Acessibilidade / Reportar erro

PARTICLEBOARDS PRODUCED WITH EPOXY INK WASTE AND BTH POLYMER AS ADHESIVES

ABSTRACT

The aim of this research was to analysis the feasibility of production of wood particleboard with two alternative adhesives: epoxy ink waste and polyhydroxybutyrate polymer (BTH). Particleboard were produced with Pinus sp. wood specie wastes from sawmill process. For each alternative adhesive was proposed different combinations of parameters: time and temperature of press, pressure; alternative adhesive content and mass of wood particles. Two alternative adhesive contents were adopted, 10% and 20% replacing ureaformaldehyde adhesive. Mechanical properties (perpendicular tensile strength, pullout strengths of screw on face and top; modulus of elasticity and rupture) were determined according to ABNT NBR 14810:3 Brazilian Standard Code. The obtained results were compared to ABNT NBR 14810:3 and ANSI A.2018:1 Standard Codes requirements values. Particleboards produced with epoxy ink waste showed perpendicular tensile strength according to the minimum Standards requirements values. All proposed combinations to manufacture BTH polymer particleboards didn't show satisfactory mechanical properties in comparison to the Standard Codes values. Other combinations of wood species, time, pressure and temperature, epoxy ink waste and BTH polymer contents should be studied so that the requirements can be met.

KEYWORDS
adhesives; particleboards; BTH polymer; mechanical properties; epoxy ink waste

INTRODUCTION

Wood is a versatile material that can be used in several situations (Lahr et al., 2016Lahr FAR, Christoforo AL, Silva CEG, Andrade Jr JR, Pinheiro RV (2016) Avaliação de propriedades físicas e mecânicas de madeiras de Jatobá (Hymenaea stilbocarpa Hayne) com diferentes teores de umidade e extraída de regiões distintas. Revista Árvore 40(1):147-154. DOI: http://dx.doi.org/10.1590/0100-67622016000100016
http://dx.doi.org/10.1590/0100-676220160...
; Christoforo et al., 2017Christoforo AL, Aftimus BHC, Panzera TH, Machado GO, Lahr FAR (2017) Physical-mechanical characterization of the Anandenanthera colubrine wood specie. Engenharia Agrícola 37(2):376-384. DOI: http://dx.doi.org/10.1590/1809-4430-eng.agric.v37n2p376-384/2017
http://dx.doi.org/10.1590/1809-4430-eng....
; Almeida et al., 2017Almeida TH, Almeida DH, Araújo VA, Silva SAM, Christoforo AL, Lahr FAR (2017) Density as estimator of dimensional stability quantities of Brazilian tropical woods. BioResources 12(3):6579-6590.). In order to have it as a raw material, several mechanical processes are necessary, from its extraction in the forest to the final product, and the generation of waste is inevitable (Fiorelli et al., 2014Fiorelli J, Ramos RD, Sayama JT, Barrero NG, Palone EJA (2014) Particleboards with waste wood from reforestation. Acta Scientiarium. Technology 36(2):251-256. DOI: http://dx.doi.org/10.4025/actascitechnol.v36i2.18757
http://dx.doi.org/10.4025/actascitechnol...
; Fiorelli et al., 2017Fiorelli J, Galo R G, Castro Jr S L, Belini U L, Lasso P R O, Savastano Jr H (2017) Multilayer particleboard produced with agroindustrial waste and Amazonia vegetable fibres. Waste and Biomass Valorization, 8, 1-11. doi: 10.1007/s12649-017-9889-x
https://doi.org/10.1007/s12649-017-9889-...
).

It is estimated that in the processing of wood logs in sawmills, only 40% to 60% is transformed into final product, being generated around 50% of waste, from sawdust to other larger pieces without added value (Vieira et al., 2010Vieira RS, Lima JT, Silva JRM, Hein PRG, Baillères H, Baraúna EEP (2010) Small wooden objects using Eucalypts sawmill wood waste. BioResouces 5(3):1463-1472.; Ofoegbu et al., 2014Ofoegbu C, Ogbonnaya S, Babalola FD (2014) Sawmill conversion efficiency and wood recovery of timber species in Cross River State Nigeria. Agriculture and Forestry 60(1):105-113.; Silva et al., 2017Silva CP, Vieira RS, Silva IC, Pereira AS, Baraúna EEP (2017) Quantificação de resíduos produzidos nas industrias madeireiras de Gurupi, TO. Floresta e Ambiente 24:e00065613. DOI: http://dx.doi.org/10.1590/2179-8087.065613
http://dx.doi.org/10.1590/2179-8087.0656...
; Monteiro et al., 2017Monteiro TC, Lima JT, Silva JRM, Trugilho PF, Baraúna EEP (2017) Energy balance in sawing Eucalyptus grandis logs. BioResouces 12(3):5790-5800.).

