Acessibilidade / Reportar erro

Prediction of pH and color in pork meat using VIS-NIR Near-infrared Spectroscopy (NIRS)

Abstract

The potential of near-infrared spectroscopy (NIRS) to predict the physicochemical characteristics of the porcine longissimus dorsi (LD) muscle was evaluated in comparison to the standard methods of pH and color for meat quality analysis compared to the pH results with Colorimeter and pH meter. Spectral information from each sample (n = 77) was obtained as the average of 32 successive scans acquired over a spectral range from 400 - 2498 nm with a 2 - nm gap for calibration and validation models. Partial least squares (PLS) regression was used for each individual model. An R2 and a residual predictive deviation (RPD) of 0.67/1.7, 0.86/2, and 0.76/1.9 were estimated for color parameters L*, a *, and b*, respectively. Final pH had an R2 of 0.67 and a RPD of 1.6. NIRS showed great potential to predict color parameter a * of porcine LD muscle. Further studies with larger samples should help improve model quality.

Keywords:
carcasses; color analysis; longissimus dorsi; partial least squares regression; pH analysis

1 Introduction

Meat is one of the most nutritional foods in the human diet ( Kamruzzaman et al., 2012 Kamruzzaman, M., Barbin, D., ElMasry, G., Sun, D. W., & Allen, P. (2012). Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat. Innovative Food Science & Emerging Technologies, 16, 316-325. http://dx.doi.org/10.1016/j.ifset.2012.07.007.
http://dx.doi.org/10.1016/j.ifset.2012....
) thus, clear parameters of pork meat quality are necessary for the consumer to be able to evaluate the quality of the product at the point of purchase ( Joo et al., 2013 Joo, S. T., Kim, G. D., Hwang, Y. H., & Ryu, Y. C. (2013). Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Science, 95(4), 828-836. http://dx.doi.org/10.1016/j.meatsci.2013.04.044. PMid:23702339.
http://dx.doi.org/10.1016/j.meatsci.201...
). Meat quality depends on several factors, including animal nutrition, environmental conditions, genetics and sex of the animal, production system, pre-slaughter management and slaughter procedure ( Rosenvold & Andersen, 2003 Rosenvold, K., & Andersen, H. J. (2003). Factors of significance for pork quality: a review. Meat Science, 64(3), 219-237. http://dx.doi.org/10.1016/S0309-1740(02)00186-9. PMid:22063008.
http://dx.doi.org/10.1016/S0309-1740(02...
), as well as post-mortem glycolysis, which may influence the physical characteristics of the meat ( van Oeckel et al., 1999 van Oeckel, M. J., Warnants, N., & Boucque, C. V. (1999). Measurement and prediction of pork colour. Meat Science, 52(4), 347-354. http://dx.doi.org/10.1016/S0309-1740(99)00012-1. PMid:22062695.
http://dx.doi.org/10.1016/S0309-1740(99...
). There is no predefined meat quality standard: the quality of meat is associated with characteristics that are closely related to muscle pH ( Pearce et al., 2011 Pearce, K. L., Rosenvold, K., Andersen, H. J., & Hopkins, D. L. (2011). Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes - a review. Meat Science, 89(2), 111-124. http://dx.doi.org/10.1016/j.meatsci.2011.04.007. PMid:21592675.
http://dx.doi.org/10.1016/j.meatsci.201...
), and acceptance of the meat by the consumer often results from the visual evaluation of its color ( Barbut et al., 2008 Barbut, S., Sosnicki, A. A., Lonergan, S. M., Knapp, T., Ciobanu, D. C., Gatcliffe, L. J., Huff-Lonergan, E., & Wilson, E. W. (2008). Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat. Meat Science, 79(1), 46-63. http://dx.doi.org/10.1016/j.meatsci.2007.07.031. PMid:22062597.
http://dx.doi.org/10.1016/j.meatsci.200...
). However, standard methods for quality evaluation of meat products, such as color and pH, are often rather imprecise and time consuming. Near-infrared spectroscopy (NIRS) is fast, reliable, accurate and inexpensive ( Prevolnik et al., 2004 Prevolnik, M., Čandek-Potokar, M., & Škorjanc, D. (2004). Ability of NIR spectroscopy to predict meat chemical composition and quality: a review. Czech Journal of Animal Science, 49(11), 500-510. http://dx.doi.org/10.17221/4337-CJAS.
http://dx.doi.org/10.17221/4337-CJAS ...
; Teye et al., 2013 Teye, E., Xing-yi, H., & Newlove, A. (2013). Review on the potential use of Near Infrared Spectroscopy (NIRS) for the measurement of chemical residues in food. American Journal of Food Science and Technology, 1, 1-8. http://dx.doi.org/10.12691/ajfst-1-1-1.
http://dx.doi.org/10.12691/ajfst-1-1-1 ...
) and has great potential as a substitute for chemical composition analysis of meat and meat products ( Andrés et al., 2007 Andrés, S., Murray, I., Navajas, E. A., Fisher, A. V., Lambe, N. R., & Bünger, L. (2007). Prediction of sensory characteristics of lamb meat samples by near infrared reflectance spectroscopy. Meat Science, 76(3), 509-516. http://dx.doi.org/10.1016/j.meatsci.2007.01.011. PMid:22060994.
http://dx.doi.org/10.1016/j.meatsci.200...
).

