Acessibilidade / Reportar erro

Chromosome number in germplasm accessions of Paspalum notatum (Gramineae)

Abstracts

Chromosome numbers are reported for 127 germplasm accessions of Paspalum notatum maintained by EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) in two research centers in Brazil. Most accessions were collected in their natural habitats in Southern Brazil. Tetraploidy (2n = 40 chromosomes) was predominant (91% of the accessions studied), confirming previous reports for the species. Eleven accessions with 2n = 20 chromosomes, although collected in the wild, are possibly derived from 'Pensacola' bahiagrass, commonly cultivated in the area since its introduction from the United States in the 60's, for the establishment of permanent pastures.


Números cromossômicos são relatados para 127 acessos de Paspalum notatum mantidos pela EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) em coleções de germoplasma em dois centros de pesquisa, no Brasil. A maioria dos acessos foi coletada em seus habitats naturais no Sul do Brasil. O nível tetraplóide (2n = 40) é predominante entre os acessos estudados (91%), confirmando ser esta a situação mais normal para a espécie. Onze acessos com 2n = 20 cromossomos, embora coletados na natureza, provavelmente descendem de populações exóticas da grama Pensacola, comumente cultivadas desde sua introdução no Sul do Brasil, vindas dos Estados Unidos, para cultivo de pastagens permanentes, na década de 60.


Chromosome number in germplasm accessions of Paspalum notatum (Gramineae)

Marisa T. Pozzobon and José Francisco M. Valls

Centro Nacional de Pesquisa de Recursos Genéticos e Biotecnologia, CENARGEN/EMBRAPA,

Caixa Postal 02372, 70770-900 Brasília, DF, Brasil. J.F.M.V. is the recipient of a CNPq fellowship.

Send correspondence to M.T.P.

ABSTRACT

Chromosome numbers are reported for 127 germplasm accessions of Paspalum notatum maintained by EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) in two research centers in Brazil. Most accessions were collected in their natural habitats in Southern Brazil.

Tetraploidy (2n = 40 chromosomes) was predominant (91% of the accessions studied), confirming previous reports for the species. Eleven accessions with 2n = 20 chromosomes, although collected in the wild, are possibly derived from ‘Pensacola’ bahiagrass, commonly cultivated in the area since its introduction from the United States in the 60’s, for the establishment of permanent pastures.

INTRODUCTION

The botanical composition of natural grassland communities in Brazil shows a high contribution of species of the genus Paspalum. A high proportion of livestock production is based on natural pastures containing species of this genus.

Paspalum notatum Flügge is the most common species of this genus in Southern Brazil. Its importance as a forage plant in the subtropics is widely recognized. The center of origin of the species, as suggested by Parodi (1937), covers Southern Brazil, Uruguay, Northeastern Argentina and Paraguay. Distinct biotypes are found in Brazil, according to climatic and/or soil factors. Several such biotypes dominate in the botanical composition of large areas of natural pastures, especially in the State of Rio Grande do Sul (Barreto, 1974). Many of them produce good quality forage and are highly resistant to grazing and trampling. However, part of these natural pastures are being progressively transformed for grain production. Inadequate agricultural systems are frequently leading to erosion and soil losses, and the reestablishment of a dense sward, with productive lines of P. notatum, may be a future necessity.

Tetraploid biotypes of P. notatum are obligate apomitics (Burton, 1948; Bashaw et al., 1970). Sexuality is restricted to P. notatum var. saurae (2n = 20), of which one cultivar, known as ‘Pensacola’ bahiagrass, was selected and improved (Burton, 1990) from plants accidentally introduced into the United States from South America. All the variation observed in‘ Pensacola’ bahiagrass in the Southern United States was also observed in plants naturally growing on a small island of the Paraná river in Argentina (Burton, 1967).

No native diploid plants of this species have been found in Brazil. In Rio Grande do Sul, tetraploid forms (most probably all apomitic) are predominant. Tetraploids are found up to the north of the country, and are known in Central and Southeastern Brazil as "Grama Batatais" (Valls and Pozzobon, 1987).

