Acessibilidade / Reportar erro

SPATIAL VARIABILITY IN LEAF ANALYSIS AND PRODUCTIVITY OF FERTIRRIGATED AÇAÍ

ABSTRACT

This study aimed to define management zones (MZs) for fertirrigated açaí cultivation, based on spatial variability of the foliar nutrients and productivity data. The work was carried out in an area of 5.75 ha of a 7-year crop, with 80 georeferenced sample points. Fresh fruit productivity and nutrient (N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn) contents were determined. The average contents of macronutrients were considered adequate for adult açaí plants, and their spatial dependence associated with fruit productivity allowed the representation of their distributions through maps of variability. Through multivariate analysis, three main components were highlighted. These components explained 51.5 % of the total variability of the data, where PC1 showed a higher correlation with Ca, Mg, K, and P. In addition, three MZs were obtained, out of which one with the highest productivity showed the best Ca, Mg, S, B, and Fe leaf contents. Principal component analysis and determination of MZs emphasized Ca and Mg nutrition as being more related to spatial variability and açaí fruit productivity.

KEYWORDS
Amazon; management zones; multivariate analysis; nutrient contents; precision agriculture

INTRODUCTION

The State of Para is the largest producer of açaí (Euterpe oleracea Mart.) fruit, with about 154 thousand hectares cropped, representing approximately 92 % of the Brazilian production (IBGE, 2017). The primary aspects involved in the increasing demand for açaí in the domestic and international markets are its nutritional value for consumption as food, its aesthetic use, and its popularization as a healthy food (Bonomo et al., 2014Bonomo LdF, Silva DN, Boasquivis PF, Paiva FA, Guerra JFdC, et al. (2014) Açaí (Euterpe oleracea Mart.) modulates oxidative stress resistance in Caenorhabditis elegans by direct and indirect mechanisms. PloS one 9(3):e89933. DOI: http://dx.doi.org/10.1371/journal.pone.0089933
http://dx.doi.org/10.1371/journal.pone.0...
). As a consequence, açaí cultivation has been dramatically expanding in drylands with small, medium, and large producers (Homma et al., 2006Homma AKO, Nogueira OL, Menezes AJEA, Carvalho JEU de, Nicoli CML (2006) açaí: novos desafios e tendências. Amazônia: Ciência & Desenvolvimento 1:7-23.; Farias Neto et al., 2011). Large producers, and even medium producers, make use of fertilization and irrigation, or even fertirrigation.

The optimization of the use of inputs is very important for the generation of income and for minimizing possible environmental impacts (Silva et al., 2015Silva ENS, Montanari R, Panosso AR, Correa AR, Tomaz PK, Ferraudo AS (2015) Variabilidade de atributos físicos e químicos do solo e produção de feijoeiro cultivado em sistema de cultivo mínimo com irrigação. Revista Brasileira Ciencia do Solo 39:598-607. DOI: http://dx.doi.org/10.1590/01000683rbcs20140429
http://dx.doi.org/10.1590/01000683rbcs20...
; Oliveira et al., 2015Oliveira IA, Campos MCC, Marques Jr J, Aquino RE, Teixeira DB, Silva DMP (2015) Use of Scaled Semivariograms in the Planning Sample of Soil Physical Properties in Southern Amazonas, Brazil. Revista Brasileira de Ciência do Solo 39(1):31-39. DOI: http://dx.doi.org/10.1590/01000683rbcs20150524
http://dx.doi.org/10.1590/01000683rbcs20...
; Silva Carneiro et al., 2016Silva Carneiro JS, dos Santos ACM, Fidelis RR, da Silva Neto SP, dos Santos AC, da Silva RR (2016) Diagnóstico e manejo da variabilidade espacial da fertilidade do solo no cerrado do Piauí. Revista de Ciências Agroambientais, 14(2), 11p.). Hence, the development of management zones (MZs) has been a very widespread technique in several commercial crops (Davatgar et al., 2012Davatgar N, Neishabouri MR, Sepaskhah AR (2012) Delineation of sitespecific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma 173-174:111-118. DOI: https://doi.org/10.1016/j.geoderma.2011.12.005
https://doi.org/10.1016/j.geoderma.2011....
).

