Acessibilidade / Reportar erro

Identification of Methicillin-Resistant Staphylococcus aureus in Bulk Tank Milk

Abstract

Staphylococcus aureus is the leading cause of intoxications in humans. Also, methicillin-resistant S. aureus (MRSA) is an emerging problem in food-producing animals. The presence of MRSA in milk may create a risk to public health. The aim of this study was to evaluate the presence of MRSA in bulk tank milk samples. One hundred and twenty bulk tank milk samples were analyzed using the convenient sampling method. The isolates were confirmed by real-time polymerase chain reaction (RT-PCR) targeting nuc and mecA gene in S. aureus. Antibiotic resistance profiles of the isolates were tested by disc agar diffusion method. In the current study, S. aureus was detected in 44 (36.66%) of the samples. The presence of the mecA gene was found to be positive in 40 (75.4%) of the 53 S. aureus isolates. As a result of the study, a high incidence of MRSA was detected in bulk tank milk samples. Antibiotic-resistant bacteria are at risk of being transferred to humans via milk. For safe and healthy milk consumption, uncontrolled use of antibiotics in dairy cows should be avoided.

Keywords:
antibiotic resistance; bulk tank milk; MRSA

1 Introduction

Foodborne outbreaks caused by milk and dairy products have led to hospitalizations and deaths for human beings (Painter et al., 2013Painter, J. A., Hoekstra, R. M., Ayers, T., Tauxe, R. V., Braden, C. R., Angulo, F. J., & Griffin, P. M. (2013). Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998-2008. Emerging Infectious Diseases Journal, 19(3), 407-415. http://dx.doi.org/10.3201/eid1903.111866. PMid:23622497.
http://dx.doi.org/10.3201/eid1903.111866...
). Staphylococcus aureus is an important causative agent of toxin-mediated food poisoning, invasiveness, and antibiotic resistance (Le Loir et al., 2003Le Loir, Y., Baron, F., & Gautier, M. (2003). Staphylococcus aureus and food poisoning. Genetics and Molecular Research, 2(1), 63-76. PMid:12917803.; Gundogan & Avci, 2014Gundogan, N., & Avci, E. (2014). Occurrence and antibiotic resistance of Escherichia coli, Staphylococcus aureus and Bacillus cereus in raw milk and dairy products in Turkey. International Journal of Dairy Technology, 67(4), 562-569. http://dx.doi.org/10.1111/1471-0307.12149.
http://dx.doi.org/10.1111/1471-0307.1214...
). It can cause skin and wound infections or subclinical mastitis in dairy animals (Kluytmans et al., 1997Kluytmans, J., van Belkum, A., & Verbrugh, H. (1997). Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. Clinical Microbiology Reviews, 10(3), 505-520. http://dx.doi.org/10.1128/CMR.10.3.505. PMid:9227864.
http://dx.doi.org/10.1128/CMR.10.3.505...
; Kreausukon et al., 2012Kreausukon, K., Fetsch, A., Kraushaar, B., Alt, K., Müller, K., Krömker, V., Zessin, K. H., Käsbohrer, A., & Tenhagen, B. A. (2012). Prevalence, antimicrobial resistance, and molecular characterization of methicillin-resistant Staphylococcus aureus from bulk tank milk of dairy herds. Journal of Dairy Science, 95(8), 4382-4388. http://dx.doi.org/10.3168/jds.2011-5198. PMid:22818451.
http://dx.doi.org/10.3168/jds.2011-5198...
; Lee et al., 2014Lee, S. H. I., Mangolin, B. L. C., Gonçalves, J. L., Neeff, D. V., Silva, M. P., Cruz, A. G., & Oliveira, C. A. F. (2014). Biofilm-producing ability of Staphylococcus aureus isolates from Brazilian dairy farms. Journal of Dairy Science, 97(3), 1812-1816. http://dx.doi.org/10.3168/jds.2013-7387. PMid:24440248.
http://dx.doi.org/10.3168/jds.2013-7387...
). The presence of biofilm producing ability of S. aureus in milk and milking environment is a public health concern for the consumers (Lee et al., 2014Lee, S. H. I., Mangolin, B. L. C., Gonçalves, J. L., Neeff, D. V., Silva, M. P., Cruz, A. G., & Oliveira, C. A. F. (2014). Biofilm-producing ability of Staphylococcus aureus isolates from Brazilian dairy farms. Journal of Dairy Science, 97(3), 1812-1816. http://dx.doi.org/10.3168/jds.2013-7387. PMid:24440248.
http://dx.doi.org/10.3168/jds.2013-7387...
; Lee et al., 2016Lee, S. H. I., Cappato, L. P., Corassin, C. H., Cruz, A. G. D., & Oliveira, C. A. F. D. (2016). Effect of peracetic acid on biofilms formed by Staphylococcus aureus and Listeria monocytogenes isolated from dairy plants. Journal of Dairy Science, 99(3), 2384-2390. http://dx.doi.org/10.3168/jds.2015-10007. PMid:26723125.
http://dx.doi.org/10.3168/jds.2015-10007...
). Also, thermostable enterotoxins prior to pasteurization of raw milk produced by S. aureus may cause staphylococcal food poisoning in humans (Hein et al., 2005Hein, I., Jorgensen, H. J., Loncarevic, S., & Wagner, M. (2005). Quantification of Staphylococcus aureus in unpasteurised bovine and caprine milk by real-time PCR. Research in Microbiology, 156(4), 554-563. http://dx.doi.org/10.1016/j.resmic.2005.01.003. PMid:15862454.
http://dx.doi.org/10.1016/j.resmic.2005....
; Lee et al., 2012Lee, S. H. I., Camargo, C. H., Gonçalves, J. L., Cruz, A. G., Sartori, B. T., Machado, M. B., & Oliveira, C. A. F. (2012). Characterization of Staphylococcus aureus isolates in milk and the milking environment from small-scale dairy farms of São Paulo, Brazil, using pulsed-field gel electrophoresis. Journal of Dairy Science, 95(12), 7377-7383. http://dx.doi.org/10.3168/jds.2012-5733. PMid:23040016.
http://dx.doi.org/10.3168/jds.2012-5733...
).

