Acessibilidade / Reportar erro

Phytochemical screening, Sun Protection Factor (SPF) and sugar analysis of jatobá fruits (Hymenaea martiana Hayne): A native medicinal plant from the San Francisco Valley

Abstract

Hymenaea martiana is a native medicinal plant from the Caatinga, but biochemical studies of the fruit have not yet been reported. Thus, this study aimed to determine sugars and secondary metabolites, as well as assess the sunscreen potential of H. martiana fruits. The fruits were collected in Petrolina and separated into pulp and seeds. The sugar analysis investigated the presence of glucose, xylose, cellobiose, arabinose and xylitol. The determination of secondary metabolites was made through phytochemical screening and sunscreen activity was assessed with the spectrophotometric method. In the fruit pulp, carbohydrates with a great biotechnological potential were identified. The substances found in the phytochemical screening showed great antioxidant, photoprotective and medicinal potential. With the pulp extract, the sun protection factor values obtained were not significant and for the extract from the seeds, the values were 4.54 ± 0.11. Although the values found are below the recommended, the fruit extracts of H. martiana could be used in future development of sunscreen products providing several benefits to the formulation.

Keywords:
biotechnological potential; fruits; Hymenaea martiana

1 Introduction

Hymenaea is a genus of the Fabaceae family, highly distributed from Central America to South America, mainly in the Amazon basin, with about 25 species described in the Americas. Plants of the this genus are known in Brazil as “jatobá”, “jetaí”, “jataí-uva”, “jetaíba” and are largely distributed in Brazil, especially in the Brazilian biome called “cerrado” (savanna-like vegetation) (Minas Gerais, Bahia, Goias, and Tocantins) and the Amazon forest (Boniface et al., 2017Boniface, P. K., Baptista Ferreira, S., & Roland Kaiser, C. (2017). Current state Current state of knowledge on the traditional uses, phytochemistry, and pharmacology of the genus Hymenaea. Journal of Ethnopharmacology, 206, 193-223. http://dx.doi.org/10.1016/j.jep.2017.05.024. PMid:28536059.
http://dx.doi.org/10.1016/j.jep.2017.05....
). One species of this genus can be found in Brazilian Caatinga, Hymenaea martiana, with a great phytochemical and medicinal potential (Oliveira et al., 2016Oliveira, F. G., Lima-Saraiva, S. R., Oliveira, A. P., Rabêlo, S. V., Rolim, L. A., & Almeida, J. R. (2016). Influence of the extractive method on the recovery of phenolic compounds in different parts of Hymenaea martiana Hayne. Pharmacognosy Research, 8(4), 270-275. http://dx.doi.org/10.4103/0974-8490.188885. PMid:27695267.
http://dx.doi.org/10.4103/0974-8490.1888...
; Oliveira et al., 2018Oliveira, F. G. S., Araújo, C. S., Rolim, L. A., Barbosa-Filho, J. M., & Almeida, J. R. G. S. (2018). The genus Hymenaea: A chemical and pharmacological review. In F.R.S. Atta-ur-Rahman (Ed.), Studies in natural products chemistry (Chap. 12, pp. 339-388). Amsterdam: Elsevier.).

Being characterized as a region of economic and agricultural importance in the Brazilian Caatinga Biome, the San Francisco Valley is a region in the west of the state of Pernambuco and north of Bahia, bordering the San Francisco River, with semiarid vegetation and climate (Sá et al., 2009Sá, I. B., Sá, I. I. S., Silva, A. S., & Silva, D. F. (2009). Caracterização ambiental do Vale do Submédio São Francisco. In: M. A. C. Lima, I. B. Sa, L. H. P. Kiill, J. L. P. Araújo, R. M. E. Borges, F. P. Lima Neto, J. M. Soares, P. C. S. Leão, P. C. G. Silva, R. C. Correia, A. S. Silva, I. I. S. Sá & D. F. Silva. Subsídios técnicos para a indicação geográfica de procedência do Vale do Submédio São Francisco: uva de mesa e manga. Petrolina: Embrapa Semiárido.). The particular characteristics of this biome, like the high solar incidence and long periods of drought, can interfere directly in the vegetation morphology and especially with its secondary metabolites composition, since some phenolic compounds such as flavonoids may play a special role in the chemoprotection against ultraviolet radiation and external aggressions (Markham et al., 1998Markham, K. R., Ryan, K. G., Bloor, S. J., & Mitchell, K. A. (1998). An increase in the luteolin: Apigenin ratio in Marchantia polymorpha on UV-B enhancement. Phytochemistry, 48(5), 791-794. http://dx.doi.org/10.1016/S0031-9422(97)00875-3.
http://dx.doi.org/10.1016/S0031-9422(97)...
).

Among the native medicinal plants found in the São Francisco Valley, with importance in the local traditional medicine, Hymenaea martiana Hayne (Fabaceae) can be highlighted, popularly known as “jatobá” in Northeastern Brazil. Shanley & Medina (2005)Shanley, P., & Medina, G. (2005). Frutíferas e plantas úteis na vida amazônica. Campinas: CIFOR Imazon. characterize this plant as a large tree, 15-20 m high, with dense foliage and thick bark, straight trunk, about 2 m in diameter.

The traditional use of jatobá has been reported, and the alcoholic extract from the barks of H. martiana has been used in the treatment of inflammations and rheumatism, and also as antinociceptive and analgesic (Neves et al., 1993Neves, M. C. A., Neves, P. C. A., Zanini, J. C., Medeiros, Y. S., Yunes, R. A., & Calixto, J. B. (1993). Analgesic and anti-inflammatory activities of the crude hydroalcholic extract obtained from the bark of Hymenaea martiana. Phytotherapy Research, 7(5), 356-362. http://dx.doi.org/10.1002/ptr.2650070507.
http://dx.doi.org/10.1002/ptr.2650070507...
; Gazzaneo et al., 2005Gazzaneo, L. R., Lucena, R. F., & Albuquerque, U. P. (2005). Knowledge and use of medicinal plants by local specialists in a region of Atlantic Forest in the state of Pernambuco (Northeastern Brazil). Journal of Ethnobiology and Ethnomedicine, 1(9), 1-9. PMid:16270911.). Some substances that have been linked to the pharmacological activities are flavonoids (Carneiro et al., 1993Carneiro, E., Calixto, J. B., Delle Monache, F., & Yunes, R. A. (1993). Isolation chemical identification and pharmacological evaluation of eucryphin, astilbin and engelitin obtained from the bark of Hymenaea martiana. International Journal of Pharmacognosy, 31(1), 38-46. http://dx.doi.org/10.3109/13880209309082916.
http://dx.doi.org/10.3109/13880209309082...
; Silva et al., 2012Silva, M. E. G. C., Guimarães, A. L., Oliveira, A. P., Araújo, C. S., Siqueira-Filho, J. A., Fontana, A. P., Damasceno, P. K. F., Branco, C. R. C., Branco, A., & Almeida, J. R. G. S. (2012). HPLC-DAD analysis and antioxidant activity of Hymenaea martiana Hayne (Fabaceae). Journal of Chemical and Pharmaceutical Research, 4(2), 1160-1166.).