The breeding potential of distinct biotypes of P. notatum is being studied through intra- and interspecific hybridization (Urbani, 1987). Some biotypes have already been included in breeding programs (Forbes Jr. and Burton, 1961). Information on the phylogenetic relationships among different species of Paspalum has been obtained from such studies (Burson et al., 1973; Quarín and Burson, 1983; Quarín et al., 1984). Agronomic studies have identified promising biotypes and some of them have became commercial cultivars, such as ‘Pensacola’ bahiagrass. The Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) has accumulated germplasm with a broad array of morphotypes of P. notatum through field collection, especially in Southern Brazil. Such germoplasm is, presently, under morphological characterization and preliminary agronomic evaluation at the Centro de Pesquisa de Pecuária dos Campos Sul-brasileiros (CPPSUL), Bagé, Rio Grande do Sul State.

Apomitic reproduction has been considered normal for tetraploid P. notatum, while the sexuality of diploids has been linked to alogamy (Burton, 1955). As a consequence, basic information on the ploidy level of any new accession is important for the establishment of breeding programs, and also for determination of the most adequate procedures for multiplication of each accession.

The objective of this study was a thorough survey of chromosome numbers of the available accessions.

MATERIAL AND METHODS

Almost all accessions studied were collected in Southern and West Central Brazil. A few of them are old introductions, from Paraguay and the United States; one is of unknown origin and another is from Amapá State, in Northern Brazil (Table I). Voucher specimens of most accessions are deposited in the Centro Nacional de Pesquisa de Recursos Genéticos e Biotecnologia (CENARGEN) herbarium. Some accessions are maintained in a screenhouse at CENARGEN, and most of them are kept in field plots at CPPSUL.

Chromosome numbers were determined in meristematic cells of root tips taken from potted plants maintained in the screenhouse. Roots were pre-treated in a saturated solution of 1-bromonaphthalene for 2 h, and fixed in 3:1(alcohol:glacial acetic acid) for 24 h. They were then hydrolized in 1 N HCl at 60oC for 10 min, and transferred to a 2% pectinase solution for 45 min at room temperature. Staining followed the Feulgen technique. Roots were squashed on a slide in a drop of 2% aceto-orcein.

RESULTS AND DISCUSSION

More than 90% of the accessions had 2n = 40 chromosomes, and the remaining ones were diploid (2n = 20) (Table I). This species was initially reported to be tetraploid (Burton, 1940); however, diploid (2n = 20) as well as tetraploid (2n = 40) cytotypes were later found in Argentina (Saura, 1948). Triploids were also cited by Gould (1966) in a study of Mexican grasses. Until now only the tetraploid level had been reported for Brazilian accessions. This was confirmed for 16 P. notatum accessions from Rio Grande do Sul State (Fernandes et al., 1974) and for one accession from Rio Grande do Sul and four from Mato Grosso do Sul State (Honfi et al., 1990).

Natural occurrence of the diploid ‘Pensacola’ bahiagrass is so far considered to be restricted to Argentina, on the margins and islands of the Paraná river and its tributaries, east of Santa Fé and west of Entre Ríos and Corrientes provinces (Burton, 1967). Native diploid forms of P. notatum could bring additional variability to breeding programs.

Although the native germplasm studied is predominantly tetraploid and shows characteristics of apomitic lines, elite genotypes can also be selected through agronomic evaluation aiming at good forage-producing accessions. On the other hand, apomitic forms could also be used as a source of variability, as pollen donors in crosses with artificially duplicated tetraploid sexual plants of ‘Pensacola’, to produce new cultivars, well adapted to Brazil and eventually more competitive in Southern Brazil.

The diploid accessions were originally collected (Figure 1) in areas of Rio Grande do Sul increasingly occupied by annual crops during the last three decades, especially in the Northern and Northwestern regions of the state. These are the Planalto Médio and Missões regions (Barreto, 1974), where permanent pastures of‘ Pensacola’ bahiagrass are eventually incorporated into the crop rotation. Given the widespread cultivation of this grass in other areas of Southern Brazil and possible seed transportation by floods down the Uruguay and Jacuí rivers, it is likely that all the diploid accessions now found are just escapes from areas of cultivated pastures of‘ Pensacola’ bahiagrass located at high altitude in the northern parts of Rio Grande do Sul State.