Antibiotic resistance of bacteria has become a major public health problem all over the world owing to the massive use of antibiotics in feed to promote growth in both agriculture and livestock animals (Normanno et al., 2007Normanno, G., Corrente, M., La Salandra, G., Dambrosio, A., Quaglia, N. C., Parisi, A., Greco, G., Bellacicco, A. L., Virgilio, S., & Celano, G. V. (2007). Methicillin-resistant Staphylococcus aureus (MRSA) in foods of animal origin product Italy. International Journal of Food Microbiology, 117(2), 219-222. http://dx.doi.org/10.1016/j.ijfoodmicro.2007.04.006. PMid:17533002.
http://dx.doi.org/10.1016/j.ijfoodmicro....
; Oniciuc et al., 2017Oniciuc, E. A., Nicolau, A. L., Hernández, M., & Rodríguez-Lázaro, D. (2017). Presence of methicillin-resistant Staphylococcus aureus in the food chain. Trends in Food Science & Technology, 61, 49-59. http://dx.doi.org/10.1016/j.tifs.2016.12.002.
http://dx.doi.org/10.1016/j.tifs.2016.12...
). The antibiotic resistance of methicillin and other beta lactam groups result from a modified penicillin binding protein (PBP 2a) which has a low affinity for the beta lactams. This protein is encoded by mecA and mecC genes which are localized in a mobile genetic element called Staphylococcal Casette Chromosome mec (SCCmec) (Paterson et al., 2014Paterson, G. K., Harrison, E. M., & Holmes, M. A. (2014). The emergence of mecC methicillin resistant Staphylococcus aureus. Trends in Microbiology, 22(1), 42-47. http://dx.doi.org/10.1016/j.tim.2013.11.003. PMid:24331435.
http://dx.doi.org/10.1016/j.tim.2013.11....
). Recent studies reported that the mecC gene is required for confirmation of methicillin-resistant S. aureus (MRSA) because 70% identity to mecA gene (Garcia-Alvarez et al., 2011Garcia-Alvarez, L., Holden, M. T., Lindsay, H., Webb, C. R., Brown, D. F., Curran, M. D., Walpole, E., Brooks, K., Pickard, D. J., Teale, C., Parkhill, J., Bentley, S. D., Edwards, G. F., Girvan, E. K., Kearns, A. M., Pichon, B., Hill, R. L., Larsen, A. R., Skov, R. L., Peacock, S. J., Maskell, D. J., & Holmes, M. A. (2011). Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: A descriptive study. The Lancet. Infectious Diseases, 11(8), 595-603. http://dx.doi.org/10.1016/S1473-3099(11)70126-8. PMid:21641281.
http://dx.doi.org/10.1016/S1473-3099(11)...
; Shore et al., 2011Shore, A. C., Deasy, E. C., Slickers, P., Brennan, G., O’Connell, B., Monecke, S., Ehricht, R., & Coleman, D. C. (2011). Detection of staphylococcal cassette chromosome mec type XI encoding highly divergent mecA, mecI, mecR1, blaZ and ccr genes in human clinical clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 55(8), 3765-3763. http://dx.doi.org/10.1128/AAC.00187-11. PMid:21636525.
http://dx.doi.org/10.1128/AAC.00187-11...
; Stegger et al., 2012Stegger, M., Andersen, P. S., Kearns, A., Pichon, B., Holmes, M. A., Edwards, G., Laurent, F., Teale, C., Skov, R., & Larsen, A. R. (2012). Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecA(LGA251). Clinical Microbiology and Infection, 18(4), 395-400. http://dx.doi.org/10.1111/j.1469-0691.2011.03715.x. PMid:22429460.
http://dx.doi.org/10.1111/j.1469-0691.20...
; Ito et al., 2012Ito, T., Hiramatsu, K., Tomasz, A., de Lencastre, H., Perreten, V., Holden, M. T., Coleman, D. C., Goering, R., Giffard, P. M., Skov, R. L., Zhang, K., Westh, H., O’Brien, F., Tenover, F. C., Oliveira, D. C., Boyle-Vavra, S., Laurent, F., Kearns, A. M., Kreiswirth, B., Ko, K. S., Grundmann, H., Sollid, J. E., John, J. F., Jr Daum, R., Soderquist, B., & Buist, G. (2012). Guidelines for reporting novel mecA gene homologues. Antimicrobial Agents and Chemotherapy, 56(10), 4997-4999. http://dx.doi.org/10.1128/AAC.01199-12. PMid:22869575.
http://dx.doi.org/10.1128/AAC.01199-12...
). Also, mecC-MRSA has been reported in the likelihood of zoonotic transmission (Petersen et al., 2013Petersen, A., Stegger, M., Heltberg, O., Christensen, J., Zeuthen, A., Knudsen, L. K., Urth, T., Sorum, M., Schouls, L., Larsen, J., Skov, R., & Larsen, A. R. (2013). Epidemiology of methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clinical Microbiology and Infection, 19(1), 16-22. http://dx.doi.org/10.1111/1469-0691.12036. PMid:23078039.
http://dx.doi.org/10.1111/1469-0691.1203...
; Harrison et al., 2013Harrison, E. M., Paterson, G. K., Holden, M. T., Larsen, J., Stegger, M., Larsen, A. R., Petersen, A., Skov, R. L., Christensen, J. M., Bak Zeuthen, A., Heltberg, O., Harris, S. R., Zadoks, R. N., Parkhill, J., Peacock, S. J., & Holmes, M. A. (2013). Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Molecular Medicine, 5(4), 509-515. http://dx.doi.org/10.1002/emmm.201202413. PMid:23526809.
http://dx.doi.org/10.1002/emmm.201202413...
).

MRSA is an emerging pathogen in livestock animals that can infect humans and has become a growing concern for public health. MRSA has been isolated as a mastitis pathogen in bulk tank milk (Moon et al., 2007Moon, J. S., Lee, A. R., Kang, H. M., Lee, E. S., Kim, M. N., Paik, Y. H., Park, Y. H., Joo, Y. S., & Koo, H. C. (2007). Phenotypic and genetic antibiogram of methicillin-resistant staphylococci isolated from bovine mastitis in Korea. Journal of Dairy Science, 90(3), 1176-1185. http://dx.doi.org/10.3168/jds.S0022-0302(07)71604-1. PMid:17297092.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Nam et al., 2011Nam, H. M., Lee, A. L., Jung, S. C., Kim, M. N., Jang, G. C., Wee, S. H., & Lim, S. K. (2011). Antimicrobial susceptibility of Staphylococcus aureus and characterization of methicillin-resistant Staphylococcus aureus isolated from bovine mastitis in Korea. Foodborne Pathogens and Disease, 8(2), 231-238. http://dx.doi.org/10.1089/fpd.2010.0661. PMid:21034263.
http://dx.doi.org/10.1089/fpd.2010.0661...
; Spohr et al., 2010Spohr, M., Rau, J., Friedrich, A., Klittich, G., Fetsch, A., Guerra, B., Hammerl, J. A., & Tenhagen, B. A. (2010). Methicillin-resistant Staphylococcus aureus (MRSA) in three dairy herds in Southwest Germany. Zoonoses and Public Health, 58(4), 252-261. http://dx.doi.org/10.1111/j.1863-2378.2010.01344.x. PMid:20630047.
http://dx.doi.org/10.1111/j.1863-2378.20...
; Doulgeraki et al., 2017Doulgeraki, A. I., Di Ciccio, P., Ianieri, A., & Nychas, G. E. (2017). Methicillin-resistant food-related Staphylococcus aureus: A review of current knowledge and biofilm formation for future studies and applications. Research in Microbiology, 168(1), 1-15. http://dx.doi.org/10.1016/j.resmic.2016.08.001. PMid:27542729.
http://dx.doi.org/10.1016/j.resmic.2016....
). Hospital-associated MRSA (HA-MRSA) and community-associated MRSA (CA-MRSA) infections have been reported in initial studies. Another group called livestock-associated MRSA (LA-MRSA) was first isolated in dairy cattle (Paterson et al., 2012Paterson, G. K., Larsen, J., Harrison, E. M., Larsen, A. R., Morgan, F. J., Peacock, S. J., Parkhill, J., Zadoks, R. N., & Holmes, M. A. (2012). First detection of livestock-associated meticillin-resistant Staphylococcus aureus CC398 in bulk tank milk in the United Kingdom, January to July 2012. European Communicable Disease Bulletin, 17(50), 20337. PMid:23241232.) In recent years, MRSA has become a major concern as an emerging pathogen in livestock that can transfer the methicillin resistance to humans via food or milk (Nemati et al., 2008Nemati, M., Hermans, K., Lipinska, U., Denis, O., Deplano, A., Struelens, M., Devriese, L. A., Pasmans, F., & Haesebrouck, F. (2008). Antimicrobial resistance of old and recent Staphylococcus aureus isolates from poultry: First detection of livestock-associated methicillin-resistant strain ST398. Antimicrobial Agents and Chemotherapy, 52(10), 3817-3819. http://dx.doi.org/10.1128/AAC.00613-08. PMid:18663024.
http://dx.doi.org/10.1128/AAC.00613-08...
; Pereira et al., 2009Pereira, V., Lopes, C., Castro, A., Silva, J., Gibbs, P., & Teixeira, P. (2009). Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus isolates from various foods in Portugal. Food Microbiology, 26(3), 278-282. http://dx.doi.org/10.1016/j.fm.2008.12.008. PMid:19269569.
http://dx.doi.org/10.1016/j.fm.2008.12.0...
; Wendlandt et al., 2013Wendlandt, S., Schwarz, S., & Silley, P. (2013). Methicillin-resistant Staphylococcus aureus: A food-borne pathogen? Annual Review of Food Science and Technology, 4(1), 117-139. http://dx.doi.org/10.1146/annurev-food-030212-182653. PMid:23190141.
http://dx.doi.org/10.1146/annurev-food-0...
; Vincze et al., 2014Vincze, S., Stamm, I., Kopp, P. A., Hermes, J., Adlhoch, C., Semmler, T., Wieler, L. H., Lübke-Becker, A., & Walther, B. (2014). Alarming proportions of methicillin-resistant Staphylococcus aureus (MRSA) in wound samples from companion animals, Germany 2010–2012. PLoS One, 9(1), e85656. http://dx.doi.org/10.1371/journal.pone.0085656. PMid:24465637.
http://dx.doi.org/10.1371/journal.pone.0...
; Wang et al., 2014Wang, G., Li, G., Xia, X., Yang, B., Xi, M., & Meng, J. (2014). Antimicrobial susceptibility and molecular typing of methicillin-resistant Staphylococcus aureus in retail foods in Shaanxi, China. Foodborne Pathogens and Disease, 11(4), 281-286. http://dx.doi.org/10.1089/fpd.2013.1643. PMid:24404781.
http://dx.doi.org/10.1089/fpd.2013.1643...
; Kraushaar & Fetsch 2014Kraushaar, B., & Fetsch, A. (2014). First description of PVL-positive methicillin-resistant Staphylococcus aureus (MRSA) in wild boar meat. International Journal of Food Microbiology, 186, 68-73. http://dx.doi.org/10.1016/j.ijfoodmicro.2014.06.018. PMid:25016468.
http://dx.doi.org/10.1016/j.ijfoodmicro....
; European Food Safety Authority, 2015European Food Safety Authority – EFSA. (2015). EU summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2013. EFSA Journal, 13(2), 4036.; Lozano et al., 2016Lozano, C., Gharsa, H., Ben Slama, K., Zarazaga, M., & Torres, K. (2016). Staphylococcus aureus in animals and food: Methicillin-resistance, prevalence and population structure: A review in the African continent. Microorganisms, 4(12), 1-19. http://dx.doi.org/10.3390/microorganisms4010012. PMid:27681906.
http://dx.doi.org/10.3390/microorganisms...
; Asiimwe et al., 2017Asiimwe, B. B., Baldan, R., Trovato, A., & Cirillo, D. M. (2017). Prevalence and molecular characteristics of Staphylococcus aureus, including methicillin resistant strains, isolated from bulk can milk and raw milk products in pastoral communities of South-West Uganda. BMC Infectious Diseases, 17(1), 422-429. http://dx.doi.org/10.1186/s12879-017-2524-4. PMid:28610560.
http://dx.doi.org/10.1186/s12879-017-252...
; Aqib et al., 2017Aqib, A. I., Ijaz, M., Anjum, A. A., Malik, M. A. R., Mehmood, K., Farooqi, S. H., & Hussain, K. (2017). Antibiotic susceptibilities and prevalence of methicillin resistant Staphylococcus aureus (MRSA) isolated from bovine milk in Pakistan. Acta Tropica, 176, 168-172. http://dx.doi.org/10.1016/j.actatropica.2017.08.008. PMid:28797802.
http://dx.doi.org/10.1016/j.actatropica....
; Can et al., 2017aCan, H. Y., Elmalı, M., & Karagöz, A. (2017a). Molecular typing and antimicrobial susceptibility of Staphylococcus aureus strains isolated from raw milk, cheese, minced meat, and chicken meat samples. Korean Journal for Food Science of Animal Resources, 37(2), 175-180. http://dx.doi.org/10.5851/kosfa.2017.37.2.175. PMid:28515641.
http://dx.doi.org/10.5851/kosfa.2017.37....
; Tenhagen et al., 2018Tenhagen, B. A., Alt, K., Pfefferkorn, B., Wiehle, L., Käsbohrer, A., & Fetsch, A. (2018). Short communication: Methicillin-resistant Staphylococcus aureus in conventional and organic dairy herds in Germany. Journal of Dairy Science, 101(4), 3380-3386. http://dx.doi.org/10.3168/jds.2017-12939. PMid:29395146.
http://dx.doi.org/10.3168/jds.2017-12939...
).