A number of studies on the chemical composition of pork meat used NIRS, in the reflection and absorption modes ( Barlocco et al., 2006 Barlocco, N., Vadell, A., Ballesteros, F., Galietta, G., & Cozzolino, D. (2006). Predicting intramuscular fat, moisture, and Warner‐Bratzler shear force in pork muscle using near‐infrared spectroscopy. Animal Science (Penicuik, Scotland) , 82(01), 111-116. http://dx.doi.org/10.1079/ASC20055.
http://dx.doi.org/10.1079/ASC20055 ...
; Chan et al., 2002 Chan, D. E., Walker, P. N., & Mills, E. W. (2002). Prediction of pork quality characteristics using visible and near‐infrared spectroscopy. Transactions of the ASAE. American Society of Agricultural Engineers, 45, 1519-1527. http://dx.doi.org/10.13031/2013.11044.
http://dx.doi.org/10.13031/2013.11044 ...
; Horiuchi et al., 1999 Horiuchi, A., Chikio, M., Murohusi, A., Kawarazaki, T., Suzuki, S., Maruyama, T., & Sinohara, K. (1999). Near‐infrared spectroscopy determination of physical and chemical characteristics in pork muscles Bull. Bulletin of Shizuoka Swine and Poultry Experiment Station , 10, 9‐13. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=JP2000000256
http://agris.fao.org/agris-search/searc...
; Lanza, 1983 Lanza, E. (1983). Determination of moisture, protein, fat, and calories in raw pork and beef by near‐infrared spectroscopy. Journal of Food Science, 48(2), 471-474. http://dx.doi.org/10.1111/j.1365-2621.1983.tb10769.x.
http://dx.doi.org/10.1111/j.1365-2621.1...
; Savenije et al., 2006 Savenije, B., Geesink, G. H., Van der Palen, J. G. P., & Hemke, G. (2006). Prediction of pork quality using visible/near‐infrared reflectance spectroscopy. Meat Science, 73(1), 181-184. http://dx.doi.org/10.1016/j.meatsci.2005.11.006. PMid:22062068.
http://dx.doi.org/10.1016/j.meatsci.200...
; Tøgersen et al., 1999 Tøgersen, G., Isaksson, T., Nilsen, B. N., Bakker, E. A., & Hildrum, K. I. (1999). On‐line NIR analysis of fat, water, and protein in industrial‐scale ground meat batches. Meat Science, 51(1), 97-102. http://dx.doi.org/10.1016/S0309-1740(98)00106-5. PMid:22061541.
http://dx.doi.org/10.1016/S0309-1740(98...
). The differences observed across studies may be related to differences in instrument calibration, sample size, sampling location, statistical methodology, and physical conditions at the sampling locations (industry or laboratory) ( Kapper et al., 2012a Kapper, C., Klont, R. E., Verdonk, J., Williams, P., & Urlings, H. A. P. (2012a). Prediction of pork quality with near infrared spectroscopy (NIRS) 2. Feasibility and robustness of NIRS measurements under production plant conditions. Meat Science, 91(3), 300-305. http://dx.doi.org/10.1016/j.meatsci.2012.02.006. PMid:22405914.
http://dx.doi.org/10.1016/j.meatsci.201...
). Other studies used NIRS for meat color evaluation ( Kang et al., 2001 Kang, J. O., Park, J. Y., & Choy, Y. H. (2001). Effect of Grinding on Color and Chemical Composition of Pork Sausages by Near Infrared Spectrophotometric Analyses. Asian-Australasian Journal of Animal Sciences, 14(6), 858-861. http://dx.doi.org/10.5713/ajas.2001.858.
http://dx.doi.org/10.5713/ajas.2001.858...
; Liu et al., 2004 Liu, Y., Lyon, B. G., Windham, W. R., Lyon, C. E., & Savage, E. M. (2004). Prediction of Physical, Color, and Sensory Characteristics of Broiler Breasts by Visible/Near Infrared Reflectance Spectroscopy. Poultry Science, 83(8), 1467-1474. http://dx.doi.org/10.1093/ps/83.8.1467. PMid:15339027.
http://dx.doi.org/10.1093/ps/83.8.1467 ...
; Roza-Delgado et al., 2013 Roza-Delgado, B., Soldado, A., Oliveira, A. F. G. F., Martínez-Fernández, A., & Argamentería, A. (2013). Assessing the value of a portable near infrared spectroscopy sensor for predicting pork meat quality traits of “Asturcelta Autochthonous Swine Breed”. Food Analytical Methods, 7, 1-6. http://dx.doi.org/10.1007/s12161-013-9611-y.
http://dx.doi.org/10.1007/s12161-013-96...
; Xing et al., 2007 Xing, J., Ngadi, M., Gunenc, A., Prasher, S., & Gariepy, C. (2007). Use of visible spectroscopy for quality classification of intact pork meat. Journal of Food Engineering , 82(2), 135-141. http://dx.doi.org/10.1016/j.jfoodeng.2007.01.020.
http://dx.doi.org/10.1016/j.jfoodeng.20...
). In addition, NIRS was used to predict the pH of pork meat ( Prieto et al., 2009 Prieto, N., Roehe, R., Lavin, P., Batten, G., & Andres, S. (2009). Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Science, 83(2), 175-186. http://dx.doi.org/10.1016/j.meatsci.2009.04.016. PMid:20416766.
http://dx.doi.org/10.1016/j.meatsci.200...
). The objective of this work was to develop and evaluate prediction equations, based on measurements obtained in the laboratory, for a rapid definition of the parameters of pH and color in pork quality.

2 Materials and methods

2.1 Meat samples

Seventy-seven male and female commercial hybrid swines with average live weight of 110.6 kg were slaughtered according to Brazilian regulations, and their carcasses were processed according to standard slaughter guidelines. Carcasses were then chilled (0-2 °C) for 24 h and meat samples were collected from the (LD) muscle between the 12th and 13th ribs. Samples were transported under refrigeration to the Universidade Estadual de Londrina (Londrina State University – UEL) Animal Science Laboratory, Londrina, Parana State, Brazil. Samples were sliced to 25 - mm thick slices for measuring color and final pH using the conventional methodology (see below) and NIRS.