For the production of particleboards, the conversion between raw material and final product is greater, because in addition the use of all log, it can be used wood wastes from other processes (Souza et al., 2014Souza AM, Varanda LD, Ferro FS, Christoforo AL, Icimoto FH, Almeida DH, Lahr FAR (2014) Screw pullout strength in particleboards manufactured with waste of Eucalyptus grandis wood specie and out hulls. International Journal of Composite Materials 4(3):162-167. DOI: http://dx.doi.org/10.5923/j.cmaterials.20140403.02
http://dx.doi.org/10.5923/j.cmaterials.2...
; Alves et al., 2014Alves LS, Silva SAM, Azambuja MS, Varanda LD, Christoforo AL, Lahr FAR (2014) Particleboard produced with sawmill waste of different wood species. Advanced Materials Research 884-885:689-693. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.884-885.689
http://dx.doi.org/10.4028/www.scientific...
; Christoforo et al., 2015Christoforo AL, Silva SAM, Barbosa JC, Ribeiro Filho SLM, Panzera TH, Lahr FAR (2015) Particleboards manufactured with Cordia goeldiana wood wastes. Engenharia Agrícola 35(2):368-377. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agríc.v35n2p368-377/2015
http://dx.doi.org/10.1590/1809-4430-Eng....
).

For consolidation of the particleboard in the production process, besides the wood is also necessary adhesives, right temperature and pressure (Feng et al., 2012Feng Y, Mu J, Chen S, Huang Z, Yu Z (2012) The influence of urea formaldehyde resins in pyrolysis characteristics and products of wood-based panels. BioResources 7(4):4600-4613.; Silva et al., 2013aSilva DAL, Lahr FAR, Garcia RP, Freire FMCS, Ometto AR (2013a) Life cycle assessment of Medium Density Particleboard (MDP) produced in Brazil. The International Journal of Life Cycle Assessment 18:1404-1411. DOI: http://dx.doi.org/10.1007/s11367-013-0583-3
http://dx.doi.org/10.1007/s11367-013-058...
; Atar et al., 2014Atar I, Nemli G, Ayrilmis N, Baharoglu M, Sari B, Bardak S (2014) Effects of hardener type, urea usage and conditioning period on the quality properties of particleboard. Materials and Design 56:91-96. DOI: http://dx.doi.org/10.1016/j.matdes.2013.10.078
http://dx.doi.org/10.1016/j.matdes.2013....
; Ruziak et al., 2017Ruziak I, Igaz R, Krsiták L, Réh R, Mitterpach J, Ockajová A, Kucerka M (2017) Influence of urea-formaldehyde adhesive modification with Beech bark on chosen properties of plywood. BioResources 12(2):3250-3264.; Nascimento et al., 2017Nascimento MF, Christoforo AL, Fiorelli J, Varanda LD, Macedo LB, Lahr FAR (2017) Roughness study on homogeneous layer panels manufactured from treated wood waste. Acta Scientiarium. Technology 39(1):27-32. DOI: http://dx.doi.org/10.4025/actascitechnol.v39i1.29438
http://dx.doi.org/10.4025/actascitechnol...
). Urea-formaldehyde is one of the main adhesives used to make panels, but in the hot pressing process, the emission of toxic gases that can be harmful to workers’ health (Liu & Zhu, 2014Liu T, Zhu X (2014) Measurement of formaldehyde and VOCs emissions from wood-based panels with nanomaterial-added melamine-impregnated paper. Construction and Building Materials 66:132-137. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2014.05.088
http://dx.doi.org/10.1016/j.conbuildmat....
; Belini et al., 2015Belini UL, Fiorelli J, Savastano Jr H, Leite MK, Tomazello Filho M (2015) Formaldeído livre em painéis de Eucalipto e cana-de-açúcar. Ciência da Madeira 6(2):94-99. DOI: http://dx.doi.org/10.12953/2177-6830/rcm.v6n2p94-99
http://dx.doi.org/10.12953/2177-6830/rcm...
; Liang et al., 2016aLiang W, Lv M, Yang X (2016a) The combined effects of temperature and humidity on initial emittable formaldehyde concentration of a Medium-Density Fiberboard. Building and Environment 98:80-88. DOI: http://dx.doi.org/10.1016/j.buildenv.2015.12.024
http://dx.doi.org/10.1016/j.buildenv.201...
; Liang et al., 2016bLiang W, Lv M, Yang X (2016b) The effect of humidity on formaldehyde emission parameters of a Medium-Density Fiberboard: experimental observations and correlations. Building and Environment 101:110-115. DOI: http://dx.doi.org/10.1016/j.buildenv.2016.03.008
http://dx.doi.org/10.1016/j.buildenv.201...
).