Regarding precision agriculture, MZs are the subdivision of the land into parts with similar attributes to be treated with uniform dose of inputs, such as the application of fertilizers (Ferguson et al., 2003Ferguson RB, Lark RM, Slater GP (2003) Approaches to Management Zone Definition for Use of Nitrification Inhibitors. Journal series 13533. Soil Science Society American Journal 67:937-947. DOI: http://dx.doi.org/10.2136/sssaj2003.9370
http://dx.doi.org/10.2136/sssaj2003.9370...
). MZs can be determined using information related to soil analysis (Davatgar et al., 2012Davatgar N, Neishabouri MR, Sepaskhah AR (2012) Delineation of sitespecific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma 173-174:111-118. DOI: https://doi.org/10.1016/j.geoderma.2011.12.005
https://doi.org/10.1016/j.geoderma.2011....
), crop productivity maps (Diker et al., 2004Diker K, Heerman DF, Brodahl MK (2004) Frequency analysis of yield for delineating yield response zones. Precision Agriculture 5:435. DOI: https://doi.org/10.1007/s11119-004-5318-9
https://doi.org/10.1007/s11119-004-5318-...
), electromagnetic induction and apparent electrical conductivity sensors (Valente et al., 2012Valente DSM, Queiroz DM, Pinto FAC, Santos NT, Santos FL (2012) A relação entre a condutividade elétrica do solo aparente e as propriedades do solo. Revista Ciencia Agronômica 43:683-690. DOI: http://dx.doi.org/10.1590/S1806-66902012000400009
http://dx.doi.org/10.1590/S1806-66902012...
), gamma-ray spectrometry (Wong et al., 2008Wong MTF, Asseng S, Robertson MJ, Oliver Y (2008) Mapping subsoil acidity and shallow soil across a field with information from yield maps, geophysical sensing and the grower. Precision Agriculture 9(1):3-15. DOI: http://dx.doi.org/10.1007/s11119-008-9052-6
http://dx.doi.org/10.1007/s11119-008-905...
), SPAD index (Soil Plant Analysis Development), and foliar nutrition (Rodrigues Jr. et al., 2011Rodrigues Jr FA, Vieira LB, Queiroz DM, Santos NT (2011) Geração de zonas de manejo para cafeicultura empregando-se sensor SPAD e análise foliar. Revista Brasileira de Engenharia Agrícola e Ambiental 15(8):778- 787. DOI: http://dx.doi.org/10.1590/S1415-43662011000800003
http://dx.doi.org/10.1590/S1415-43662011...
).

By using one or more of the data sources listed above, the number of MZs can be found through principal component analysis (PCA) (Silva & Lima, 2012Silva AS, Lima JSS (2012) Avaliação da variabilidade do estado nutricional e produtividade de café por meio da análise de componentes principais e geoestatística. Revista Ceres 59(2):271-277. DOI: http://dx.doi.org/10.1590/S0034-737X2012000200017
http://dx.doi.org/10.1590/S0034-737X2012...
), which summarizes the variables of the data into importance groups (main components) within a particular area. After that, the distinction of sub-regions is performed by using cluster analysis (Tripathi et al., 2015Tripathi R, Nayaka AK, Shahid M, Lal B, Gautam P, Raja R, Mohanty S, Kumar A, Panda BB, Sahoo RN (2015) Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. Catena 133:128-136. DOI: https://doi.org/10.1016/j.catena.2015.05.009
https://doi.org/10.1016/j.catena.2015.05...
).

In field evaluations with açaí, producers usually observe a high variability in plant performance and productivity within the same growing area. This factor may be related to the genetic variability of the açaí species of the Eastern Amazon (Sousa et al., 2017Sousa AM, Oliveira MSP, Farias Neto JT (2017) Genetic divergence among white-type açaí palm accessions based on morpho-agronomic characters. Pesquisa Agropecuária Brasileira 52(9):751-760. DOI: http://dx.doi.org/10.1590/S0100-204X2017000900007
http://dx.doi.org/10.1590/S0100-204X2017...
). Two existing registered cultivars (BRS–Pará and BRS Pai d'Égua) are barely accessible to producers. Nevertheless, studies report that there is a lot of variation in the nutritional contents of adult plants within different cultivars under field conditions (Brasil et al., 2008Brasil EC, Poça RR da, Sobrinho RJA (2008) Concentração de nutrientes em diferentes partes de indivíduos de açaizeiro (Euterpe oleracea Mart.) provenientes de uma população melhorada. In Embrapa Amazônia Oriental-Artigo em anais de congresso (ALICE). In: Reunião Brasileira de Fertilidade do Solo e Nutrição de Plantas, Reunião Brasileira Sobre Micorrizas, Simpósio Brasileiro de Microbiologia do Solo, Reunião Brasileira de Biologia do Solo, Londrina. Desafios para o uso do solo com eficiência e qualidade ambiental: anais. Londrina, SBCS, Embrapa Soja, IAPAR, UEL, Anais…). The lack of information on the fertility management and nutrition of açaí may contribute to the unevenness of production.

In this context, the use of precision agriculture in the determination of MZs may be useful to understand the variability in nutrient contents of plants, thereby, leading to the best cultivation practices throughout the productive cycle of the açaí palm and reducing production costs and environmental risks.

The objective was to define MZs for fertirrigated açaí cultivation based on spatial variability of the leaf analysis and productivity data.

MATERIAL AND METHODS

The study area was a commercial farm field in the municipality of Tomé-Açu, in the north-eastern part of the State of Pará (02°28'43.6” latitude S and 48°18'16.8” longitude W), in the Eastern Amazon. The study site lies in an area classified as a local Agricultural Cooperative. The açaí plants were grown for seven years in the experimental area, with a spacing of 5 x 5 m, always leaving 3 plants per clump (400 clumps per hectare). The predominant climate in the region is of the Ami type, according to the Köppen classification, with average temperature of 26.4 °C, relative air humidity ranging from 71 to 91 %, and average annual rainfall above 2000 mm (Alvares et al., 2013Alvares CA, Stape JL, Sentelhas PC, de Moraes, Gonçalves JL, Sparovek G (2013) Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22(6):711-728.).

The area has an irrigation system implanted at the fifth year after planting. The system consisted of a grid distribution with micro-sprinklers with capacity for 70 L h−1. Irrigation was measured by considering evapotranspiration at 5 mm and a crop coefficient (Kc) of 1.