2.2 Conventional measurements of color (CIE L*a* b*) and pH

Meat color was evaluated with a portable Minolta® CR-10 colorimeter (Konica Minolta, Inc., Osaka, Japan) at 48 h post-mortem, when the biochemical changes in meat can be perceived ( Kim et al., 2014 Kim, Y. H. B., Warner, R. D., & Rosenvold, K. (2014). Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: a review. Animal Production Science, 54(4), 375-395. http://dx.doi.org/10.1071/AN13329.
http://dx.doi.org/10.1071/AN13329 ...
). Meat color was expressed in the three parameters (lightness [L*], redness [a*], and yellowness [b*]) developed by the Comission Internationale de l'Eclairage (CIE) ( Commission Internationale de l’Eclairage, 1978 Commission Internationale de l’Eclairage – CIE. (1978). Recommendations on uniform color spaces, color difference equations, psychometric color terms (15th ed., Supplement No. 2). Paris: CIE Publication, Bureau Central de la CIE. ; Honikel, 1998 Honikel, K. O. (1998). Reference methods for the assessment of physical characteristics of meat. Meat Science, 49(4), 447-457. http://dx.doi.org/10.1016/S0309-1740(98)00034-5. PMid:22060626.
http://dx.doi.org/10.1016/S0309-1740(98...
; Karamucki et al., 2011 Karamucki, T., Gardzielewska, J., Rybarczyk, A., Jakubowska, M., & Natalczyk-Szymkowska, W. (2011). Usefulness of selected methods of colour change measurement for pork quality assessment. Czech Journal of Food Sciences, 29(3), 212-218. http://dx.doi.org/10.17221/191/2010-CJFS.
http://dx.doi.org/10.17221/191/2010-CJF...
). Final pH values were measured 24 hours after slaughter using a Testo 205 pH meter (Testo AG, Lenzkirch, Germany).

2.3 NIR spectral measurement

Spectral information from each sample was obtained as the mean of 32 successive scans in the reflectance mode (log 1 / R) over a 400 - 2498 nm spectral range, using an XDS™ Rapid Content Analyzer (Foss A/S, Hillerød, Denmark). The surface cell moisture was cleaned after each measurement by cleaning with ethanol (70% v / v) and following of distilled water. The dataset included 77 meat samples divided in two groups, the first consisting of 50 samples for the calibration model (training dataset) and another group of 27 independent samples for the validation model (testing dataset).

2.4 Statistical analysis and partial least squares (PLS) calibration model

Spectral data were analyzed with Unscrambler software version 9.7 (Camo, Trondheim, Norway). Partial least squares (PLS) regression was used for statistical evaluation of spectral measurements and the data are expressed as mean and standard deviation and variation coefficient.

PLS regression is a statistical method used to predict a set of independent variables, framing a predictor matrix (n samples + w wavelengths), by reducing the number of original predictors and the dimensionality of the regression problem, compacting the number of predictors to a new variable latent thus denominated ( Geladi & Kowalski, 1986 Geladi, P., & Kowalski, B. R. (1986). Partial least squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. http://dx.doi.org/10.1016/0003-2670(86)80028-9.
http://dx.doi.org/10.1016/0003-2670(86)...
).

The calibration model developed was based on equation 1 (y = Xb + E), where y is the unit matrix for instrumental (n samples × 1), X is the predictor unit matrix (n samples × w wavelengths), b demonstrate the coefficient unit matrix obtained from the PLS analysis, and E signify the unit matrix with the residual information that is not contained in the previous predict ( Osborne et al., 1993 Osborne, B. G., Fearn, T., & Hindle, P. H. (1993). Practical NIR spectroscopy: With applications in food and beverage analysis (2nd ed.). Harlow: Longman Scientific & Technical. ). The ideal value of latent variables was found by the minimum prediction value of the summation of squares prediction error (PRESS) ( Elmasry et al., 2011 Elmasry, G., Sun, D., & Allen, P. (2011). Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Research International , 44(9), 2624-2633. https://doi.org/10.1016/j.foodres.2011.05.001.
https://doi.org/10.1016/j.foodres.2011....
).

The data quality of the statistical set was analyzed for the analysis of the validation set for each model, based on the proportion coefficient of determination (R 2), the mean square error of calibration (RMSEC), mean square error of cross-validation (RMSECV) ( Geesink et al., 2003 Geesink, G. H., Schreutelkamp, F. H., Frankhuizen, R., Vedder, H. W., Faber, N. M., Kranen, R. W., & Gerritzen, M. A. (2003). Prediction of pork quality attributes from near infrared reflectance spectra. Meat Science, 65(1), 661-668. http://dx.doi.org/10.1016/S0309-1740(02)00269-3. PMid:22063261.
http://dx.doi.org/10.1016/S0309-1740(02...
). The equations of evaluation of the prediction model were also determinants for assessing the quality of the model in cross-validation ( Balage et al., 2015 Balage, J. M., Luz e Silva, S., Gomide, C. A., Bonin, M. N., & Figueira, A. C. (2015). Predicting pork quality using Vis/NIR spectroscopy. Meat Science, 108, 37-43. http://dx.doi.org/10.1016/j.meatsci.2015.04.018. PMid:26021598.
http://dx.doi.org/10.1016/j.meatsci.201...
).

The PLS regression models were constructed so as to maximize the data variation capacity with all preformulation data using the leave-one-out cross-validation (LOOCV), which is a model validation technique to evaluate the validity External. The corresponding quadratic cross-validation error (RMSECV), cross-validation prediction errors and PLS regression are respectively obtained ( Chen et al., 2005 Chen, D., Shao, X., Hu, B., & Su, Q. (2005). Simultaneous wavelength selection and outlier detection in multivariate regression of near-infrared spectra. Analytical Sciences , 21(2), 161-166. http://dx.doi.org/10.2116/analsci.21.161. PMid:15732477.
http://dx.doi.org/10.2116/analsci.21.16...
). The residuals of each model were used to construct the prediction model and calculate the (RMSECV) to determine the best predictive efficiency model for each characteristic, being the lowest value for each formula ( Hubert & Branden, 2003 Hubert, M., & Branden, K. V. (2003). Robust methods for partial least squares regression. Journal of Chemometrics, 17(10), 537-549. http://dx.doi.org/10.1002/cem.822.
http://dx.doi.org/10.1002/cem.822 ...
).

