Acessibilidade / Reportar erro

Evaluation of infection by Borrelia sp. in domestic and wild mammals and ticks from the Catimbau National Park, Pernambuco

Avaliação de infecção por Borrelia sp. em mamíferos domésticos, selvagens e carrapatos do Parque Nacional do Catimbau, Pernambuco

ABSTRACT:

Spirochetes in the genus Borrelia (Spirochaetes) are the etiological agents of two zoonotic diseases that have rodents as reservoirs: the Lyme disease, transmitted by ixodid ticks (Ixodidae), and tick-borne relapsing fever, which is transmitted mostly by argasid ticks (Argasidae). The information on the epidemiology of pathogens that affect animals is scarce, especially in places that have been barely studied, such as the Caatinga biome. Thus, in the present study, we aimed to detect DNA of Borrelia in the blood of wild and domestic mammals, as well as in ticks collected in the Catimbau National Park, State of Pernambuco, Northeast Brazil. Blood was collected from 77 captured wild animals belonging to Didelphidae (45), Echimyidae (21), Cricetidae (7), Caviidae (2), and Dasypodidae (2) families. Additionally, blood samples from 120 sheep, 119 goats, 70 dogs, and 47 cattle were obtained. A total of 286 ticks were collected in the environment and identified as Ornithodoros cf. tabajara (188) and Ornithodoros rietcorreai (98); in addition, larvae of Ornithodoros spp. were collected on Thrichomys laurentius (4 specimens) and Monodelphis domestica (1); larvae of O. rietcorreai on Didelphis albiventris (2) and T. laurentius (1); Amblyomma parvum on T. laurentius (4); Rhipicephalus sanguineus (sensu lato) on dogs (121) and Rhipicephalus microplus on cattle (47). All blood samples, 120 free-living ticks, 46 O. rietcorreai and 74 O. cf. tabajara, and 12 R. sanguineus s.l. were submitted to DNA extraction to perform a polymerase chain reaction (nested PCR), aiming at amplifying a fragment of the flaB gene present in all species of Borrelia. Only one free-living specimen of O. cf. tabajara (1.3%) was positive. Negative detections in mammals may be related to the absence of infection or the low concentration of the spirochetes in the hosts. The low prevalence of Borrelia found in ticks can be explained by the low infection rates that these spirochetes depict in their vectors. New studies focusing on the detection of antibodies, as well as on the sequencing and isolating Borrelia spp. should be encouraged for a better understanding of the epidemiology of these bacterial agents in the region.

INDEX TERMS:
Ornithodoros spp.; borrelioses; Catimbau National Park

RESUMO:

No gênero Borrelia (Spirochaetes) encontram-se dois grupos de agentes responsáveis por duas doenças zoonóticas, que têm roedores como reservatórios e acometem humanos: o grupo de Lyme, transmitido por carrapatos ixodídeos, e a febre recorrente, que pode ser transmitida por carrapatos argasídeos ou piolhos. Poucas são as informações sobre epidemiologia e agentes patogênicos que acometem animais, podendo representar uma riquíssima fonte de informações, principalmente em locais nunca estudados, pois podem ser bioindicadores de qualidade do ambiente e saúde. Desta forma, no presente estudo foi realizada a pesquisa de Borrelia spp. em amostras de sangue de mamíferos silvestres e domésticos, assim como de carrapatos, do Parque Nacional do Catimbau, Pernambuco. Foi realizada a captura e colheita sanguínea de 77 animais pertencentes às famílias Didelphidae (45), Echimyidae (21), Cricetidae (7), Caviidae (2) e Dasypodidae (2). Adicionalmente, amostras de sangue foram obtidas de 120 ovinos, 119 caprinos, 70 cães e 47 bovinos. Foram coletados 286 carrapatos no ambiente, identificados como Ornithodoros cf. tabajara (188) e Ornithodoros rietcorreai (98); além de carrapatos coletados nos animais: Ornithodoros spp. em Thrichomys laurentius (4 espécimes) e Monodelphis domestica (1); O. rietcorreai em Didelphis albiventris (2) e T. laurentius (1); Amblyomma parvum em T. laurentius (4); Rhipicephalus sanguineus (sensu lato) em cães (121) e R. microplus em bovinos (47). Todas as amostras sanguíneas, 120 carrapatos de vida livre, sendo 46 O. rietcorreai e 74 O. cf. tabajara, e 12 R. sanguineus s. l. foram submetidos à extração de DNA para realização da reação em cadeia da polimerase (nested-PCR), visando amplificação de um fragmento do gene flaB presente em todas as espécies de Borrelia. Não houve amplificação nas amostras sanguíneas dos animais, no entanto em um espécime de O. cf. tabajara de vida livre (1,3%) foi detectado o DNA de Borrelia. A não detecção nos mamíferos pode estar relacionada com a ausência de infecção ou à baixa concentração do agente nos hospedeiros. A baixa prevalência encontrada nos carrapatos pode ser justificada devido à baixa infecção nos vetores. Novos estudos focando na determinação de anticorpos, assim como no sequenciamento e isolamento de Borrelia devem ser estimulados para uma melhor compreensão da epidemiologia do agente na região.

TERMO DE INDEXAÇÃO:
Ornithodoros spp.; borrelioses; Parque Nacional do Catimbau

Introduction

The Catimbau National Park (CNP) is a conservation unit in the Caatinga biome, located in the Pernambuco State, Northeast region of Brazil. It was created in 2002 and aims to preserve the ecosystems within the geological complex of Serra of Catimbau (ICMBio 2019ICMBio 2019. Unidades de Conservação. Instituto Chico Mendes de Conservação da Biodiversidade. Available at <Available at http://www.icmbio.gov.br/portal/unidadesdeconservacao/biomas-brasileiros/ > Accessed on Dec. 20, 2021.
http://www.icmbio.gov.br/portal/unidades...
). Although wildlife is abundant, the presence of man in and around the park leads eventually to domestic animals sharing the environment with wild animals, a fact that facilitates the transmission of vector-borne agents between animals and humans (Carvalho et al. 2009Carvalho J.A., Teixeira S.R.F., Carvalho M.P., Vieira V. & Alves F.A. 2009. Doenças Emergentes: uma Análise Sobre a Relação do Homem com o seu Ambiente. Revta Práxis 1(1):19-23. <https://dx.doi.org/10.47385/praxis.v1.n1.539>
https://doi.org/10.47385/praxis.v1.n1.53...
).

Spirochetes of the genus Borrelia are motile cells that infect argasid ticks (i.e. genus Argas, Ornithodoros), ixodid ticks (i.e. genus Amblyomma, Bothriocroton, Hyalomma, Ixodes and Rhipicephalus), and the human lice (Pediculus humanus humanus) (Faccini-Martínez et al. 2022Faccini-Martínez Á.A., Silva-Ramos C.R., Santodomingo A.M., Ramírez-Hernández A., Costa F.B., Labruna M.B. & Muñoz-Leal S. 2022. Historical overview and update on relapsing fever group Borrelia in Latin America. Parasites Vectors 15(196):1-20. <https://dx.doi.org/10.1186/s13071-022-05289-5> <PMid:35676728>
https://doi.org/10.1186/s13071-022-05289...
). These spirochetes are the etiological agents of tick-borne relapsing fever (TBRF) and Lyme disease (Faccini-Martínez et al. 2021Faccini-Martínez Á.A., Muñoz-Leal S., Labruna M.B. & Angerami R.N. 2021. Borrelioses in Brazil: Is it time to consider tick-borne relapsing fever a neglected disease in Brazil? Revta Soc. Bras. Med. Trop. 54:e0443. <https://dx.doi.org/10.1590/0037-8682-0443-2021> <PMid:34787267>
https://doi.org/10.1590/0037-8682-0443-2...
, Trevisan et al. 2021Trevisan G., Cinco M., Trevisini S., Di Meo N., Ruscio M., Forgione P. & Bonin S. 2021. Borreliae part 2: Borrelia relapsing fever group and unclassified Borrelia. Biology 10(11):1117. <https://dx.doi.org/10.3390/biology10111117> <PMid:34827110>
https://doi.org/10.3390/biology10111117...
). Sylvatic transmission cycles of the spirochetes involve vertebrate hosts and their ticks (Sánchez et al. 2020Sánchez R.S.T., Santodomingo A.M.S., Muñoz-Leal S., Silva-de la Fuente M.C., Llanos-Soto S., Moreno-Salas L. & González-Acuña D. 2020. Rodents as potential reservoirs for Borrelia spp. in northern Chile. Braz. J. Vet. Parasitol. 29(2):e000120. <https://dx.doi.org/10.1590/S1984-29612020029> <PMid:32609236>
https://doi.org/10.1590/S1984-2961202002...
), with small mammals acting as main reservoirs (Lopez et al. 2021Lopez J., Hovius J.W. & Bergström S. 2021. Pathogenesis of relapsing fever. Curr. Issues Mol. Biol. 42:519-550. <https://dx.doi.org/10.21775/cimb.042.519> <PMid:33372163>
https://doi.org/10.21775/cimb.042.519...
, Trevisan et al. 2021Trevisan G., Cinco M., Trevisini S., Di Meo N., Ruscio M., Forgione P. & Bonin S. 2021. Borreliae part 2: Borrelia relapsing fever group and unclassified Borrelia. Biology 10(11):1117. <https://dx.doi.org/10.3390/biology10111117> <PMid:34827110>
https://doi.org/10.3390/biology10111117...
).