According to Santos et al. (2018)Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Araujo Filho JC, Oliveira JB, Cunha TJF (2018) Sistema brasileiro de classificação de solos. Brasília, DF, Embrapa, 5 ed., the soil was classified as yellow latossol, medium texture, whose attributes were determined according to Teixeira et al., (2017)Teixeira PC, Donagema GK, Fontana A, Teixeira WG (2017) Manual de métodos de análise do solo. Brasília, Embrapa, 3 ed. 573 p.. The fertilization of the area was carried out via fertirrigation, and the fertilizer doses, replicated for two years, were as follows: N (32.10 kg ha−1); P2O5 (32.03 kg ha−1); K2O (343.11 kg ha−1); S (4.88 kg ha−1); Ca (8.78 kg ha−1); Mg (10.01 kg ha−1); B (3.9 kg ha−1); sources of soluble potassium sulfate (20.2 kg ha−1); ammonium sulfate + fermented glutamate residues (18.48 kg ha−1); potassium monophosphate (61.6 kg ha−1); magnesium nitrate (107.8 kg ha−1); potassium nitrate (77 kg ha−1); calcium nitrate (46.2 kg ha−1); and boric acid 17 % (23 kg ha−1).

The sampling grid consisted of 80 georeferenced points, each one being taken in the center of a group of five clumps—one central and four adjacent points (Figure 1). Plant matter was collected in October 2015, which corresponds to the less rainy period and to the greatest production of açaí tree bunches. The 80 composite samples consisted of six central leaflets of the medium leaf (which ranges from the 4th to the 5th leaf) taken from the oldest stem (mother-plant) of each of five sample clumps. The levels of N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, and B in the plant material were determined according to the methodology described by Malavolta et al. (1997)Malavolta E, Vitti GC, Olveira SA (1997) Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba, POTAFOS, 2 ed. 319 p..

FIGURE 1
Sampling grid of açaí fertirrigated cultivation in northeast of Pará State.

Evaluation of productivity was performed from November 2015 to January 2016 through collection of bunches at each sampling point. The weight, in kilograms, of the fresh fruit was estimated by the difference between the weight of the full bunch and that of the empty bunch, and then multiplied by 400 to be transformed into kg/ha.

The nutrient contents and productivity were subjected to an exploratory analysis to evaluate the position measurements (mean and median) and dispersion (maximum, minimum, standard deviation, variance, and coefficient of variation).

The levels of leaf nutrients and productivity were subjected to the adjustment of theoretical functions to the experimental variogram models, based on the assumption of stationarity of the intrinsic hpothesis and according to the equation:

γ ( h ) = { [ z ( x i ) z ( x i + h ) ] 2 [ z ( x i z ( x i + h ) ) n ] } / 2 n

Where:

N (h) is the number of experimental pairs of observations Z (xi) and Z (xi + h), and separated by a vector h.

The spherical, exponential, Gaussian, and linear models were tested in the adjustment of the theoretical models to the experimental variograms. The GS+ software 7.0 (Gamma Design Software, LLC, Michigan, USA) was used to determine the coefficients of the nugget effect (C0), the plateau (C0 + C), sill (C), and range (a). The criteria for adopting the models was the highest value of R2 (coefficient of determination), the lowest RSS (residual sum of squares), and the highest value of the correlation coefficient obtained with the cross-validation method.

The spatial dependence index (SDI) was analyzed by the C/(C0 + C) ratio, following the proposed interpretation of Dalchiavon & Carvalho (2012)Dalchiavon FC, Carvalho MP (2012) Correlação linear e espacial dos componentes de produção e produtividade da soja. Semina Ciências Agrárias 33(2):541-552. DOI: https://doi.org/10.5433/1679-0359.2012v33n2p541
https://doi.org/10.5433/1679-0359.2012v3...
, where SDI < 20 % indicated very low spatial dependence, 20 % ≤ SDI < 40 % indicated low spatial dependence, 40 % ≤ SDI < 60 % indicated average spatial dependency, 60 % ≤ SDI < 80 % indicated high spatial dependence, and SDI ≥ 80 % indicated very high spatial dependence. Following spatial dependence analysis, the ordinary kriging interpolation method was used, according to Betzek et al., (2017)Betzek NM, Souza EG, Bazzi CL, Sobjak R, Bier VA, Mercante E (2017) Interpolation methods for thematic maps of soybean yield and soil chemical attributes. Semina: Ciências Agrárias 38(2):1059-1069. DOI: http://dx.doi.org/10.5433/1679-0359.2017v38n2p1059
http://dx.doi.org/10.5433/1679-0359.2017...
, in order to estimate values in unmeasured locations. Then, two multivariate statistical methods were applied: the principal component analysis (PCA) and the non-hierarchical k-mean clustering using the software Statistica, version 10 (Statsoft, 2010Statsoft (2010) Statistica (data analysis software system). Version 10. Available: http://www.statsoft.com. Accessed: Jan. 10, 2017.
http://www.statsoft.com...
).