In the cross-validation process, the model was evaluated for its prediction capability using the determination coefficient of calibration (R2c), standard error of calibration (SEC), determination coefficient of cross-validation (R2cv), and standard error of cross-validation (SECV) ( Qu et al., 2005 Qu, H., Ou, D., & Cheng, Y. (2005). Background correction in near-infrared spectra of plant extracts by orthogonal signal correction. Journal of Zhejiang University. Science. B., 6(8), 838-843. http://dx.doi.org/10.1631/jzus.2005.B0838. PMid:16052720.
http://dx.doi.org/10.1631/jzus.2005.B08...
).

The predictive capacity of the equations were evaluated using residual prediction deviation value (RPD) ( Williams, 1987 Williams, P. C. (1987). Implementation of near-infrared technology. In: P. Williams & K. Norris (Ed.), Near-infrared technology in the agricultural and food industries (2nd ed., pp. 145-169). St. Paul: American Association of Cereal Chemists Inc. ). The residual predictive deviation (RPD), calculated as the ratio of the standard deviation of the reference parameters chemistry (SD) and the standard error of cross-validation (SD/SECV) its considered excellent when ≥ 3. In addition, the RPD should ideally be at least three, taking into account that the variation in the reference data is low, the values for R2 and RPD cannot be high ( Pérez-Marín et al., 2004 Pérez-Marín, D. C., Garrido-Varo, A., Guerrero-Ginel, J. E., & Gómez-Cabrera, A. (2004). Near-infrared reflectance spectroscopy (NIRS) for the mandatory labelling of compound feedingstuffs: chemical composition and open-declaration. Animal Feed Science and Technology, 116(3-4), 333-349. http://dx.doi.org/10.1016/j.anifeedsci.2004.05.002.
http://dx.doi.org/10.1016/j.anifeedsci....
; Williams & Sobering, 1996 Williams, P. C., & Sobering, D. (1996). How do we do it: a brief summary of the methods we use in developing near infrared calibrations. In: A. M. C. Davies & P. C. Williams (Eds.), Near infrared spectroscopy: the futurewaves (pp. 185-188). Chichester: NIR Publications. ).

The range error ratio (RER) is the range of reference techniques values without a predictive set for RMSEP ( Pérez-Marín et al., 2004 Pérez-Marín, D. C., Garrido-Varo, A., Guerrero-Ginel, J. E., & Gómez-Cabrera, A. (2004). Near-infrared reflectance spectroscopy (NIRS) for the mandatory labelling of compound feedingstuffs: chemical composition and open-declaration. Animal Feed Science and Technology, 116(3-4), 333-349. http://dx.doi.org/10.1016/j.anifeedsci.2004.05.002.
http://dx.doi.org/10.1016/j.anifeedsci....
). The (RER) value is obtained by calculating the division of the concentration amplitude of an analyte by the mean square error of calibration (RMSECV), where a model with ratio of error range (RER) values < 3 has small predictive capability, models with RER between 3 and 10 have low to moderate practical utility, and RER values > 10 indicate good practical utility ( Williams, 1987 Williams, P. C. (1987). Implementation of near-infrared technology. In: P. Williams & K. Norris (Ed.), Near-infrared technology in the agricultural and food industries (2nd ed., pp. 145-169). St. Paul: American Association of Cereal Chemists Inc. ). According to Millmier et al. (2000) Millmier, A., Lorimor, J., Hurburgh, C. Jr, Fulhage, C., Hattey, J., & Zhang, H. (2000). Near-infrared sensing of manure nutrients. Transactions of the ASAE. American Society of Agricultural Engineers, 43(4), 903-908. http://dx.doi.org/10.13031/2013.2986.
http://dx.doi.org/10.13031/2013.2986 ...
, RER values > 12 indicate high predictability.

An R2 value of 0.80 is a referential measure for concrete multiple regression models ( Shiranita et al., 2000 Shiranita, K., Hayashi, K., Otsubo, A., Tsuneharu Miyajima, & Takiyama, R. (2000). Grading meat quality by image processing. Pattern Recognition, 33(1), 97-104. http://dx.doi.org/10.1016/S0031-3203(99)00035-7.
http://dx.doi.org/10.1016/S0031-3203(99...
). Reliability analysis indicates that a RPD > 3 and RER > 10 are required to improve the quality analysis indicately a good classification ( Dagnew et al., 2004 Dagnew, M. D., Crowe, T. G., & Schoenau, J. J. (2004). Measurement of nutrients in Saskatchewan hog manures using near-infrared spectroscopy. Canadian Biosystems Engineering , 46, 33-37. Retrieved from http://www.csbe-scgab.ca/docs/journal/46/c0308.pdf
http://www.csbe-scgab.ca/docs/journal/4...
).

3 Results and discussion

Descriptive statistics of meat quality attributes are presented in Table 1 . The color parameter a* presented a better variation of data than the others, and the standard deviation (SD) was 27.8% of the difference between the maximum and minimum values of this parameter, indicating that the data can guarantee a significant calibration.

Table 1
Descriptive statistics for color parameters (L*, a *, b*) and final pH (pHu) of porcine longissimus dorsi muscle determined by conventional methods (colorimeter).