Fruits of other species of the genus were analyzed and in the pulp, rutin (Peres et al., 2013Peres, M. T. L. P., Lopes, J. R. R., Silva, C. B., Cândido, A. C. S., Simionatto, E., Cabral, M. R. P., Oliveira, R. M., Facco, J. T., Cardoso, C. A. L., & Simas, P. H. (2013). Phytotoxic and antioxidant activity of seven native fruits of Brazil. Acta Botanica Brasílica, 27(4), 836-846. http://dx.doi.org/10.1590/S0102-33062013000400024.
http://dx.doi.org/10.1590/S0102-33062013...
), fiber, ascorbic acid, α-tocopherol, β-sitosterol, oleic and linolenic acid (Dias et al., 2013Dias, L. S., Luzia, D. M. M., & Jorge, N. (2013). Physicochemical and bioactive properties of Hymenaea courbaril L. pulp and seed lipid fraction. Industrial Crops and Products, 49, 610-618. http://dx.doi.org/10.1016/j.indcrop.2013.06.005.
http://dx.doi.org/10.1016/j.indcrop.2013...
), D-glucose, D-glucuronic acid and sucrose (Chung et al., 1997Chung, M.-S., Kim, N.-C., Long, L., Shamon, L., Ahmad, W.-Y., Sagrero-Nieves, L., Kardono, L. B. S., Kennelly, E. J., Pezzuto, J. M., Soejarto, D. D., & Kinghorn, A. D. (1997). Dereplication of saccharide and polyol constituents of candidate sweet-tasting plants: isolations of the sesquiterpene glycoside mukurozioside iib as a sweet principle of Sapindus rarak. Phytochemical Analysis, 8(2), 49-54. http://dx.doi.org/10.1002/(SICI)1099-1565(199703)8:2<49::AID-PCA339>3.0.CO;2-C.
http://dx.doi.org/10.1002/(SICI)1099-156...
) were identified. In the seeds, D-glucose, galactose, xylose (Busato et al., 2001Busato, A. P., Vargas-Rechia, C. G., & Reicher, F. (2001). Xyloglucan from the leaves of Hymenaea courbaril. Phytochemistry, 58(3), 525-531. http://dx.doi.org/10.1016/S0031-9422(01)00217-5. PMid:11557087.
http://dx.doi.org/10.1016/S0031-9422(01)...
), arabinose (Omaira et al., 2007Omaira, A., Gladys, L. P., Maritza, M., Omaira, G., & Lilian, S. (2007). Structural features of a xyloglucan isolated from Hymenaea courbaril gum. Food Hydrocolloids, 21(8), 1302-1309. http://dx.doi.org/10.1016/j.foodhyd.2006.10.004.
http://dx.doi.org/10.1016/j.foodhyd.2006...
), hymenain and ipomopsin (Simões et al., 2009Simões, K., Du, J., Pessoni, R. A. B., Cardoso-Lopes, E. M., Vivanco, J. M., Stermitz, F. R., & Braga, M. R. (2009). Ipomopsin and hymenain, two biscoumarins from seeds of Hymenaea courbaril. Phytochemistry Letters, 2(2), 59-62. http://dx.doi.org/10.1016/j.phytol.2008.11.003.
http://dx.doi.org/10.1016/j.phytol.2008....
) were important substances found. These literature data demonstrate the great medicinal and chemical potential of the fruits and seeds of Hymenaea, with important sugars and phenolic compounds in the chemical composition.

Phenolic compounds, such as flavonoids, can absorb ultraviolet radiation (UV) and this class of substance can play an important role against UV radiation from sunlight (Oliveira-Júnior & Almeida, 2012Oliveira-Júnior, R. G., & Almeida, J. R. G. S. (2012). Prospecção tecnológica de fotoprotetores derivados de produtos naturais. Revista GEINTEC, 3(1), 32-40. http://dx.doi.org/10.7198/S2237-0722201300010003.
http://dx.doi.org/10.7198/S2237-07222013...
). The UV radiation can be subdivided into three bands: UVA, UVB and UVC. The UVA radiation can be classified as an inducer of oxidative processes in the skin and the use of photoprotectors against UVA radiation has been stimulated, aiming at protection against skin diseases (Popim et al., 2008Popim, R. C., Corrente, J. E., Marino, J. A. G., & Souza, C. A. (2008). Skin cancer: use of preventive measures and demographic profile of a risk group in the city of Botucatu. Ciencia & Saude Coletiva, 13(4), 1331-1336. http://dx.doi.org/10.1590/S1413-81232008000400030. PMid:18813633.
http://dx.doi.org/10.1590/S1413-81232008...
).

Sunscreens derived from natural products and cosmetic products have been developed using plant extracts and oil as raw material due to their photoprotective activity, and the popular acceptance has been positive (Oliveira-Júnior & Almeida, 2012Oliveira-Júnior, R. G., & Almeida, J. R. G. S. (2012). Prospecção tecnológica de fotoprotetores derivados de produtos naturais. Revista GEINTEC, 3(1), 32-40. http://dx.doi.org/10.7198/S2237-0722201300010003.
http://dx.doi.org/10.7198/S2237-07222013...
).