For this reason, research with the use of alternative adhesives, such as castor-based polyurethane resin, among others, is being carried out with a view to reducing the use of urea-formaldehyde (Silva et al., 2013bSilva SAM, Christoforo AL, Panzera TH, Almeida DH, Segantini AAS, Lahr FAR (2013b) Painéis de partículas de madeira Leucena e resina poliuretana derivada de óleo de mamona. Ciência Rural 43(8):1399-1404. DOI: http://dx.doi.org/10.1590/S0103-84782013005000099
http://dx.doi.org/10.1590/S0103-84782013...
; Mao et al., 2014Mao A, Shmulsky R, Li Q, Wan H (2014) Recycling polyurethane materials: a comparison of polyol glycolysis with micronized polyurethane powder in particleboard applications. BioResources 9(3):4253-4265.; Ferro et al., 2014Ferro FS, Icimoto FH, Souza AM, Almeida DH, Christoforo AL, Lahr FAR (2014) Produção de painéis de partículas orientadas OSB com Schizolobium amazonicum e resina poliuretana à base de óleo de mamona. Scientia Forestalis 43(106):313-320.; Zeng et al., 2016Zeng X, Luo J, Hu J, Li J, Gao Q, Li L (2016) Aging resistance properties of poplar plywood bonded by soy protein-based adhesive. BioResources 11(2):4332-4341.; Zhang et al. 2017Zhang J, Liang J, Du G, Zhou X, Wang H, Lei H (2017) Development and characterization of a BayBerry tannin-based adhesive for particleboard. BioResources 12(3):6082-6093.).

Epoxy resins are used for the manufacture of automotive inks used in the process of finishing metal parts by the electrostatic painting technique. In this process, the powdered ink is charged electrostatically and thrown onto the surface of the object, the residue of which is the portion of ink did not adhere to the part.

Polyhydroxybutyrate polymer (BTH) is produced naturally by bacteria from renewable energy sources. The production process begins in the cultivation of bacteria of the species Alcaligenes eutrophus in bioreactors, in which these are fed with sugar cane, mainly sucrose. In their metabolism, microorganisms ingest the sugars and turn them into intracellular granules that are actually polyesters (Quental et al., 2010Quental AC, Carvalho FP, Tada ES, Felisberti MI (2010) Blendas de PHB e seus colopolímeros: miscibilidade e compatibilidade. Química Nova 33(2):438-446.; Casarin et al., 2013Casarin SA, Agnelli JAM, Malmonge SM, Rosário F (2013) Blendas PHB/copoliésteres biodegrdáveis: biodegradação em solo. Polímeros 23(1): 115-122. DOI: http://dx.doi.org/10.1590/S0104-14282013005000003
http://dx.doi.org/10.1590/S0104-14282013...
).

The aim of this research is to verify the feasibility of the production of particleboards using wood wastes and two alternative substitute adhesives for urea-formaldehyde, which are the epoxy ink waste and polyhydroxybutyrate polymer (BTH), according to mechanical properties.

MATERIAL AND METHODS

In this research it was used Pinus sp. particles to the production of the boards, obtained by the processing of wood wastes in hammer mill Willye type (Marconi, Model MA 680). Particles were produced from wood wastes from a sawmill in the region of São Carlos, state of São Paulo, Brazil.

Urea-formaldehyde resin (pH = 7.8; solids content = 65%; density = 1.27 g/cm3) was used as adhesive. In order to replace the urea-formaldehyde, the epoxy ink waste and the polyhydroxybutyrate polymer (BTH), both in the solid state and in the form of very fine powders, were used in the proportions shown in Tables 1 and 2, respectively.

About the parameters presented in Table 1 (to particleboards with epoxy ink waste), the pressure used (4 MPa) was according to Nascimento et al. (2017)Nascimento MF, Christoforo AL, Fiorelli J, Varanda LD, Macedo LB, Lahr FAR (2017) Roughness study on homogeneous layer panels manufactured from treated wood waste. Acta Scientiarium. Technology 39(1):27-32. DOI: http://dx.doi.org/10.4025/actascitechnol.v39i1.29438
http://dx.doi.org/10.4025/actascitechnol...
, Macedo et al. (2015)Macedo LB, Ferro FS, Varanda LD, Cavalheiro RS, Christoforo AL, Lahr FAR (2015) Propriedades físicas de painés aglomerados de madeira produzidos com a adição de película de polipropileno biorientado. Revista Brasileira de Engenharia Agrícola e Ambiental 19(7):674-679. DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v19n7p674-679
http://dx.doi.org/10.1590/1807-1929/agri...
and Bertolini et al., (2014)Bertolini MS, Nascimento MF, Christoforo AL, Lahr FAR (2014) Painéis de partículas provenientes de rejeitos de Pinus sp. tratado com preservante CCA e resina derivada de biomassa. Revista Árvore 38(2):339-346. DOI: http://dx.doi.org/10.1590/S0100-67622014000200014
http://dx.doi.org/10.1590/S0100-67622014...
. For pressing time, the minimum necessary to complete the melting of the epoxy ink waste at the adopted temperatures was used.