The mean lightness of meat samples measured with a colorimeter was 54.9 ( Table 1 ), indicating that this sample of pork meat was pale-colored ( Warner et al., 1997 Warner, R. D., Kauffman, R. G., & Greaser, M. L. (1997). Muscle protein changes post mortem in relation to pork quality traits. Meat Science , 45(3), 339-352. http://dx.doi.org/10.1016/S0309-1740(96)00116-7. PMid:22061472.
http://dx.doi.org/10.1016/S0309-1740(96...
). The mean values for color parameters a* and b* ( Table 1 ) are similar to those reported by van der Wal et al. (1988) van der Wal, P. G., Bolink, A. H., & Merkus, G. S. M. (1988). Differences in quality characteristics of normal, PSE and DFD pork. Meat Science, 24(1), 79-84. http://dx.doi.org/10.1016/0309-1740(89)90009-0. PMid:22055811.
http://dx.doi.org/10.1016/0309-1740(89)...
, who considered a* and b* values of 6.3 and 13.7, respectively, as normal for pork meat. Likewise, final pH ( Table 1 ) had a mean value within the normal range of 5.4-5.8 suggested by Fischer (2007) Fischer, K. (2007). Drip loss in pork: influencing factors and relation to further meat quality traits, A review. Journal of Animal Breeding and Genetics , 124(Suppl. 1), 12-18. http://dx.doi.org/10.1111/j.1439-0388.2007.00682.x. PMid:17988246.
http://dx.doi.org/10.1111/j.1439-0388.2...
as normal for pork LD.

The NIRS regression model ( Table 2 ) showed good predictive value for color parameter a*, with an R 2 of 0.86, but a low RPD, as an RPD around 2 indicates that the equation is promising but should be improved. Those values were similar to the R 2 of 0.82 and RPD of 2.6 reported by Balage et al. (2015) Balage, J. M., Luz e Silva, S., Gomide, C. A., Bonin, M. N., & Figueira, A. C. (2015). Predicting pork quality using Vis/NIR spectroscopy. Meat Science, 108, 37-43. http://dx.doi.org/10.1016/j.meatsci.2015.04.018. PMid:26021598.
http://dx.doi.org/10.1016/j.meatsci.201...
for a*, also considered low by those authors. The prediction equation for L* also yielded R2 and RPD values ( Table 2 ) that were unsatisfactory, and similar to those reported by Kapper et al. (2012b) Kapper, C., Klont, R. E., Verdonk, J., & Urlings, H. A. P. (2012b). Prediction of pork quality with near infrared spectroscopy (NIRS): 1 Feasibility and robustness of NIRS measurements at laboratory scale. Meat Science, 91(3), 294-299. http://dx.doi.org/10.1016/j.meatsci.2012.02.005. PMid:22410119.
http://dx.doi.org/10.1016/j.meatsci.201...
, measuring 685 pork LD samples from four slaughterhouses (R2 = 0.70 and RPD = 1.82). Likewise, for color parameter b* the correlation between the model standard deviation and the observed standard deviation was weak, as shown by the values of R2 and RPD in Table 2 . Similar weak correlation equation values were reported by Čandek-Potokar et al. (2006) Čandek-Potokar, M., Prevolnik, M., & Škrlep, M. (2006). Ability of near infrared spectroscopy to predict pork technological traits. Journal of Near Infrared Spectroscopy, 14(4), 269-277. http://dx.doi.org/10.1255/jnirs.644.
http://dx.doi.org/10.1255/jnirs.644 ...
, using NIRS to predict pork quality traits (R2 = 0.76 and RPD = 1.6). Finally, the poor performance of the calibration parameter for final pH ( Table 2 ) may have been due to the small variability of final pH in the samples, as Hoving-Bolink et al. (2005) Hoving-Bolink, A. H., Vedder, H. W., Merks, J. W. M., de Klein, W. J. H., Reimert, H. G. M., Frankhuizen, R., van den Broek, W. H. A. M., & Lambooij, E. (2005). Perspective of NIRS measurements early post mortem for prediction of pork quality. Meat Science , 69(3), 417-423. http://dx.doi.org/10.1016/j.meatsci.2004.08.012. PMid:22062979.
http://dx.doi.org/10.1016/j.meatsci.200...
argued that a large number of samples are needed to minimize the effects of pork meat variation and to improve the quality of prediction equations. Andersen et al. (1999) Andersen, J. R., Borggaard, C., Rasmussen, A. J., & Houmøller, L. P. (1999). Optical measurements of pH in meat. Meat Science, 53(2), 135-141. http://dx.doi.org/10.1016/S0309-1740(99)00045-5. PMid:22063090.
http://dx.doi.org/10.1016/S0309-1740(99...
found similar values in the prediction model for pH (R2 = 0.62 and RPD = 1.66) of processed pork meat.

Table 2
NIRS calibration and prediction statistics for color parameters (L *, a*, b*) and final pH of porcine longissimus dorsi muscle.

As shown in Table 2 , the protein prediction model required 16 latent variables for prediction and 11 for cross validation for the parameter of model a*, which could be an indication of overlap and presence of noise in the model. As for the other parameters of color and pH, the orthogonal data presented lower values of latent variables for validation and cross-validation in the different models of latent variables of color L* and b* and pH, being L* 5 and 3, b* 6 and 6 and 5 and 5, respectively. The value obtained for latent variables can be changed by the measured attribute difference ( Burger & Geladi, 2006 Burger, J., & Geladi, P. (2006). Hyperspectral NIR imaging for calibration and prediction: A comparison between image and spectrometer data for studying organic and biological samples. The Analyst, 131(10), 1152-1160. http://dx.doi.org/10.1039/b605386f. PMid:17003864.
http://dx.doi.org/10.1039/b605386f ...
).

The models developed for color L *, a *, b * and pH presented mean values for RER with 9.4, 8, 9.2 and 6.2, respectively. Second, a classification description by Millmier et al. (2000) Millmier, A., Lorimor, J., Hurburgh, C. Jr, Fulhage, C., Hattey, J., & Zhang, H. (2000). Near-infrared sensing of manure nutrients. Transactions of the ASAE. American Society of Agricultural Engineers, 43(4), 903-908. http://dx.doi.org/10.13031/2013.2986.
http://dx.doi.org/10.13031/2013.2986 ...
, the model with values between 8 to 12 can describe models for analyzing data from parameter indicators.