Figure 1 - Rio Grande do Sul State with approximate sites of origin in nature of diploid Paspalum notatum accessions studied: 1. VNSh 4067, 2. VBoPrOl 4669, 3. VBoPrLg 4768, 4. VBoSnSv 10036, 5. VZnMrOvW 12342, 6. VZnW 12370, 7. VZnW 12391, VZnW 12409, 8. VZnW 12414, VZnW 12416, VGoMrOv 12830.

ACKNOWLEDGMENTS

Thanks are due to Ricardo Kornelius and Marcelo B. Paganella for technical assistance.

RESUMO

Números cromossômicos são relatados para 127 acessos de Paspalum notatum mantidos pela EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) em coleções de germoplasma em dois centros de pesquisa, no Brasil. A maioria dos acessos foi coletada em seus habitats naturais no Sul do Brasil.

O nível tetraplóide (2n = 40) é predominante entre os acessos estudados (91%), confirmando ser esta a situação mais normal para a espécie. Onze acessos com 2n = 20 cromossomos, embora coletados na natureza, provavelmente descendem de populações exóticas da grama Pensacola, comumente cultivadas desde sua introdução no Sul do Brasil, vindas dos Estados Unidos, para cultivo de pastagens permanentes, na década de 60.

REFERENCES

Barreto, I.L. (1974). O gênero Paspalum (Gramineae) no Rio Grande do Sul. Livre Docência thesis, Departamento de Fitotecnia da Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS.

Bashaw, E.C., Hovin, A.W. and Holt, E.C. (1970). Apomixis, its evolutionary significance and utilization in plant breeding. In: Proceedings of the 11th International Grassland Congress (Norman, M.J.T., ed.). University of Queensland Press, St. Lucia, pp. 245-248.

Burson, B.L., Lee, H. and Bennett, H.W. (1973). Genome relations between tetraploid Paspalum dilatatum and four diploid Paspalum species. Crop Sci. 13: 739-743.

Burton, G.W. (1940). A cytological study of some species in the genus Paspalum. J. Agric. Res. 60: 193-197.

Burton, G.W. (1948). The method of reproduction in common Bahiagrass, Paspalum notatum. J. Amer. Soc. Agron. 40: 443-452.

Burton, G.W. (1955). Breeding Pensacola bahiagrass, Paspalum notatum. I. Method of reproduction. Agron. J. 47: 311-314.

Burton, G.W. (1967). A search for the origin of Pensacola Bahiagrass. Econ. Bot. 21: 379-382.

Burton, G.W. (1990). Enhancing germplasm with mass selection. In: Advances in New Crops (Janick, J. and Simon, J.E., eds.). Timber Press, Portland, pp. 99-100.

Fernandes, M.I.B.M., Barreto, I.L., Salzano, F.M. and Sacchet, A.M.O.F. (1974). Cytological and evolutionary relationships in Brazilian forms of Paspalum (Gramineae). Caryologia 27: 455-465.

Forbes Jr., I. and Burton, G.W. (1961). Cytology of diploids, natural and induced tetraploids, and intraspecific hybrids of Bahiagrass, Paspalum notatum FLÜGGE. Crop. Sci. 1: 402-406.

Gould, F.W. (1966). Chromosome numbers of Mexican grasses. Can. J. Bot. 44: 1683-1696.

Honfi, A.I., Quarín, C.L. and Valls, J.F.M. (1990). Estudios cariológicos en gramíneas sudamericanas. Darwiniana 30: 87-94.

Parodi, L.R. (1937). Contribución al estudio de las gramíneas del género Paspalum de la flora uruguaya. Revista del Museo de La Plata, N.S., Bot. 1: 211-250.

Quarín, C.L. and Burson, B.L. (1983). Cytogenetic relations among Paspalum notatum var. saurae, P. pumilum, P. indecorum and P. vaginatum. Bot. Gaz. 144: 433-438.

Quarín, C.L., Burson, B.L. and Burton, G.W. (1984). Cytology of intra- and interspecific hybrids between two cytotypes of Paspalum notatum and P. cromyorrhizon. Bot. Gaz. 145: 420-426.

Saura, F. (1948). Cariología de gramíneas en Argentina. Rev. Fac. Agron. Vet. Buenos Aires 12: 51-67.

Urbani, M.H. (1987). Mejoramiento genético de una especie apomítica: P. notatum. In: Encontro Internacional sobre Melhoramento Genético de Paspalum (Anais). Nova Odessa, SP, pp. 67-68.