TABLE 1
Particleboard manufacturing parameters combinations with epoxy ink waste.

The curing agents of the epoxy ink react in the temperature range of 140°C to 200°C. For this reason, the temperature of the press was adopted at 180°C and 190°C, considering the thermal degradation of wood particles and the capacity of the press machine used.

About the epoxy ink waste content, a minimum percentage was established that could provide to the particleboards the minimum requirements values of mechanical properties according to ABNT NBR 14810:3 (2013) and ANSI A208:1 (2009) Standards Codes. Thus, the proportions of 10% and 20% were used arbitrarily, replacing the urea-formaldehyde resin, because authors didn't find in the literature any information about the use of this waste as adhesive on particleboards manufacturing.

The parameters adopted for particleboards with BTH polymer as an adhesive manufacturing, except for the pressing temperature, were the same as those used in the production of particleboards with epoxy ink waste. Temperatures for pressing the BTH polymer particleboard were set below 175°C, which is the melt temperature of the polymer (Machado et al., 2010Machado MLC, Pereira NC, Miranda LF, Terence MC, Pradella JGC (2010) Estudo das propriedades mecânicas e térmicas de polímero Poli-3-Hidroxibutirato (PHB) e de compósitos PHB/pó de madeira. Polímeros 20(1):65-71. DOI: http://dx.doi.org/10.1590/S0104-14282010005000011
http://dx.doi.org/10.1590/S0104-14282010...
). Therefore, the adopted pressing temperatures were 140°C and 160°C (Table 2). Thus, the proportions of 10% and 20% were used arbitrarily, replacing the urea-formaldehyde resin, because authors didn't find in the literature any information about use of BTH polymer as adhesive on particleboards manufacturing.

TABLE 2
Particleboard manufacturing parameters combinations with BTH polymer.

For each combination described in Tables 1 and 2, 3 particleboards (dimensions: 25 cm × 25 cm × 1 cm) were produced, totaling 108 particleboards for each type of used adhesive.

Particleboard mechanical properties determining carried out according to ABNT NBR 14810:3 (2013) Standard Code, and the mechanical tests are illustrated in the Figure 1. Table 3 presents the number of specimens (No) to mechanical property determining from each particleboard by treatment. The results obtained for the properties are compared with the requirements of ABNT NBR 14810:3 (2013) and ANSI A208:1 (2009).

FIGURE 1
Mechanical tests: (a) static bending; (b) Pullout strength of screw on face; (c) Pullout strength of screw on top.
TABLE 3
Particleboard manufacturing parameters combinations with BTH polymer.

RESULTS AND DISCUSSION

Epoxy ink waste particleboards

Figures 2 to 6 presents average values and the range of the coefficient of variation (CV) for each epoxy ink waste particleboards manufacturing treatments amongst the minimum value required by ABNT NBR 14810:3 (2013) and ANSI A208:1 (2009) Standards Codes.

FIGURE 2
Results of perpendicular tensile on the face (epoxy ink waste particleboard).
FIGURE 3
Results of pullout strength of screw (face) (epoxy ink waste particleboard).
FIGURE 4
Results of pullout strength of screw (top) (epoxy ink waste particleboard).
FIGURE 5
Results of modulus of rupture in static bending (epoxy ink waste particleboard).
FIGURE 6
Results of modulus of elasticity in static bending (epoxy ink waste particleboard).

Average values of the perpendicular tensile of the particleboard on the face ranged from 0.45 MPa to 1.46 MPa (Figure 2). In comparison with the requirements values of ABNT NBR 14810:3 (2013), all results were higher. Particleboards with 20% epoxy ink waste content at 190°C were three and a half times above the minimum parameter of the ABNT NBR 14810:3 (2013). However, only particleboards at 190°C exceeded the ANSI A208:1 Standard Code (F and H combinations).

