAS), when the oats had already been harvested, with one sample per lysimeter, totaling 48 samples. With the help of a Dutch auger, samples were collected at a depth of 0-20 cm, stored in plastic bags, identified, and sent for chemical characterization at the Agrilab Laboratory (Botucatu-SP). The parameters analyzed were hydrogenionic potential (pH), organic matter (OM), aluminum (Al+), hydrogen and aluminum (H++Al+), calcium (Ca2+) magnesium (Mg2+), phosphorus (P), potassium (K+), sodium (Na+), total bases (TB), cation exchange capacity (CEC), base saturation (V), aluminum saturation (m), copper (Cu2+), zinc (Zn2+), total nitrogen (total N), ammonia nitrogen (NH4+), nitrite + nitrate (NO3- + NO2+), and electrical conductivity (EC) according to the protocol of RAIJ et al. (2001)RAIJ, B.V.; ANDRADE, J.C.; CANTARELLA, H.; QUAGGIO, J.A. Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico, 2001. 285 p..

Leachate samples were taken in two periods, at 40 DAS (days after sowing) when the first rain with enough intensity for collection occurred, and the second at 60 DAS when the last rain occurred before the black oat harvest. Both periods were used to determine the average behavior of ions in the leachate in each lysimeter during the experiment. The samples were analyzed chemically according to the concentrations of hydrogenionic potential (pH), calcium (Ca2+), magnesium (Mg2+), manganese (Mn2+), potassium (K+), sodium (Na+), copper (Cu2+), zinc (Zn2+), nitrite (NO3-) and nitrite (NO2+), electrical conductivity (EC) according to the methodology of APHA, AWWA and WEF (1998)APHA, AWWA, WEF. Standard methods for the examination of water and wastewater. 20th ed. Washington: American Public Health Association, 1998..

The experiment was carried out in the field under randomized block design and factorial scheme with two factors (4x2) and three replications. The first factor relates to the use of ARS doses (0, 100, 200, 300 m3 h-1 in the cycle) and the second factor was mineral fertilization. Prior to the analysis of variance was performed descriptive analysis and verification of normal errors. Parameters with no normal distribution were transformed. Initially the data for the soil and leachate extracts were subjected to variance analysis. When significant differences were detected for the treatments, polynomial regression was carried out using the computer software SAS 9.0 (SAS Institute, 2002SAS INSTITUTE. Statistical Analysis System user’s guide. Version 9. Cary: Statistical Analysis System Institute. 2002. 513p.). However, the Tukey test average at 5% was performed for the mineral fertilizer factor, when the interaction between factors was not significant.

RESULTS AND DISCUSSION

Table 4 shows the statistical analysis, in which it is possible to observe the effects of SW and MF factors on the soil chemical parameters. The interaction between the SW and MF factors was not significant. The parameters pH, Ca2+, Na+, Cu2+, Zn2+ and NO2- + NO3- were significantly affected only by SW (Table 4). The FM factor, in isolation, influenced the Mg2+ parameters, P, K+ and CE. In addition, the other parameters were not affected by the SW and MF factors, being presented in Table 4.

TABLE 4
Mean values of pH, MO, Al+, H+Al, Ca2+, Mg2+, P, K+, Na+, SB, CTC, V, m, Cu2+, Zn2+, Ntotal, NH4, NO2-+NO3- and CE for different SW doses, presence or absence of MF in soil cultivated with black oat.

In this experiment, the mineral fertilizer applied was composed of NPK, while in contact with the soil these salts are made available, which explains the presence of P, K, and CE in greater quantities when the MF was present and smaller when it was absent. As for Mg2+, the effect was contrary; when the MF was present, this element was found to a lesser extent (Table 4).