Even though many researchers have reported the isolation of MRSA from livestock animals and foods of animal origin, the effect of MRSA in food-related problems is very rare; however, there are some concerns about foodborne MRSA infections (EFSA, 2009European Food Safety Authority – EFSA. (2009). Scientific opinion of the panel on biological hazards on a request from the European Commission on assessment of the public health significance of methicillin resistant Staphylococcus aureus (MRSA) in animals and foods. EFSA Journal, 993, 1-73.; Doyle et al., 2011Doyle, M. E., Hartmann, F. A., & Wong, A. C. L. (2011). White paper on sources of methicillin-resistant Staphylococcus aureus (MRSA) and other methicillin-resistant staphylococci: Implications for our food supply. Madison: Food Research Institute, University of Wisconsin.; Herrera et al., 2016Herrera, F. C., García-López, M. L., & Santos, J. A. (2016). Characterization of methicillin-resistant Staphylococcus aureus isolated from raw milk fresh cheese in Colombia. Journal of Dairy Science, 99(10), 7872-7876. http://dx.doi.org/10.3168/jds.2016-11322. PMid:27423957.
http://dx.doi.org/10.3168/jds.2016-11322...
). The aims of this study were to evaluate the prevalence of S. aureus, antibiotic resistance profiles, and related mecA genes among these isolates of S. aureus from bulk tank milk samples in Turkey.

2 Materials and methods

2.1 Milk samples

In this study, a total of 120 bulk tank milk samples were obtained between October 2016 and September 2017 in Burdur province, located on the southern side of Turkey. The samples were taken in sterile plastic collection tubes and transported to the laboratory under refrigeration (4-8 °C), and the samples were directly processed for further analyzes.

2.2 Isolation and identification of S. aureus

Bulk tank milk samples (0.1 mL) were plated on rabbit plasma fibrinogen agar medium (BP-RPF, Oxoid, Italy) and incubated at 37 °C for 24-48 hours. Colonies developing a typical coagulase halo on BP-RPF agar were suspected of S. aureus. Two suspected colonies from samples were grown in Brain Heart Infusion broth (BHI, Oxoid, CM1135) at 37 °C for 24 hours. Presumptive colonies of S. aureus were confirmed with some properties (Gram staining, catalase reaction, ß hemolysis, DNase, and the ability to coagulate rabbit plasma) (International Organization for Standardization, 1999International Organization for Standardization – ISO. (1999). ISO 6888-2: Microbiology of food animal feeding stuffs- Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species). Part 2: Technique using rabbit plasma fibrinogen agar medium. International Organization for Standardization. Geneva: ISO.).

2.3 DNA isolation

Overnight cultures in Brain Heart Infusion broth were used for the DNA isolation. For this purpose, 2 ml of broth cultures were centrifuged at 5 000 g. for 10 minutes and the supernatant were discarded. Bacterial pellets were washed twice with 1 ml of saline solution and centrifuged again. Bacterial pellets were resuspended in 180 µl Tris EDTA buffer (Sigma-Aldrich, 93283) containing 18 µl of lysostaphin (0.5 U/µl, Sigma, L7386) and incubated at 37 °C for 1 hour (Akineden et al., 2008Akineden, Ö., Hassan, A. A., Schneider, E., & Usleber, E. (2008). Enterotoxigenic properties of Staphylococcus aureus isolated from goats’ milk cheese. International Journal of Food Microbiology, 124(2), 211-216. http://dx.doi.org/10.1016/j.ijfoodmicro.2008.03.027. PMid:18455257.
http://dx.doi.org/10.1016/j.ijfoodmicro....
). Genomic DNA was extracted according to GeneJET Genomic DNA Purification Kit (Thermo Fisher Scientific, Waltham, MA) manufacturer’s protocol. A nano-drop (NanoDrop2000-Thermoscientific™) technique was used to define the quantification of DNA.

2.4 PCR analysis

In the current study, suspected S. aureus isolates were detected by species specific nuc gene for confirmation. Then, confirmed S. aureus isolates were analyzed for detection of the mecA gene. Extracted DNA was subjected to real time polymerase chain reaction (RT-PCR) using the nuc and mecA gene primers in Table 1. Suspected S. aureus isolates were analyzed using the LightCycler® 480 System with a 96-well format (Roche Diagnostics, Tokyo, Japan). The extracted 5 µl DNA was added to 15 µl of LightCycler® 480 SYBR Green I Master (Roche Diagnostics). Thermocycling conditions using the LightCycler system were completed according to the amplification program consisting of an initial denaturation at 95°C for 10 minutes followed by a 45-cycle amplification program heated to 95 °C with a 15-seconds hold, annealing for nuc gene at 55 °C, for mecA gene at 57 °C with a 10-seconds hold, and extension at 65 °C with a 15-seconds hold.

Table 1
nuc and mecA genes primers.

2.5 Determination of antimicrobial resistance

Confirmed S. aureus isolates were tested for antimicrobial susceptibility by the disc agar diffusion method according to the guidelines of the Clinical and Laboratory Standards Institute (Clinical and Laboratory Standards Institute, 2013Clinical and Laboratory Standards Institute – CLSI. (2013). M 100-S23: Performance Standards for Antimicrobial Susceptibility Testing. Wayne: CLSI.). The antibiotic discs were selected in line with the recommendation of CLSI and included penicillin (10 IU/disc), oxacillin (1 μg/disc), tetracycline (30 μg/disc), gentamicin (10 μg/disc), cefoxitin (30 μg/ disc), chloramphenicol (30 μg/disc), erythromycin (15 μg/ disc), ciprofloxacin (5 μg/disc), trimethoprim-sulphamethoxazole (1.25-23.75 µg/disc), and clindamycin (2 µg/disc). The isolates were classified as susceptible, intermediate resistant, and resistant.