RAPf (Figure 3) and RAPt (Figure 4) average values ranged from 340 N to 800 N and from 150 N to 450 N, respectively, below to the minimum values recommended by Standard Codes. Despite the poor performance, particleboards with 20% of epoxy ink waste, pressed for 10 minutes at 190°C (H combination), showed the best results.

MOR (Figure 5) and MOE (Figure 6) average values ranged from 3 MPa to 11 MPa and from 540 MPa to 1215 MPa, respectively. Particleboards from F and H combinations, presented better results when compared to the other combinations. However, all particleboard combinations did not reach the minimum MOE and MOR values required for the Standard Codes.

BTH polymer particleboards

Figures 7 to 11 presents average values and the range of the coefficient of variation (CV) for each BTH polymer particleboards manufacturing combination and, for each mechanical property the minimum value required by ABNT NBR 14810:3 (2013) and ANSI A208:1 (2009) Standards Codes.

FIGURE 7
Results of perpendicular tensile on the face (BTH polymer particleboard).
FIGURE 8
Results of pullout strength of screw (face) (BTH polymer particleboard).
FIGURE 9
Results of pullout strength of screw (top) (BTH polymer particleboard).
FIGURE 10
Results of modulus of rupture in static bending (BTH polymer particleboard).
FIGURE 11
Results of modulus of elasticity in static bending (BTH polymer particleboard).

All proposed combinations to manufacture BTH polymer particleboards, didn't show satisfactory mechanical properties, in comparison to the Standard Codes, however, in spite of BTH polymer content and temperature, particleboards pressed per 10 minutes showed better results to mechanical properties.

Discussions

MOR, RAPf and RAPt average values to ink waste particleboard were close to Pinus sp particleboard manufactured with urea formaldehyde by Torrell et al. (2013)Torrell R, Hillig E, Corradi GM, Iwakiri S (2013) Influência da adição de serragem nas propriedades tecnológicas de painéis de madeira aglomerada de Pinus taeda. Ambiência 9(1):57-72. DOI: http://dx.doi.org/10.5777/ambiencia.2013.01.04
http://dx.doi.org/10.5777/ambiencia.2013...
, but, for the BTH polymer particleboard, just MOR and RAPt average values were close.

Iwakiri et al. (2010)Iwakiri S, Manhiça AA, Parchen CFA, Cit EJ, Trianoski R (2010) Use of wood from Pinus caribaea var. caribaea and Pinus caribaea var. bahamensis for production of particleboards panels. Cerne 16(2):193-198. researched Pinus taeda particleboards with urea-formaldehyde and found to MOR, MOE and PT average values equal to 0.58 MPa, 12.03 MPa and 1866 MPa. MOR average values determined to epoxy ink waste and BTH polymer particleboards were close to the Iwakiri et al. (2010)Iwakiri S, Manhiça AA, Parchen CFA, Cit EJ, Trianoski R (2010) Use of wood from Pinus caribaea var. caribaea and Pinus caribaea var. bahamensis for production of particleboards panels. Cerne 16(2):193-198..

MOR average values determined to epoxy ink waste and BTH polymer particleboards were higher to the value determine by Fiorelli et al. (2014)Fiorelli J, Ramos RD, Sayama JT, Barrero NG, Palone EJA (2014) Particleboards with waste wood from reforestation. Acta Scientiarium. Technology 36(2):251-256. DOI: http://dx.doi.org/10.4025/actascitechnol.v36i2.18757
http://dx.doi.org/10.4025/actascitechnol...
for Pinus sp. particleboard manufactured with urea-formaldehyde (MOR = 8.69 MPa), but lower when compared to PT (0.54 MPa) and MOE (1,813 MPa) values.

Tas & Sevinçli (2015)Tas HH, Sevinçli Y (2015) Properties of particleboards produced from Red Pine (Pinus brutia) chips and lavender stems. BioResources 10(4):7865-7876. studied particleboards manufactured with Pinus brutia and different ureaformaldehyde contents (6%, 10% and 12%). Epoxy ink waste particleboards PT average values determined in this research were higher to particleboards with Pinus brutia and all urea-formaldehyde contents. MOR average values found to epoxy ink waste and BTH polymer particleboards were close to particleboard with 6% of urea-formaldehyde content.