It is observed in Figure 2 that the mean values of the soil pH decreased with the increase of SW doses applied, where the dose of SW 300 m3 h-1 showed the lowest value (pH=6.59), and the dose of 0 m3 ha-1 the highest value (pH=7.33). This reduction is explained due to the high amount of ammonia via the SW, which can be oxidized by the NO3- by microbial nitrification process, producing an acidifying effect of the medium (CASSOL et al. 2012CASSOL P.C.; COSTA A.C. da; CIPRANDI O. PANDOLFO C.M.; ERNANI P.R. Disponibilidade de macronutrientes e rendimento de milho em latossolo fertilizado com dejeto suíno. Revista Brasileira de Ciência do Solo, Viçosa, v.36, n.6, p.1911-1923, 2012.). In near-neutral soils, there may be a reduction in pH due to the leaching of bases along the well-drained soil profile and placed in regions with frequent and significant precipitation (ADELI et al., 2008ADELI, A.; BOLSTER, C. H.; ROWE, D. E.; MCLAUGHLIN, M. R.; BRINK, G. E. Effect of long-term swine efluente application on selected soil properties. Soil Science, Baltimore, v.173, p.223-235, 2008.), such as the western region of Paraná.

FIGURE 2
Water pH values in soil cultivated with black oat subjected to different SW doses.

CABRAL et al. (2011)CABRAL, J.R; FREITAS, P.S.L.; REZENDE, R.; MUNIZ, A.S.; BERTONHA, A. Impacto da água residuária de suinocultura no solo e na produção de capim-elefante. Revista Brasileira Engenharia Agrícola e Ambiental, Campina Grande, v.15, n.8, p.823-831, 2011. did not observe a dependence relation of soil pH and SW doses. Yet SMANHOTTO et al. (2010)SMANHOTTO, A.; SOUSA, A.P.; SAMPAIO, S.S.; NÓBREGA, L.H.P.; PRIOR, P. Cobre e zinco no material percolado e no solo com a aplicação de água residuária de suinocultura em solo cultivado com soja. Engenharia Agrícola, Jaboticabal, v.30, n.2, p.346-357, 2010., who conducted similar studies in the same experimental area, found average values of the aqueous soil extract pH, at 59 DAS, higher for the highest SW dose of 300 m3 ha-1, which differed significantly from the control (0 m3 ha-1) and the dose of 100 m3ha-1

The application of SW showed significant results for Ca levels, where the highest application rate corresponded to the smallest amount of Ca found (Figure 3).

FIGURE 3
Calcium level in soil cultivated with black oat subjected to different SW doses.

CABRAL et al. (2011)CABRAL, J.R; FREITAS, P.S.L.; REZENDE, R.; MUNIZ, A.S.; BERTONHA, A. Impacto da água residuária de suinocultura no solo e na produção de capim-elefante. Revista Brasileira Engenharia Agrícola e Ambiental, Campina Grande, v.15, n.8, p.823-831, 2011. also found such downward trend in the Ca concentration depending on SW. An opposite trend was found by DAL BOSCO et al. (2008)DAL BOSCO, T.C.; SAMPAIO, S.C.; OPAZO, M.A.U.; GOMES, S.D.; NÓBREGA, L.H.P. Aplicação de água residuária de suinocultura em solo cultivado com soja: cobre e zinco no material escoado e no solo. Engenharia Agrícola, Jaboticabal, v.28, n.4, p.699-709, 2008., which found an increase in Ca levels, from 288 mg L-1 to 558 mg L-1.

MENDONÇA & ROWELL (1994)MENDONÇA, E.S.; ROWELL, D.L. Dinâmica do alumínio e de diferentes frações orgânicas de um Latossolo argiloso sobre cerrado e soja. Revista Brasileira de Ciência do Solo, Viçosa, v.18, p.295-303, 1994. reported that small changes in Ca2+ levels in the soil can occur due to the low concentration of this element in the wastewater or its high retention by organic matter (CAOVILLA et al., 2010)CAOVILLA A F; SAMPAIO S.C.; SMANHOTTO A.; NÓBREGA L.H.P.; QUEIROZ M.M.F.; GOMES, B.M. Características químicas de solo cultivado com soja e irrigado com água residuária da suinocultura. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v.14, n.7, p.692–697, 2010., since they did not observe such changes in the soil after application of SW in Dystroferric Red Latosol, grown with soybeans. These results also diverged from CASSOL et al. (2012)CASSOL P.C.; COSTA A.C. da; CIPRANDI O. PANDOLFO C.M.; ERNANI P.R. Disponibilidade de macronutrientes e rendimento de milho em latossolo fertilizado com dejeto suíno. Revista Brasileira de Ciência do Solo, Viçosa, v.36, n.6, p.1911-1923, 2012., who observed an increase in the Ca2+ content in the layer of 0-2.5 cm when applied at a dose greater than or equal to 100 m3 h-1, SW and in the layer of 2.5-5 cm when the dose was of 200 m3h-1.