2.6 Statistical analysis

The differences between the seasons and total mesophilic aerobic bacteria (TMAB) and Staphylococcus spp. levels was determined by one-way analysis of variance (ANOVA) and Tukey’s test using the SPSS software package version 15.0 for Windows, P < 0.05 was considered statistically significant.

3 Results

3.1 Prevalence of S. aureus

In this study, the prevalence of nuc and mecA genes in S. aureus isolated from bulk tank milk samples are given in tables 2 and 3.

Table 2
Prevalence of S. aureus in bulk tank milk.
Table 3
Prevalence of MRSA in bulk tank milk.

3.2. Antimicrobial susceptibility

The results of the antibiotic susceptibility test indicated the resistance of the isolates to oxacillin (71.15%), penicillin (69.82%), clindamycin (67.93%) and cefoxitin (67.31%). The most sensitive antibiotics were gentamycin (92.45%), followed by trimethoprim-sulfamethoxazole (86.79%), chloramphenicol (83.01%), ciprofloxacin (79.24%), tetracycline (69.81%) and erythromycin (47.16%).

4 Discussion

Milk contains many bacteria that affect the quality and safety of dairy products (Porcellato et al., 2018Porcellato, D., Aspholm, M., Skeie, S. B., Monshaugen, M., Brendehaug, J., & Mellegard, H. (2018). Microbial diversity of consumption milk during processing and storage. International Journal of Food Microbiology, 266, 21-30. http://dx.doi.org/10.1016/j.ijfoodmicro.2017.11.004. PMid:29161642.
http://dx.doi.org/10.1016/j.ijfoodmicro....
). Researches have showed that dairy products such as milk can cause foodborne infections and intoxications. For instance, a study from Malaysia reported that milk samples were contaminated with coliform bacteria (90%), Eschericia coli (65%), S. aureus (60%), E. coli 0157:H7 (33.5%), and Salmonella (1.4%) (Chye et al., 2004Chye, F. Y., Abdullah, A., & Ayob, M. K. (2004). Bacteriological quality and safety of raw milk in Malaysia. Food Microbiology, 21(5), 535-541. http://dx.doi.org/10.1016/j.fm.2003.11.007.
http://dx.doi.org/10.1016/j.fm.2003.11.0...
). Total mesophilic aerobic bacteria in bulk tank milk may indicate the hygienic quality of milk. Milking conditions, seasonal changes, and moisture affect the presence of microorganisms in milk (Elmoslemany et al., 2009Elmoslemany, A. M., Keefe, G. P., Dohoo, I. R., & Jayarao, B. M. (2009). Risk factors for bacteriological quality of bulk tank milk in Prince Edward Island dairy herds. Part 1. Overall risk factors. Journal of Dairy Science, 92(6), 2634-2643. http://dx.doi.org/10.3168/jds.2008-1812. PMid:19447996.
http://dx.doi.org/10.3168/jds.2008-1812...
). The levels of total bacteria in bulk tank milk may be higher in summer seasons in comparison to winter seasons (Elmoslemany et al., 2010Elmoslemany, A. M., Keefe, G. P., Dohoo, I. R., Wichtel, J. J., Stryhn, H., & Dingwell, R. T. (2010). The association between bulk tank milk analysis for raw milk quality and on-farm management practices. Preventive Veterinary Medicine, 95(1-2), 32-40. http://dx.doi.org/10.1016/j.prevetmed.2010.03.007. PMid:20381889.
http://dx.doi.org/10.1016/j.prevetmed.20...
). In our study, TMAB levels of bulk tank milk samples in the winter were higher than those in the summer and the effects of seasonal differences on microorganisms are statistically important. Because of the effective cooling conditions of bulk tank milk in Burdur province, it can be said that seasonal changes have a limited effect on the development of microorganisms because milk hygiene and equipment cleaning are more effective.

Although S. aureus is a pathogenic bacterium, it can be found in the normal mucosa of healthy humans and animals, and may cause mastitis in dairy cows. (Kluytmans et al., 1997Kluytmans, J., van Belkum, A., & Verbrugh, H. (1997). Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. Clinical Microbiology Reviews, 10(3), 505-520. http://dx.doi.org/10.1128/CMR.10.3.505. PMid:9227864.
http://dx.doi.org/10.1128/CMR.10.3.505...
; Kreausukon et al., 2012Kreausukon, K., Fetsch, A., Kraushaar, B., Alt, K., Müller, K., Krömker, V., Zessin, K. H., Käsbohrer, A., & Tenhagen, B. A. (2012). Prevalence, antimicrobial resistance, and molecular characterization of methicillin-resistant Staphylococcus aureus from bulk tank milk of dairy herds. Journal of Dairy Science, 95(8), 4382-4388. http://dx.doi.org/10.3168/jds.2011-5198. PMid:22818451.
http://dx.doi.org/10.3168/jds.2011-5198...
). In our study, S. aureus was detected in 37.32% of the isolates. The presence of S. aureus in bulk milk tank in the current study was reported to be higher by 75%, 70.4% 55.7%, 55.26%, and 39.8%, in comparison to previous study from Norway, Brazil, Czech Republic, Algeria, and Kosova, respectively (Jørgensen et al., 2005Jørgensen, H. J., Mørk, T., Høgåsen, H. R., & Rørvik, L. M. (2005). Enterotoxigenic Staphylococcus aureus in bulk milk in Norway. Journal of Applied Microbiology, 99(1), 158-166. http://dx.doi.org/10.1111/j.1365-2672.2005.02569.x. PMid:15960676.
http://dx.doi.org/10.1111/j.1365-2672.20...
; Rall et al., 2008Rall, V. L. M., Vieira, F. P., Rall, R., Vieitis, R. L., Fernandes, A. Jr, Candeias, J. M. G., Cardoso, K. F. G., & Araújo, J. P. Jr (2008). PCR detection of staphylococcal enterotoxin genes in Staphylococcus aureus strains isolated from raw and pasteurized milk. Veterinary Microbiology, 132(3-4), 408-413. http://dx.doi.org/10.1016/j.vetmic.2008.05.011. PMid:18572331.
http://dx.doi.org/10.1016/j.vetmic.2008....
; Zouharova & Rysanek, 2008Zouharova, M., & Rysanek, D. (2008). Multiplex PCR and RPLA identification of Staphylococcus aureus enterotoxigenic strains from bulk tank milk. Zoonoses and Public Health, 55(6), 313-319. http://dx.doi.org/10.1111/j.1863-2378.2008.01134.x. PMid:18489539.
http://dx.doi.org/10.1111/j.1863-2378.20...
; Chaalal et al., 2016Chaalal, W., Aggad, H., Zidane, K., Saidi, N., & Kihal, M. (2016). Antimicrobial susceptibility profiling of Staphylococcus aureus isolates from milk. British Microbiology Research Journal, 13(3), 1-7. http://dx.doi.org/10.9734/BMRJ/2016/24064.
http://dx.doi.org/10.9734/BMRJ/2016/2406...
; Mehmeti et al., 2017Mehmeti, I., Bytyqi, H., Muji, S., Nes, I. F., & Diep, D. B. (2017). The prevalence of Listeria monocytogenes and Staphylococcus aureus and their virulence genes in bulk tank milk in Kosovo. Journal of Infection in Developing Countries, 11(3), 247-254. http://dx.doi.org/10.3855/jidc.8256. PMid:28368859.
http://dx.doi.org/10.3855/jidc.8256...
). By contrast, researchers from Switzerland, Iran, and Brazil reported lower levels of S. aureus than the current study (Muehlherr et al., 2003Muehlherr, J. E., Zweifel, C., Corti, S., Blanco, J. E., & Stephan, R. (2003). Microbiological quality of raw goat’s and ewe’s bulk-tank milk in Switzerland. Journal of Dairy Science, 86(12), 3849-3856. http://dx.doi.org/10.3168/jds.S0022-0302(03)73992-7. PMid:14740819.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Fagundes et al., 2010Fagundes, H., Barchesi, L., Nader, A. Fo, Ferreira, L. M., & Oliveira, C. A. F. (2010). Occurrence of Staphylococcus aureus in raw milk produced in dairy farms in São Paulo state, Brazil. Brazilian Journal of Microbiology, 41(2), 376-380. http://dx.doi.org/10.1590/S1517-83822010000200018. PMid:24031507.
http://dx.doi.org/10.1590/S1517-83822010...
; Lee et al., 2012Lee, S. H. I., Camargo, C. H., Gonçalves, J. L., Cruz, A. G., Sartori, B. T., Machado, M. B., & Oliveira, C. A. F. (2012). Characterization of Staphylococcus aureus isolates in milk and the milking environment from small-scale dairy farms of São Paulo, Brazil, using pulsed-field gel electrophoresis. Journal of Dairy Science, 95(12), 7377-7383. http://dx.doi.org/10.3168/jds.2012-5733. PMid:23040016.
http://dx.doi.org/10.3168/jds.2012-5733...
; Jamali et al., 2015Jamali, H., Paydar, M., Radmehr, B., Ismail, S., & Dadrasnia, A. (2015). Prevalence and antimicrobial resistance of Staphylococcus aureus isolated from raw milk and dairy products. Food Control, 54, 383-388. http://dx.doi.org/10.1016/j.foodcont.2015.02.013.
http://dx.doi.org/10.1016/j.foodcont.201...
). This indicates that the milking conditions and the hygienic quality of bulk tank milk may cause differences between levels of S. aureus isolates in different countries.