4 Conclusion

The conventional methods used for meat analysis at laboratory scale are laborious and time-consuming, and difficult to use under production plant conditions. NIRS showed reasonable predictive potential for meat quality traits, especially color parameter a*, yielding moderate to good predictive value. Further research with larger samples and different experimental conditions should help improve model quality.

Acknowledgements

We would like to thank the funding agencies that supported this study, CAPES and FAEPE/UEL (PUBLIC 2016).

  • Practical Application: Development of prediction curves for evaluation of pork meat quality.

References

  • Andersen, J. R., Borggaard, C., Rasmussen, A. J., & Houmøller, L. P. (1999). Optical measurements of pH in meat. Meat Science, 53(2), 135-141. http://dx.doi.org/10.1016/S0309-1740(99)00045-5. PMid:22063090.
    » http://dx.doi.org/10.1016/S0309-1740(99)00045-5
  • Andrés, S., Murray, I., Navajas, E. A., Fisher, A. V., Lambe, N. R., & Bünger, L. (2007). Prediction of sensory characteristics of lamb meat samples by near infrared reflectance spectroscopy. Meat Science, 76(3), 509-516. http://dx.doi.org/10.1016/j.meatsci.2007.01.011. PMid:22060994.
    » http://dx.doi.org/10.1016/j.meatsci.2007.01.011
  • Balage, J. M., Luz e Silva, S., Gomide, C. A., Bonin, M. N., & Figueira, A. C. (2015). Predicting pork quality using Vis/NIR spectroscopy. Meat Science, 108, 37-43. http://dx.doi.org/10.1016/j.meatsci.2015.04.018. PMid:26021598.
    » http://dx.doi.org/10.1016/j.meatsci.2015.04.018
  • Barbut, S., Sosnicki, A. A., Lonergan, S. M., Knapp, T., Ciobanu, D. C., Gatcliffe, L. J., Huff-Lonergan, E., & Wilson, E. W. (2008). Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat. Meat Science, 79(1), 46-63. http://dx.doi.org/10.1016/j.meatsci.2007.07.031. PMid:22062597.
    » http://dx.doi.org/10.1016/j.meatsci.2007.07.031
  • Barlocco, N., Vadell, A., Ballesteros, F., Galietta, G., & Cozzolino, D. (2006). Predicting intramuscular fat, moisture, and Warner‐Bratzler shear force in pork muscle using near‐infrared spectroscopy. Animal Science (Penicuik, Scotland) , 82(01), 111-116. http://dx.doi.org/10.1079/ASC20055.
    » http://dx.doi.org/10.1079/ASC20055
  • Burger, J., & Geladi, P. (2006). Hyperspectral NIR imaging for calibration and prediction: A comparison between image and spectrometer data for studying organic and biological samples. The Analyst, 131(10), 1152-1160. http://dx.doi.org/10.1039/b605386f. PMid:17003864.
    » http://dx.doi.org/10.1039/b605386f
  • Čandek-Potokar, M., Prevolnik, M., & Škrlep, M. (2006). Ability of near infrared spectroscopy to predict pork technological traits. Journal of Near Infrared Spectroscopy, 14(4), 269-277. http://dx.doi.org/10.1255/jnirs.644.
    » http://dx.doi.org/10.1255/jnirs.644
  • Chan, D. E., Walker, P. N., & Mills, E. W. (2002). Prediction of pork quality characteristics using visible and near‐infrared spectroscopy. Transactions of the ASAE. American Society of Agricultural Engineers, 45, 1519-1527. http://dx.doi.org/10.13031/2013.11044.
    » http://dx.doi.org/10.13031/2013.11044
  • Chen, D., Shao, X., Hu, B., & Su, Q. (2005). Simultaneous wavelength selection and outlier detection in multivariate regression of near-infrared spectra. Analytical Sciences , 21(2), 161-166. http://dx.doi.org/10.2116/analsci.21.161. PMid:15732477.
    » http://dx.doi.org/10.2116/analsci.21.161
  • Commission Internationale de l’Eclairage – CIE. (1978). Recommendations on uniform color spaces, color difference equations, psychometric color terms (15th ed., Supplement No. 2). Paris: CIE Publication, Bureau Central de la CIE.
  • Dagnew, M. D., Crowe, T. G., & Schoenau, J. J. (2004). Measurement of nutrients in Saskatchewan hog manures using near-infrared spectroscopy. Canadian Biosystems Engineering , 46, 33-37. Retrieved from http://www.csbe-scgab.ca/docs/journal/46/c0308.pdf
    » http://www.csbe-scgab.ca/docs/journal/46/c0308.pdf
  • Elmasry, G., Sun, D., & Allen, P. (2011). Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Research International , 44(9), 2624-2633. https://doi.org/10.1016/j.foodres.2011.05.001.
    » https://doi.org/10.1016/j.foodres.2011.05.001
  • Fischer, K. (2007). Drip loss in pork: influencing factors and relation to further meat quality traits, A review. Journal of Animal Breeding and Genetics , 124(Suppl. 1), 12-18. http://dx.doi.org/10.1111/j.1439-0388.2007.00682.x. PMid:17988246.
    » http://dx.doi.org/10.1111/j.1439-0388.2007.00682.x
  • Geesink, G. H., Schreutelkamp, F. H., Frankhuizen, R., Vedder, H. W., Faber, N. M., Kranen, R. W., & Gerritzen, M. A. (2003). Prediction of pork quality attributes from near infrared reflectance spectra. Meat Science, 65(1), 661-668. http://dx.doi.org/10.1016/S0309-1740(02)00269-3. PMid:22063261.
    » http://dx.doi.org/10.1016/S0309-1740(02)00269-3
  • Geladi, P., & Kowalski, B. R. (1986). Partial least squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. http://dx.doi.org/10.1016/0003-2670(86)80028-9.