In Figure 4, there is a positive linear behavior in the content of Na+ in the soil with the increase of SW doses. It is also noted that the same behavior was observed in the leachate analysis for this nutrient where the doses were increased in relation to the increase in SW application (Table 5). It is necessary to be cautious about Na+ content, since high concentrations in the soil solution compared with Ca2+ and Mg2+ can cause deterioration of the soil structure by the dispersion of colloids and subsequent blockage of the macropores, causing decrease in permeability to water and gases (HOMEM et al. 2014HOMEM, B. G. C; ALMEIDA NETO, O. B.; CONDÉ, M. S.; SILVA, M. D.; FERREIRA, I. M. Efeito do uso prolongado de água residuária da suinocultura sobre as propriedades químicas e físicas de um Latossolo Vermelho-Amarelo. Científica, Jaboticabal, v.42, n.3, p.299–309, 2014.).

FIGURE 4
Content of sodium in soil cultivated with black oat subjected to different SW doses.

TABLE 5
Mean values for pH, Ca, Mg, Mn, K, Na, Cu, Zn, EC, nitrite and nitrate for different SW doses, presence or absence of MF in the leachate from the soil cultivated with black oat.

As can be seen in Table 4, the fertilization system with several SW dosages significantly increased the levels of Cu2+ and Zn2+ in soil, the average value found for the dosage of 0 m3 h-1 was 7.24 mg dm-3 and for the dosage of 300 m3h-1 was of 9.99 mg dm3 for copper. As for Zn2+ concentrations, they were 2.70 mg dm-3 and 13.3 mg dm-3 for SW dosages 0 m3 h-1 and 300 m3 h-1, respectively. These differences in the availability of Cu2+ and Zn2+ in soil must be attributed to the addition of nutrients from the organic sources used in this study.

These metals are usually associated with organic compounds, mainly linked to humic substances. So after applying SW, it is necessary that the organic compounds are mineralized for the release of metals, favoring the accumulation in the soil surface layers and hence the transfer of such elements through surface runoff (GIROTTO et al., 2010GIROTTO, E.; CERETTA, C.A.; BRUNETTO, G.; SANTOS, D.R.; SILVA, L.S.; LOURENZI, C.R.; LORENSINI, F.; RENAN VIEIRA, C.B.; SCHMATZ, R. Acúmulo e formas de cobre e zinco no solo após aplicações sucessivas de dejeto líquido de suínos. Revista Brasileira de Ciência do Solo, Viçosa, v.34, n.3, p.955-965, 2010.; SCHERER et al.; 2010SCHERER, E.E.; NESI, C.N.; MASSOTTI, Z. Atributos químicos do solo influenciados por sucessivas aplicações de dejetos suínos em áreas agrícolas da Região Oeste Catarinense. Revista Brasileira de Ciências do Solo, Viçosa, v.34, n.4 p.1375-1383, 2010.). However, metals when added to the soil via SW have little mobility, accumulating in larger quantities in the surface layer, without further environmental leaching risks (Table 5) (SCHERER et al., 2010SCHERER, E.E.; NESI, C.N.; MASSOTTI, Z. Atributos químicos do solo influenciados por sucessivas aplicações de dejetos suínos em áreas agrícolas da Região Oeste Catarinense. Revista Brasileira de Ciências do Solo, Viçosa, v.34, n.4 p.1375-1383, 2010.).

In Figure 5, there is a positive linear behavior of Cu2+ and Zn2+ in relation to the SW doses applied, that is, the higher the dose applied, the higher the content of nutrients found in the soil. According to HEINRICHS et al (2001)HEINRICHS, R.; AITA, C.; AMADO, T. J. C.; FANCELLI, A. L. Cultivo consorciado de aveia e ervilhaca: relação C/N da fitomassa e produtividade do milho em sucessão. Revista Brasileira de Ciência do Solo, Viçosa, v.25, n.2, p.331- 340, 2001., the Cu2+ concentrations in the soil above 0.8 mg L-1, are considered high levels for soil. Note that the average of values is above this threshold (Table 4).