TBRF is a zoonosis caused by several species of Borrelia (Lopez et al. 2021Lopez J., Hovius J.W. & Bergström S. 2021. Pathogenesis of relapsing fever. Curr. Issues Mol. Biol. 42:519-550. <https://dx.doi.org/10.21775/cimb.042.519> <PMid:33372163>
https://doi.org/10.21775/cimb.042.519...
, Faccini-Martínez et al. 2022Faccini-Martínez Á.A., Silva-Ramos C.R., Santodomingo A.M., Ramírez-Hernández A., Costa F.B., Labruna M.B. & Muñoz-Leal S. 2022. Historical overview and update on relapsing fever group Borrelia in Latin America. Parasites Vectors 15(196):1-20. <https://dx.doi.org/10.1186/s13071-022-05289-5> <PMid:35676728>
https://doi.org/10.1186/s13071-022-05289...
), endemic to southern British Columbia, the highlands of Mexico, the western United States, the Mediterranean, Central Asia, Central, and South America, and Africa (Dworkin et al. 2002Dworkin M.S., Shoemaker P.C., Fritz C.L., Dowell M.E. & Anderson Jr. D.E. 2002. The epidemiology of tick-borne relapsing fever in the United States. Am. J. Trop. Med. Hyg. 66(6):753-758. <https://dx.doi.org/10.4269/ajtmh.2002.66.753> <PMid:12224586>
https://doi.org/10.4269/ajtmh.2002.66.75...
). The symptoms of the disease are nonspecific, among these, malaise, myalgia, headache, chills, anorexia, nausea, vomiting, muscle pain, and neurological symptoms; if not treated, the disease can lead to death, and may be confused with other febrile diseases such as malaria, dengue, and typhoid fever (Cutler 2015Cutler J.S. 2015. Relapsing Fever Borreliae: A Global Review. Clin. Lab. Med. 35(4):847-865. <https://dx.doi.org/10.1016/j.cll.2015.07.001> <PMid:26593261>
https://doi.org/10.1016/j.cll.2015.07.00...
, Faccini-Martínez et al. 2021Faccini-Martínez Á.A., Muñoz-Leal S., Labruna M.B. & Angerami R.N. 2021. Borrelioses in Brazil: Is it time to consider tick-borne relapsing fever a neglected disease in Brazil? Revta Soc. Bras. Med. Trop. 54:e0443. <https://dx.doi.org/10.1590/0037-8682-0443-2021> <PMid:34787267>
https://doi.org/10.1590/0037-8682-0443-2...
, 2022Faccini-Martínez Á.A., Silva-Ramos C.R., Santodomingo A.M., Ramírez-Hernández A., Costa F.B., Labruna M.B. & Muñoz-Leal S. 2022. Historical overview and update on relapsing fever group Borrelia in Latin America. Parasites Vectors 15(196):1-20. <https://dx.doi.org/10.1186/s13071-022-05289-5> <PMid:35676728>
https://doi.org/10.1186/s13071-022-05289...
).

Lyme disease is also zoonosis, caused by Borrelia burgdoferi (sensu lato), and occurs currently in the Northern Hemisphere only. In the acute stage, the disease provokes flu-like symptoms, low-grade fever, chills, myalgia, arthralgia, headache, and adenomegaly (Stanek & Strle 2018Stanek G. & Strle F. 2018. Lyme borreliosis-from tick bite to diagnosis and treatment. FEMS Microbiol. Rev. 42(3):233-258. <https://dx.doi.org/10.1093/femsre/fux047> <PMid:29893904>
https://doi.org/10.1093/femsre/fux047...
). In a secondary stage, the spirochetes can cause joint, cardiac, and neurological complications, days to months after the initial infection (Stanek & Strle 2018Stanek G. & Strle F. 2018. Lyme borreliosis-from tick bite to diagnosis and treatment. FEMS Microbiol. Rev. 42(3):233-258. <https://dx.doi.org/10.1093/femsre/fux047> <PMid:29893904>
https://doi.org/10.1093/femsre/fux047...
). In Brazil, an allegedly similar affection is named as the Baggio-Yoshinari Syndrome (Yoshinari et al. 2010Yoshinari N.H., Mantovani E., Bonoldi V.L.N., Marangoni R.G. & Gauditano G. 2010. Doença De Lyme-Símile Brasileira ou Síndrome Baggio Yoshinari: zoonose exótica e emergente transmitida por carrapatos. Revta Assoc. Méd. Bras. 56(3):363-369. <https://dx.doi.org/10.1590/s0104-42302010000300025>
https://doi.org/10.1590/s0104-4230201000...
). However, the circulation of Borrelia in animals, and the disease in humans has yet-to-be confirmed in the country.

Wild animals can be excellent bioindicators of environmental health, and may represent a very rich source of information for circulating microorganisms, especially in places never studied before (Soares et al. 2000Soares C.O., Ishikawa M.M., Fonseca A.H. & Yoshinari N.H. 2000. Borrelioses, agents and vectors: a review. Pesq. Vet. Bras. 20(1):1-19. <https://dx.doi.org/10.1590/S0100-736X2000000100001>
https://doi.org/10.1590/S0100-736X200000...
). In Brazil there is little information about the epidemiology of pathogenic agents that affect wild animals, and tick-borne spirochetes as agents of disease are still neglected (Yoshinari et al. 2010Yoshinari N.H., Mantovani E., Bonoldi V.L.N., Marangoni R.G. & Gauditano G. 2010. Doença De Lyme-Símile Brasileira ou Síndrome Baggio Yoshinari: zoonose exótica e emergente transmitida por carrapatos. Revta Assoc. Méd. Bras. 56(3):363-369. <https://dx.doi.org/10.1590/s0104-42302010000300025>
https://doi.org/10.1590/s0104-4230201000...
, Faccini-Martínez et al. 2022Faccini-Martínez Á.A., Silva-Ramos C.R., Santodomingo A.M., Ramírez-Hernández A., Costa F.B., Labruna M.B. & Muñoz-Leal S. 2022. Historical overview and update on relapsing fever group Borrelia in Latin America. Parasites Vectors 15(196):1-20. <https://dx.doi.org/10.1186/s13071-022-05289-5> <PMid:35676728>
https://doi.org/10.1186/s13071-022-05289...
).