    » http://dx.doi.org/10.1016/0003-2670(86)80028-9
  • Honikel, K. O. (1998). Reference methods for the assessment of physical characteristics of meat. Meat Science, 49(4), 447-457. http://dx.doi.org/10.1016/S0309-1740(98)00034-5. PMid:22060626.
    » http://dx.doi.org/10.1016/S0309-1740(98)00034-5
  • Horiuchi, A., Chikio, M., Murohusi, A., Kawarazaki, T., Suzuki, S., Maruyama, T., & Sinohara, K. (1999). Near‐infrared spectroscopy determination of physical and chemical characteristics in pork muscles Bull. Bulletin of Shizuoka Swine and Poultry Experiment Station , 10, 9‐13. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=JP2000000256
    » http://agris.fao.org/agris-search/search.do?recordID=JP2000000256
  • Hoving-Bolink, A. H., Vedder, H. W., Merks, J. W. M., de Klein, W. J. H., Reimert, H. G. M., Frankhuizen, R., van den Broek, W. H. A. M., & Lambooij, E. (2005). Perspective of NIRS measurements early post mortem for prediction of pork quality. Meat Science , 69(3), 417-423. http://dx.doi.org/10.1016/j.meatsci.2004.08.012. PMid:22062979.
    » http://dx.doi.org/10.1016/j.meatsci.2004.08.012
  • Hubert, M., & Branden, K. V. (2003). Robust methods for partial least squares regression. Journal of Chemometrics, 17(10), 537-549. http://dx.doi.org/10.1002/cem.822.
    » http://dx.doi.org/10.1002/cem.822
  • Joo, S. T., Kim, G. D., Hwang, Y. H., & Ryu, Y. C. (2013). Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Science, 95(4), 828-836. http://dx.doi.org/10.1016/j.meatsci.2013.04.044. PMid:23702339.
    » http://dx.doi.org/10.1016/j.meatsci.2013.04.044
  • Kamruzzaman, M., Barbin, D., ElMasry, G., Sun, D. W., & Allen, P. (2012). Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat. Innovative Food Science & Emerging Technologies, 16, 316-325. http://dx.doi.org/10.1016/j.ifset.2012.07.007.
    » http://dx.doi.org/10.1016/j.ifset.2012.07.007
  • Kang, J. O., Park, J. Y., & Choy, Y. H. (2001). Effect of Grinding on Color and Chemical Composition of Pork Sausages by Near Infrared Spectrophotometric Analyses. Asian-Australasian Journal of Animal Sciences, 14(6), 858-861. http://dx.doi.org/10.5713/ajas.2001.858.
    » http://dx.doi.org/10.5713/ajas.2001.858
  • Kapper, C., Klont, R. E., Verdonk, J., Williams, P., & Urlings, H. A. P. (2012a). Prediction of pork quality with near infrared spectroscopy (NIRS) 2. Feasibility and robustness of NIRS measurements under production plant conditions. Meat Science, 91(3), 300-305. http://dx.doi.org/10.1016/j.meatsci.2012.02.006. PMid:22405914.
    » http://dx.doi.org/10.1016/j.meatsci.2012.02.006
  • Kapper, C., Klont, R. E., Verdonk, J., & Urlings, H. A. P. (2012b). Prediction of pork quality with near infrared spectroscopy (NIRS): 1 Feasibility and robustness of NIRS measurements at laboratory scale. Meat Science, 91(3), 294-299. http://dx.doi.org/10.1016/j.meatsci.2012.02.005. PMid:22410119.
    » http://dx.doi.org/10.1016/j.meatsci.2012.02.005
  • Karamucki, T., Gardzielewska, J., Rybarczyk, A., Jakubowska, M., & Natalczyk-Szymkowska, W. (2011). Usefulness of selected methods of colour change measurement for pork quality assessment. Czech Journal of Food Sciences, 29(3), 212-218. http://dx.doi.org/10.17221/191/2010-CJFS.
    » http://dx.doi.org/10.17221/191/2010-CJFS
  • Kim, Y. H. B., Warner, R. D., & Rosenvold, K. (2014). Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: a review. Animal Production Science, 54(4), 375-395. http://dx.doi.org/10.1071/AN13329.
    » http://dx.doi.org/10.1071/AN13329
  • Lanza, E. (1983). Determination of moisture, protein, fat, and calories in raw pork and beef by near‐infrared spectroscopy. Journal of Food Science, 48(2), 471-474. http://dx.doi.org/10.1111/j.1365-2621.1983.tb10769.x.
    » http://dx.doi.org/10.1111/j.1365-2621.1983.tb10769.x
  • Liu, Y., Lyon, B. G., Windham, W. R., Lyon, C. E., & Savage, E. M. (2004). Prediction of Physical, Color, and Sensory Characteristics of Broiler Breasts by Visible/Near Infrared Reflectance Spectroscopy. Poultry Science, 83(8), 1467-1474. http://dx.doi.org/10.1093/ps/83.8.1467. PMid:15339027.
    » http://dx.doi.org/10.1093/ps/83.8.1467
  • Millmier, A., Lorimor, J., Hurburgh, C. Jr, Fulhage, C., Hattey, J., & Zhang, H. (2000). Near-infrared sensing of manure nutrients. Transactions of the ASAE. American Society of Agricultural Engineers, 43(4), 903-908. http://dx.doi.org/10.13031/2013.2986.
    » http://dx.doi.org/10.13031/2013.2986
  • Osborne, B. G., Fearn, T., & Hindle, P. H. (1993). Practical NIR spectroscopy: With applications in food and beverage analysis (2nd ed.). Harlow: Longman Scientific & Technical.
  • Pearce, K. L., Rosenvold, K., Andersen, H. J., & Hopkins, D. L. (2011). Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes - a review. Meat Science, 89(2), 111-124. http://dx.doi.org/10.1016/j.meatsci.2011.04.007. PMid:21592675.
    » http://dx.doi.org/10.1016/j.meatsci.2011.04.007