Valls, J.F.M. and Pozzobon, M.T. (1987). Variação apresentada pelos principais grupos taxonômicos de Paspalum com interesse forrageiro no Brasil. In: Encontro Internacional sobre Melhoramento Genético de Paspalum (Anais). Nova Odessa, SP, pp. 15-21.

(Received March 18, 1993)

Brazilian accession code (BRA-) Accession identification* Country**, state***, and localityLatitude Longitude Elevation 2n = 20 001112IAPAR-PG 6915USAN.A.N.A.N.A.007641VNSh 4067BRA, RS, Bom Jesus28o40’S050o26’W1000007803VBoPrOl 4669BRA, RS, Itaqui28o56’S056o16’W70007901VBoPrLg 4768BRA, RS, Osório29o57’S050o18’W25012351VBoSnSv 10036BRA, RS, Mostardas31o08’S050o55’W5017205VZnMrOvW 12342 BRA, RS, Dom Pedrito31o13’S050o58’W180017361VZnW 12370BRA, RS, Santana do Livramento 30o20’S056o15’W210017507VZnW 12391BRA, RS, Uruguaiana29o54’S057o17’W70017647VZnW 12409BRA, RS, Uruguaiana29o34’S056o48’W90017680VZnW 12414BRA, RS, Uruguaiana29o24’S056o42’W90017701VZnW 12416BRA, RS, Uruguaiana29o24’S056o42’W90018627VGoMrOv 12830BRA, RS, Uruguaiana29o24’S056o42’W902n = 40 001015IAPAR-PG 68107PRY N.A.N.A.N.A.001074IAPAR-PG 6925PRYN.A.N.A.N.A.001082IAPAR-PG 6924PRYN.A.N.A.N.A.001139IAPAR-PG 6907BRA, PR, CuritibaN.A.N.A.N.A.001147IAPAR-PG 6906BRA, SPN.A.N.A.N.A.001155IAPAR-PG 6905BRAN.A.N.A.N.A.006271VGzLeBo 9667BRA, RS, Uruguaiana30o12’S057o33’W70006301VGzLeBo 9684BRA, RS, Uruguaiana29o43’S057o01’W80006467VMrFrLw 9747BRA, RS, Alegrete29o50’S055o35’W190006513VMrFrLw 9782BRA, RS, Uruguaiana29o33’S056o47’W90006599VMrFrLw 9822BRA, RS, Santo Ângelo28o24’S054o18’W260006629VMrFrLw 9828BRA, RS, Santo Ângelo28o18’S054o15’W260006637VMrFrLw 9829BRA, RS, Santo Ângelo28o18’S054o15’W260006645VMrFrLw 9830BRA, RS, Santo Ângelo28o18’S054o15’W260007668VNSh 4077BRA, RS, Bom Jesus28o39’S050o28’W1000007676VNSh 4093BRA, RS, Vacaria28o22’S050o50’W900007684VNSh 4121BRA, RS, Vacaria (cult.)28o27’S050o58’W900007731VNSh 4186BRA, RS, Tupanciretá29o03’S053o50’W480007773VCoBu 4385BRA, RS, Ivoti29o36’S051o07’W200007820VBoPrOl 4700BRA, RS, Uruguaiana29o56’S057o10’W70007838VBoPrOl 4701BRA, RS, Uruguaiana29o56’S057o10’W70007854VBoPrOl 4736BRA, RS, Santana do Livramento30o27’S055o07’W120007889VBoPrLg 4752BRA, RS, Osório30o07’S050o36’W25007935BdBoMi 211 BRA, RS, São Miguel das Missões N.A.N.A.N.A.007943BdBoMi 227BRA, RS, S. Antônio das MissõesN.A.N.A.N.A.007951BdBoMi 229BRA, RS, ItaquiN.A.N.A.N.A.007978BdBoMi 235-BBRA, RS, São BorjaN.A.N.A.N.A.007986EEA 673BRA, RS, GuaíbaN.A.N.A.N.A.008028EEL 2735BRA, SC, LagesN.A.N.A.N.A.008052AReVi 1827BRA, RS, BagéN.A.N.A.N.A.008061AReVi 1941BRA, RS UruguaianaN.A.N.A.N.A.010006VDBdSv 10137BRA, SC, Laguna 28o22’S048o46’W15010944VBdZa 10629BRA, RS, Iraí27o15’S053o17’W200011011VGnMrBd 10648BRA, RS, São Luiz Gonzaga28o26’S054o36’W200011657DGoMi 263BRA, SC, Campo Belo do Sul27o55’S050o38’W1000011703DGoMi 302BRA, SC, Campo Belo do Sul27o47’S050o54’W850011754DGoMi 316BRA, SC, Capinzal27o24’S051o31’W600012254VMcRb 11664BRA, AP, Macapá00o01’N051o03’W15012271GnMr 1BRA, RS, Dom Pedrito31o12’S054o50’W180012297GnMr 5BRA, RS, Dom Pedrito31o15’S054o52’W220012301GnMr 6BRA, RS, Dom Pedrito31o08’S054o47’W120012335GnMr 9BRA, RS, Dom Pedrito31o20’S054o53’W175012491VQFdSv 11741BRA, MS, Três Lagoas20o46’S051o40’W330012505VQFdSv 11742BRA, MS, Três Lagoas20o46’S051o40’W330012564VQFdSv 11795BRA, MS, Sidrolândia21o05’S054o19’W470012637VQFdSv 11808BRA, MS, Caarapó22o25’S054o41’W310012815VQFdSv 11853BRA, MS, Iguatemi23o33’S054o15’W310012891VQFdSv 11883BRA, MS, Ponta Porã22o30’S055o26’W720013005VQFdSv 11914BRA, MS, Amambaí23o16’S055o27’W600013374VGoSv 11149BRA, PR, Quatro Barras25o19’S049o03’W920014206 VGoSv 