Several studies attempted to understand the epidemiology of borreliosis, and the identity of vector ticks fauna of ticks and Borrelia associated with them, in the Northeast region (Dantas-Torres et al. 2019Dantas-Torres F., Martins T.F., Munõz-Leal S., Onofrio V.C. & Barros-Battesti D.M. 2019. Ticks (Ixodida: Argasidae, Ixodidae) of Brazil: updated species checklist and taxonomic keys. Ticks Tick-borne Dis. 10(6):101252. <https://dx.doi.org/10.1016/j.ttbdis.2019.06.012>
https://doi.org/10.1016/j.ttbdis.2019.06...
, Labruna et al. 2014Labruna M.B., Marcili A., Ogrzewalska M., Barros-Battesti D.M., Dantas-Torres F., Fernandes A.A., Leite R.C. & Venzal J.M. 2014. New records and human parasitism by Ornithodoros mimon (Acari: Argasidae) in Brazil. J. Med. Entomol. 51(1):283-287. <https://dx.doi.org/10.1603/me13062> <PMid:24605480>
https://doi.org/10.1603/me13062...
, Oliveira et al. 2018Oliveira S.V., Bitencourth K., Borsoi A.B.P., Freitas F.S.S., Coelho G.C.B., Amorim M. & Gazeta G.S. 2018. Human parasitism and toxicosis by Ornithodoros rietcorreai (Acari: Argasidae) in an urban area of Northeastern Brazil.. Ticks Tick-borne Dis. 9(6):1494-1498. <https://dx.doi.org/10.1016/j.ttbdis.2018.07.011> <PMid:30054213>
https://doi.org/10.1016/j.ttbdis.2018.07...
, Muñoz-Leal et al. 2018aMuñoz-Leal S., Faccini-Martínez A.A., Costa F.B., Marcili A., Mesquita E.T.K.C., Marques Jr. E.P. & Labruna M.B. 2018a. Isolation and molecular characterization of a relapsing fever Borrelia recovered from Ornithodoros rudis in Brazil. Ticks Tick-borne Dis. 9(4):864-871. <https://dx.doi.org/10.1016/j.ttbdis.2018.03.008> <PMid:29571703>
https://doi.org/10.1016/j.ttbdis.2018.03...
, 2018bMuñoz-Leal S., Barbier E., Soares F.A.M., Bernard E., Labruna M.B. & Dantas-Torres F. 2018b. New records of ticks infesting bats in Brazil, with observations on the first nymphal stage of Ornithodoros hasei. Exp. Appl. Acarol. 76(4):537-549. <https://dx.doi.org/10.1007/s10493-018-0330-3> <PMid:30474785>
https://doi.org/10.1007/s10493-018-0330-...
, 2019aMuñoz-Leal S., Costa F.B. & Faccini-Martínez Á.A. 2019a. Mild toxicosis after the bite of Ornithodoros rietcorreai: Images of a brief time-line description. Travel Med. Infect. Dis. 32(11/12):101393. <https://dx.doi.org/10.1016/j.tmaid.2019.03.005> <PMid:30858033>
https://doi.org/10.1016/j.tmaid.2019.03....
, 2019bMuñoz-Leal S., Macedo C., Gonçalves T.C., Barreira J.D., Labruna M.B., Lemos E.R.S. & Ogrzewalska M. 2019b. Detected microorganisms and new geographic records of Ornithodoros rietcorreai (Acari: Argasidae) from northern Brazil. Ticks Tick-borne Dis. 10(4):853-861. <https://dx.doi.org/10.1016/j.ttbdis.2019.04.004> <PMid:30992179>
https://doi.org/10.1016/j.ttbdis.2019.04...
, 2021aMuñoz-Leal S., Faccini-Martínez A.A., Teixeira B.M., Martins M.M., Serpa M.C.A., Oliveira G.M.B., Jorge F.R., Pacheco R.C., Costa F.B., Luz H.R. & Labruna M.B. 2021a. Relapsing fever group Borreliae in human-biting soft ticks, Brazil. Emerg. Infect. Dis. 27(1):322-324. <https://dx.doi.org/10.3201/eid2701.200349> <PMid:33350927>
https://doi.org/10.3201/eid2701.200349...
, 2021bMuñoz-Leal S., Venzal J.M., Jorge F.R., Teixeira B.M. & Labruna M.B. 2021b. A new species of soft tick from dry tropical forests of Brazilian Caatinga. Ticks Tick-borne Dis. 12(5):101748. <https://dx.doi.org/10.1016/j.ttbdis.2021.101748> <PMid:34052668>
https://doi.org/10.1016/j.ttbdis.2021.10...
). However, the knowledge about the occurrence of tick-borne spirochetes in the State of Pernambuco is vague and needs attention. Therefore, the present study aimed at the molecular detection of Borrelia in small wild mammals, domestic animals, and ticks from the CNP, to evaluate these hosts as reservoirs or sentinels of infection.

Materials and Methods

Study area. The CNP (8°24’00’’ and 8°36’35’’ S; 37°09’30’’ and 37°14’40’’ W) has an area of near 62,300 hectares, covers part of the municipalities of Buíque, Ibimirim, and Tupanatinga, and is located in a transition area between the Sertão and Agreste regions within the Caatinga biome, in the State of Pernambuco (Freire et al. 2020Freire N.C.F., Moura D.C., Silva J.B. & Pacheco A.P. 2020. Mapeamento e análise espectro-temporal das unidades de conservação de proteção integral da administração federal no bioma caatinga. Braz. J. Develop. 6(5):24773-24781. <https://dx.doi.org/10.34117/bjdv6n5-073>
https://doi.org/10.34117/bjdv6n5-073...
, ICMBio 2019ICMBio 2019. Unidades de Conservação. Instituto Chico Mendes de Conservação da Biodiversidade. Available at <Available at http://www.icmbio.gov.br/portal/unidadesdeconservacao/biomas-brasileiros/ > Accessed on Dec. 20, 2021.
http://www.icmbio.gov.br/portal/unidades...
). The period of highest rainfall is between March and June and the lowest, between September and January, with an annual average temperature of 26°C, and average rainfall of 450 to 950mm (Sadmet/Inmet 2021Sadmet/Inmet 2021. Seção de armazenamento de dados meteorológicos. Instituto de Meteorologia. Available at <Available at http://www.inmet.gov.br/html/central_servicos/combo_produtos.html > Accessed on Nov. 24, 2021.
http://www.inmet.gov.br/html/central_ser...
).

Sample collection. Small wild mammals were captured using live traps (Sherman® - HB Sherman Traps, Tallahassee/FL, USA and Tomahawk® Tomahawk Live Traps, Tomahawk/WI, USA), baited with a mixture of sardines, cornmeal, banana, pineapple, cod liver oil, and soybean oil (Graipel et al. 2006Graipel M.E., Cherem J.J., Monteiro-Filho E.L.A. & Glock L. 2006. Dinâmica populacional de marsupiais e roedores no Parque Municipal da Lagoa do Peri, Ilha de Santa Catarina, Sul do Brasil. Mastozool. Neotrop. 13(1):31-49.). Traps were set for five consecutive nights along randomly selected transects, with a distance of approximately 10m and alternating trap types along the transects. The capture was carried out in seven areas, one in the Sertão region: Ibimirim (1); and seven in the Agreste region: Açude Velho (2), Camelo (3), Alcobaça (4), Toca do Vale (5), ICMBio (6) and Vila dos Moradores (7) (Fig.1). The traps were set up in the afternoon, shift and inspected the following morning, in two visits to CNP: January and September 2021. The total capture effort was 6,790 traps. The taxonomic identification of wild animals was based on external morphology according to Bonvicino et al. (2008)Bonvicino C.R., Oliveira J.A. & D’andrea P.S. 2008. Guia dos Roedores do Brasil, com Chaves Para Gêneros Baseadas em Caracteres Externos. Centro Pan-Americano de Febre Aftosa, OPAS/OMS, Rio de Janeiro, p.1-120.. The sampling of domestic animals was carried out in three visits to the park, in January, June, and September 2021, involving dogs, goats, sheep, and cattle, present in and around the park (Fig.1). Blood collection in wild mammals was performed by puncturing the caudal vein or intracardiacly, in dogs through the cephalic vein and in domestic ungulates through the jugular vein. Samples were stored in tubes containing EDTA. After blood collection, an inspection was carried out on the animals to search for ectoparasites, which were placed in tubes containing 70% ethanol. Blood samples were centrifuged to obtain plasma and whole blood and stored at -20°C until DNA extraction. Free-living argasids were collected in naturally infested places, such as rocks with animal burrows containing fresh feces and animal tracks. CO2 expelled by the researchers also attracted the ticks, which were stored in 70% ethanol. Taxonomic identification was carried out in the Laboratory of Parasitic Diseases of the “Universidade Federal do Vale do São Francisco” (Univasf), according to Barros-Battesti et al. (2006)Barros-Battesti D.M., Arzua M. & Bechara G.H. 2006. Carrapatos De Importância Médico-Veterinária Da Região Neotropical: um guia ilustrado para identificação de espécies. Instituto Butantan, São Paulo, p.223. for the genus Rhipicephalus and argasid larvae, Martins et al. (2010)Martins T.F., Onofrio V.C., Barros-Battesti D.M. & Labruna M.B. 2010. Nymphs of the genus Amblyomma (Acari: Ixodidae) of Brazil: descriptions, redescriptions, and identification key. Ticks Tick-borne Dis. 1(2):75-99. <https://dx.doi.org/10.1016/j.ttbdis.2010.03.002> <PMid:21771514>
https://doi.org/10.1016/j.ttbdis.2010.03...
for nymphs of Amblyomma spp., Labruna et al. (2016)Labruna M.B., Nava S., Marcili A., Barbieri A.R.M., Nunes P.H., Horta M.C. & Venzal J.M. 2016. A new argasid tick species (Acari: Argasidae) associated with the rock cavy, Kerodon rupestris Wied-Neuwied (Rodentia: Caviidae), in a semiarid region of Brazil. Parasites Vectors 9:511. <https://dx.doi.org/10.1186/s13071-016-1796-7> <PMid:27655282>
https://doi.org/10.1186/s13071-016-1796-...
and Muñoz-Leal et al. (2021b)Muñoz-Leal S., Venzal J.M., Jorge F.R., Teixeira B.M. & Labruna M.B. 2021b. A new species of soft tick from dry tropical forests of Brazilian Caatinga. Ticks Tick-borne Dis. 12(5):101748. <https://dx.doi.org/10.1016/j.ttbdis.2021.101748> <PMid:34052668>
https://doi.org/10.1016/j.ttbdis.2021.10...
for argasids nymphs.