Mastitis is capable of affecting the mammary glands and it changes milk composition (Korhonen & Kaartinen, 1995Korhonen, H., & Kaartinen, L. (1995). Changes in the composition of milk induced by mastitis. In M. Sandholm, T. Honkanen-Buzalski, L. Kaartinen, S. Pyörälä (Eds.), The bovine udder and mastitis (pp. 76-82). Jyväskylä, Finland: Gummerus.). It is a disease with high treatment costs which makes mastitis an economical concern for dairy farmers (Duarte et al., 2015Duarte, C. M., Freitas, P. P., & Bexiga, R. (2015). Technological advances in bovine mastitis diagnosis: an overview. Journal of Veterinary Diagnostic Investigation, 27(6), 665-672. http://dx.doi.org/10.1177/1040638715603087. PMid:26450837.
http://dx.doi.org/10.1177/10406387156030...
). S. aureus is one of the main pathogens causing mastitis in dairy animals, which leads to overuse of antimicrobial agents (Roberson et al., 1998Roberson, J. R., Fox, L. K., Hancock, D. D., Gay, J. M., & Besser, T. E. (1998). Sources of intramammary infections from Staphylococcus aureus in dairy heifers at first parturition. Journal of Dairy Science, 81(3), 687-693. http://dx.doi.org/10.3168/jds.S0022-0302(98)75624-3. PMid:9565871.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Peles et al., 2007Peles, F. M., Wagner, L., Varga, I., Hein, P., Rieck, K., Gutser, P., Kereszturi, G., Kardos, I., Turcsányi, I., Béri, B., & Szabó, A. (2007). Characterization of Staphylococcus aureus strains isolated from bovine milk in Hungary. International Journal of Food Microbiology, 118(2), 186-193. http://dx.doi.org/10.1016/j.ijfoodmicro.2007.07.010. PMid:17727995.
http://dx.doi.org/10.1016/j.ijfoodmicro....
; Olde Riekerink et al., 2006Olde Riekerink, R. G. M., Barkema, H. W., Veenstra, S., Poole, D. E., Dingwell, R. T., & Keefe, G. P. (2006). Prevalence of contagious mastitis pathogens in bulk tank milk in Prince Edward Island. The Canadian Veterinary Journal. La Revue Veterinaire Canadienne, 47(6), 567-572. PMid:16808229.; Barkema et al., 2009Barkema, H. W., Green, M. J., Bradley, A. J., & Zadoks, R. N. (2009). Invited review: The role of contagious disease in udder health. Journal of Dairy Science, 92(10), 4717-4729. http://dx.doi.org/10.3168/jds.2009-2347. PMid:19762787.
http://dx.doi.org/10.3168/jds.2009-2347...
; Gomes & Henriques, 2016Gomes, F., & Henriques, M. (2016). Control of bovine mastitis: Old and recent therapeutic approaches. Current Microbiology, 72(4), 377-382. http://dx.doi.org/10.1007/s00284-015-0958-8. PMid:26687332.
http://dx.doi.org/10.1007/s00284-015-095...
). The overuse of β-lactam group antibiotics for prophylactic and mastitis treatment in dairy cows may cause MRSA in milk and dairy products (Levy, 1992Levy, S. B. (1992). The Antibiotic Paradox: How miracle drugs are destroying the miracle. New York: Plenum Publishing.; Sawant et al., 2005Sawant, A. A., Sordillo, L. M., & Jayarao, B. M. (2005). A survey on antibiotic usage in dairy herds in Pennsylvania. Journal of Dairy Science, 88(8), 2991-2999. http://dx.doi.org/10.3168/jds.S0022-0302(05)72979-9. PMid:16027213.
http://dx.doi.org/10.3168/jds.S0022-0302...
). Previous studies have reported MRSA in mastitis: 48.3% by Guimarães et al. (2017)Guimarães, F. F., Manzi, M. P., Joaquim, S. F., Richini-Pereira, V. B., & Langoni, H. (2017). Outbreak of methicillin-resistant Staphylococcus aureus (MRSA)-associated mastitis in a closed dairy herd. Journal of Dairy Science, 100(1), 726-730. http://dx.doi.org/10.3168/jds.2016-11700. PMid:27837983.
http://dx.doi.org/10.3168/jds.2016-11700...
, 15.5% by Wang et al. (2015)Wang, D., Wang, Z., Yan, Z., Wu, J., Ali, T., Li, J., Lv, Y., & Han, B. (2015). Bovine mastitis Staphylococcus aureus: antibiotic susceptibility profile, resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in China. Infection, Genetics and Evolution, 31, 9-16. http://dx.doi.org/10.1016/j.meegid.2014.12.039. PMid:25582604.
http://dx.doi.org/10.1016/j.meegid.2014....
, 11.6% by Jamali et al. (2014)Jamali, H., Radmehr, B., & Ismail, S. (2014). Prevalence and antibiotic resistance of Staphylococcus aureus isolated from bovine clinical mastitis. Journal of Dairy Science, 97(4), 2226-2230. http://dx.doi.org/10.3168/jds.2013-7509. PMid:24534509.
http://dx.doi.org/10.3168/jds.2013-7509...
, and 2.5% by Moon et al. (2007)Moon, J. S., Lee, A. R., Kang, H. M., Lee, E. S., Kim, M. N., Paik, Y. H., Park, Y. H., Joo, Y. S., & Koo, H. C. (2007). Phenotypic and genetic antibiogram of methicillin-resistant staphylococci isolated from bovine mastitis in Korea. Journal of Dairy Science, 90(3), 1176-1185. http://dx.doi.org/10.3168/jds.S0022-0302(07)71604-1. PMid:17297092.
http://dx.doi.org/10.3168/jds.S0022-0302...
. It is also possible for MRSA to contaminate food products without any changes in the milk (Parisi et al., 2016Parisi, A., Caruso, M., Normanno, G., Latorre, R., Sottili, A., Miccolupo, R., Fraccalvieri, G., & Santagada, G. (2016). Prevalence, antimicrobial susceptibility and molecular typing of methicillin-resistant Staphylococcus aureus (MRSA) in bulk tank milk from southern Italy. Food Microbiology, 58, 36-42. http://dx.doi.org/10.1016/j.fm.2016.03.004. PMid:27217357.
http://dx.doi.org/10.1016/j.fm.2016.03.0...
). Transmission of the MRSA to humans through the consumption of milk with mastitis or direct contact with dairy cows may generate serious risks to food safety and public health.