FIGURE 5
Copper and zinc content in soil cultivated with black oat subjected to different SW doses.

As for the Cu2+ and Zn2+ levels in the leachate, no significant differences between the means of the SW factor or MF factor were found (Table 5).

These results corroborate those obtained by SCHERER & NESI (2009)SCHERER, E.E.; NESI, C.N. Características químicas de um Latossolo sob diferentes sistemas de preparo e adubação orgânica. Bragantia, Campinas, v.68, n.3, p.715-721, 2009., which showed that the addition of poultry manure and/or pork increased Cu2+ and Zn2+ content in the surface layer (0-20 cm) soil, especially in direct planting system. The authors emphasized the effect of manure in Cu2+ and Zn2+ soil contents, regardless of tillage system, restricted to the first 20 cm. DAL BOSCO et al. (2008)DAL BOSCO, T.C.; SAMPAIO, S.C.; OPAZO, M.A.U.; GOMES, S.D.; NÓBREGA, L.H.P. Aplicação de água residuária de suinocultura em solo cultivado com soja: cobre e zinco no material escoado e no solo. Engenharia Agrícola, Jaboticabal, v.28, n.4, p.699-709, 2008., studying different application doses (0, 100, 150 and 200 m3 h-1), also obtained an increase in Cu2+ contents, but without any significant differences for Zn2+. Different results were presented by Oliveira et al. (2001)OLIVEIRA, I.P.; KLUTHCOUSKI, J.; SANTOS, R.S.M.; FANCELLI, A.L.; DOURADO NETO, D.; FARIA, C.D. Concentrações residuais de cobre, ferro, manganês e zinco em Latossolo Roxo eutrófico sob diferentes tipos de manejo. Pesquisa Agropecuária Tropical, Goiânia, v.31, n.2, p.97-103, 2001., who showed greater Cu2+ content in the surface layer and innermost layer. According to the authors, these results show that the Cu2+ concentrated in the surface layer due to higher levels of organic matter and in the deepest layer due to the very origin of the soil. The intermediate layers, however, where the levels were much lower for Cu2+, reflect the region which accounts for higher volumes of roots and from where larger concentrations of nutrients are absorbed by crops (STEINER et al., 2011)STEINER, F.; COSTA, M.S.S.M.; COSTA, L.A.M.; PIVETTA, L.A.; CASTOLDI, G. Disponibilidade de micronutrientes no sistema plantio direto, na presença e ausência de plantas de cobertura submetido a diferentes fontes de fertilizantes. Global Science and Technology, Goiânia, v.4, n.1, p.28–37, 2011..