MOE values to particleboards studied in this research was lower in comparison with particleboards with Pinus sp. and urea-formaldehyde (Iwakiri et al., 2010Iwakiri S, Manhiça AA, Parchen CFA, Cit EJ, Trianoski R (2010) Use of wood from Pinus caribaea var. caribaea and Pinus caribaea var. bahamensis for production of particleboards panels. Cerne 16(2):193-198.; Torrell et al., 2013Torrell R, Hillig E, Corradi GM, Iwakiri S (2013) Influência da adição de serragem nas propriedades tecnológicas de painéis de madeira aglomerada de Pinus taeda. Ambiência 9(1):57-72. DOI: http://dx.doi.org/10.5777/ambiencia.2013.01.04
http://dx.doi.org/10.5777/ambiencia.2013...
; Fiorelli et al., 2014Fiorelli J, Ramos RD, Sayama JT, Barrero NG, Palone EJA (2014) Particleboards with waste wood from reforestation. Acta Scientiarium. Technology 36(2):251-256. DOI: http://dx.doi.org/10.4025/actascitechnol.v36i2.18757
http://dx.doi.org/10.4025/actascitechnol...
; Tas & Sevinçli, 2015Tas HH, Sevinçli Y (2015) Properties of particleboards produced from Red Pine (Pinus brutia) chips and lavender stems. BioResources 10(4):7865-7876.).

CONCLUSIONS

From the discussion of the results presented previously, it is concluded that:

  • Researches about new raw materials to the production of wood panels instead of the traditional ones are important; therefore, they become an interesting way of using wastes in the manufacturing process;

  • Particleboards combinations with epoxy ink waste reached the minimum requirements recommended by the Standard Code ABNT NBR 14810:3 (2013) for perpendicular tensile of the particleboard strength. Combinations produced at the pressing temperature of 190°C, reached the requirements of ANSI A208:1 (2009) for perpendicular tensile;

  • All proposed combinations to manufacture BTH polymer particleboards didn't show satisfactory mechanical properties in comparison to the Standard Codes;

  • Average values to mechanical properties presented by epoxy ink waste and BTH polymer particleboard were close in comparison with other researches with Pinus sp. and urea-formaldehyde adhesive contents;

  • Other combinations of wood specie, time, pressure and temperature, epoxy ink waste and BTH polymer contents can be studied for the manufacture of particleboards that meet regulatory requirements in relationship with their mechanical properties.