The Principal component analysis (PCA) was performed based on the diagonalization of its symmetric correlation matrix, after analyzing the variance of data. This analysis was performed to identify new variables that would explain most of the variability, following the methodology used by Silva et al. (2015)Silva ENS, Montanari R, Panosso AR, Correa AR, Tomaz PK, Ferraudo AS (2015) Variabilidade de atributos físicos e químicos do solo e produção de feijoeiro cultivado em sistema de cultivo mínimo com irrigação. Revista Brasileira Ciencia do Solo 39:598-607. DOI: http://dx.doi.org/10.1590/01000683rbcs20140429
http://dx.doi.org/10.1590/01000683rbcs20...
and Silva & Lima (2012)Silva AS, Lima JSS (2012) Avaliação da variabilidade do estado nutricional e produtividade de café por meio da análise de componentes principais e geoestatística. Revista Ceres 59(2):271-277. DOI: http://dx.doi.org/10.1590/S0034-737X2012000200017
http://dx.doi.org/10.1590/S0034-737X2012...
, where values with a correlation higher than 0.5 were selected. The selection of the component was based on the Kaiser method, which uses the components related to eigenvalues greater than 1 (Kaiser, 1958Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23:187-200.) and in the correlation of the components with leaf nutrients.

In order to distinguish the MZs, a non-hierarchical clustering analysis was performed, using the k-means algorithm, through data of nutrient contents and productivity. For division of the values of each set of data into groups, the number of groups selected within the variance of the principal component analysis was used. The sequences of partitions were produced directly in a k fixed number of groups, which allowed characterization of the pattern of the variables per group (Linden, 2009Linden R (2009) Técnicas de Agrupamento. Revista de Sistemas de Informação da FSMA 4:18-36.). The k-means algorithm allows the variations of the analyzed data to be used together in the definition of MZs, thus allowing the user to control the number of identified areas and providing better management of those areas (Rodrigues Jr et al., 2011Rodrigues Jr FA, Vieira LB, Queiroz DM, Santos NT (2011) Geração de zonas de manejo para cafeicultura empregando-se sensor SPAD e análise foliar. Revista Brasileira de Engenharia Agrícola e Ambiental 15(8):778- 787. DOI: http://dx.doi.org/10.1590/S1415-43662011000800003
http://dx.doi.org/10.1590/S1415-43662011...
). Groups were separated at maximum distance between the clusters, making it possible to differentiate the productivity zones and their nutrient contents.

The k-means clustering method was used to determine each group (Hair Jr. et al., 2009) through the number of classes. Furthermore, the SNK test was used to observe the statistical difference between groups for each variable.

RESULTS AND DISCUSSION

Descriptive analysis of the nutrients and productivity

All nutrients showed close values of central (median and median) measures, therefore indicating data symmetry (Table 1). The greatest deviations were observed in the Fe and Mn contents, where the amplitude of the data, in relation to the mean, was observed. The variations in all leaf nutrients and productivity ranged from 12 to 47 %; therefore, they were considered average, according to the classification proposed by Warrick & Nielsen (1980)Warrick AW, Nielsen DR (1980) Spatial variability of soil physical properties in the field. In: Hillel D (ed). Applications of soil physics. New York, Academic Press, 344p.: CV < 12 % for low variation; 12 % < CV < 60 % for medium variation; CV> 60 % for high variation. Only the nitrogen content in the leaves showed a low coefficient of variation, while the other levels and productivity showed values considered average.

TABLE 1
Descriptive statistics of the nutrients, productivity, and soil fertility of açaí plants in a commercial farm of Tomé-Açu, Pará.

There are still no adequate nutritional ranges published for açaí, however average macronutrient contents showed values within the ranges considered adequate by Brasil et al. (2008)Brasil EC, Poça RR da, Sobrinho RJA (2008) Concentração de nutrientes em diferentes partes de indivíduos de açaizeiro (Euterpe oleracea Mart.) provenientes de uma população melhorada. In Embrapa Amazônia Oriental-Artigo em anais de congresso (ALICE). In: Reunião Brasileira de Fertilidade do Solo e Nutrição de Plantas, Reunião Brasileira Sobre Micorrizas, Simpósio Brasileiro de Microbiologia do Solo, Reunião Brasileira de Biologia do Solo, Londrina. Desafios para o uso do solo com eficiência e qualidade ambiental: anais. Londrina, SBCS, Embrapa Soja, IAPAR, UEL, Anais… for adult açaí trees and close to the ideal ranges for economically important species of the Arecaeae family, such as the oil palm Elaeis guineensis Jacq. (Matos et al., 2016Matos GSB, Fernandes AR, Wadt PGS (2016) Níveis críticos e faixas de suficiência de nutrientes derivados de métodos de avaliação do estado nutricional da palma-de óleo. Pesquisa Agropecuária Brasileira 51(9):1557-1567. DOI: http://dx.doi.org/10.1590/S0100-204X2016000900055
http://dx.doi.org/10.1590/S0100-204X2016...
) and peach palm Bactris gasipaes Kunth (Fernandes et al., 2013Fernandes AR, Matos, GSB, Carvalho JG (2013) Deficiências nutricionais de macronutrientes e sódio em mudas de pupunheira. Revista Brasileira de Fruticultura 35(4):1178-1189. DOI: http://dx.doi.org/10.1590/S0100-29452013000400029
http://dx.doi.org/10.1590/S0100-29452013...
). Soil fertility parameter averages showed good levels except for boron, which was considered low according to the soil interpretation ranges of Ribeiro et al. (1999)Ribeiro AC, Guimarães PTG, Alvarez VH (1999) Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5ᵃ Aproximação. Comissão de fertilidade do solo do estado de Minas Gerais, 322p..