It is observed in Table 4 that the Cu2+ value had a smaller variation compared to Zn2+, but both elements increased with the increase in SW doses. According to OLIVEIRA & MATIAZZO (2001)OLIVEIRA, F.C.; MATIAZZO, M.E. Mobilidade de metais pesados em um Latossolo Amarelo Distrófico tratado com lodo de esgoto e cultivado com cana-de-açúcar. Scientia Agrícola, Piracicaba, v.58, n.4, p.807-812, 2001., the smaller mobility of Cu2+ is usually attributed to the formation of stable organometallic complexes and low solubility. Nevertheless, that, in addition to the complexation with organic substances, binding can occur with non-exchangeable soil fractions, such as, for example, iron oxides and manganese. The authors stated further that a greater or lesser mobility of heavy metals such as Cu2+ and Zn2+, is determined by soil characteristics such as levels and types of clay, pH, CEC and MO which influence the reactions of adsorption/desorption, precipitation/dissolution, complexation and redox. COUTO et al. (2010)COUTO, R.R.; COMIN, J.J.; BEBER, C.L.; URIARTE, J.F.; BRUNETTO, G.; BELLI FILHO, P. Atributos químicos em solos de propriedades suinícolas submetidos a aplicações sucessivas de dejeto de suínos no município de Braço do Norte, Santa Catarina. Scientia Agraria, Curitiba, v.11, n.6, p.493-497, 2010. in property with successive applications of SW found significant differences for Cu2+ and Zn2+ compared to SW doses. This variation was from 0 to 18 mg dm-3 for Cu2+, and from 6 to 42 mg dm-3 for Zn2+. According to BERENGUER et al. (2008)BERENGUER, P.; CELA, S.; SANTIVERI, F.; BOIXADERA, J.; LLOVERAS; J. Copper and zinc soil accumulation and plant concentration in irrigated maize fertilized with liquid swine manure. Agronomy Journal, Madison, v.100, n.4, p.1056-1061, 2008., high levels of these metals in the soil can cause plant phytotoxicity and enhance water contamination, when some of its forms are transferred by superficial runoff or leaching (GIROTTO et al., 2010)GIROTTO, E.; CERETTA, C.A.; BRUNETTO, G.; SANTOS, D.R.; SILVA, L.S.; LOURENZI, C.R.; LORENSINI, F.; RENAN VIEIRA, C.B.; SCHMATZ, R. Acúmulo e formas de cobre e zinco no solo após aplicações sucessivas de dejeto líquido de suínos. Revista Brasileira de Ciência do Solo, Viçosa, v.34, n.3, p.955-965, 2010..

Regression analysis demonstrates a positive linear effect of the application of SW doses on NO3- + NO2+ content in soil cultivated with black oats (Figure 6).

FIGURE 6
Nitrite + nitrate content in soil cultivated with black oat subjected to different SW doses.

According to SCHERER et al. (1996)SCHERER, E.E.; AITA, C.; BALDISSERA, I.T. Avaliação da qualidade do esterco líquido de suínos da região Oeste Catarinense para fins de utilização como fertilizante. Florianópolis: EPAGRI, 1996. 46p. (Boletim Técnico)., nitrogen present in the SW is up to 70% in ammonium form (NH4+), susceptible to volatilization, which can vary from 5 to 75%, depending on climatic factors, such as rainfall. The pH is the most influential parameter in this process; however, in the range of values observed in this experiment pH effect is reduced.

AITA & GIACOMINI (2008)AITA, C.; GIACOMINI, S.J. Nitrato no solo com a aplicação de dejetos líquidos de suínos no milho em plantio direto. Revista Brasileira de Ciência do Solo, Viçosa, v.32, n.5, p.2101-2111, 2008. in an experiment with SW application in soil cultivated with maize noted that in the three years of the experiment, the amount of NO3- increased rapidly in the soil surface layers. This rapid onset of NO3- in the soil occurred because of high nitrification of ammonia nitrogen from manure, as evidenced by AITA et al. (2007)AITA, C.; GIACOMINI, S.J.; HÜBNER, A.P. Nitrificação do nitrogênio amoniacal de dejetos líquidos de suínos em solo sob sistema de plantio direto. Pesquisa Agropecuária Brasileira, Brasília, v.42, p.95-102, 2007. in a field experiment. Where the ammonia nitrogen applied with liquid waste in no-tillage was completely nitrified between 15 and 20 days after the application of manure.

No significant differences were observed for any form of NO3+ NO2+ in the leachate, both for SW and MF (Table 5). DAUDÉN & QUÍLEZ (2004)DAUDÉN, A.; QUÍLEZ, D. Pig slurry versus mineral fertilization on corn yield and nitrate leaching in a Mediterranean irrigated environment. European Journal of Agronomy, v.21, n.1, p.7-19, 2004., MAGGI et al. (2011)MAGGI, F.C.; FREITAS, P.S.L.; SAMPAIO, S.C.; DIETER, J. Lixiviação de nutrientes em solo cultivado com aplicação de água residuária de suinocultura. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v.15, n.2, p.170–177, 2011. and SMANHOTTO (2008)SMANHOTTO, A. Efeito da aplicação de água residuária de suinocultura em solo cultivado com soja. 2008. 120f. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual Paulista, Botucatu, 2008. in their experiments with SW found no significant differences in the concentrations of these elements in the leachate either.