11376BRA, PR, Guarapuava25o25’S051o47’W980014231VGoSv 11387BRA, SC, São Lourenço do Oeste26o23’S051o46’W950014249VGoSv 11388BRA, SC, São Lourenço do Oeste26o23’S051o46’W950014265VGoSv 11414BRA, PR, Pato Branco26o14’S052o40’W650014401VGoSv 11452BRA, PR, Palmas26o31’S051o55’W1050014583VGoSv 11538BRA, SC, Campos Novos27o21’S051o16’W880014656VGoSv 11553BRA, SC, Curitibanos27o19’S050o44’W850016381VMrCaW 12121BRA, SC, São Joaquim28o14’S049o58’W1200016390VMrCaW 12122BRA, SC, São Joaquim28o14’S049o58’W1200016454VMrCaW 12156BRA, SC, Lages28o08’S050o39’W930016489VMrCaW 12160BRA, RS, Vacaria28o21’S050o50’W910016497VMrCaW 12161BRA, RS, Vacaria28o21’S050o50’W910016501VMrCaW 12164BRA, RS, Vacaria28o20’S050o18’W880016551VZnMrCaW 12178BRA, RS, Soledade28o51’S052o26’W610016560VZnMrCaW 12179BRA, RS, Soledade28o51’S052o26’W610016586VZnMrCaW 12203BRA, RS, Santa Barbara do Sul28o29’S053o08’W570016608VZnMrCaW 12208BRA, RS, Ijuí28o22’S053o14’W410016705VZnMrCaW 12234BRA, RS, S. Antônio das Missões28o30’S055o14’W270016781VZnMrCaW 12248BRA, RS, São Borja28o55’S055o36’W210016811VZnMrCaW 12253BRA, RS, Itaqui28o59’S055o18’W200016845VZnMrCaW 12260BRA, RS, Itaqui29o02’S055o15’W200016900VZnMrCaW 12267BRA, RS, Santiago29o08’S054o53’W440016926VZnMrCaW 12273BRA, RS, Santa Maria28o49’S053o45’W180016934VZnMrCaW 12274BRA, RS, Santa Maria28o49’S053o45’W180016942VZnMrCaW 12275BRA, RS, Santa Maria28o49’S053o45’W180017019VZnMrCaW 12286BRA, RS, São Sepé29o00’S053o40’W250017051VZnMrCaW 12293BRA, RS, Caçapava do Sul30o25’S053o31’W250017132VZnMrOvW 12324BRA, RS, Dom Pedrito31o00’S054o35’W130017248VZnW 12353BRA, RS, Santana do Livramento30o48’S055o38’W140017281VZnW 12359BRA, RS, Santana do Livramento30o22’S056o03’W140017299VZnW 12360BRA, RS, Santana do Livramento30o22’S056o03’W140017302VZnW 12361BRA, RS, Santana do Livramento30o22’S056o03’W140017345VZnW 12368BRA, RS, Santana do Livramento30o20’S056o15’W220017353VZnW 12369BRA, RS, Santana do Livramento30o20’S056o15’W220017396VZnW 12374BRA, RS, Quaraí30o14’S056o28’W210017400VZnW 12375BRA, RS, Quaraí30o14’S056o28’W210017418VZnW 12376BRA, RS, Quaraí30o14’S056o28’W210017436VZnW 12377BRA, RS, Quaraí30o14’S056o28’W210017434VZnW 12378BRA, RS, Quaraí30o14’S056o28’W210017442VZnW 12379BRA, RS, Quaraí30o14’S056o28’W210017512VZnW 12392BRA, RS, Uruguaiana29o53’S057o19’W70017523VZnW 12393BRA, RS, Uruguaiana29o53’S057o19’W70017531VZnW 12394BRA, RS, Uruguaiana29o53’S057o19’W70017582VZnW 12401BRA, RS, Uruguaiana29o55’S057o19’W70017591VZnW 12402BRA, RS, Uruguaiana29o55’S057o19’W70017604VZnW 12403BRA, RS, Uruguaiana29o55’S057o19’W70017612VZnW 12405BRA, RS, Uruguaiana29o51’S057o07’W80017639VZnW 12408BRA, RS, Uruguaiana29o34’S056o48’W90017655VZnW 12410BRA, RS, Uruguaiana29o29’S056o42’W110017663VZnW 12411BRA, RS, Uruguaiana29o29’S056o42’W110017671VZnW 12412BRA, RS, Uruguaiana29o29’S056o42’W110017698VZnW 12415BRA, RS, Uruguaiana29o24’S056o42’W90017744VZnW 12426BRA, RS, São Luíz Gonzaga28o17’S054o56’W200017817VW 12448BRA, SC, Água Doce26o48’S051o42’W1140018210VMrLe 12472BRA, RS, Bagé31o18’S054o04’W250018350VGoMrOv 12750BRA, RS, São Gabriel30o24’S054o19’W150018368VGoMrOv 12751BRA, RS, São Gabriel30o24’S054o19’W150018376VGoMrOv 12752BRA, RS, São Gabriel30o24’S054o19’W150018384VGoMrOv 12753BRA, RS, São Gabriel30o24’S054o19’W150019232DBoMi 275BRA, SC, Campo Belo do Sul27o54’S050o44’W900019259IAPAR-PG 6912USAN.A.N.A.N.A.019267IAPAR-PG 6928PRYN.A.N.A.N.A.019275IAPAR-PG 6942N.A.N.A.N.A.N.A.019283IAPAR-PG 6998PRYN.A.N.A.N.A.019321EEL 1244USAN.A.N.A.N.A.
Table I - Chromosome numbers of Paspalum notatum accessions: 2n = 20, first 12; 2n = 40, all the rest.