  • Pérez-Marín, D. C., Garrido-Varo, A., Guerrero-Ginel, J. E., & Gómez-Cabrera, A. (2004). Near-infrared reflectance spectroscopy (NIRS) for the mandatory labelling of compound feedingstuffs: chemical composition and open-declaration. Animal Feed Science and Technology, 116(3-4), 333-349. http://dx.doi.org/10.1016/j.anifeedsci.2004.05.002.
    » http://dx.doi.org/10.1016/j.anifeedsci.2004.05.002
  • Prevolnik, M., Čandek-Potokar, M., & Škorjanc, D. (2004). Ability of NIR spectroscopy to predict meat chemical composition and quality: a review. Czech Journal of Animal Science, 49(11), 500-510. http://dx.doi.org/10.17221/4337-CJAS.
    » http://dx.doi.org/10.17221/4337-CJAS
  • Prieto, N., Roehe, R., Lavin, P., Batten, G., & Andres, S. (2009). Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Science, 83(2), 175-186. http://dx.doi.org/10.1016/j.meatsci.2009.04.016. PMid:20416766.
    » http://dx.doi.org/10.1016/j.meatsci.2009.04.016
  • Qu, H., Ou, D., & Cheng, Y. (2005). Background correction in near-infrared spectra of plant extracts by orthogonal signal correction. Journal of Zhejiang University. Science. B., 6(8), 838-843. http://dx.doi.org/10.1631/jzus.2005.B0838. PMid:16052720.
    » http://dx.doi.org/10.1631/jzus.2005.B0838
  • Rosenvold, K., & Andersen, H. J. (2003). Factors of significance for pork quality: a review. Meat Science, 64(3), 219-237. http://dx.doi.org/10.1016/S0309-1740(02)00186-9. PMid:22063008.
    » http://dx.doi.org/10.1016/S0309-1740(02)00186-9
  • Roza-Delgado, B., Soldado, A., Oliveira, A. F. G. F., Martínez-Fernández, A., & Argamentería, A. (2013). Assessing the value of a portable near infrared spectroscopy sensor for predicting pork meat quality traits of “Asturcelta Autochthonous Swine Breed”. Food Analytical Methods, 7, 1-6. http://dx.doi.org/10.1007/s12161-013-9611-y.
    » http://dx.doi.org/10.1007/s12161-013-9611-y
  • Savenije, B., Geesink, G. H., Van der Palen, J. G. P., & Hemke, G. (2006). Prediction of pork quality using visible/near‐infrared reflectance spectroscopy. Meat Science, 73(1), 181-184. http://dx.doi.org/10.1016/j.meatsci.2005.11.006. PMid:22062068.
    » http://dx.doi.org/10.1016/j.meatsci.2005.11.006
  • Shiranita, K., Hayashi, K., Otsubo, A., Tsuneharu Miyajima, & Takiyama, R. (2000). Grading meat quality by image processing. Pattern Recognition, 33(1), 97-104. http://dx.doi.org/10.1016/S0031-3203(99)00035-7.
    » http://dx.doi.org/10.1016/S0031-3203(99)00035-7
  • Teye, E., Xing-yi, H., & Newlove, A. (2013). Review on the potential use of Near Infrared Spectroscopy (NIRS) for the measurement of chemical residues in food. American Journal of Food Science and Technology, 1, 1-8. http://dx.doi.org/10.12691/ajfst-1-1-1.
    » http://dx.doi.org/10.12691/ajfst-1-1-1
  • Tøgersen, G., Isaksson, T., Nilsen, B. N., Bakker, E. A., & Hildrum, K. I. (1999). On‐line NIR analysis of fat, water, and protein in industrial‐scale ground meat batches. Meat Science, 51(1), 97-102. http://dx.doi.org/10.1016/S0309-1740(98)00106-5. PMid:22061541.
    » http://dx.doi.org/10.1016/S0309-1740(98)00106-5
  • van der Wal, P. G., Bolink, A. H., & Merkus, G. S. M. (1988). Differences in quality characteristics of normal, PSE and DFD pork. Meat Science, 24(1), 79-84. http://dx.doi.org/10.1016/0309-1740(89)90009-0. PMid:22055811.
    » http://dx.doi.org/10.1016/0309-1740(89)90009-0
  • van Oeckel, M. J., Warnants, N., & Boucque, C. V. (1999). Measurement and prediction of pork colour. Meat Science, 52(4), 347-354. http://dx.doi.org/10.1016/S0309-1740(99)00012-1. PMid:22062695.
    » http://dx.doi.org/10.1016/S0309-1740(99)00012-1
  • Warner, R. D., Kauffman, R. G., & Greaser, M. L. (1997). Muscle protein changes post mortem in relation to pork quality traits. Meat Science , 45(3), 339-352. http://dx.doi.org/10.1016/S0309-1740(96)00116-7. PMid:22061472.
    » http://dx.doi.org/10.1016/S0309-1740(96)00116-7
  • Williams, P. C. (1987). Implementation of near-infrared technology. In: P. Williams & K. Norris (Ed.), Near-infrared technology in the agricultural and food industries (2nd ed., pp. 145-169). St. Paul: American Association of Cereal Chemists Inc.
  • Williams, P. C., & Sobering, D. (1996). How do we do it: a brief summary of the methods we use in developing near infrared calibrations. In: A. M. C. Davies & P. C. Williams (Eds.), Near infrared spectroscopy: the futurewaves (pp. 185-188). Chichester: NIR Publications.
  • Xing, J., Ngadi, M., Gunenc, A., Prasher, S., & Gariepy, C. (2007). Use of visible spectroscopy for quality classification of intact pork meat. Journal of Food Engineering , 82(2), 135-141. http://dx.doi.org/10.1016/j.jfoodeng.2007.01.020.
    » http://dx.doi.org/10.1016/j.jfoodeng.2007.01.020

Publication Dates

  • Publication in this collection
    11 June 2018
  • Date of issue
    2019

History

  • Received
    17 Aug 2017
  • Accepted
    02 Apr 2018
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br