The leachate electrical conductivity was higher with mineral fertilizer (Table 5). This result was expected because the used mineral fertilizer was NPK.

The analysis of the leachate (Table 5) revealed that the Na+ content increased according to the SW doses applied (Figure 7). The increase in the Na+ content in the leachate is worrying because some of this ion is leached normally because of its strong adsorption to colloids, which can lead to soil sodification. However, such problem is not observed in all treatments, because the highest concentration observed (PST = 0.71%) was lower than the threshold for classification of sodic soils (PST>7%).

FIGURE 7
Sodium content in leachate cultivated with black oat subjected to different SW doses.

CONCLUSIONS

Considering the experimental results, it can be concluded that:

- The swine wastewater and mineral fertilization factors did not provide significant effects when combined; but induced significant differences in isolation.

- The application of swine wastewater favored: the soil, with significant increase in the concentrations of sodium, copper, zinc, nitrite + nitrate and significant reduction in pH and calcium; in the leachate, significant increase in sodium.

- The use of mineral fertilizer comprising nitrogen, phosphorus and potassium, induced: in the soil, a significant increase in phosphorus, potassium and electrical conductivity and a significant reduction in magnesium; in the leachate, significant increase in electrical conductivity.

REFERENCES

  • ADELI, A.; BOLSTER, C. H.; ROWE, D. E.; MCLAUGHLIN, M. R.; BRINK, G. E. Effect of long-term swine efluente application on selected soil properties. Soil Science, Baltimore, v.173, p.223-235, 2008.
  • AITA, C.; GIACOMINI, S.J.; HÜBNER, A.P. Nitrificação do nitrogênio amoniacal de dejetos líquidos de suínos em solo sob sistema de plantio direto. Pesquisa Agropecuária Brasileira, Brasília, v.42, p.95-102, 2007.
  • AITA, C.; GIACOMINI, S.J. Nitrato no solo com a aplicação de dejetos líquidos de suínos no milho em plantio direto. Revista Brasileira de Ciência do Solo, Viçosa, v.32, n.5, p.2101-2111, 2008.
  • APHA, AWWA, WEF. Standard methods for the examination of water and wastewater 20th ed. Washington: American Public Health Association, 1998.
  • BERENGUER, P.; CELA, S.; SANTIVERI, F.; BOIXADERA, J.; LLOVERAS; J. Copper and zinc soil accumulation and plant concentration in irrigated maize fertilized with liquid swine manure. Agronomy Journal, Madison, v.100, n.4, p.1056-1061, 2008.
  • CABRAL, J.R; FREITAS, P.S.L.; REZENDE, R.; MUNIZ, A.S.; BERTONHA, A. Impacto da água residuária de suinocultura no solo e na produção de capim-elefante. Revista Brasileira Engenharia Agrícola e Ambiental, Campina Grande, v.15, n.8, p.823-831, 2011.
  • CAOVILLA A F; SAMPAIO S.C.; SMANHOTTO A.; NÓBREGA L.H.P.; QUEIROZ M.M.F.; GOMES, B.M. Características químicas de solo cultivado com soja e irrigado com água residuária da suinocultura. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v.14, n.7, p.692–697, 2010.
  • CASSOL P.C.; COSTA A.C. da; CIPRANDI O. PANDOLFO C.M.; ERNANI P.R. Disponibilidade de macronutrientes e rendimento de milho em latossolo fertilizado com dejeto suíno. Revista Brasileira de Ciência do Solo, Viçosa, v.36, n.6, p.1911-1923, 2012.