*Collectors (or Institutions): A = A.C. Allem, Bd = I.I. Boldrini, Bo = S.C. Boechat, Bu = B.L. Burson, Ca = T.S. Canto, Co = L. Coradin, D = M. Dall’Agnol, EEA = Estação Experimental Agronômica da Universidade Federal do Rio Grande do Sul, EEL = Estação Experimental de Lages da Empresa Catarinense de Pesquisa Agropecuária, Fd = M.S. França Dantas, Fr = J.M.O. Freitas, Gn = J.O.N. Gonçalves, Go = K.E. Gomes, Gz = S.O. Gonzaga, IAPAR-PG = Estação Experimental de Ponta Grossa do Instituto Agronômico do Paraná, Le = E. Lemos, Lg = H.M. Longhi, Lw = H.M. Longhi-Wagner, Mc = S. Mochiutti, Mi = S.T.S. Miotto, Mr = C.O.C. Moraes, N = C. Nabinger, Ol = M.L.A.A. Oliveira, Ov = J.C. Oliveira, Pr = A.I.C. Pereira, Q = C.L. Quarin, Rb = B. Rabelo, Re = J.C.L. Reis, Sh = V.P. Schell da Silva, Sn = A.M.P.V. Santos, Sv = G.P. Silva, V = J.F.M. Valls, Vi = J.G.A. Vieira, W = W.L. Werneck, Za = A.C.A. Zanatta, Zn = A. Zanin.