Fig.1.
Capture sites for small wild mammals, domestic animals, and free-living ticks in the Catimbau National Park, Pernambuco. Points: Ibimirim (1), Açude Velho (2), Camelo (3), Alcobaça (4), Toca do Vale (5), ICMBio (6), Vila dos Moradores (7).

Molecular analyses. DNA was extracted from the blood of animals and adult ticks using a commercial kit (Promega, Madison/WI, USA), following the manufacturer recommendations. Collected nymphs were individually subjected to DNA extraction by boiling at 100°C for 20 minutes, as described by Horta et al. (2007)Horta M.C., Labruna M.B., Pinter A., Linardi P.M. & Schumaker T.T.S. 2007. Rickettsia infection in five areas of the state of São Paulo, Brazil. Mem. Inst. Oswaldo Cruz 102(7):793-801. <https://dx.doi.org/10.1590/S0074-02762007000700003>
https://doi.org/10.1590/S0074-0276200700...
, and stored at -20°C. Molecular analyses were performed in the above referred laboratory. All extracted samples were submitted to a nested PCR using FLaLL (5’- ACA TAT TCA GAT GCA GAC AGA GGT-3’) and FLaRL (5’- GCA ATC ATA GCC ATT GCA GAT TGT-3’) primers in the first round, and FLaLS (5’- AAC AGC TGA AGA GCT TGG AAT G -3’) and FLaRS (5’- CTT TGA TCA CTT ATC ATT CTA ATA GC -3’) in the second round aiming to amplify a fragment of 354 base pair of the flagellin gene (flaB), present in all Borrelia species, following Stromdahl et al. (2003)Stromdahl E.Y., Williamson P.C., Kollars Jr. T.M., Evans S.R., Barry R.K., Vince M.A. & Dobbs N.A. 2003. Evidence of Borrelia lonestari DNA in Amblyomma Americanum (Acari: Ixodidae) removed from humans. J. Clin. Microbiol. 41(12):5557-5562. <https://dx.doi.org/10.1128/JCM.41.12.5557-5562.2003> <PMid:14662940>
https://doi.org/10.1128/JCM.41.12.5557-5...
. PCR products were submitted to electrophoresis in 1.5% agarose gels, stained with ethidium bromide, and visualized with an ultraviolet transilluminator.

Ethical aspect. The study was approved by the Ethics and Deontology in Studies and Research Committee of the Univasf, under protocol, 0008/270320. Authorization for research in the CNP Conservation Unit and capture of wild animals was granted by the Biodiversity Authorization and Information System (SISBIO), under protocol 74584-1.

Results

Sample collection

A total of 77 small wild mammals were captured: 45 marsupials, 30 rodents, and two cingulates (Table 1). Of these, four specimens (two Didelphis albiventris and two Euphractus sexcinctus) were actively caught. Blood samples were collected from 76 animals. Of the captured animals, 7.8% (6/77) were infested by Ornithodoros rietcorreai, an undetermined Ornithodoros sp., or Amblyomma parvum (Table 2).

Table 1.
Species of small wild mammals captured in the Catimbau National Park, Pernambuco, Brazil

Table 2.
Tick species of domestic and wild mammals in the Catimbau National Park, Pernambuco, Brazil

Of the 70 sampled dogs, 25.7% were females (18/70) and 74.3% males (52/70); 32.9% (23/70) of them were parasitized by Rhipicephalus sanguineus (sensu lato), for which we collected 121 specimens (8L, 14N, 55F, 44M). Of the 47 bovines, 42.6% (20/47) were females and 57.4% (27/47) were males, with 17% of them (8/47) parasitized by Rhipicephlaus microplus, for which we collected 6 nymphs, 35 females, and six males. Of the 119 goats, 83.2% (99/119) were females and 16.8% (20/119), and of the 120 sheep, 68.3% (82/120) were females and 31.7% (38/120) males. Neither goats or sheep were parasitized by ticks (Table 2). All the collection points had parasitized animals with the exception of ICMBio, Camelo, and Ibimirim.

Regarding free-living ticks, a total of 286 specimens were collected in two areas within the municipality of Buíque, Toca do Vale and Alcobaça. These specimens were identified as O. rietcorreai (n=98) and Ornithodoros cf. tabajara (n=188) (Table 3).

Table 3.
Free-living tick species collected in the Catimbau National Park, Pernambuco, Brazil

Polymerase chain reaction

Blood samples from 76 wild animals, 120 sheep, 119 goats, 47 cattle, and 70 dogs were tested. Of the 286 collected ticks, only 132 specimens were tested, 46 O. rietcorreai, 74 O. cf. tabajara, and 12 R. sanguineus (sensu lato) (Table 4). None of the blood samples amplified borrelial DNA. However, one specimen of O. cf. tabajara (1.3%) collected at Toca do Vale was positive.

Table 4.
Species of ticks subjected to the polymerase chain reaction

Discussion

The CNP is located in the Caatinga biome, and represents a barely explored region. Although the Park is rich in fauna and flora, there are no reports of diseases carried by ticks such as borreliosis in the region. Noteworthy, before the Park became a Conservation Unit, the place was populated, and nowadays residents still live inside and survive through family farming and animal husbandry (Freire et al. 2020Freire N.C.F., Moura D.C., Silva J.B. & Pacheco A.P. 2020. Mapeamento e análise espectro-temporal das unidades de conservação de proteção integral da administração federal no bioma caatinga. Braz. J. Develop. 6(5):24773-24781. <https://dx.doi.org/10.34117/bjdv6n5-073>
https://doi.org/10.34117/bjdv6n5-073...
). The park stands out for being a pole of tourism, and the human presence within and around favors the maintenance of domestic animals coexisting with wild animals, a fact that facilitates the sharing of ectoparasites and the transmission of diseases between animals and humans (Carvalho et al. 2009Carvalho J.A., Teixeira S.R.F., Carvalho M.P., Vieira V. & Alves F.A. 2009. Doenças Emergentes: uma Análise Sobre a Relação do Homem com o seu Ambiente. Revta Práxis 1(1):19-23. <https://dx.doi.org/10.47385/praxis.v1.n1.539>
https://doi.org/10.47385/praxis.v1.n1.53...
, Freire et al. 2020Freire N.C.F., Moura D.C., Silva J.B. & Pacheco A.P. 2020. Mapeamento e análise espectro-temporal das unidades de conservação de proteção integral da administração federal no bioma caatinga. Braz. J. Develop. 6(5):24773-24781. <https://dx.doi.org/10.34117/bjdv6n5-073>
https://doi.org/10.34117/bjdv6n5-073...
).

Two specimens of D. albiventris were captured within the Park, near the Vila dos Moradores. Marsupials are considered synanthropic animals and live near human dwellings searching for food or shelter. Importantly, they are hosts of zoonotic pathogens of animal and human health relevance such as Leishmania infantum, Trypanosoma cruzi, Rickettsia rickettsii, and Toxoplasma gondii (Bezerra-Santos et al. 2021Bezerra-Santos M.A., Ramos R.A.N., Campos A.K., Dantas-Torres F. & Otranto D. 2021. Didelphis spp. opossums and their parasites in the Americas: A One Health perspective. Parasitol. Res. 120(12):4091-4111. <https://dx.doi.org/10.1007/s00436-021-07072-4> <PMid:33788021>
https://doi.org/10.1007/s00436-021-07072...
).