Nevertheless, according to a literature review, neither phytochemical nor biochemical study on the fruit from Hymenaea martiana was found, and the photoprotective activity was not evaluated. In light of this, this study aimed to determine sugars and secondary metabolites, as well as analyze the sunscreen potential of Hymenaea martiana fruits.

2. Materials and methods

2.1 Plant material

The fruits of Hymenaea martiana Hayne were collected in Petrolina, Pernambuco, Brazil, in July 2015, and were identified by the Federal University of São Francisco Valley Herbarium (HVASF), with a voucher specimen n° 6444, coordinates 09”11'04.30 ° S, 040”18'05.40 ° W, 357 m high. The fruits were separated into two plant materials (pulp and seeds) and were pulverized using a mill (Quimis®, SP 31, Diadema, Brazil).

2.2 Sugar analysis using High-performance Liquid Chromatography (HPLC)

The determination and quantification of sugars (glucose, xylose and arabinose) were carried out through HPLC, using a liquid chromatograph equipped with a ProStar 210 pump model (Varian®, Palo Alto, USA), model 7725 manual injector (Rheodyne®, Sigma-Aldrich, St. Louis, USA), with a 20-µL loop. The chromatographic conditions are presented in Table 1.

Table 1
Chromatographic conditions of the sugar analysis of jatobá fruits.

The sample preparation was carried out with a dilution of 1 g of each sample (pulp and seed) with distilled water, in the rate of 1:20 (pulp/seed: solution) (dilution factor = 20). The solution was stirred, allowed to stand for a few minutes and filtered; then, 20 μL was injected into the equipment.

2.3 Phytochemical screening of the fruits of H. martiana

Initially, 100 g of pulp and seeds was added to 500 mL of ethanol 95% in amber flasks, which were then kept in the dark for three consecutive days at room temperature, shaken daily. After the maceration time, the residue was filtered. The procedure was repeated three times. After the process, the extraction solution was concentrated under vacuum (Fisatom®, model 801, São Paulo, Brazil) at 50 °C (Silva et al., 2012Silva, M. E. G. C., Guimarães, A. L., Oliveira, A. P., Araújo, C. S., Siqueira-Filho, J. A., Fontana, A. P., Damasceno, P. K. F., Branco, C. R. C., Branco, A., & Almeida, J. R. G. S. (2012). HPLC-DAD analysis and antioxidant activity of Hymenaea martiana Hayne (Fabaceae). Journal of Chemical and Pharmaceutical Research, 4(2), 1160-1166.).

An aliquot of the extracts from each plant material was solubilized in chloroform and subjected to analysis through thin-layer chromatography (TLC) with silica gel 60 F254, with aluminum support, applied with a micropipette and eluted with different solvent systems, according to Wagner & Bladt (1996)Wagner, H., & Bladt, S. (1996). Plant drug analysis: a thin layer chromatography atlas. Berlim: Springer Verlag. http://dx.doi.org/10.1007/978-3-642-00574-9.
http://dx.doi.org/10.1007/978-3-642-0057...
, seeking to highlight the main groups of secondary metabolites (Table 2).

Table 2
Elution systems and revelators used in the phytochemical screening.

2.4 Assessment of sunscreen activity

The sunscreen activity was performed using the spectrophotometric analysis of the diluted solutions, according to Mansur et al. (1986)Mansur, J. S., Breder, M. V. R., Mansur, M. C. A., & Azulay, R. D. (1986). Determinação do fator de proteção solar por espectrofotometria. Anais Brasileiros de Dermatologia, 61, 121-124.. The extracts were previously dried in an oven at 40 °C for 60 minutes. Dilutions were prepared with concentrations of 5, 25, 50 and 100 mg.L-1. Readings from 290 to 320 nm with 5-nm intervals were carried out in a spectrophotometer (Quimis®, model Q898UVDB, Diadema, Brazil), with quartz cells of 1-cm optical path.

Calculations of the Sun Protection Factor (SPF) were made considering the intervals λ determined using the following the equation described by Mansur et al. (1986)Mansur, J. S., Breder, M. V. R., Mansur, M. C. A., & Azulay, R. D. (1986). Determinação do fator de proteção solar por espectrofotometria. Anais Brasileiros de Dermatologia, 61, 121-124.: SPF = Correction Factor x Amount of absorbance 290-320 nm x Erythemogenic Effect of radiation (λ) x Spectrophotometric reading of sample absorbance (λ).

The EE (λ) (Eritemogenic Effect) and I(λ) (Solar Intensity) used for the calculation of the SPF (Sun Protection Factor) were the same found in the literature, and the abs (λ) was the spectrophotometric reading of the absorbance of the sunscreen solution (Mansur et al., 1986Mansur, J. S., Breder, M. V. R., Mansur, M. C. A., & Azulay, R. D. (1986). Determinação do fator de proteção solar por espectrofotometria. Anais Brasileiros de Dermatologia, 61, 121-124.). The dilution factor was applied for equivalence correction and CF (Correction Factor) was 10 and the determinations were conducted in triplicates.

3 Results and discussion

3.1 Sugar analysis using High-performance Liquid Chromatography (HPLC)

The concentrations of sugars found in the pulp and the seeds of H. martiana are displayed in Table 3.

Table 3
Sugars found in the fruits of H. martiana.

Glucose and xylose have been identified previously in Hymenaea in seeds (Omaira et al., 2007Omaira, A., Gladys, L. P., Maritza, M., Omaira, G., & Lilian, S. (2007). Structural features of a xyloglucan isolated from Hymenaea courbaril gum. Food Hydrocolloids, 21(8), 1302-1309. http://dx.doi.org/10.1016/j.foodhyd.2006.10.004.
http://dx.doi.org/10.1016/j.foodhyd.2006...
; Lima et al., 1993Lima, N. N., Reicher, F., Corrêa, J. B. C., Ganter, J. L. M. S., & Sierakowski, M. R. (1993). Partial structure of a xyloglucan from the seed of Hymenaea courbaril var. stilbocarpa (jatobá). Ciência e Cultura, 45(1), 22-26.). A study on the pericarp of Hymenaea oblongifolia identified fructose, glucose, glucuronic acid, sorbose and sucrose (Chung et al., 1997Chung, M.-S., Kim, N.-C., Long, L., Shamon, L., Ahmad, W.-Y., Sagrero-Nieves, L., Kardono, L. B. S., Kennelly, E. J., Pezzuto, J. M., Soejarto, D. D., & Kinghorn, A. D. (1997). Dereplication of saccharide and polyol constituents of candidate sweet-tasting plants: isolations of the sesquiterpene glycoside mukurozioside iib as a sweet principle of Sapindus rarak. Phytochemical Analysis, 8(2), 49-54. http://dx.doi.org/10.1002/(SICI)1099-1565(199703)8:2<49::AID-PCA339>3.0.CO;2-C.
http://dx.doi.org/10.1002/(SICI)1099-156...
).