REFERENCES

  • ABNT - Associação Brasileira de Normas Técnicas (2013) Chapas de madeira aglomerada. Norma Brasileira NBR 14810:3, ABNT.
  • Almeida TH, Almeida DH, Araújo VA, Silva SAM, Christoforo AL, Lahr FAR (2017) Density as estimator of dimensional stability quantities of Brazilian tropical woods. BioResources 12(3):6579-6590.
  • Alves LS, Silva SAM, Azambuja MS, Varanda LD, Christoforo AL, Lahr FAR (2014) Particleboard produced with sawmill waste of different wood species. Advanced Materials Research 884-885:689-693. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.884-885.689
    » http://dx.doi.org/10.4028/www.scientific.net/AMR.884-885.689
  • ANSI - American National Standard Institute (2009) American Standard Code A208:1, ANSI.
  • Atar I, Nemli G, Ayrilmis N, Baharoglu M, Sari B, Bardak S (2014) Effects of hardener type, urea usage and conditioning period on the quality properties of particleboard. Materials and Design 56:91-96. DOI: http://dx.doi.org/10.1016/j.matdes.2013.10.078
    » http://dx.doi.org/10.1016/j.matdes.2013.10.078
  • Belini UL, Fiorelli J, Savastano Jr H, Leite MK, Tomazello Filho M (2015) Formaldeído livre em painéis de Eucalipto e cana-de-açúcar. Ciência da Madeira 6(2):94-99. DOI: http://dx.doi.org/10.12953/2177-6830/rcm.v6n2p94-99
    » http://dx.doi.org/10.12953/2177-6830/rcm.v6n2p94-99
  • Bertolini MS, Nascimento MF, Christoforo AL, Lahr FAR (2014) Painéis de partículas provenientes de rejeitos de Pinus sp. tratado com preservante CCA e resina derivada de biomassa. Revista Árvore 38(2):339-346. DOI: http://dx.doi.org/10.1590/S0100-67622014000200014
    » http://dx.doi.org/10.1590/S0100-67622014000200014
  • Casarin SA, Agnelli JAM, Malmonge SM, Rosário F (2013) Blendas PHB/copoliésteres biodegrdáveis: biodegradação em solo. Polímeros 23(1): 115-122. DOI: http://dx.doi.org/10.1590/S0104-14282013005000003
    » http://dx.doi.org/10.1590/S0104-14282013005000003
  • Christoforo AL, Aftimus BHC, Panzera TH, Machado GO, Lahr FAR (2017) Physical-mechanical characterization of the Anandenanthera colubrine wood specie. Engenharia Agrícola 37(2):376-384. DOI: http://dx.doi.org/10.1590/1809-4430-eng.agric.v37n2p376-384/2017
    » http://dx.doi.org/10.1590/1809-4430-eng.agric.v37n2p376-384/2017
  • Christoforo AL, Silva SAM, Barbosa JC, Ribeiro Filho SLM, Panzera TH, Lahr FAR (2015) Particleboards manufactured with Cordia goeldiana wood wastes. Engenharia Agrícola 35(2):368-377. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agríc.v35n2p368-377/2015
    » http://dx.doi.org/10.1590/1809-4430-Eng.Agríc.v35n2p368-377/2015
  • Feng Y, Mu J, Chen S, Huang Z, Yu Z (2012) The influence of urea formaldehyde resins in pyrolysis characteristics and products of wood-based panels. BioResources 7(4):4600-4613.
  • Ferro FS, Icimoto FH, Souza AM, Almeida DH, Christoforo AL, Lahr FAR (2014) Produção de painéis de partículas orientadas OSB com Schizolobium amazonicum e resina poliuretana à base de óleo de mamona. Scientia Forestalis 43(106):313-320.
  • Fiorelli J, Galo R G, Castro Jr S L, Belini U L, Lasso P R O, Savastano Jr H (2017) Multilayer particleboard produced with agroindustrial waste and Amazonia vegetable fibres. Waste and Biomass Valorization, 8, 1-11. doi: 10.1007/s12649-017-9889-x
    » https://doi.org/10.1007/s12649-017-9889-x
  • Fiorelli J, Ramos RD, Sayama JT, Barrero NG, Palone EJA (2014) Particleboards with waste wood from reforestation. Acta Scientiarium. Technology 36(2):251-256. DOI: http://dx.doi.org/10.4025/actascitechnol.v36i2.18757
    » http://dx.doi.org/10.4025/actascitechnol.v36i2.18757
  • Iwakiri S, Manhiça AA, Parchen CFA, Cit EJ, Trianoski R (2010) Use of wood from Pinus caribaea var. caribaea and Pinus caribaea var. bahamensis for production of particleboards panels. Cerne 16(2):193-198.
  • Lahr FAR, Christoforo AL, Silva CEG, Andrade Jr JR, Pinheiro RV (2016) Avaliação de propriedades físicas e mecânicas de madeiras de Jatobá (Hymenaea stilbocarpa Hayne) com diferentes teores de umidade e extraída de regiões distintas. Revista Árvore 40(1):147-154. DOI: http://dx.doi.org/10.1590/0100-67622016000100016
    » http://dx.doi.org/10.1590/0100-67622016000100016
  • Liang W, Lv M, Yang X (2016a) The combined effects of temperature and humidity on initial emittable formaldehyde concentration of a Medium-Density Fiberboard. Building and Environment 98:80-88. DOI: http://dx.doi.org/10.1016/j.buildenv.2015.12.024
    » http://dx.doi.org/10.1016/j.buildenv.2015.12.024
  • Liang W, Lv M, Yang X (2016b) The effect of humidity on formaldehyde emission parameters of a Medium-Density Fiberboard: experimental observations and correlations. Building and Environment 101:110-115. DOI: http://dx.doi.org/10.1016/j.buildenv.2016.03.008
    » http://dx.doi.org/10.1016/j.buildenv.2016.03.008