In the study by Geise et al. (2010)Geise L., Paresque R., Sebastião H., Shirai L.T., Astúa D. & Marroing G. 2010. Non-volant mammals, Parque Nacional do Catimbau, Vale do Catimbau, Buíque, state of Pernambuco, Brazil, with karyologic data. Check List, J. Species Lists Distribution 6(1):180-186. <https://dx.doi.org/10.15560/6.1.180>
https://doi.org/10.15560/6.1.180...
, carried out in the park, 43 rodents (Cerradomys langguthi, Necromys lasiurus, Oligoryzomys stramineus, Wiedomys pyrrhorhinos, Rhipidomys sp., Galea spixii, and Thrichomys laurentius) and 29 marsupials (Gracilinanus agilis and Monodelphis domestica) were captured and identified. After more than 10 years, our study brings novelty after capturing 30 rodents (G. spixii, T. laurentius, Cerradomys subflavus, and Rhipidomys mastacalis) and 43 marsupials (M. domestica and D. albiventris), showing difference in the diversity of species compared with the previous study. Several factors may have contributed to these differences, such as capture locations, capture method, study period, food supply, anthropization, and hunting, which is commonly practiced by some of the residents.

The Caatinga biome is exclusive to Brazil and presents a wide diversity of fauna and flora. However, knowledge of the tick fauna in this biome is scarce and there is little information about parasitism by these ectoparasites, especially in small wild mammals. The study of these arthropods in wild environments stands out for providing ecological information, distribution, and host-parasite relationship, as well as the transmission of pathogenic agents (Horta et al. 2011Horta M.C., Nascimento G.F., Martins T.F., Labruna M.B., Machado L.C.P. & Nicola P.A. 2011. Ticks (Acari: Ixodida) parastizing free-living wild animals in the Caatinga biome in the State of Pernambuco, northeastern Brazil. Syst. Appl. Acarol. 16(3):207-211. <https://dx.doi.org/10.11158/saa.16.3.3>
https://doi.org/10.11158/saa.16.3.3...
).

Nymphs of the genus Ornithodoros tend to feed quickly and stay long on the host, being more easily found in the burrows of their hosts, as the larvae take up to hours to complete feeding (Muñoz-Leal et al. 2018aMuñoz-Leal S., Faccini-Martínez A.A., Costa F.B., Marcili A., Mesquita E.T.K.C., Marques Jr. E.P. & Labruna M.B. 2018a. Isolation and molecular characterization of a relapsing fever Borrelia recovered from Ornithodoros rudis in Brazil. Ticks Tick-borne Dis. 9(4):864-871. <https://dx.doi.org/10.1016/j.ttbdis.2018.03.008> <PMid:29571703>
https://doi.org/10.1016/j.ttbdis.2018.03...
). Although O. rietcorreai nymphs were found in one rodent and one marsupial, it is highly possible that the animals attracted the ticks once in the trap, and we collected them while feeding on the animals. Conversely, M. domestica and T. laurentius would be likely natural hosts of larvae.

Ornithodoros rietcorreai, described by Labruna et al. (2016)Labruna M.B., Nava S., Marcili A., Barbieri A.R.M., Nunes P.H., Horta M.C. & Venzal J.M. 2016. A new argasid tick species (Acari: Argasidae) associated with the rock cavy, Kerodon rupestris Wied-Neuwied (Rodentia: Caviidae), in a semiarid region of Brazil. Parasites Vectors 9:511. <https://dx.doi.org/10.1186/s13071-016-1796-7> <PMid:27655282>
https://doi.org/10.1186/s13071-016-1796-...
in the Caatinga biome in the states of Piauí and Paraíba, has Kerodon rupestris (mocó) as a possible host. In the present study, we reported the presence of O. rietcorreai nymphs infesting D. albiventris and T. laurentius, which may be considered possible hosts, corroborating the study by Oliveira et al. (2020)Oliveira G.M.B., Silva I.W.G., Evaristo A.M.C.F., Serpa M.C.A., Campos A.N.S., Dutra V., Nakazato L., Aguiar D.M., Labruna M.B. & Horta M.C. 2020. Tick-borne pathogens in dogs, wild small mammals and their ectoparasites in the semi-arid Caatinga biome, northeastern Brazil. Ticks Tick-borne Dis. 11(4):101409. <https://dx.doi.org/10.1016/j.ttbdis.2020.101409> <PMid:32111546>
https://doi.org/10.1016/j.ttbdis.2020.10...
, who found O. rietcorreai larvae in T. laurentius. Although K. rupestris was not found in the present study, residents report its presence throughout the park.

Amblyomma parvum has domestic animals, medium to large wild animals, and humans as hosts, in addition to being a species implicated as a vector of putative pathogens of importance in public health (Lado et al. 2016Lado P., Nava S., Labruna M.B., Szabo M.P.J., Durdene L.A., Bermudez S., Montagnag M., Quirós A.C.S. & Beati L. 2016. Amblyomma parvum Aragão, 1908 (Acari: Ixodidae): Phylogeography and systematic considerations. Ticks Tick-borne Dis. 7(5):817-827. <https://dx.doi.org/10.1016/j.ttbdis.2016.03.017> <PMid:27062445>
https://doi.org/10.1016/j.ttbdis.2016.03...
). Its immature stages can infest rodents (Horta et al. 2011Horta M.C., Nascimento G.F., Martins T.F., Labruna M.B., Machado L.C.P. & Nicola P.A. 2011. Ticks (Acari: Ixodida) parastizing free-living wild animals in the Caatinga biome in the State of Pernambuco, northeastern Brazil. Syst. Appl. Acarol. 16(3):207-211. <https://dx.doi.org/10.11158/saa.16.3.3>
https://doi.org/10.11158/saa.16.3.3...
), which was corroborated in the present study because nymphs of this tick species were collected in T. laurentius.

According to Szabó et al. (2001)Szabó M.P.J., Cunha M.T., Pinter A. & Vicentini F. 2001. Ticks (Acari: Ixodidae) associated with domestic dogs in Franca region, São Paulo, Brazil. Exp. Appl. Acarol. 25(10/11):909-916. <https://dx.doi.org/10.1023/A:1020433003028> <PMid:12455880>
https://doi.org/10.1023/A:1020433003028...
, the fact of living with cattle may favor accidental parasitism of sheep and goats by R. microplus. The fact that in this study goats and sheep were not parasitized by ticks, could be justified because these animals did not live with cattle, which is the primary host and spreader of R. microplus.

Most of the dogs living inside the Park have free access to wild areas, keep in touch with other animals, and expose themselves to ectoparasites and pathogens of wild animals. However, the prospected dogs were parasitized only by R. sanguineus (sensu lato). The coexistence of domestic animals in the environment of wild animals, as well as the contact with forest areas, can favor mixed infestations by different species of ticks, which may increase the transmission of pathogenic agents from wild populations to domestic animals and humans (Guimarães et al. 2017Guimarães M.F., Araujo A.C., Freire D.P., Machado D.M.R., Martins N.N.V.M., Moraes-Filho J. & Horta M.C. 2017. Investigação sorológica de Rickettsia rickettsii e Coxiella burnetii em caprinos e ovinos no entorno do Parque Nacional da Serra das Confusões, Piauí. Pesq. Vet. Bras. 37(6):555-560. <https://dx.doi.org/10.1590/S0100-736X2017000600004>
https://doi.org/10.1590/S0100-736X201700...
).

We report the presence of free-living O. rietcorreai and O. cf. tabajara in the CNP, contributing to knowledge about the tick fauna in the Brazilian Northeast. Several species of Ornithodoros are implicated as vectors of Borrelia that cause relapsing fever in humans (Faccini-Martínez et al. 2022Faccini-Martínez Á.A., Silva-Ramos C.R., Santodomingo A.M., Ramírez-Hernández A., Costa F.B., Labruna M.B. & Muñoz-Leal S. 2022. Historical overview and update on relapsing fever group Borrelia in Latin America. Parasites Vectors 15(196):1-20. <https://dx.doi.org/10.1186/s13071-022-05289-5> <PMid:35676728>
https://doi.org/10.1186/s13071-022-05289...
). Although the disease has never been reported in Brazil, several argasid species such as O. brasiliensis, O. rietcorreai, Ornithodoros mimon, O. fonsecai, O. rostratus, Ornithodoros hasei, and Ornithodoros tabajara do parasitize humans and cause allergic reactions (Muñoz-Leal et al. 2021aMuñoz-Leal S., Faccini-Martínez A.A., Teixeira B.M., Martins M.M., Serpa M.C.A., Oliveira G.M.B., Jorge F.R., Pacheco R.C., Costa F.B., Luz H.R. & Labruna M.B. 2021a. Relapsing fever group Borreliae in human-biting soft ticks, Brazil. Emerg. Infect. Dis. 27(1):322-324. <https://dx.doi.org/10.3201/eid2701.200349> <PMid:33350927>
https://doi.org/10.3201/eid2701.200349...
, 2021bMuñoz-Leal S., Venzal J.M., Jorge F.R., Teixeira B.M. & Labruna M.B. 2021b. A new species of soft tick from dry tropical forests of Brazilian Caatinga. Ticks Tick-borne Dis. 12(5):101748. <https://dx.doi.org/10.1016/j.ttbdis.2021.101748> <PMid:34052668>
https://doi.org/10.1016/j.ttbdis.2021.10...
). Indeed, one of the researchers of the present study was bitten by ticks of the genus Ornithodoros (results not shown).