A polysaccharide has been studied in Hymenaea, xyloglucan, which has been extracted from cotyledons (Buckeridge et al., 1997Buckeridge, M. S., Crombie, H. J., Mendes, C. J. M., Reid, J. S. G., Gidley, M. J., & Vieira, C. C. J. (1997)4. A new family of oligosaccharides from the xyloglucan of Hymenaea courbaril L. (Leguminosae) cotyledons. Carbohydrate Research, 303(2), 233-237. http://dx.doi.org/10.1016/S0008-6215(97)00161-4. PMid:9352637.
http://dx.doi.org/10.1016/S0008-6215(97)...
), seeds (Lima et al., 1993Lima, N. N., Reicher, F., Corrêa, J. B. C., Ganter, J. L. M. S., & Sierakowski, M. R. (1993). Partial structure of a xyloglucan from the seed of Hymenaea courbaril var. stilbocarpa (jatobá). Ciência e Cultura, 45(1), 22-26.) and leaves (Busato et al., 2001Busato, A. P., Vargas-Rechia, C. G., & Reicher, F. (2001). Xyloglucan from the leaves of Hymenaea courbaril. Phytochemistry, 58(3), 525-531. http://dx.doi.org/10.1016/S0031-9422(01)00217-5. PMid:11557087.
http://dx.doi.org/10.1016/S0031-9422(01)...
). As one of the main hemicellulosic polysaccharides, xyloglucan is present in primary cell walls of dicotyledonous plants (Mcneil et al., 1984McNeil, M., Darvill, A. G., Fry, S. C., & Albersheim, P. (1984). Structure and function of the primary cell walls of plants. Annual Review of Biochemistry, 53(1), 625-663. http://dx.doi.org/10.1146/annurev.bi.53.070184.003205. PMid:6383202.
http://dx.doi.org/10.1146/annurev.bi.53....
; Fry, 1989Fry, S. C. (1989). The structure and functions of xyloglucan. Journal of Experimental Botany, 40(1), 1-11. http://dx.doi.org/10.1093/jxb/40.1.1.
http://dx.doi.org/10.1093/jxb/40.1.1...
; Carpita & Gibeaut, 1993Carpita, N. C., & Gibeaut, D. M. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3(1), 1-30. http://dx.doi.org/10.1111/j.1365-313X.1993.tb00007.x. PMid:8401598.
http://dx.doi.org/10.1111/j.1365-313X.19...
), but it was also found in the gymnosperm (Kakegawa et al., 1998Kakegawa, K., Edashige, Y., & Ishii, T. (1998). Xyloglucan from xylem-differentiating zones of Cryptomeria japonica. Phytochemistry, 47(5), 767-771. http://dx.doi.org/10.1016/S0031-9422(97)00662-6. PMid:9542169.
http://dx.doi.org/10.1016/S0031-9422(97)...
). This carbohydrate is related to important functions such as the control of cell expansion, effects on growth and as a reserve of carbohydrate in seeds (Fry, 1989Fry, S. C. (1989). The structure and functions of xyloglucan. Journal of Experimental Botany, 40(1), 1-11. http://dx.doi.org/10.1093/jxb/40.1.1.
http://dx.doi.org/10.1093/jxb/40.1.1...
; Hayashi, 1989Hayashi, T. (1989). Xyloglucans in the primary cell wall. Annual Review of Plant Physiology and Plant Molecular Biology, 40(1), 139-168. http://dx.doi.org/10.1146/annurev.pp.40.060189.001035.
http://dx.doi.org/10.1146/annurev.pp.40....
; Kai & Petkowicz, 2010Kai, K. C., & Petkowicz, C. L. O. (2010). Influence of extraction conditions on properties of seed xyloglucan. International Journal of Biological Macromolecules, 46(2), 223-228. http://dx.doi.org/10.1016/j.ijbiomac.2009.12.012. PMid:20060409.
http://dx.doi.org/10.1016/j.ijbiomac.200...
). Galactose, glucose, xylose and arabinose were identified in this species, derived from the degradation of this polysaccharide present in seeds of this species (Omaira et al., 2007Omaira, A., Gladys, L. P., Maritza, M., Omaira, G., & Lilian, S. (2007). Structural features of a xyloglucan isolated from Hymenaea courbaril gum. Food Hydrocolloids, 21(8), 1302-1309. http://dx.doi.org/10.1016/j.foodhyd.2006.10.004.
http://dx.doi.org/10.1016/j.foodhyd.2006...
).

Regarding the measurements, the pulp has a higher amount of glucose, xylose and xylitol, as found in other fruits (Roesler et al., 2007Roesler, R., Malta, L. G., Carrasco, L. C., Holanda, R. B., Sousa, C. A. S., & Pastore, G. M. (2007). Atividade antioxidante de frutas do cerrado. Food Science and Technology (Campinas), 27(1), 53-60. http://dx.doi.org/10.1590/S0101-20612007000100010.
http://dx.doi.org/10.1590/S0101-20612007...
). The seeds showed other types of sugars, such as arabinose, which have been previously described in H. courbaril (Omaira et al., 2007Omaira, A., Gladys, L. P., Maritza, M., Omaira, G., & Lilian, S. (2007). Structural features of a xyloglucan isolated from Hymenaea courbaril gum. Food Hydrocolloids, 21(8), 1302-1309. http://dx.doi.org/10.1016/j.foodhyd.2006.10.004.
http://dx.doi.org/10.1016/j.foodhyd.2006...
), and cellobiose, not yet reported in Hymenaea. According to the literature, this is also the first report of the presence of xylitol in species of this genus.