Spatial variability of leaf nutrient content.

The values of N, K, S, B, P, Mg, Zn, Mn, and Fe showed high spatial dependence according to classes set by Dalchiavon & Carvalho (2012)Dalchiavon FC, Carvalho MP (2012) Correlação linear e espacial dos componentes de produção e produtividade da soja. Semina Ciências Agrárias 33(2):541-552. DOI: https://doi.org/10.5433/1679-0359.2012v33n2p541
https://doi.org/10.5433/1679-0359.2012v3...
, indicating that leaf nutrient contents are not randomly distributed (Table 2). These results agree with those reported by Behera et al. (2016)Behera SK, Suresh K, Ramachandrudu K, Manorama K, Rao BN (2016) Mapping spatial variability of leaf nutrient status of oil palm (Elaeis guineensis Jacq.) plantations in India. Crop & Pasture Science 67(1):109-116. DOI: http://dx.doi.org/10.1071/CP15029
http://dx.doi.org/10.1071/CP15029...
, Lima et al. (2016)Lima JSS, Alves DI, Coelho RI, Sturiao WP, Silva SA (2016) Spatial Variability in the Diagnosis of Nutritional Status in the Papaya. Revista Ciência Agronômica 47:264-274. DOI: http://dx.doi.org/10.5935/1806-6690.20160031
http://dx.doi.org/10.5935/1806-6690.2016...
, and Gazola et al. (2017)Gazola RN, Lovera LH, Celestrino TS, Dinalli RP, Montanari R, Queiroz HA (2017) Variabilidade espacial das concentrações de nutrientes foliares da soja correlacionadas com atributos químicos de um Latossolo Vermelho distroférrico. Ceres 64(4). DOI: http://dx.doi.org/10.1590/0034-737X201764040014
http://dx.doi.org/10.1590/0034-737X20176...
, who also found spatial dependence of leaf nutrient contents in oil palm, papaya, and soybeans, respectively. From the spatial dependence, it was possible to obtain maps for individual definition of the spatial variability of the nutrients.

TABLE 2
Parameters and models of the variograms adjusted for nutrient content in açaí crops in a commercial farm of Tomé-Açu, Pará.

Leaf contents of N (Figure 2A) and S (Figure 2F) showed the highest spatial homogeneity in the area, reflecting the fertilization efficiency of these nutrients, whereas the other parameters, especially micronutrients and productivity, showed a high variability (Figure 2).

FIGURE 2
Maps of the spatial distribution of N (A), P (B) content, K (C) content, Ca (D) content, Mg (E) content, S (F) content, B (G), Cu (H), Fe (I), Mn (J), Zn (L), and productivity (M) in açaí planting in a commercial farm of Tomé-Açu, Pará.

Principal component analysis for leaf contents

The first three main components showed a cumulative variance of 51.49 % of the total, being selected to represent the variation of the components (Table 3). The other components did not achieve 10 % variation and were excluded, according to the criteria adopted by Silva & Lima (2012)Silva AS, Lima JSS (2012) Avaliação da variabilidade do estado nutricional e produtividade de café por meio da análise de componentes principais e geoestatística. Revista Ceres 59(2):271-277. DOI: http://dx.doi.org/10.1590/S0034-737X2012000200017
http://dx.doi.org/10.1590/S0034-737X2012...
. In addition, the most important principal components are those that correlate with the greatest number of variables (Hair Jr. et al., 2009Hair Jr J F, Anderson, RE, Tatham RL, Black WC (2009) Análise multivariada de dados. Porto Alegre, Bookman, 6 ed. p 688.).

TABLE 3
Summary of the principal components of the multivariate analysis of leaf contents of nutrients in açaí crop from a commercial farm of Tomé-Açu, Pará.

The principal component 1 (PC1) explained 22.99 % of the data variance, and is more related to the nutrients Ca, Mg, K, and P (Table 4). The Ca and Mg showed a positive correlation with regards to PC1, while P and K, showed a negative correlation. The PCA emphasized those macronutrients as the most determinant to the nutritional status of açaí. This result is based for Ca, because it is an over demanded nutrient in the productive phase of the açaí.

TABLE 4
Correlation between original variables and principal components of the fresh fruit productivity and nutrient contents in açaí leaves from a commercial farm of Tomé-Açu, Pará.

The PC2 explains 16.69 % of the total variance and showed a direct correlation with the nutrients S, Cu, and Fe. The PC3 (11.80 % of total variance) showed direct correlation with Mn and Zn.

Because leaf nutrients are individually represented (Figure 2), recommendations of areas for correction of nutritional management would become highly complex in the field. As a result, the establishment of MZs involving groups of variables is paramount in order to generate more uniform areas.

According to the clustering analysis through the k-means method, the MZs were defined based on the nutritional status and productivity of the açaí trees (Figure 3). The highest productivity was observed in MZ3 and coincides with higher Ca, S, B, and Fe content (Table 5) that can be confirmed with its concentration not alone within each zone (Figure 3). According to those nutritional zones, it is necessary to adjust the fertilization with boron, a micronutrient which in general presents low values in the soil (Table 1).