Borrelia sp. DNA was amplified in one free-living nymph of O. cf. tajabara using primers directed to a fragment of the flaB gene. Several studies carried out in Brazil have demonstrated infection by borreliae of the relapsing fever group in ticks of the genus Ornithodoros. For instance, in a study carried out in Maranhão, Borrelia venezuelensis was isolated from a female of Ornithodoros rudis (Muñoz-Leal et al. 2018aMuñoz-Leal S., Faccini-Martínez A.A., Costa F.B., Marcili A., Mesquita E.T.K.C., Marques Jr. E.P. & Labruna M.B. 2018a. Isolation and molecular characterization of a relapsing fever Borrelia recovered from Ornithodoros rudis in Brazil. Ticks Tick-borne Dis. 9(4):864-871. <https://dx.doi.org/10.1016/j.ttbdis.2018.03.008> <PMid:29571703>
https://doi.org/10.1016/j.ttbdis.2018.03...
). Probable new species of Borrelia from the relapsing fever group were detected in O. mimon, O. hasei, O. rietcorreai, and O. tabajara (Muñoz-Leal et al. 2021aMuñoz-Leal S., Faccini-Martínez A.A., Teixeira B.M., Martins M.M., Serpa M.C.A., Oliveira G.M.B., Jorge F.R., Pacheco R.C., Costa F.B., Luz H.R. & Labruna M.B. 2021a. Relapsing fever group Borreliae in human-biting soft ticks, Brazil. Emerg. Infect. Dis. 27(1):322-324. <https://dx.doi.org/10.3201/eid2701.200349> <PMid:33350927>
https://doi.org/10.3201/eid2701.200349...
, 2021bMuñoz-Leal S., Venzal J.M., Jorge F.R., Teixeira B.M. & Labruna M.B. 2021b. A new species of soft tick from dry tropical forests of Brazilian Caatinga. Ticks Tick-borne Dis. 12(5):101748. <https://dx.doi.org/10.1016/j.ttbdis.2021.101748> <PMid:34052668>
https://doi.org/10.1016/j.ttbdis.2021.10...
). An ongoing study with ticks from Parna do Catimbau, demonstrated the presence of the bacteria in the park, corroborating with the present exposure (Oliveira 2022Oliveira 2022. Comunicação pessoal. (Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, São Paulo, SP, Brasil)).

According to Mantovani et al. (2012)Mantovani E., Marangoni R.G., Gauditano G., Bonoldi V.L.N. & Yoshinari N.H. 2012. Amplification of the flgE gene provides evidence for the existence of a Brazilian borreliosis. Revta Inst. Med. Trop. São Paulo 54(3)153-157. <https://dx.doi.org/10.1590/S0036-46652012000300007> <PMid:22634887>
https://doi.org/10.1590/S0036-4665201200...
, molecular tests may have reduced sensitivity in detecting certain agents when the animals are not in the acute phase of the disease. Socoloski et al. (2018)Socoloski S.N.G., Castro B.G., Cordeiro M.D., Fonseca A.H., Cepeda M.B., Nicolino R.R. & Lopes L.B. 2018. Epidemiological investigation of Borrelia burgdorferi in horses in the municipality of Sinop-MT, Brazil. Trop. Anim. Health Prod. 50(4):831-836. <https://dx.doi.org/10.1007/s11250-017-1504-4> <PMid:29388162>
https://doi.org/10.1007/s11250-017-1504-...
suggested that a reduced spirochetemia, attributed to the conditions of chronicity of the disease in vertebrate hosts, may result in the non-detection of Borrelia spp. One of these two facts might be reason why we did not DNA of Borrelia in blood samples.

Work carried out in Chile focused on the molecular identification of Borrelia genotypes in ticks removed from small mammals, demonstrating that these animals may be able to act as efficient hosts of the agent in that country and South America (Thomas Sánchez et al. 2020Thomas Sánchez R.S., Santodomingo A.M.S., Muñoz-Leal S., Silva-de la Fuente M.C., Llanos-Soto S., Salas L.M. & González-Acuña D. 2020. Rodents as potential reservoirs for Borrelia spp. in northern Chile. Braz. J. Vet. Parasitol. 29(2):1-10. <https://dx.doi.org/10.1590/S1984-29612020029>
https://doi.org/10.1590/S1984-2961202002...
). Additionally, the study carried out by Weck et al. (2022)Weck B.C., Serpa M.C.A., Labruna M.B. & Muñoz-Leal S. 2022. A novel genospecies of Borrelia burgdorferi Sensu Lato associated with cricetid rodents in Brazil. Microorganisms 10(2):204. <https://dx.doi.org/10.3390/microorganisms10020204> <PMid:35208659>
https://doi.org/10.3390/microorganisms10...
in eight areas of forest fragments in São Paulo, Mato Grosso, and Mato Grosso do Sul, reported a new genospecies “Candidatus Borrelia paulista” in two rodents Oligoryzomys mattogrossae, thus suggesting that rodents might maintain spirochetes in enzootic cycles.

In tick-borne relapsing and Lyme disease, an accurate diagnosis during the afebrile period of both diseases is challenging because bacteria are below the detection limit. In order to confirming the circulation of the agent in an unknown region it would be important to implement serological surveys, as this approach will provide evidence on exposure or active infection by a given spirochetes. While serological assays searching for Borrelia anserina and Borrelia burgdorferi antibodies have been implemented in Brazil, the former is a tick-borne relapsing fever that affects bird and not humans, and the latter is distributed only in the Northern Hemisphere. In the meantime, serological tests to assess the circulation of other Borrelia spp. that have been detected or isolated in the country are still lacking.

Conclusion

In this study, we report the presence of DNA of a Borrelia sp. in the Catimbau National Park (CNP), Pernambuco. We also report two species of ticks for this conservation unit, Ornithodoros rietcorreai, and Ornithodoros cf. tabajara, contributing to the knowledge of the tick fauna of the Northeast region. For what seems to be the first time, we also report parasitism by nymphs of O. rietcorreai on Didelphis albiventris and Thrichomys laurentius. Although the prevalence of Borrelia was low in ticks, and we did not detect the spirochetes in domestic and wild vertebrates, the presence of people in the park justifies the need to perform further surveillance to monitor the exposure to Borrelia spp., and the eventual use of serological techniques to detect antibodies in animals and humans.

Acknowledgments

We are grateful to Junior for valuable help during the fieldwork; to the “Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco” (FACEPE) for the financial support (IBPG-0152-5.05/20); to “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) for Scientific Productivity Grant to M.C. Horta (grant number: 314019/2021-9).