According to Mussatto & Roberto (2002)Mussatto, S. I., & Roberto, I. C. (2002). Xilitol: Edulcorante com efeitos benéficos para a saúde humana. Revista Brasileira de Ciências Farmacêuticas, 38(4), 401-413. http://dx.doi.org/10.1590/S1516-93322002000400003.
http://dx.doi.org/10.1590/S1516-93322002...
, xylitol is a non-toxic polyol, classified by the FDA as a safe additive that may be used as a substitute for sugar (sucrose) and that has nutritional properties and benefits to the human health. It may also act in the cure or prevention of diseases, with various applications in the dental and medical fields and reports on the efficacy in the prevention and control of dental caries. Being a natural sweetener well tolerated by diabetics, it can be used as an adjuvant in the treatment of lipid metabolism disorder and renal injuries. In addition, xylitol can prevent lung infections, otitis and osteoporosis. In addition to these actions, it has the advantages of high chemical and microbiological stability, being a potential additive for food (Mussatto & Roberto, 2002Mussatto, S. I., & Roberto, I. C. (2002). Xilitol: Edulcorante com efeitos benéficos para a saúde humana. Revista Brasileira de Ciências Farmacêuticas, 38(4), 401-413. http://dx.doi.org/10.1590/S1516-93322002000400003.
http://dx.doi.org/10.1590/S1516-93322002...
). Thus, the biotechnological potential of the fruits of H. martiana is evident because of its important carbohydrates in the chemical composition.

3.2 Phytochemical screening of the fruits of H. martiana

A phytochemical screening was carried out with the extracts and the TLC plates were analyzed. The maceration of the fruits indicated the presence of anthracene derivatives, flavonoids, monoterpenes, diterpenes and naphthoquinones; the maceration of the seeds indicated the presence of anthracene derivatives and flavonoids (Table 4).

Table 4
Phytochemical screening of the fruits of Hymenaea martiana submitted to maceration.

The analysis of the pulp extract indicated the presence of anthracenic derivatives, flavonoids, monoterpenes, diterpenes, naphthoquinones, triterpenes and steroids. Although there are no studies with the fruits of H. martiana, previous studies on fruits of other species of the genus identified substances with important pharmacological activities, such as the flavonoid rutin (Peres et al., 2013Peres, M. T. L. P., Lopes, J. R. R., Silva, C. B., Cândido, A. C. S., Simionatto, E., Cabral, M. R. P., Oliveira, R. M., Facco, J. T., Cardoso, C. A. L., & Simas, P. H. (2013). Phytotoxic and antioxidant activity of seven native fruits of Brazil. Acta Botanica Brasílica, 27(4), 836-846. http://dx.doi.org/10.1590/S0102-33062013000400024.
http://dx.doi.org/10.1590/S0102-33062013...
), the carotenoids β and α-tocopherol (Dias et al., 2013Dias, L. S., Luzia, D. M. M., & Jorge, N. (2013). Physicochemical and bioactive properties of Hymenaea courbaril L. pulp and seed lipid fraction. Industrial Crops and Products, 49, 610-618. http://dx.doi.org/10.1016/j.indcrop.2013.06.005.
http://dx.doi.org/10.1016/j.indcrop.2013...
) and diterpenes such as spathulenol, stigmasterol and β-sitosterol, among other terpenes (Aguiar et al., 2010Aguiar, J. C., Santiago, G. M., Lavor, P. L., Veras, H. N., Ferreira, Y. S., Lima, M. A., Arriaga, A. M., Lemos, T. L., Lima, J. Q., Jesus, H. C., Alves, P. B., & Braz-Filho, R. (2010). Chemical constituents and larvicidal activity of Hymenaea courbaril fruit peel. Natural Product Communications, 5(12), 1977-1980. http://dx.doi.org/10.1177/1934578X1000501231. PMid:21299135.
http://dx.doi.org/10.1177/1934578X100050...
; Dias et al., 2013Dias, L. S., Luzia, D. M. M., & Jorge, N. (2013). Physicochemical and bioactive properties of Hymenaea courbaril L. pulp and seed lipid fraction. Industrial Crops and Products, 49, 610-618. http://dx.doi.org/10.1016/j.indcrop.2013.06.005.
http://dx.doi.org/10.1016/j.indcrop.2013...
). The analysis of the extract from the seeds indicated the presence of anthracenic derivatives and flavonoids. However, studies were found in other species of the genus that only indicated the presence of coumarin (ipomopsin and himenain) (Simões et al., 2009Simões, K., Du, J., Pessoni, R. A. B., Cardoso-Lopes, E. M., Vivanco, J. M., Stermitz, F. R., & Braga, M. R. (2009). Ipomopsin and hymenain, two biscoumarins from seeds of Hymenaea courbaril. Phytochemistry Letters, 2(2), 59-62. http://dx.doi.org/10.1016/j.phytol.2008.11.003.
http://dx.doi.org/10.1016/j.phytol.2008....
) and xyloglucans (Lima et al., 1993Lima, N. N., Reicher, F., Corrêa, J. B. C., Ganter, J. L. M. S., & Sierakowski, M. R. (1993). Partial structure of a xyloglucan from the seed of Hymenaea courbaril var. stilbocarpa (jatobá). Ciência e Cultura, 45(1), 22-26.; Buckeridge et al., 1997Buckeridge, M. S., Crombie, H. J., Mendes, C. J. M., Reid, J. S. G., Gidley, M. J., & Vieira, C. C. J. (1997)4. A new family of oligosaccharides from the xyloglucan of Hymenaea courbaril L. (Leguminosae) cotyledons. Carbohydrate Research, 303(2), 233-237. http://dx.doi.org/10.1016/S0008-6215(97)00161-4. PMid:9352637.
http://dx.doi.org/10.1016/S0008-6215(97)...
).

3.3 Assessment of sunscreen activity

The Sun Protection Factor (SPF) values were calculated according to Mansur et al. (1986)Mansur, J. S., Breder, M. V. R., Mansur, M. C. A., & Azulay, R. D. (1986). Determinação do fator de proteção solar por espectrofotometria. Anais Brasileiros de Dermatologia, 61, 121-124. (Table 5).