  • CASSOL, P.C.; SILVA, D.C.P.R.; ERNANI, P.R.; KLAUBERG FILHO, O.; LUCRECIO, W. Atributos químicos em Latossolo Vermelho fertilizado com dejeto suíno e adubo solúvel. Revista Ciências Agroveterinárias, Lages, v.10, n.2, p103-112, 2011.
  • CAVIGLIONE, J.H.; KIIHL, L.R.B.; CARAMORI, P.H.; OLIVEIRA, D. Cartas climáticas do Paraná Londrina: IAPAR, 2000. CD-ROM.
  • CELA, S.; BERENGUER, P.; SANTIVERI, F.; LLOVERAS, J. Potential phosphorus, potassium, and magnesium surpluses in an irrigated maize monoculture fertilized with pig slurry. Agronomy Journal, Madison, v.102, n.1, p.96-102, 2010.
  • COUTO, R.R.; COMIN, J.J.; BEBER, C.L.; URIARTE, J.F.; BRUNETTO, G.; BELLI FILHO, P. Atributos químicos em solos de propriedades suinícolas submetidos a aplicações sucessivas de dejeto de suínos no município de Braço do Norte, Santa Catarina. Scientia Agraria, Curitiba, v.11, n.6, p.493-497, 2010.
  • DAL BOSCO, T.C.; SAMPAIO, S.C.; OPAZO, M.A.U.; GOMES, S.D.; NÓBREGA, L.H.P. Aplicação de água residuária de suinocultura em solo cultivado com soja: cobre e zinco no material escoado e no solo. Engenharia Agrícola, Jaboticabal, v.28, n.4, p.699-709, 2008.
  • DAUDÉN, A.; QUÍLEZ, D. Pig slurry versus mineral fertilization on corn yield and nitrate leaching in a Mediterranean irrigated environment. European Journal of Agronomy, v.21, n.1, p.7-19, 2004.
  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos 2. ed., Rio de Janeiro. Embrapa, 2006. p.374.
  • FEY, R.; LANA, M.C.; ZOZ, T; RICHART, A.; LUCHESE, E.B. Relações entre lixiviação de nitrato e produção de biomassa do milho com dejetos suínos provenientes de diferentes tratamentos. Revista Brasileira de Ciências Agrárias, Recife, v.5, n.2, p.212–218, 2010.
  • GIROTTO, E.; CERETTA, C.A.; BRUNETTO, G.; SANTOS, D.R.; SILVA, L.S.; LOURENZI, C.R.; LORENSINI, F.; RENAN VIEIRA, C.B.; SCHMATZ, R. Acúmulo e formas de cobre e zinco no solo após aplicações sucessivas de dejeto líquido de suínos. Revista Brasileira de Ciência do Solo, Viçosa, v.34, n.3, p.955-965, 2010.
  • HEINRICHS, R.; AITA, C.; AMADO, T. J. C.; FANCELLI, A. L. Cultivo consorciado de aveia e ervilhaca: relação C/N da fitomassa e produtividade do milho em sucessão. Revista Brasileira de Ciência do Solo, Viçosa, v.25, n.2, p.331- 340, 2001.
  • HOMEM, B. G. C; ALMEIDA NETO, O. B.; CONDÉ, M. S.; SILVA, M. D.; FERREIRA, I. M. Efeito do uso prolongado de água residuária da suinocultura sobre as propriedades químicas e físicas de um Latossolo Vermelho-Amarelo. Científica, Jaboticabal, v.42, n.3, p.299–309, 2014.
  • IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Estatística de produção pecuária de 2012 Rio de Janeiro. 2013. Disponível em: <http://www.ibge.gov.br/home/estatistica/indicadores/agropecuaria/producaoagropecuaria/abate-leite-couro-ovos_201204_publ_completa.pdf>. Acesso em: ago. 2013.
    » http://www.ibge.gov.br/home/estatistica/indicadores/agropecuaria/producaoagropecuaria/abate-leite-couro-ovos_201204_publ_completa.pdf
  • MAGGI, F.C.; FREITAS, P.S.L.; SAMPAIO, S.C.; DIETER, J. Lixiviação de nutrientes em solo cultivado com aplicação de água residuária de suinocultura. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v.15, n.2, p.170–177, 2011.
  • MENDONÇA, E.S.; ROWELL, D.L. Dinâmica do alumínio e de diferentes frações orgânicas de um Latossolo argiloso sobre cerrado e soja. Revista Brasileira de Ciência do Solo, Viçosa, v.18, p.295-303, 1994.