References

  • Barros-Battesti D.M., Arzua M. & Bechara G.H. 2006. Carrapatos De Importância Médico-Veterinária Da Região Neotropical: um guia ilustrado para identificação de espécies. Instituto Butantan, São Paulo, p.223.
  • Bezerra-Santos M.A., Ramos R.A.N., Campos A.K., Dantas-Torres F. & Otranto D. 2021. Didelphis spp. opossums and their parasites in the Americas: A One Health perspective. Parasitol. Res. 120(12):4091-4111. <https://dx.doi.org/10.1007/s00436-021-07072-4> <PMid:33788021>
    » https://doi.org/10.1007/s00436-021-07072-4
  • Bonvicino C.R., Oliveira J.A. & D’andrea P.S. 2008. Guia dos Roedores do Brasil, com Chaves Para Gêneros Baseadas em Caracteres Externos. Centro Pan-Americano de Febre Aftosa, OPAS/OMS, Rio de Janeiro, p.1-120.
  • Carvalho J.A., Teixeira S.R.F., Carvalho M.P., Vieira V. & Alves F.A. 2009. Doenças Emergentes: uma Análise Sobre a Relação do Homem com o seu Ambiente. Revta Práxis 1(1):19-23. <https://dx.doi.org/10.47385/praxis.v1.n1.539>
    » https://doi.org/10.47385/praxis.v1.n1.539
  • Cutler J.S. 2015. Relapsing Fever Borreliae: A Global Review. Clin. Lab. Med. 35(4):847-865. <https://dx.doi.org/10.1016/j.cll.2015.07.001> <PMid:26593261>
    » https://doi.org/10.1016/j.cll.2015.07.001
  • Dantas-Torres F., Martins T.F., Munõz-Leal S., Onofrio V.C. & Barros-Battesti D.M. 2019. Ticks (Ixodida: Argasidae, Ixodidae) of Brazil: updated species checklist and taxonomic keys. Ticks Tick-borne Dis. 10(6):101252. <https://dx.doi.org/10.1016/j.ttbdis.2019.06.012>
    » https://doi.org/10.1016/j.ttbdis.2019.06.012
  • Dworkin M.S., Shoemaker P.C., Fritz C.L., Dowell M.E. & Anderson Jr. D.E. 2002. The epidemiology of tick-borne relapsing fever in the United States. Am. J. Trop. Med. Hyg. 66(6):753-758. <https://dx.doi.org/10.4269/ajtmh.2002.66.753> <PMid:12224586>
    » https://doi.org/10.4269/ajtmh.2002.66.753
  • Faccini-Martínez Á.A., Muñoz-Leal S., Labruna M.B. & Angerami R.N. 2021. Borrelioses in Brazil: Is it time to consider tick-borne relapsing fever a neglected disease in Brazil? Revta Soc. Bras. Med. Trop. 54:e0443. <https://dx.doi.org/10.1590/0037-8682-0443-2021> <PMid:34787267>
    » https://doi.org/10.1590/0037-8682-0443-2021
  • Faccini-Martínez Á.A., Silva-Ramos C.R., Santodomingo A.M., Ramírez-Hernández A., Costa F.B., Labruna M.B. & Muñoz-Leal S. 2022. Historical overview and update on relapsing fever group Borrelia in Latin America. Parasites Vectors 15(196):1-20. <https://dx.doi.org/10.1186/s13071-022-05289-5> <PMid:35676728>
    » https://doi.org/10.1186/s13071-022-05289-5
  • Freire N.C.F., Moura D.C., Silva J.B. & Pacheco A.P. 2020. Mapeamento e análise espectro-temporal das unidades de conservação de proteção integral da administração federal no bioma caatinga. Braz. J. Develop. 6(5):24773-24781. <https://dx.doi.org/10.34117/bjdv6n5-073>
    » https://doi.org/10.34117/bjdv6n5-073
  • Geise L., Paresque R., Sebastião H., Shirai L.T., Astúa D. & Marroing G. 2010. Non-volant mammals, Parque Nacional do Catimbau, Vale do Catimbau, Buíque, state of Pernambuco, Brazil, with karyologic data. Check List, J. Species Lists Distribution 6(1):180-186. <https://dx.doi.org/10.15560/6.1.180>
    » https://doi.org/10.15560/6.1.180
  • Graipel M.E., Cherem J.J., Monteiro-Filho E.L.A. & Glock L. 2006. Dinâmica populacional de marsupiais e roedores no Parque Municipal da Lagoa do Peri, Ilha de Santa Catarina, Sul do Brasil. Mastozool. Neotrop. 13(1):31-49.
  • Guimarães M.F., Araujo A.C., Freire D.P., Machado D.M.R., Martins N.N.V.M., Moraes-Filho J. & Horta M.C. 2017. Investigação sorológica de Rickettsia rickettsii e Coxiella burnetii em caprinos e ovinos no entorno do Parque Nacional da Serra das Confusões, Piauí. Pesq. Vet. Bras. 37(6):555-560. <https://dx.doi.org/10.1590/S0100-736X2017000600004>
    » https://doi.org/10.1590/S0100-736X2017000600004
  • Horta M.C., Labruna M.B., Pinter A., Linardi P.M. & Schumaker T.T.S. 2007. Rickettsia infection in five areas of the state of São Paulo, Brazil. Mem. Inst. Oswaldo Cruz 102(7):793-801. <https://dx.doi.org/10.1590/S0074-02762007000700003>
    » https://doi.org/10.1590/S0074-02762007000700003
  • Horta M.C., Nascimento G.F., Martins T.F., Labruna M.B., Machado L.C.P. & Nicola P.A. 2011. Ticks (Acari: Ixodida) parastizing free-living wild animals in the Caatinga biome in the State of Pernambuco, northeastern Brazil. Syst. Appl. Acarol. 16(3):207-211. <https://dx.doi.org/10.11158/saa.16.3.3>
    » https://doi.org/10.11158/saa.16.3.3
  • ICMBio 2019. Unidades de Conservação. Instituto Chico Mendes de Conservação da Biodiversidade. Available at <Available at http://www.icmbio.gov.br/portal/unidadesdeconservacao/biomas-brasileiros/ > Accessed on Dec. 20, 2021.
    » http://www.icmbio.gov.br/portal/unidadesdeconservacao/biomas-brasileiros/
  • Labruna M.B., Marcili A., Ogrzewalska M., Barros-Battesti D.M., Dantas-Torres F., Fernandes A.A., Leite R.C. & Venzal J.M. 2014. New records and human parasitism by Ornithodoros mimon (Acari: Argasidae) in Brazil. J. Med. Entomol. 51(1):283-287. <https://dx.doi.org/10.1603/me13062> <PMid:24605480>
    » https://doi.org/10.1603/me13062
  • Labruna M.B., Nava S., Marcili A., Barbieri A.R.M., Nunes P.H., Horta M.C. & Venzal J.M. 2016. A new argasid tick species (Acari: Argasidae) associated with the rock cavy, Kerodon rupestris Wied-Neuwied (Rodentia: Caviidae), in a semiarid region of Brazil. Parasites Vectors 9:511. <https://dx.doi.org/10.1186/s13071-016-1796-7> <PMid:27655282>
    » https://doi.org/10.1186/s13071-016-1796-7
  • Lado P., Nava S., Labruna M.B., Szabo M.P.J., Durdene L.A., Bermudez S., Montagnag M., Quirós A.C.S. & Beati L. 2016. Amblyomma parvum Aragão, 1908 (Acari: Ixodidae): Phylogeography and systematic considerations. Ticks Tick-borne Dis. 7(5):817-827. <https://dx.doi.org/10.1016/j.ttbdis.2016.03.017> <PMid:27062445>
    » https://doi.org/10.1016/j.ttbdis.2016.03.017
  • Lopez J., Hovius J.W. & Bergström S. 2021. Pathogenesis of relapsing fever. Curr. Issues Mol. Biol. 42:519-550. <https://dx.doi.org/10.21775/cimb.042.519> <PMid:33372163>
    » https://doi.org/10.21775/cimb.042.519
  • Mantovani E., Marangoni R.G., Gauditano G., Bonoldi V.L.N. & Yoshinari N.H. 2012. Amplification of the flgE gene provides evidence for the existence of a Brazilian borreliosis. Revta Inst. Med. Trop. São Paulo 54(3)153-157. <https://dx.doi.org/10.1590/S0036-46652012000300007> <PMid:22634887>
    » https://doi.org/10.1590/S0036-46652012000300007
  • Martins T.F., Onofrio V.C., Barros-Battesti D.M. & Labruna M.B. 2010. Nymphs of the genus Amblyomma (Acari: Ixodidae) of Brazil: descriptions, redescriptions, and identification key. Ticks Tick-borne Dis. 1(2):75-99. <https://dx.doi.org/10.1016/j.ttbdis.2010.03.002> <PMid:21771514>
    » https://doi.org/10.1016/j.ttbdis.2010.03.002