Antibiotic resistant bacteria has become an important public health problem all over the world (Normanno et al., 2007Normanno, G., Corrente, M., La Salandra, G., Dambrosio, A., Quaglia, N. C., Parisi, A., Greco, G., Bellacicco, A. L., Virgilio, S., & Celano, G. V. (2007). Methicillin-resistant Staphylococcus aureus (MRSA) in foods of animal origin product Italy. International Journal of Food Microbiology, 117(2), 219-222. http://dx.doi.org/10.1016/j.ijfoodmicro.2007.04.006. PMid:17533002.
http://dx.doi.org/10.1016/j.ijfoodmicro....
) In this study, according to disk diffusion test results, S. aureus isolates were detected to be resistant to a majority of antibiotics, such as oxacillin, penicillin, clindamycin, and cefoxitin at 71.1%, 69.8%, 67.9%, and 67.3%, respectively. Tenhagen et al. (2018)Tenhagen, B. A., Alt, K., Pfefferkorn, B., Wiehle, L., Käsbohrer, A., & Fetsch, A. (2018). Short communication: Methicillin-resistant Staphylococcus aureus in conventional and organic dairy herds in Germany. Journal of Dairy Science, 101(4), 3380-3386. http://dx.doi.org/10.3168/jds.2017-12939. PMid:29395146.
http://dx.doi.org/10.3168/jds.2017-12939...
reported that 100% of MRSA isolates are resistant to cefoxitin and penicillin in Germany. In contrast to this study, Jamali et al. (2015)Jamali, H., Paydar, M., Radmehr, B., Ismail, S., & Dadrasnia, A. (2015). Prevalence and antimicrobial resistance of Staphylococcus aureus isolated from raw milk and dairy products. Food Control, 54, 383-388. http://dx.doi.org/10.1016/j.foodcont.2015.02.013.
http://dx.doi.org/10.1016/j.foodcont.201...
reported the levels of antibiotic resistance were lower for oxacillin, penicillin, clindamycin, and cefoxitin at 13%, 44.4%, 13.6%, and 4.9%, respectively. In Jordan, the levels of oxacillin, penicillin, clindamycin, and gentamicin resistance were observed to be lower than this study (Obaidat et al., 2018Obaidat, M. M., Salman, A. E. B., & Roess, A. A. (2018). High prevalence and antimicrobial resistance of mecA Staphylococcus aureus in dairy cattle, sheep, and goat bulk tank milk in Jordan. Tropical Animal Health and Production, 50(2), 405-412. http://dx.doi.org/10.1007/s11250-017-1449-7. PMid:29063353.
http://dx.doi.org/10.1007/s11250-017-144...
). Can et al. (2017b)Can, H. Y., Elmalı, M., & Ergün, Y. (2017b). Methicillin-resistant Staphylococcus aureus in milk from dairy cows with chronic mastitis. Eurasian Journal of Veterinary Sciences, 33(4), 255-259. reported the resistant levels of oxacillin (46.4%), cefoxitin (50%), penicillin (60.7%), and chloramphenicol (5.3%) lower than this study in Turkey. By comparing the results from other studies, it seems that the type of antibiotics used for the treatment of animals may cause different results between countries.

In the current study, a high rate of mecA MRSA strains was detected in bulk tank milk samples. Researchers from several countries have reported the rate of MRSA in milk as 50%, 13%, 9.7%, 4.4%, 2.5%, and 0.7% (Kreausukon et al., 2012Kreausukon, K., Fetsch, A., Kraushaar, B., Alt, K., Müller, K., Krömker, V., Zessin, K. H., Käsbohrer, A., & Tenhagen, B. A. (2012). Prevalence, antimicrobial resistance, and molecular characterization of methicillin-resistant Staphylococcus aureus from bulk tank milk of dairy herds. Journal of Dairy Science, 95(8), 4382-4388. http://dx.doi.org/10.3168/jds.2011-5198. PMid:22818451.
http://dx.doi.org/10.3168/jds.2011-5198...
; Jamali et al., 2015Jamali, H., Paydar, M., Radmehr, B., Ismail, S., & Dadrasnia, A. (2015). Prevalence and antimicrobial resistance of Staphylococcus aureus isolated from raw milk and dairy products. Food Control, 54, 383-388. http://dx.doi.org/10.1016/j.foodcont.2015.02.013.
http://dx.doi.org/10.1016/j.foodcont.201...
; Parisi et al., 2016Parisi, A., Caruso, M., Normanno, G., Latorre, R., Sottili, A., Miccolupo, R., Fraccalvieri, G., & Santagada, G. (2016). Prevalence, antimicrobial susceptibility and molecular typing of methicillin-resistant Staphylococcus aureus (MRSA) in bulk tank milk from southern Italy. Food Microbiology, 58, 36-42. http://dx.doi.org/10.1016/j.fm.2016.03.004. PMid:27217357.
http://dx.doi.org/10.1016/j.fm.2016.03.0...
; Giacinti et al., 2017Giacinti, G., Carfora, V., Caprioli, A., Sagrafoli, D., Marri, N., Giangolini, G., & Feltrin, F. (2017). Prevalence and characterization of methicillin-resistant Staphylococcus aureus carrying mecA or mecC and methicillin-susceptible Staphylococcus aureus in dairy sheep farms in central Italy. Journal of Dairy Science, 100(10), 7857-7863. http://dx.doi.org/10.3168/jds.2017-12940. PMid:28780098.
http://dx.doi.org/10.3168/jds.2017-12940...
; Asiimwe et al., 2017Asiimwe, B. B., Baldan, R., Trovato, A., & Cirillo, D. M. (2017). Prevalence and molecular characteristics of Staphylococcus aureus, including methicillin resistant strains, isolated from bulk can milk and raw milk products in pastoral communities of South-West Uganda. BMC Infectious Diseases, 17(1), 422-429. http://dx.doi.org/10.1186/s12879-017-2524-4. PMid:28610560.
http://dx.doi.org/10.1186/s12879-017-252...
; Tenhagen et al., 2018Tenhagen, B. A., Alt, K., Pfefferkorn, B., Wiehle, L., Käsbohrer, A., & Fetsch, A. (2018). Short communication: Methicillin-resistant Staphylococcus aureus in conventional and organic dairy herds in Germany. Journal of Dairy Science, 101(4), 3380-3386. http://dx.doi.org/10.3168/jds.2017-12939. PMid:29395146.
http://dx.doi.org/10.3168/jds.2017-12939...
). Previous studies from Turkey have indicated lower rates than the current study: Ektik et al. (2017)Ektik, N., Gökmen, M., & Çıbık, R. (2017). The prevalence and antibiotic resistance of methicillin-resistant Staphylococcus aureus (MRSA) in milk and dairy products in Balikesir, Turkey. Journal of the Hellenic Veterinary Medical Society, 68(4), 613-620. http://dx.doi.org/10.12681/jhvms.16062.
http://dx.doi.org/10.12681/jhvms.16062...
14.28%, Sayin et al. (2016)Sayin, Z., Sakmanoglu, A., Ucan, U. S., Pinarkara, Y., Uslu, A., Aras, Z., & Erganis, O. (2016). Detection of methicilline resistant Staphylococcus aureus carrying mecC gene in mastitic milk samples of cattle in Turkey. Eurasian Journal of Veterinary Sciences, 32(3), 182-187. http://dx.doi.org/10.15312/EurasianJVetSci.2016318398.
http://dx.doi.org/10.15312/EurasianJVetS...
18.6%, Siiriken et al. (2016)Siiriken, B., Yildirim, T., Güney, A. K., Erol, I., & Durupinar, B. (2016). Prevalence and molecular characterization of methicillin-resistant Staphylococcus aureus in foods of animal origin, Turkey. Journal of Food Protection, 79(11), 1990-1994. http://dx.doi.org/10.4315/0362-028X.JFP-16-161. PMid:28221920.
http://dx.doi.org/10.4315/0362-028X.JFP-...
13.3% and Buyukcangaz et al. (2013)Buyukcangaz, E., Kahya, S., Sen, A., Seyrekintas, K., Eyigor, A., Temelli, S., & Carli, K. T. (2013). MecA gene prevalence in Staphylococcus aureus isolates from dairy cows in Turkey. Journal of Biodiversity and Environmental Sciences, 7(21), 183-190. 15.8%. By contrast, Can et al. (2017b)Can, H. Y., Elmalı, M., & Ergün, Y. (2017b). Methicillin-resistant Staphylococcus aureus in milk from dairy cows with chronic mastitis. Eurasian Journal of Veterinary Sciences, 33(4), 255-259. reported the rate of MRSA to be much higher at 90%. In comparison with earlier studies, MRSA is still a public health problem for milk and dairy products. Surveillance programs and adopting assurance quality systems are required for controlling S. aureus, MRSA and other pathogens in the dairy industry (Silva et al., 2010Silva, R., Cruz, A. G., Faria, J. A., Moura, M. M., Carvalho, L. M., Water, E. H., & Sant’Ana, A. S. (2010). Pasteurized milk: efficiency of pasteurization and its microbiological conditions in Brazil. Foodborne Pathogens and Disease, 7(2), 217-219. http://dx.doi.org/10.1089/fpd.2009.0332. PMid:19785537.
http://dx.doi.org/10.1089/fpd.2009.0332...
; Cusato et al., 2014Cusato, S., Gameiro, A. H., Sant’Ana, A. S., Corassin, C. H., Cruz, A. G., & De Oliveira, C. A. F. (2014). Assessing the costs involved in the implementation of GMP and HACCP in a small dairy factory. Quality Assurance and Safety of Crops & Foods, 6(2), 135-139. http://dx.doi.org/10.3920/QAS2012.0195.
http://dx.doi.org/10.3920/QAS2012.0195...
).