  • OLIVEIRA, F.C.; MATIAZZO, M.E. Mobilidade de metais pesados em um Latossolo Amarelo Distrófico tratado com lodo de esgoto e cultivado com cana-de-açúcar. Scientia Agrícola, Piracicaba, v.58, n.4, p.807-812, 2001.
  • OLIVEIRA, I.P.; KLUTHCOUSKI, J.; SANTOS, R.S.M.; FANCELLI, A.L.; DOURADO NETO, D.; FARIA, C.D. Concentrações residuais de cobre, ferro, manganês e zinco em Latossolo Roxo eutrófico sob diferentes tipos de manejo. Pesquisa Agropecuária Tropical, Goiânia, v.31, n.2, p.97-103, 2001.
  • PRIOR, M.; SMANHOTTO, A.; SAMPAIO, S.C.; NÓBREGA, L.H.P.; OPAZO, M.A.U.; DIETER, J. Acúmulo e percolação de fósforo no solo devido a aplicação de água residuária da suinocultura na cultura do milho (Zea mays L.). Pesquisa Aplicada e Agrotecnologia, Guarapuava, v.2, n.1, p.89-96, 2009.
  • RAIJ, B.V.; ANDRADE, J.C.; CANTARELLA, H.; QUAGGIO, J.A. Análise química para avaliação da fertilidade de solos tropicais Campinas: Instituto Agronômico, 2001. 285 p.
  • SAMPAIO, S.C.; CAOVILLA, F.A.; OPAZO, M.A.U.; NÓBREGA, L.H.P.; SUSZEK, M.; SMANHOTTO, A. Lixiviação de íons em colunas de solo deformado e indeformado. Engenharia Agrícola, Jaboticabal, v.30, n.1, p.150-159, 2010.
  • SAS INSTITUTE. Statistical Analysis System user’s guide Version 9. Cary: Statistical Analysis System Institute. 2002. 513p.
  • SCHERER, E.E.; AITA, C.; BALDISSERA, I.T. Avaliação da qualidade do esterco líquido de suínos da região Oeste Catarinense para fins de utilização como fertilizante Florianópolis: EPAGRI, 1996. 46p. (Boletim Técnico).
  • SCHERER, E.E.; NESI, C.N. Características químicas de um Latossolo sob diferentes sistemas de preparo e adubação orgânica. Bragantia, Campinas, v.68, n.3, p.715-721, 2009.
  • SCHERER, E.E.; NESI, C.N.; MASSOTTI, Z. Atributos químicos do solo influenciados por sucessivas aplicações de dejetos suínos em áreas agrícolas da Região Oeste Catarinense. Revista Brasileira de Ciências do Solo, Viçosa, v.34, n.4 p.1375-1383, 2010.
  • SIMEPAR - Instituto Tecnológico Simepar. Informação meteorológica Cascavel, 2012.
  • SMANHOTTO, A. Efeito da aplicação de água residuária de suinocultura em solo cultivado com soja 2008. 120f. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual Paulista, Botucatu, 2008.
  • SMANHOTTO, A.; SOUSA, A.P.; SAMPAIO, S.S.; NÓBREGA, L.H.P.; PRIOR, P. Cobre e zinco no material percolado e no solo com a aplicação de água residuária de suinocultura em solo cultivado com soja. Engenharia Agrícola, Jaboticabal, v.30, n.2, p.346-357, 2010.
  • STEINER, F.; COSTA, M.S.S.M.; COSTA, L.A.M.; PIVETTA, L.A.; CASTOLDI, G. Disponibilidade de micronutrientes no sistema plantio direto, na presença e ausência de plantas de cobertura submetido a diferentes fontes de fertilizantes. Global Science and Technology, Goiânia, v.4, n.1, p.28–37, 2011.

Publication Dates

  • Publication in this collection
    Sep-Oct 2016

History

  • Received
    12 Dec 2013
  • Accepted
    25 May 2015
Associação Brasileira de Engenharia Agrícola SBEA - Associação Brasileira de Engenharia Agrícola, Departamento de Engenharia e Ciências Exatas FCAV/UNESP, Prof. Paulo Donato Castellane, km 5, 14884.900 | Jaboticabal - SP, Tel./Fax: +55 16 3209 7619 - Jaboticabal - SP - Brazil
E-mail: revistasbea@sbea.org.br