  • Muñoz-Leal S., Barbier E., Soares F.A.M., Bernard E., Labruna M.B. & Dantas-Torres F. 2018b. New records of ticks infesting bats in Brazil, with observations on the first nymphal stage of Ornithodoros hasei Exp. Appl. Acarol. 76(4):537-549. <https://dx.doi.org/10.1007/s10493-018-0330-3> <PMid:30474785>
    » https://doi.org/10.1007/s10493-018-0330-3
  • Muñoz-Leal S., Costa F.B. & Faccini-Martínez Á.A. 2019a. Mild toxicosis after the bite of Ornithodoros rietcorreai: Images of a brief time-line description. Travel Med. Infect. Dis. 32(11/12):101393. <https://dx.doi.org/10.1016/j.tmaid.2019.03.005> <PMid:30858033>
    » https://doi.org/10.1016/j.tmaid.2019.03.005
  • Muñoz-Leal S., Faccini-Martínez A.A., Costa F.B., Marcili A., Mesquita E.T.K.C., Marques Jr. E.P. & Labruna M.B. 2018a. Isolation and molecular characterization of a relapsing fever Borrelia recovered from Ornithodoros rudis in Brazil. Ticks Tick-borne Dis. 9(4):864-871. <https://dx.doi.org/10.1016/j.ttbdis.2018.03.008> <PMid:29571703>
    » https://doi.org/10.1016/j.ttbdis.2018.03.008
  • Muñoz-Leal S., Faccini-Martínez A.A., Teixeira B.M., Martins M.M., Serpa M.C.A., Oliveira G.M.B., Jorge F.R., Pacheco R.C., Costa F.B., Luz H.R. & Labruna M.B. 2021a. Relapsing fever group Borreliae in human-biting soft ticks, Brazil. Emerg. Infect. Dis. 27(1):322-324. <https://dx.doi.org/10.3201/eid2701.200349> <PMid:33350927>
    » https://doi.org/10.3201/eid2701.200349
  • Muñoz-Leal S., Macedo C., Gonçalves T.C., Barreira J.D., Labruna M.B., Lemos E.R.S. & Ogrzewalska M. 2019b. Detected microorganisms and new geographic records of Ornithodoros rietcorreai (Acari: Argasidae) from northern Brazil. Ticks Tick-borne Dis. 10(4):853-861. <https://dx.doi.org/10.1016/j.ttbdis.2019.04.004> <PMid:30992179>
    » https://doi.org/10.1016/j.ttbdis.2019.04.004
  • Muñoz-Leal S., Venzal J.M., Jorge F.R., Teixeira B.M. & Labruna M.B. 2021b. A new species of soft tick from dry tropical forests of Brazilian Caatinga. Ticks Tick-borne Dis. 12(5):101748. <https://dx.doi.org/10.1016/j.ttbdis.2021.101748> <PMid:34052668>
    » https://doi.org/10.1016/j.ttbdis.2021.101748
  • Oliveira 2022. Comunicação pessoal. (Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, São Paulo, SP, Brasil)
  • Oliveira G.M.B., Silva I.W.G., Evaristo A.M.C.F., Serpa M.C.A., Campos A.N.S., Dutra V., Nakazato L., Aguiar D.M., Labruna M.B. & Horta M.C. 2020. Tick-borne pathogens in dogs, wild small mammals and their ectoparasites in the semi-arid Caatinga biome, northeastern Brazil. Ticks Tick-borne Dis. 11(4):101409. <https://dx.doi.org/10.1016/j.ttbdis.2020.101409> <PMid:32111546>
    » https://doi.org/10.1016/j.ttbdis.2020.101409
  • Oliveira S.V., Bitencourth K., Borsoi A.B.P., Freitas F.S.S., Coelho G.C.B., Amorim M. & Gazeta G.S. 2018. Human parasitism and toxicosis by Ornithodoros rietcorreai (Acari: Argasidae) in an urban area of Northeastern Brazil.. Ticks Tick-borne Dis. 9(6):1494-1498. <https://dx.doi.org/10.1016/j.ttbdis.2018.07.011> <PMid:30054213>
    » https://doi.org/10.1016/j.ttbdis.2018.07.011
  • Sadmet/Inmet 2021. Seção de armazenamento de dados meteorológicos. Instituto de Meteorologia. Available at <Available at http://www.inmet.gov.br/html/central_servicos/combo_produtos.html > Accessed on Nov. 24, 2021.
    » http://www.inmet.gov.br/html/central_servicos/combo_produtos.html
  • Sánchez R.S.T., Santodomingo A.M.S., Muñoz-Leal S., Silva-de la Fuente M.C., Llanos-Soto S., Moreno-Salas L. & González-Acuña D. 2020. Rodents as potential reservoirs for Borrelia spp. in northern Chile. Braz. J. Vet. Parasitol. 29(2):e000120. <https://dx.doi.org/10.1590/S1984-29612020029> <PMid:32609236>
    » https://doi.org/10.1590/S1984-29612020029
  • Soares C.O., Ishikawa M.M., Fonseca A.H. & Yoshinari N.H. 2000. Borrelioses, agents and vectors: a review. Pesq. Vet. Bras. 20(1):1-19. <https://dx.doi.org/10.1590/S0100-736X2000000100001>
    » https://doi.org/10.1590/S0100-736X2000000100001
  • Socoloski S.N.G., Castro B.G., Cordeiro M.D., Fonseca A.H., Cepeda M.B., Nicolino R.R. & Lopes L.B. 2018. Epidemiological investigation of Borrelia burgdorferi in horses in the municipality of Sinop-MT, Brazil. Trop. Anim. Health Prod. 50(4):831-836. <https://dx.doi.org/10.1007/s11250-017-1504-4> <PMid:29388162>
    » https://doi.org/10.1007/s11250-017-1504-4
  • Stanek G. & Strle F. 2018. Lyme borreliosis-from tick bite to diagnosis and treatment. FEMS Microbiol. Rev. 42(3):233-258. <https://dx.doi.org/10.1093/femsre/fux047> <PMid:29893904>
    » https://doi.org/10.1093/femsre/fux047
  • Stromdahl E.Y., Williamson P.C., Kollars Jr. T.M., Evans S.R., Barry R.K., Vince M.A. & Dobbs N.A. 2003. Evidence of Borrelia lonestari DNA in Amblyomma Americanum (Acari: Ixodidae) removed from humans. J. Clin. Microbiol. 41(12):5557-5562. <https://dx.doi.org/10.1128/JCM.41.12.5557-5562.2003> <PMid:14662940>
    » https://doi.org/10.1128/JCM.41.12.5557-5562.2003
  • Szabó M.P.J., Cunha M.T., Pinter A. & Vicentini F. 2001. Ticks (Acari: Ixodidae) associated with domestic dogs in Franca region, São Paulo, Brazil. Exp. Appl. Acarol. 25(10/11):909-916. <https://dx.doi.org/10.1023/A:1020433003028> <PMid:12455880>
    » https://doi.org/10.1023/A:1020433003028
  • Thomas Sánchez R.S., Santodomingo A.M.S., Muñoz-Leal S., Silva-de la Fuente M.C., Llanos-Soto S., Salas L.M. & González-Acuña D. 2020. Rodents as potential reservoirs for Borrelia spp. in northern Chile. Braz. J. Vet. Parasitol. 29(2):1-10. <https://dx.doi.org/10.1590/S1984-29612020029>
    » https://doi.org/10.1590/S1984-29612020029
  • Trevisan G., Cinco M., Trevisini S., Di Meo N., Ruscio M., Forgione P. & Bonin S. 2021. Borreliae part 2: Borrelia relapsing fever group and unclassified Borrelia. Biology 10(11):1117. <https://dx.doi.org/10.3390/biology10111117> <PMid:34827110>
    » https://doi.org/10.3390/biology10111117
  • Weck B.C., Serpa M.C.A., Labruna M.B. & Muñoz-Leal S. 2022. A novel genospecies of Borrelia burgdorferi Sensu Lato associated with cricetid rodents in Brazil. Microorganisms 10(2):204. <https://dx.doi.org/10.3390/microorganisms10020204> <PMid:35208659>
    » https://doi.org/10.3390/microorganisms10020204
  • Yoshinari N.H., Mantovani E., Bonoldi V.L.N., Marangoni R.G. & Gauditano G. 2010. Doença De Lyme-Símile Brasileira ou Síndrome Baggio Yoshinari: zoonose exótica e emergente transmitida por carrapatos. Revta Assoc. Méd. Bras. 56(3):363-369. <https://dx.doi.org/10.1590/s0104-42302010000300025>
    » https://doi.org/10.1590/s0104-42302010000300025

Publication Dates

  • Publication in this collection
    14 Apr 2023
  • Date of issue
    2023

History

  • Received
    13 Oct 2022
  • Accepted
    28 Oct 2022
Colégio Brasileiro de Patologia Animal - CBPA Pesquisa Veterinária Brasileira, Caixa Postal 74.591, 23890-000 Rio de Janeiro, RJ, Brasil, Tel./Fax: (55 21) 2682-1081 - Rio de Janeiro - RJ - Brazil
E-mail: pvb@pvb.com.br