In conclusion, the transmission of MRSA to milk and dairy products poses the risk of spreading the antimicrobial resistant bacteria to the general population. The industry needs to apply measures to ensure contamination is minimized. Multi-drug resistant bacteria identified in milk and dairy products should be monitored. Uncontrolled antibiotic use in dairy cattle should be avoided for healthy milk production. The correct application of antibiotics should be evaluated in the udder infections of dairy cows. These are just some of the ways that the spread of MRSA can be alleviated.

Acknowledgements

This study was supported by Mehmet Akif Ersoy University Scientific Research Projects Unit. (Project Number: 0374-NAP-16).

  • Practical Application: Monitoring S. aureus and MRSA contamination levels in bulk tank milk.

References

  • Akineden, Ö., Hassan, A. A., Schneider, E., & Usleber, E. (2008). Enterotoxigenic properties of Staphylococcus aureus isolated from goats’ milk cheese. International Journal of Food Microbiology, 124(2), 211-216. http://dx.doi.org/10.1016/j.ijfoodmicro.2008.03.027 PMid:18455257.
    » http://dx.doi.org/10.1016/j.ijfoodmicro.2008.03.027
  • Aqib, A. I., Ijaz, M., Anjum, A. A., Malik, M. A. R., Mehmood, K., Farooqi, S. H., & Hussain, K. (2017). Antibiotic susceptibilities and prevalence of methicillin resistant Staphylococcus aureus (MRSA) isolated from bovine milk in Pakistan. Acta Tropica, 176, 168-172. http://dx.doi.org/10.1016/j.actatropica.2017.08.008 PMid:28797802.
    » http://dx.doi.org/10.1016/j.actatropica.2017.08.008
  • Asiimwe, B. B., Baldan, R., Trovato, A., & Cirillo, D. M. (2017). Prevalence and molecular characteristics of Staphylococcus aureus, including methicillin resistant strains, isolated from bulk can milk and raw milk products in pastoral communities of South-West Uganda. BMC Infectious Diseases, 17(1), 422-429. http://dx.doi.org/10.1186/s12879-017-2524-4 PMid:28610560.
    » http://dx.doi.org/10.1186/s12879-017-2524-4
  • Barkema, H. W., Green, M. J., Bradley, A. J., & Zadoks, R. N. (2009). Invited review: The role of contagious disease in udder health. Journal of Dairy Science, 92(10), 4717-4729. http://dx.doi.org/10.3168/jds.2009-2347 PMid:19762787.
    » http://dx.doi.org/10.3168/jds.2009-2347
  • Buyukcangaz, E., Kahya, S., Sen, A., Seyrekintas, K., Eyigor, A., Temelli, S., & Carli, K. T. (2013). MecA gene prevalence in Staphylococcus aureus isolates from dairy cows in Turkey. Journal of Biodiversity and Environmental Sciences, 7(21), 183-190.
  • Can, H. Y., Elmalı, M., & Ergün, Y. (2017b). Methicillin-resistant Staphylococcus aureus in milk from dairy cows with chronic mastitis. Eurasian Journal of Veterinary Sciences, 33(4), 255-259.
  • Can, H. Y., Elmalı, M., & Karagöz, A. (2017a). Molecular typing and antimicrobial susceptibility of Staphylococcus aureus strains isolated from raw milk, cheese, minced meat, and chicken meat samples. Korean Journal for Food Science of Animal Resources, 37(2), 175-180. http://dx.doi.org/10.5851/kosfa.2017.37.2.175 PMid:28515641.
    » http://dx.doi.org/10.5851/kosfa.2017.37.2.175
  • Chaalal, W., Aggad, H., Zidane, K., Saidi, N., & Kihal, M. (2016). Antimicrobial susceptibility profiling of Staphylococcus aureus isolates from milk. British Microbiology Research Journal, 13(3), 1-7. http://dx.doi.org/10.9734/BMRJ/2016/24064
    » http://dx.doi.org/10.9734/BMRJ/2016/24064
  • Chye, F. Y., Abdullah, A., & Ayob, M. K. (2004). Bacteriological quality and safety of raw milk in Malaysia. Food Microbiology, 21(5), 535-541. http://dx.doi.org/10.1016/j.fm.2003.11.007
    » http://dx.doi.org/10.1016/j.fm.2003.11.007
  • Clinical and Laboratory Standards Institute – CLSI. (2013). M 100-S23: Performance Standards for Antimicrobial Susceptibility Testing Wayne: CLSI.
  • Cusato, S., Gameiro, A. H., Sant’Ana, A. S., Corassin, C. H., Cruz, A. G., & De Oliveira, C. A. F. (2014). Assessing the costs involved in the implementation of GMP and HACCP in a small dairy factory. Quality Assurance and Safety of Crops & Foods, 6(2), 135-139. http://dx.doi.org/10.3920/QAS2012.0195
    » http://dx.doi.org/10.3920/QAS2012.0195
  • Doulgeraki, A. I., Di Ciccio, P., Ianieri, A., & Nychas, G. E. (2017). Methicillin-resistant food-related Staphylococcus aureus: A review of current knowledge and biofilm formation for future studies and applications. Research in Microbiology, 168(1), 1-15. http://dx.doi.org/10.1016/j.resmic.2016.08.001 PMid:27542729.
    » http://dx.doi.org/10.1016/j.resmic.2016.08.001
  • Doyle, M. E., Hartmann, F. A., & Wong, A. C. L. (2011). White paper on sources of methicillin-resistant Staphylococcus aureus (MRSA) and other methicillin-resistant staphylococci: Implications for our food supply Madison: Food Research Institute, University of Wisconsin.
  • Duarte, C. M., Freitas, P. P., & Bexiga, R. (2015). Technological advances in bovine mastitis diagnosis: an overview. Journal of Veterinary Diagnostic Investigation, 27(6), 665-672. http://dx.doi.org/10.1177/1040638715603087 PMid:26450837.
    » http://dx.doi.org/10.1177/1040638715603087
  • Ektik, N., Gökmen, M., & Çıbık, R. (2017). The prevalence and antibiotic resistance of methicillin-resistant Staphylococcus aureus (MRSA) in milk and dairy products in Balikesir, Turkey. Journal of the Hellenic Veterinary Medical Society, 68(4), 613-620. http://dx.doi.org/10.12681/jhvms.16062
    » http://dx.doi.org/10.12681/jhvms.16062
  • Elmoslemany, A. M., Keefe, G. P., Dohoo, I. R., & Jayarao, B. M. (2009). Risk factors for bacteriological quality of bulk tank milk in Prince Edward Island dairy herds. Part 1. Overall risk factors. Journal of Dairy Science, 92(6), 2634-2643. http://dx.doi.org/10.3168/jds.2008-1812 PMid:19447996.
    » http://dx.doi.org/10.3168/jds.2008-1812
  • Elmoslemany, A. M., Keefe, G. P., Dohoo, I. R., Wichtel, J. J., Stryhn, H., & Dingwell, R. T. (2010). The association between bulk tank milk analysis for raw milk quality and on-farm management practices. Preventive Veterinary Medicine, 95(1-2), 32-40. http://dx.doi.org/10.1016/j.prevetmed.2010.03.007 PMid:20381889.
    » http://dx.doi.org/10.1016/j.prevetmed.2010.03.007
  • European Food Safety Authority – EFSA. (2009). Scientific opinion of the panel on biological hazards on a request from the European Commission on assessment of the public health significance of methicillin resistant Staphylococcus aureus (MRSA) in animals and foods. EFSA Journal, 993, 1-73.
  • European Food Safety Authority – EFSA. (2015). EU summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2013. EFSA Journal, 13(2), 4036.
  • Fagundes, H., Barchesi, L., Nader, A. Fo, Ferreira, L. M., & Oliveira, C. A. F. (2010). Occurrence of Staphylococcus aureus in raw milk produced in dairy farms in São Paulo state, Brazil. Brazilian Journal of Microbiology, 41(2), 376-380. http://dx.doi.org/10.1590/S1517-83822010000200018 PMid:24031507.
    » http://dx.doi.org/10.1590/S1517-83822010000200018