Table 5
Sun Protection Factor (SPF) values in the UVA range (290-320 nm) from the extracts of the fruits of Hymenaea martiana (100 mg.L-1).

With the extract obtained from the pulp, SPF values obtained were not significant, with 0.66 ± 0.41. But the extract obtained from the seeds was 4.54 ± 0.11. According to the National Health Surveillance Agency (Brasil, 2012Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. (2012, Junho 30). Aprova o Regulamento Técnico Mercosul sobre Protetores Solares em Cosméticos e dá outras providências (Resolução RDC nº 30, de 1 de junho de 2012). Diário Oficial [da] República Federativa do Brasil.), the minimum value for SPF for sunscreen products is 6.0. Although the values found are lower than the recommended by the national health surveillance agency, the extracts obtained from the fruits of H. martiana could still be used for the future development of sunscreen products, as for example together with chemical filters, which would bring protection within the minimum values recommended, while also providing several benefits to the formulation with the supply of different secondary metabolites containing important medicinal properties. Currently, the inclusion of natural products in the photoprotective formulations is a tendency (Oliveira-Júnior & Almeida, 2012Oliveira-Júnior, R. G., & Almeida, J. R. G. S. (2012). Prospecção tecnológica de fotoprotetores derivados de produtos naturais. Revista GEINTEC, 3(1), 32-40. http://dx.doi.org/10.7198/S2237-0722201300010003.
http://dx.doi.org/10.7198/S2237-07222013...
) and studies have focused on the analysis of chemical constituents containing chromophores and compounds with antioxidant activity (Polonini et al., 2011Polonini, H. C., Raposo, N. R. B., & Brandão, M. A. F. (2011). Fotoprotetores naturais como instrumento de ação primária na prevenção de câncer de pele. Revista APS, 14(2), 216-223.) such as the phenolic compounds, mainly the flavonoids (Oliveira-Júnior et al., 2012Oliveira-Júnior, R. G., Araujo, C. S., Santana, C. R. R., Souza, G. R., Limasaraiva, S. R. G., Guimarães, A. L., Oliveira, A. P., Siqueira-Filho, J. A., Pacheco, A. G. M., & Almeida, J. R. G. S. (2012). Phytochemical screening, antioxidant and antibacterial activity of extracts from the flowers of Neoglaziovia variegata (Bromeliaceae). Journal of Chemical and Pharmaceutical Research, 4(10), 4489-4494.), substances found in phytochemical screening of the fruits and seeds of the species under study.

Despite the seed extract showed higher value for SPF then the pulp extract, it presented qualitatively less presence of flavonoids and tannins, as shown in Table 4. This fact may be due to the chemical composition of the seeds, with may include wax, oil and fatty acids. Previous study presented the cosmetic potential of the lipid fraction of seeds, as skin moisturizers and suscreens, with significant SPF values related to fatty acids as linoleic and oleic acid in the seeds of coffee beans (Wagemaker et al., 2011Wagemaker, T. A., Carvalho, C. R. L., Maia, N. B., Baggio, S. R., & Guerreiro-Filho, O. (2011). Sun protection factor, content and composition of lipid fraction of green coffee beans. Industrial Crops and Products, 33(2), 469-473. http://dx.doi.org/10.1016/j.indcrop.2010.10.026.
http://dx.doi.org/10.1016/j.indcrop.2010...
). So, the SPF values for the seed extract of Hymenaea martiana may be related not only to the phenolic compounds, but also to the lipid fraction of the seeds. Therefore, more in-depth studies are necessary to quantify and identify the major constituents of these materials, to improve the phytochemical knowledge of the species.

4 Conclusion

This study shows the great biochemical and medicinal potential of the fruit from Hymenaea martiana. The sugar analysis showed that several important carbohydrates are found in the pulp and seeds. The phytochemical screening identified important bioactive secondary metabolites and the sunscreen activity showed a great potential for the future development of cosmetic formulations.

Thus, bringing new data on the fruits of Hymenaea martiana, this study emphasizes the biotechnological potential of the species, aggregating chemical and medicinal value to a species native to the Caatinga of the São Francisco Valley, an important step for the conservation of its biodiversity.

Acknowledgements

The authors thank the collaboration of the Brazilian agencies CAPES and FACEPE for the financial support, and the cooperation of Biochemical Engineering Laboratory from the Federal University of Campina Grande. We also would like to thank teacher Abilio Borghi for the grammar review of the manuscript.

  • Practical Application: Determination of sugars, metabolites and sunscreen activity from Jatobá fruits. Application in food and cosmetics industries.