FIGURE 3
Map of the management zones (MZs) based on the nutritional status of açaí tree from a commercial farm of Tomé-Açu, Pará.
TABLE 5
Average of each leaf nutrient content and fresh fruit productivity of açaí management zones (MZs), established on a commercial farm in Tomé-Açu, Pará.

It is important to emphasize that Ca is the second nutrient with the largest amount in the açaí fruit (Menezes et al., 2008Menezes SEM, Torres AT, Sabaa Srur AU (2008) Valor nutricional da polpa de açaí (Euterpe oleracea Mart.) liofilizada. Acta Amazonica 38(2):311-316. DOI: http://dx.doi.org/10.1590/S0044-59672008000200014
http://dx.doi.org/10.1590/S0044-59672008...
). It has always been pointed out as one of the most important nutrients in palm nutrition (Sousa et al., 2004Sousa HU, Ramo JD, Carvalho JG, Ferreira EA (2004) Nutrição de mudas de açaizeiro sob relações cálcio:potássio:sódio em solução nutritiva. Ciência Agrotecnologia 28(1):56-62. DOI: http://dx.doi.org/10.1590/S1413-70542004000100007
http://dx.doi.org/10.1590/S1413-70542004...
; Fernandes et al., 2013Fernandes AR, Matos, GSB, Carvalho JG (2013) Deficiências nutricionais de macronutrientes e sódio em mudas de pupunheira. Revista Brasileira de Fruticultura 35(4):1178-1189. DOI: http://dx.doi.org/10.1590/S0100-29452013000400029
http://dx.doi.org/10.1590/S0100-29452013...
), which can be easily supplied by liming. In relation to B, species of the Arecacea family needs an adequate supply for proper growth and productivity (Pinho et al., 2015Pinho LGR, Monnerat PH, Pires AA, Freitas MSM, Marciano CR (2015) Diagnosis of boron deficiency in green dwarf coconut palm. Agricultural Sciences 6(01):164. DOI: http://dx.doi.org/10.4236/as.2015.61015
http://dx.doi.org/10.4236/as.2015.61015...
).

Despite this, liming and borated fertilization are still largely neglected in açaí cultivation on Pará state. Liming, when properly done, is applied only in plantation, and not to meet the demand of the whole cycle of açaí, which can reach over 17 years of production. Adequate ranges for foliar micronutrients are still non-existent in the literature for the adult açaí, making it impossible to compare their values.

CONCLUSIONS

The foliar nutrients and the fresh fruit productivity of açaí have spatial dependence, as shown in the sample grid, allowing the application of precision agricultural techniques for the development of this crop.

Three MZs were defined considering nutrient contents and productivity of açaí trees. According to these zones, Ca and Mg supply, with liming, as well as sulfate and micronutrients fertilization (especially boron), are key practices for improving nutrition and thus, increasing productivity in this palm.

ACKNOWLEDGMENTS

We thank two organizations in Brazil, namely the National Council for Scientific and Technological Development (CNPq) for financial support (481802/2013-4 and 310513/2015-4) and the Coordination for the Improvement of Higher Education Personnel (CAPES) for both financial support and for the scholarships provided. We also thank the Opatta farm for research support.