  • Liu T, Zhu X (2014) Measurement of formaldehyde and VOCs emissions from wood-based panels with nanomaterial-added melamine-impregnated paper. Construction and Building Materials 66:132-137. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2014.05.088
    » http://dx.doi.org/10.1016/j.conbuildmat.2014.05.088
  • Macedo LB, Ferro FS, Varanda LD, Cavalheiro RS, Christoforo AL, Lahr FAR (2015) Propriedades físicas de painés aglomerados de madeira produzidos com a adição de película de polipropileno biorientado. Revista Brasileira de Engenharia Agrícola e Ambiental 19(7):674-679. DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v19n7p674-679
    » http://dx.doi.org/10.1590/1807-1929/agriambi.v19n7p674-679
  • Mao A, Shmulsky R, Li Q, Wan H (2014) Recycling polyurethane materials: a comparison of polyol glycolysis with micronized polyurethane powder in particleboard applications. BioResources 9(3):4253-4265.
  • Machado MLC, Pereira NC, Miranda LF, Terence MC, Pradella JGC (2010) Estudo das propriedades mecânicas e térmicas de polímero Poli-3-Hidroxibutirato (PHB) e de compósitos PHB/pó de madeira. Polímeros 20(1):65-71. DOI: http://dx.doi.org/10.1590/S0104-14282010005000011
    » http://dx.doi.org/10.1590/S0104-14282010005000011
  • Monteiro TC, Lima JT, Silva JRM, Trugilho PF, Baraúna EEP (2017) Energy balance in sawing Eucalyptus grandis logs. BioResouces 12(3):5790-5800.
  • Nascimento MF, Christoforo AL, Fiorelli J, Varanda LD, Macedo LB, Lahr FAR (2017) Roughness study on homogeneous layer panels manufactured from treated wood waste. Acta Scientiarium. Technology 39(1):27-32. DOI: http://dx.doi.org/10.4025/actascitechnol.v39i1.29438
    » http://dx.doi.org/10.4025/actascitechnol.v39i1.29438
  • Ofoegbu C, Ogbonnaya S, Babalola FD (2014) Sawmill conversion efficiency and wood recovery of timber species in Cross River State Nigeria. Agriculture and Forestry 60(1):105-113.
  • Quental AC, Carvalho FP, Tada ES, Felisberti MI (2010) Blendas de PHB e seus colopolímeros: miscibilidade e compatibilidade. Química Nova 33(2):438-446.
  • Ruziak I, Igaz R, Krsiták L, Réh R, Mitterpach J, Ockajová A, Kucerka M (2017) Influence of urea-formaldehyde adhesive modification with Beech bark on chosen properties of plywood. BioResources 12(2):3250-3264.
  • Silva CP, Vieira RS, Silva IC, Pereira AS, Baraúna EEP (2017) Quantificação de resíduos produzidos nas industrias madeireiras de Gurupi, TO. Floresta e Ambiente 24:e00065613. DOI: http://dx.doi.org/10.1590/2179-8087.065613
    » http://dx.doi.org/10.1590/2179-8087.065613
  • Silva DAL, Lahr FAR, Garcia RP, Freire FMCS, Ometto AR (2013a) Life cycle assessment of Medium Density Particleboard (MDP) produced in Brazil. The International Journal of Life Cycle Assessment 18:1404-1411. DOI: http://dx.doi.org/10.1007/s11367-013-0583-3
    » http://dx.doi.org/10.1007/s11367-013-0583-3
  • Silva SAM, Christoforo AL, Panzera TH, Almeida DH, Segantini AAS, Lahr FAR (2013b) Painéis de partículas de madeira Leucena e resina poliuretana derivada de óleo de mamona. Ciência Rural 43(8):1399-1404. DOI: http://dx.doi.org/10.1590/S0103-84782013005000099
    » http://dx.doi.org/10.1590/S0103-84782013005000099
  • Souza AM, Varanda LD, Ferro FS, Christoforo AL, Icimoto FH, Almeida DH, Lahr FAR (2014) Screw pullout strength in particleboards manufactured with waste of Eucalyptus grandis wood specie and out hulls. International Journal of Composite Materials 4(3):162-167. DOI: http://dx.doi.org/10.5923/j.cmaterials.20140403.02
    » http://dx.doi.org/10.5923/j.cmaterials.20140403.02
  • Tas HH, Sevinçli Y (2015) Properties of particleboards produced from Red Pine (Pinus brutia) chips and lavender stems. BioResources 10(4):7865-7876.
  • Torrell R, Hillig E, Corradi GM, Iwakiri S (2013) Influência da adição de serragem nas propriedades tecnológicas de painéis de madeira aglomerada de Pinus taeda. Ambiência 9(1):57-72. DOI: http://dx.doi.org/10.5777/ambiencia.2013.01.04
    » http://dx.doi.org/10.5777/ambiencia.2013.01.04
  • Vieira RS, Lima JT, Silva JRM, Hein PRG, Baillères H, Baraúna EEP (2010) Small wooden objects using Eucalypts sawmill wood waste. BioResouces 5(3):1463-1472.
  • Zeng X, Luo J, Hu J, Li J, Gao Q, Li L (2016) Aging resistance properties of poplar plywood bonded by soy protein-based adhesive. BioResources 11(2):4332-4341.
  • Zhang J, Liang J, Du G, Zhou X, Wang H, Lei H (2017) Development and characterization of a BayBerry tannin-based adhesive for particleboard. BioResources 12(3):6082-6093.

Publication Dates

  • Publication in this collection
    Sep-Oct 2018

History

  • Received
    08 Feb 2018
  • Accepted
    05 July 2018
Associação Brasileira de Engenharia Agrícola SBEA - Associação Brasileira de Engenharia Agrícola, Departamento de Engenharia e Ciências Exatas FCAV/UNESP, Prof. Paulo Donato Castellane, km 5, 14884.900 | Jaboticabal - SP, Tel./Fax: +55 16 3209 7619 - Jaboticabal - SP - Brazil
E-mail: revistasbea@sbea.org.br