References

  • Aguiar, J. C., Santiago, G. M., Lavor, P. L., Veras, H. N., Ferreira, Y. S., Lima, M. A., Arriaga, A. M., Lemos, T. L., Lima, J. Q., Jesus, H. C., Alves, P. B., & Braz-Filho, R. (2010). Chemical constituents and larvicidal activity of Hymenaea courbaril fruit peel. Natural Product Communications, 5(12), 1977-1980. http://dx.doi.org/10.1177/1934578X1000501231 PMid:21299135.
    » http://dx.doi.org/10.1177/1934578X1000501231
  • Boniface, P. K., Baptista Ferreira, S., & Roland Kaiser, C. (2017). Current state Current state of knowledge on the traditional uses, phytochemistry, and pharmacology of the genus Hymenaea. Journal of Ethnopharmacology, 206, 193-223. http://dx.doi.org/10.1016/j.jep.2017.05.024 PMid:28536059.
    » http://dx.doi.org/10.1016/j.jep.2017.05.024
  • Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. (2012, Junho 30). Aprova o Regulamento Técnico Mercosul sobre Protetores Solares em Cosméticos e dá outras providências (Resolução RDC nº 30, de 1 de junho de 2012). Diário Oficial [da] República Federativa do Brasil
  • Buckeridge, M. S., Crombie, H. J., Mendes, C. J. M., Reid, J. S. G., Gidley, M. J., & Vieira, C. C. J. (1997)4. A new family of oligosaccharides from the xyloglucan of Hymenaea courbaril L. (Leguminosae) cotyledons. Carbohydrate Research, 303(2), 233-237. http://dx.doi.org/10.1016/S0008-6215(97)00161-4 PMid:9352637.
    » http://dx.doi.org/10.1016/S0008-6215(97)00161-4
  • Busato, A. P., Vargas-Rechia, C. G., & Reicher, F. (2001). Xyloglucan from the leaves of Hymenaea courbaril. Phytochemistry, 58(3), 525-531. http://dx.doi.org/10.1016/S0031-9422(01)00217-5 PMid:11557087.
    » http://dx.doi.org/10.1016/S0031-9422(01)00217-5
  • Carneiro, E., Calixto, J. B., Delle Monache, F., & Yunes, R. A. (1993). Isolation chemical identification and pharmacological evaluation of eucryphin, astilbin and engelitin obtained from the bark of Hymenaea martiana. International Journal of Pharmacognosy, 31(1), 38-46. http://dx.doi.org/10.3109/13880209309082916
    » http://dx.doi.org/10.3109/13880209309082916
  • Carpita, N. C., & Gibeaut, D. M. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3(1), 1-30. http://dx.doi.org/10.1111/j.1365-313X.1993.tb00007.x PMid:8401598.
    » http://dx.doi.org/10.1111/j.1365-313X.1993.tb00007.x
  • Chung, M.-S., Kim, N.-C., Long, L., Shamon, L., Ahmad, W.-Y., Sagrero-Nieves, L., Kardono, L. B. S., Kennelly, E. J., Pezzuto, J. M., Soejarto, D. D., & Kinghorn, A. D. (1997). Dereplication of saccharide and polyol constituents of candidate sweet-tasting plants: isolations of the sesquiterpene glycoside mukurozioside iib as a sweet principle of Sapindus rarak. Phytochemical Analysis, 8(2), 49-54. http://dx.doi.org/10.1002/(SICI)1099-1565(199703)8:2<49::AID-PCA339>3.0.CO;2-C
    » http://dx.doi.org/10.1002/(SICI)1099-1565(199703)8:2<49::AID-PCA339>3.0.CO;2-C
  • Dias, L. S., Luzia, D. M. M., & Jorge, N. (2013). Physicochemical and bioactive properties of Hymenaea courbaril L. pulp and seed lipid fraction. Industrial Crops and Products, 49, 610-618. http://dx.doi.org/10.1016/j.indcrop.2013.06.005
    » http://dx.doi.org/10.1016/j.indcrop.2013.06.005
  • Fry, S. C. (1989). The structure and functions of xyloglucan. Journal of Experimental Botany, 40(1), 1-11. http://dx.doi.org/10.1093/jxb/40.1.1
    » http://dx.doi.org/10.1093/jxb/40.1.1
  • Gazzaneo, L. R., Lucena, R. F., & Albuquerque, U. P. (2005). Knowledge and use of medicinal plants by local specialists in a region of Atlantic Forest in the state of Pernambuco (Northeastern Brazil). Journal of Ethnobiology and Ethnomedicine, 1(9), 1-9. PMid:16270911.
  • Hayashi, T. (1989). Xyloglucans in the primary cell wall. Annual Review of Plant Physiology and Plant Molecular Biology, 40(1), 139-168. http://dx.doi.org/10.1146/annurev.pp.40.060189.001035
    » http://dx.doi.org/10.1146/annurev.pp.40.060189.001035
  • Kai, K. C., & Petkowicz, C. L. O. (2010). Influence of extraction conditions on properties of seed xyloglucan. International Journal of Biological Macromolecules, 46(2), 223-228. http://dx.doi.org/10.1016/j.ijbiomac.2009.12.012 PMid:20060409.
    » http://dx.doi.org/10.1016/j.ijbiomac.2009.12.012
  • Kakegawa, K., Edashige, Y., & Ishii, T. (1998). Xyloglucan from xylem-differentiating zones of Cryptomeria japonica. Phytochemistry, 47(5), 767-771. http://dx.doi.org/10.1016/S0031-9422(97)00662-6 PMid:9542169.
    » http://dx.doi.org/10.1016/S0031-9422(97)00662-6
  • Lima, N. N., Reicher, F., Corrêa, J. B. C., Ganter, J. L. M. S., & Sierakowski, M. R. (1993). Partial structure of a xyloglucan from the seed of Hymenaea courbaril var. stilbocarpa (jatobá). Ciência e Cultura, 45(1), 22-26.
  • Mansur, J. S., Breder, M. V. R., Mansur, M. C. A., & Azulay, R. D. (1986). Determinação do fator de proteção solar por espectrofotometria. Anais Brasileiros de Dermatologia, 61, 121-124.
  • Markham, K. R., Ryan, K. G., Bloor, S. J., & Mitchell, K. A. (1998). An increase in the luteolin: Apigenin ratio in Marchantia polymorpha on UV-B enhancement. Phytochemistry, 48(5), 791-794. http://dx.doi.org/10.1016/S0031-9422(97)00875-3
    » http://dx.doi.org/10.1016/S0031-9422(97)00875-3
  • McNeil, M., Darvill, A. G., Fry, S. C., & Albersheim, P. (1984). Structure and function of the primary cell walls of plants. Annual Review of Biochemistry, 53(1), 625-663. http://dx.doi.org/10.1146/annurev.bi.53.070184.003205 PMid:6383202.
    » http://dx.doi.org/10.1146/annurev.bi.53.070184.003205