REFERENCES

  • Alvares CA, Stape JL, Sentelhas PC, de Moraes, Gonçalves JL, Sparovek G (2013) Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22(6):711-728.
  • Behera SK, Suresh K, Ramachandrudu K, Manorama K, Rao BN (2016) Mapping spatial variability of leaf nutrient status of oil palm (Elaeis guineensis Jacq.) plantations in India. Crop & Pasture Science 67(1):109-116. DOI: http://dx.doi.org/10.1071/CP15029
    » http://dx.doi.org/10.1071/CP15029
  • Betzek NM, Souza EG, Bazzi CL, Sobjak R, Bier VA, Mercante E (2017) Interpolation methods for thematic maps of soybean yield and soil chemical attributes. Semina: Ciências Agrárias 38(2):1059-1069. DOI: http://dx.doi.org/10.5433/1679-0359.2017v38n2p1059
    » http://dx.doi.org/10.5433/1679-0359.2017v38n2p1059
  • Bonomo LdF, Silva DN, Boasquivis PF, Paiva FA, Guerra JFdC, et al. (2014) Açaí (Euterpe oleracea Mart.) modulates oxidative stress resistance in Caenorhabditis elegans by direct and indirect mechanisms. PloS one 9(3):e89933. DOI: http://dx.doi.org/10.1371/journal.pone.0089933
    » http://dx.doi.org/10.1371/journal.pone.0089933
  • Brasil EC, Poça RR da, Sobrinho RJA (2008) Concentração de nutrientes em diferentes partes de indivíduos de açaizeiro (Euterpe oleracea Mart.) provenientes de uma população melhorada. In Embrapa Amazônia Oriental-Artigo em anais de congresso (ALICE). In: Reunião Brasileira de Fertilidade do Solo e Nutrição de Plantas, Reunião Brasileira Sobre Micorrizas, Simpósio Brasileiro de Microbiologia do Solo, Reunião Brasileira de Biologia do Solo, Londrina. Desafios para o uso do solo com eficiência e qualidade ambiental: anais. Londrina, SBCS, Embrapa Soja, IAPAR, UEL, Anais…
  • Dalchiavon FC, Carvalho MP (2012) Correlação linear e espacial dos componentes de produção e produtividade da soja. Semina Ciências Agrárias 33(2):541-552. DOI: https://doi.org/10.5433/1679-0359.2012v33n2p541
    » https://doi.org/10.5433/1679-0359.2012v33n2p541
  • Davatgar N, Neishabouri MR, Sepaskhah AR (2012) Delineation of sitespecific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma 173-174:111-118. DOI: https://doi.org/10.1016/j.geoderma.2011.12.005
    » https://doi.org/10.1016/j.geoderma.2011.12.005
  • Diker K, Heerman DF, Brodahl MK (2004) Frequency analysis of yield for delineating yield response zones. Precision Agriculture 5:435. DOI: https://doi.org/10.1007/s11119-004-5318-9
    » https://doi.org/10.1007/s11119-004-5318-9
  • Farias Neto JT, Resende MDV, Oliveira MSP (2011) Seleção simultânea em progênies de açaizeiro irrigado para produção e peso do fruto. Revista Brasileira de Fruticultura 33:532-539. DOI: http://dx.doi.org/10.1590/S0100-29452011000200025
    » http://dx.doi.org/10.1590/S0100-29452011000200025
  • Ferguson RB, Lark RM, Slater GP (2003) Approaches to Management Zone Definition for Use of Nitrification Inhibitors. Journal series 13533. Soil Science Society American Journal 67:937-947. DOI: http://dx.doi.org/10.2136/sssaj2003.9370
    » http://dx.doi.org/10.2136/sssaj2003.9370
  • Fernandes AR, Matos, GSB, Carvalho JG (2013) Deficiências nutricionais de macronutrientes e sódio em mudas de pupunheira. Revista Brasileira de Fruticultura 35(4):1178-1189. DOI: http://dx.doi.org/10.1590/S0100-29452013000400029
    » http://dx.doi.org/10.1590/S0100-29452013000400029
  • Gazola RN, Lovera LH, Celestrino TS, Dinalli RP, Montanari R, Queiroz HA (2017) Variabilidade espacial das concentrações de nutrientes foliares da soja correlacionadas com atributos químicos de um Latossolo Vermelho distroférrico. Ceres 64(4). DOI: http://dx.doi.org/10.1590/0034-737X201764040014
    » http://dx.doi.org/10.1590/0034-737X201764040014
  • GS+: Geostatistics for environmental sciences. (2004) Michigan, Gamma Design Software, 7 ed.
  • Hair Jr J F, Anderson, RE, Tatham RL, Black WC (2009) Análise multivariada de dados. Porto Alegre, Bookman, 6 ed. p 688.
  • Homma AKO, Nogueira OL, Menezes AJEA, Carvalho JEU de, Nicoli CML (2006) açaí: novos desafios e tendências. Amazônia: Ciência & Desenvolvimento 1:7-23.
  • IBGE (2017) Produção da extração vegetal e da silvicultura - PEVS. Available: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9105-producao-da-extracao-vegetal-e-da-silvicultura.html?=&t=destaques Accessed: Jun 10, 2018.
    » https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9105-producao-da-extracao-vegetal-e-da-silvicultura.html?=&t=destaques
  • Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23:187-200.
  • Lima JSS, Alves DI, Coelho RI, Sturiao WP, Silva SA (2016) Spatial Variability in the Diagnosis of Nutritional Status in the Papaya. Revista Ciência Agronômica 47:264-274. DOI: http://dx.doi.org/10.5935/1806-6690.20160031
    » http://dx.doi.org/10.5935/1806-6690.20160031
  • Linden R (2009) Técnicas de Agrupamento. Revista de Sistemas de Informação da FSMA 4:18-36.
  • Malavolta E, Vitti GC, Olveira SA (1997) Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba, POTAFOS, 2 ed. 319 p.