**Countries: BRA = Brazil, PRY = Paraguay, USA = United States of America.

***States: AP = Amapá, MS = Mato Grosso do Sul, PR = Paraná, RS = Rio Grande do Sul, SC = Santa Catarina, SP = São Paulo.

N.A.: Not available.

  • Barreto, I.L. (1974). O gênero Paspalum (Gramineae) no Rio Grande do Sul. Livre Docência thesis, Departamento de Fitotecnia da Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS.
  • Burson, B.L., Lee, H. and Bennett, H.W. (1973). Genome relations between tetraploid Paspalum dilatatum and four diploid Paspalum species. Crop Sci. 13: 739-743.
  • Burton, G.W. (1940). A cytological study of some species in the genus Paspalum J. Agric. Res. 60: 193-197.
  • Burton, G.W. (1948). The method of reproduction in common Bahiagrass, Paspalum notatum J. Amer. Soc. Agron. 40: 443-452.
  • Burton, G.W. (1955). Breeding Pensacola bahiagrass, Paspalum notatum I. Method of reproduction. Agron. J. 47: 311-314.
  • Burton, G.W. (1967). A search for the origin of Pensacola Bahiagrass. Econ. Bot. 21: 379-382.
  • Fernandes, M.I.B.M., Barreto, I.L., Salzano, F.M. and Sacchet, A.M.O.F. (1974). Cytological and evolutionary relationships in Brazilian forms of Paspalum (Gramineae). Caryologia 27: 455-465.
  • Forbes Jr., I. and Burton, G.W. (1961). Cytology of diploids, natural and induced tetraploids, and intraspecific hybrids of Bahiagrass, Paspalum notatum FLÜGGE. Crop. Sci. 1: 402-406.
  • Gould, F.W. (1966). Chromosome numbers of Mexican grasses. Can. J. Bot. 44: 1683-1696.
  • Honfi, A.I., Quarín, C.L. and Valls, J.F.M. (1990). Estudios cariológicos en gramíneas sudamericanas. Darwiniana 30: 87-94.
  • Parodi, L.R. (1937). Contribución al estudio de las gramíneas del género Paspalum de la flora uruguaya. Revista del Museo de La Plata, N.S., Bot. 1: 211-250.
  • Quarín, C.L. and Burson, B.L. (1983). Cytogenetic relations among Paspalum notatum var. saurae, P. pumilum, P. indecorum and P. vaginatum. Bot. Gaz. 144: 433-438.
  • Quarín, C.L., Burson, B.L. and Burton, G.W. (1984). Cytology of intra- and interspecific hybrids between two cytotypes of Paspalum notatum and P. cromyorrhizon. Bot. Gaz. 145: 420-426.
  • Saura, F. (1948). Cariología de gramíneas en Argentina. Rev. Fac. Agron. Vet Buenos Aires 12: 51-67.
  • Urbani, M.H. (1987). Mejoramiento genético de una especie apomítica: P. notatum. In: Encontro Internacional sobre Melhoramento Genético de Paspalum (Anais). Nova Odessa, SP, pp. 67-68.
  • Valls, J.F.M. and Pozzobon, M.T. (1987). Variação apresentada pelos principais grupos taxonômicos de Paspalum com interesse forrageiro no Brasil. In: Encontro Internacional sobre Melhoramento Genético de Paspalum (Anais). Nova Odessa, SP, pp. 15-21.
  • Publication Dates

    • Publication in this collection
      13 Oct 1998
    • Date of issue
      Mar 1997

    History

    • Received
      18 Mar 1993
    Sociedade Brasileira de Genética Rua Capitão Adelmio Norberto da Silva, 736, 14025-670 Ribeirão Preto SP - Brazil, Tel. / Fax: +55 16 621.8540, 620.1251, 620.1253 - Ribeirão Preto - SP - Brazil
    E-mail: sede@sgb.org.br