  • Mussatto, S. I., & Roberto, I. C. (2002). Xilitol: Edulcorante com efeitos benéficos para a saúde humana. Revista Brasileira de Ciências Farmacêuticas, 38(4), 401-413. http://dx.doi.org/10.1590/S1516-93322002000400003
    » http://dx.doi.org/10.1590/S1516-93322002000400003
  • Neves, M. C. A., Neves, P. C. A., Zanini, J. C., Medeiros, Y. S., Yunes, R. A., & Calixto, J. B. (1993). Analgesic and anti-inflammatory activities of the crude hydroalcholic extract obtained from the bark of Hymenaea martiana. Phytotherapy Research, 7(5), 356-362. http://dx.doi.org/10.1002/ptr.2650070507
    » http://dx.doi.org/10.1002/ptr.2650070507
  • Oliveira, F. G. S., Araújo, C. S., Rolim, L. A., Barbosa-Filho, J. M., & Almeida, J. R. G. S. (2018). The genus Hymenaea: A chemical and pharmacological review. In F.R.S. Atta-ur-Rahman (Ed.), Studies in natural products chemistry (Chap. 12, pp. 339-388). Amsterdam: Elsevier.
  • Oliveira, F. G., Lima-Saraiva, S. R., Oliveira, A. P., Rabêlo, S. V., Rolim, L. A., & Almeida, J. R. (2016). Influence of the extractive method on the recovery of phenolic compounds in different parts of Hymenaea martiana Hayne. Pharmacognosy Research, 8(4), 270-275. http://dx.doi.org/10.4103/0974-8490.188885 PMid:27695267.
    » http://dx.doi.org/10.4103/0974-8490.188885
  • Oliveira-Júnior, R. G., & Almeida, J. R. G. S. (2012). Prospecção tecnológica de fotoprotetores derivados de produtos naturais. Revista GEINTEC, 3(1), 32-40. http://dx.doi.org/10.7198/S2237-0722201300010003
    » http://dx.doi.org/10.7198/S2237-0722201300010003
  • Oliveira-Júnior, R. G., Araujo, C. S., Santana, C. R. R., Souza, G. R., Limasaraiva, S. R. G., Guimarães, A. L., Oliveira, A. P., Siqueira-Filho, J. A., Pacheco, A. G. M., & Almeida, J. R. G. S. (2012). Phytochemical screening, antioxidant and antibacterial activity of extracts from the flowers of Neoglaziovia variegata (Bromeliaceae). Journal of Chemical and Pharmaceutical Research, 4(10), 4489-4494.
  • Omaira, A., Gladys, L. P., Maritza, M., Omaira, G., & Lilian, S. (2007). Structural features of a xyloglucan isolated from Hymenaea courbaril gum. Food Hydrocolloids, 21(8), 1302-1309. http://dx.doi.org/10.1016/j.foodhyd.2006.10.004
    » http://dx.doi.org/10.1016/j.foodhyd.2006.10.004
  • Peres, M. T. L. P., Lopes, J. R. R., Silva, C. B., Cândido, A. C. S., Simionatto, E., Cabral, M. R. P., Oliveira, R. M., Facco, J. T., Cardoso, C. A. L., & Simas, P. H. (2013). Phytotoxic and antioxidant activity of seven native fruits of Brazil. Acta Botanica Brasílica, 27(4), 836-846. http://dx.doi.org/10.1590/S0102-33062013000400024
    » http://dx.doi.org/10.1590/S0102-33062013000400024
  • Polonini, H. C., Raposo, N. R. B., & Brandão, M. A. F. (2011). Fotoprotetores naturais como instrumento de ação primária na prevenção de câncer de pele. Revista APS, 14(2), 216-223.
  • Popim, R. C., Corrente, J. E., Marino, J. A. G., & Souza, C. A. (2008). Skin cancer: use of preventive measures and demographic profile of a risk group in the city of Botucatu. Ciencia & Saude Coletiva, 13(4), 1331-1336. http://dx.doi.org/10.1590/S1413-81232008000400030 PMid:18813633.
    » http://dx.doi.org/10.1590/S1413-81232008000400030
  • Roesler, R., Malta, L. G., Carrasco, L. C., Holanda, R. B., Sousa, C. A. S., & Pastore, G. M. (2007). Atividade antioxidante de frutas do cerrado. Food Science and Technology (Campinas), 27(1), 53-60. http://dx.doi.org/10.1590/S0101-20612007000100010
    » http://dx.doi.org/10.1590/S0101-20612007000100010
  • Sá, I. B., Sá, I. I. S., Silva, A. S., & Silva, D. F. (2009). Caracterização ambiental do Vale do Submédio São Francisco. In: M. A. C. Lima, I. B. Sa, L. H. P. Kiill, J. L. P. Araújo, R. M. E. Borges, F. P. Lima Neto, J. M. Soares, P. C. S. Leão, P. C. G. Silva, R. C. Correia, A. S. Silva, I. I. S. Sá & D. F. Silva. Subsídios técnicos para a indicação geográfica de procedência do Vale do Submédio São Francisco: uva de mesa e manga Petrolina: Embrapa Semiárido.
  • Shanley, P., & Medina, G. (2005). Frutíferas e plantas úteis na vida amazônica Campinas: CIFOR Imazon.
  • Silva, M. E. G. C., Guimarães, A. L., Oliveira, A. P., Araújo, C. S., Siqueira-Filho, J. A., Fontana, A. P., Damasceno, P. K. F., Branco, C. R. C., Branco, A., & Almeida, J. R. G. S. (2012). HPLC-DAD analysis and antioxidant activity of Hymenaea martiana Hayne (Fabaceae). Journal of Chemical and Pharmaceutical Research, 4(2), 1160-1166.
  • Simões, K., Du, J., Pessoni, R. A. B., Cardoso-Lopes, E. M., Vivanco, J. M., Stermitz, F. R., & Braga, M. R. (2009). Ipomopsin and hymenain, two biscoumarins from seeds of Hymenaea courbaril. Phytochemistry Letters, 2(2), 59-62. http://dx.doi.org/10.1016/j.phytol.2008.11.003
    » http://dx.doi.org/10.1016/j.phytol.2008.11.003
  • Wagemaker, T. A., Carvalho, C. R. L., Maia, N. B., Baggio, S. R., & Guerreiro-Filho, O. (2011). Sun protection factor, content and composition of lipid fraction of green coffee beans. Industrial Crops and Products, 33(2), 469-473. http://dx.doi.org/10.1016/j.indcrop.2010.10.026
    » http://dx.doi.org/10.1016/j.indcrop.2010.10.026
  • Wagner, H., & Bladt, S. (1996). Plant drug analysis: a thin layer chromatography atlas Berlim: Springer Verlag. http://dx.doi.org/10.1007/978-3-642-00574-9
    » http://dx.doi.org/10.1007/978-3-642-00574-9

Publication Dates

  • Publication in this collection
    16 May 2019
  • Date of issue
    Dec 2019

History

  • Received
    31 July 2018
  • Accepted
    11 Feb 2019
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br