  • Matos GSB, Fernandes AR, Wadt PGS (2016) Níveis críticos e faixas de suficiência de nutrientes derivados de métodos de avaliação do estado nutricional da palma-de óleo. Pesquisa Agropecuária Brasileira 51(9):1557-1567. DOI: http://dx.doi.org/10.1590/S0100-204X2016000900055
    » http://dx.doi.org/10.1590/S0100-204X2016000900055
  • Menezes SEM, Torres AT, Sabaa Srur AU (2008) Valor nutricional da polpa de açaí (Euterpe oleracea Mart.) liofilizada. Acta Amazonica 38(2):311-316. DOI: http://dx.doi.org/10.1590/S0044-59672008000200014
    » http://dx.doi.org/10.1590/S0044-59672008000200014
  • Oliveira IA, Campos MCC, Marques Jr J, Aquino RE, Teixeira DB, Silva DMP (2015) Use of Scaled Semivariograms in the Planning Sample of Soil Physical Properties in Southern Amazonas, Brazil. Revista Brasileira de Ciência do Solo 39(1):31-39. DOI: http://dx.doi.org/10.1590/01000683rbcs20150524
    » http://dx.doi.org/10.1590/01000683rbcs20150524
  • Pinho LGR, Monnerat PH, Pires AA, Freitas MSM, Marciano CR (2015) Diagnosis of boron deficiency in green dwarf coconut palm. Agricultural Sciences 6(01):164. DOI: http://dx.doi.org/10.4236/as.2015.61015
    » http://dx.doi.org/10.4236/as.2015.61015
  • Ribeiro AC, Guimarães PTG, Alvarez VH (1999) Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5ᵃ Aproximação. Comissão de fertilidade do solo do estado de Minas Gerais, 322p.
  • Rodrigues Jr FA, Vieira LB, Queiroz DM, Santos NT (2011) Geração de zonas de manejo para cafeicultura empregando-se sensor SPAD e análise foliar. Revista Brasileira de Engenharia Agrícola e Ambiental 15(8):778- 787. DOI: http://dx.doi.org/10.1590/S1415-43662011000800003
    » http://dx.doi.org/10.1590/S1415-43662011000800003
  • Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Araujo Filho JC, Oliveira JB, Cunha TJF (2018) Sistema brasileiro de classificação de solos. Brasília, DF, Embrapa, 5 ed.
  • Silva Carneiro JS, dos Santos ACM, Fidelis RR, da Silva Neto SP, dos Santos AC, da Silva RR (2016) Diagnóstico e manejo da variabilidade espacial da fertilidade do solo no cerrado do Piauí. Revista de Ciências Agroambientais, 14(2), 11p.
  • Silva ENS, Montanari R, Panosso AR, Correa AR, Tomaz PK, Ferraudo AS (2015) Variabilidade de atributos físicos e químicos do solo e produção de feijoeiro cultivado em sistema de cultivo mínimo com irrigação. Revista Brasileira Ciencia do Solo 39:598-607. DOI: http://dx.doi.org/10.1590/01000683rbcs20140429
    » http://dx.doi.org/10.1590/01000683rbcs20140429
  • Silva AS, Lima JSS (2012) Avaliação da variabilidade do estado nutricional e produtividade de café por meio da análise de componentes principais e geoestatística. Revista Ceres 59(2):271-277. DOI: http://dx.doi.org/10.1590/S0034-737X2012000200017
    » http://dx.doi.org/10.1590/S0034-737X2012000200017
  • Sousa AM, Oliveira MSP, Farias Neto JT (2017) Genetic divergence among white-type açaí palm accessions based on morpho-agronomic characters. Pesquisa Agropecuária Brasileira 52(9):751-760. DOI: http://dx.doi.org/10.1590/S0100-204X2017000900007
    » http://dx.doi.org/10.1590/S0100-204X2017000900007
  • Sousa HU, Ramo JD, Carvalho JG, Ferreira EA (2004) Nutrição de mudas de açaizeiro sob relações cálcio:potássio:sódio em solução nutritiva. Ciência Agrotecnologia 28(1):56-62. DOI: http://dx.doi.org/10.1590/S1413-70542004000100007
    » http://dx.doi.org/10.1590/S1413-70542004000100007
  • Statsoft (2010) Statistica (data analysis software system). Version 10. Available: http://www.statsoft.com Accessed: Jan. 10, 2017.
    » http://www.statsoft.com
  • Teixeira PC, Donagema GK, Fontana A, Teixeira WG (2017) Manual de métodos de análise do solo. Brasília, Embrapa, 3 ed. 573 p.
  • Tripathi R, Nayaka AK, Shahid M, Lal B, Gautam P, Raja R, Mohanty S, Kumar A, Panda BB, Sahoo RN (2015) Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. Catena 133:128-136. DOI: https://doi.org/10.1016/j.catena.2015.05.009
    » https://doi.org/10.1016/j.catena.2015.05.009
  • Valente DSM, Queiroz DM, Pinto FAC, Santos NT, Santos FL (2012) A relação entre a condutividade elétrica do solo aparente e as propriedades do solo. Revista Ciencia Agronômica 43:683-690. DOI: http://dx.doi.org/10.1590/S1806-66902012000400009
    » http://dx.doi.org/10.1590/S1806-66902012000400009
  • Warrick AW, Nielsen DR (1980) Spatial variability of soil physical properties in the field. In: Hillel D (ed). Applications of soil physics. New York, Academic Press, 344p.
  • Wong MTF, Asseng S, Robertson MJ, Oliver Y (2008) Mapping subsoil acidity and shallow soil across a field with information from yield maps, geophysical sensing and the grower. Precision Agriculture 9(1):3-15. DOI: http://dx.doi.org/10.1007/s11119-008-9052-6
    » http://dx.doi.org/10.1007/s11119-008-9052-6

Publication Dates

  • Publication in this collection
    23 Nov 2020
  • Date of issue
    Nov-Dec 2020

History

  • Received
    10 Jan 2020
  • Accepted
    13 Aug 2020
Associação Brasileira de Engenharia Agrícola SBEA - Associação Brasileira de Engenharia Agrícola, Departamento de Engenharia e Ciências Exatas FCAV/UNESP, Prof. Paulo Donato Castellane, km 5, 14884.900 | Jaboticabal - SP, Tel./Fax: +55 16 3209 7619 - Jaboticabal - SP - Brazil
E-mail: revistasbea@sbea.org.br