  • Garcia-Alvarez, L., Holden, M. T., Lindsay, H., Webb, C. R., Brown, D. F., Curran, M. D., Walpole, E., Brooks, K., Pickard, D. J., Teale, C., Parkhill, J., Bentley, S. D., Edwards, G. F., Girvan, E. K., Kearns, A. M., Pichon, B., Hill, R. L., Larsen, A. R., Skov, R. L., Peacock, S. J., Maskell, D. J., & Holmes, M. A. (2011). Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: A descriptive study. The Lancet. Infectious Diseases, 11(8), 595-603. http://dx.doi.org/10.1016/S1473-3099(11)70126-8 PMid:21641281.
    » http://dx.doi.org/10.1016/S1473-3099(11)70126-8
  • Giacinti, G., Carfora, V., Caprioli, A., Sagrafoli, D., Marri, N., Giangolini, G., & Feltrin, F. (2017). Prevalence and characterization of methicillin-resistant Staphylococcus aureus carrying mecA or mecC and methicillin-susceptible Staphylococcus aureus in dairy sheep farms in central Italy. Journal of Dairy Science, 100(10), 7857-7863. http://dx.doi.org/10.3168/jds.2017-12940 PMid:28780098.
    » http://dx.doi.org/10.3168/jds.2017-12940
  • Gomes, F., & Henriques, M. (2016). Control of bovine mastitis: Old and recent therapeutic approaches. Current Microbiology, 72(4), 377-382. http://dx.doi.org/10.1007/s00284-015-0958-8 PMid:26687332.
    » http://dx.doi.org/10.1007/s00284-015-0958-8
  • Guimarães, F. F., Manzi, M. P., Joaquim, S. F., Richini-Pereira, V. B., & Langoni, H. (2017). Outbreak of methicillin-resistant Staphylococcus aureus (MRSA)-associated mastitis in a closed dairy herd. Journal of Dairy Science, 100(1), 726-730. http://dx.doi.org/10.3168/jds.2016-11700 PMid:27837983.
    » http://dx.doi.org/10.3168/jds.2016-11700
  • Gundogan, N., & Avci, E. (2014). Occurrence and antibiotic resistance of Escherichia coli, Staphylococcus aureus and Bacillus cereus in raw milk and dairy products in Turkey. International Journal of Dairy Technology, 67(4), 562-569. http://dx.doi.org/10.1111/1471-0307.12149
    » http://dx.doi.org/10.1111/1471-0307.12149
  • Harrison, E. M., Paterson, G. K., Holden, M. T., Larsen, J., Stegger, M., Larsen, A. R., Petersen, A., Skov, R. L., Christensen, J. M., Bak Zeuthen, A., Heltberg, O., Harris, S. R., Zadoks, R. N., Parkhill, J., Peacock, S. J., & Holmes, M. A. (2013). Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Molecular Medicine, 5(4), 509-515. http://dx.doi.org/10.1002/emmm.201202413 PMid:23526809.
    » http://dx.doi.org/10.1002/emmm.201202413
  • Hein, I., Jorgensen, H. J., Loncarevic, S., & Wagner, M. (2005). Quantification of Staphylococcus aureus in unpasteurised bovine and caprine milk by real-time PCR. Research in Microbiology, 156(4), 554-563. http://dx.doi.org/10.1016/j.resmic.2005.01.003 PMid:15862454.
    » http://dx.doi.org/10.1016/j.resmic.2005.01.003
  • Herrera, F. C., García-López, M. L., & Santos, J. A. (2016). Characterization of methicillin-resistant Staphylococcus aureus isolated from raw milk fresh cheese in Colombia. Journal of Dairy Science, 99(10), 7872-7876. http://dx.doi.org/10.3168/jds.2016-11322 PMid:27423957.
    » http://dx.doi.org/10.3168/jds.2016-11322
  • International Organization for Standardization – ISO. (1999). ISO 6888-2: Microbiology of food animal feeding stuffs- Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species). Part 2: Technique using rabbit plasma fibrinogen agar medium. International Organization for Standardization Geneva: ISO.
  • Ito, T., Hiramatsu, K., Tomasz, A., de Lencastre, H., Perreten, V., Holden, M. T., Coleman, D. C., Goering, R., Giffard, P. M., Skov, R. L., Zhang, K., Westh, H., O’Brien, F., Tenover, F. C., Oliveira, D. C., Boyle-Vavra, S., Laurent, F., Kearns, A. M., Kreiswirth, B., Ko, K. S., Grundmann, H., Sollid, J. E., John, J. F., Jr Daum, R., Soderquist, B., & Buist, G. (2012). Guidelines for reporting novel mecA gene homologues. Antimicrobial Agents and Chemotherapy, 56(10), 4997-4999. http://dx.doi.org/10.1128/AAC.01199-12 PMid:22869575.
    » http://dx.doi.org/10.1128/AAC.01199-12
  • Jamali, H., Paydar, M., Radmehr, B., Ismail, S., & Dadrasnia, A. (2015). Prevalence and antimicrobial resistance of Staphylococcus aureus isolated from raw milk and dairy products. Food Control, 54, 383-388. http://dx.doi.org/10.1016/j.foodcont.2015.02.013
    » http://dx.doi.org/10.1016/j.foodcont.2015.02.013
  • Jamali, H., Radmehr, B., & Ismail, S. (2014). Prevalence and antibiotic resistance of Staphylococcus aureus isolated from bovine clinical mastitis. Journal of Dairy Science, 97(4), 2226-2230. http://dx.doi.org/10.3168/jds.2013-7509 PMid:24534509.
    » http://dx.doi.org/10.3168/jds.2013-7509
  • Jørgensen, H. J., Mørk, T., Høgåsen, H. R., & Rørvik, L. M. (2005). Enterotoxigenic Staphylococcus aureus in bulk milk in Norway. Journal of Applied Microbiology, 99(1), 158-166. http://dx.doi.org/10.1111/j.1365-2672.2005.02569.x PMid:15960676.
    » http://dx.doi.org/10.1111/j.1365-2672.2005.02569.x
  • Kluytmans, J., van Belkum, A., & Verbrugh, H. (1997). Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. Clinical Microbiology Reviews, 10(3), 505-520. http://dx.doi.org/10.1128/CMR.10.3.505 PMid:9227864.
    » http://dx.doi.org/10.1128/CMR.10.3.505
  • Korhonen, H., & Kaartinen, L. (1995). Changes in the composition of milk induced by mastitis. In M. Sandholm, T. Honkanen-Buzalski, L. Kaartinen, S. Pyörälä (Eds.), The bovine udder and mastitis (pp. 76-82). Jyväskylä, Finland: Gummerus.
  • Kraushaar, B., & Fetsch, A. (2014). First description of PVL-positive methicillin-resistant Staphylococcus aureus (MRSA) in wild boar meat. International Journal of Food Microbiology, 186, 68-73. http://dx.doi.org/10.1016/j.ijfoodmicro.2014.06.018 PMid:25016468.
    » http://dx.doi.org/10.1016/j.ijfoodmicro.2014.06.018
  • Kreausukon, K., Fetsch, A., Kraushaar, B., Alt, K., Müller, K., Krömker, V., Zessin, K. H., Käsbohrer, A., & Tenhagen, B. A. (2012). Prevalence, antimicrobial resistance, and molecular characterization of methicillin-resistant Staphylococcus aureus from bulk tank milk of dairy herds. Journal of Dairy Science, 95(8), 4382-4388. http://dx.doi.org/10.3168/jds.2011-5198 PMid:22818451.
    » http://dx.doi.org/10.3168/jds.2011-5198
  • Le Loir, Y., Baron, F., & Gautier, M. (2003). Staphylococcus aureus and food poisoning. Genetics and Molecular Research, 2(1), 63-76. PMid:12917803.
  • Lee, S. H. I., Camargo, C. H., Gonçalves, J. L., Cruz, A. G., Sartori, B. T., Machado, M. B., & Oliveira, C. A. F. (2012). Characterization of Staphylococcus aureus isolates in milk and the milking environment from small-scale dairy farms of São Paulo, Brazil, using pulsed-field gel electrophoresis. Journal of Dairy Science, 95(12), 7377-7383. http://dx.doi.org/10.3168/jds.2012-5733 PMid:23040016.
    » http://dx.doi.org/10.3168/jds.2012-5733
  • Lee, S. H. I., Cappato, L. P., Corassin, C. H., Cruz, A. G. D., & Oliveira, C. A. F. D. (2016). Effect of peracetic acid on biofilms formed by Staphylococcus aureus and Listeria monocytogenes isolated from dairy plants. Journal of Dairy Science, 99(3), 2384-2390. http://dx.doi.org/10.3168/jds.2015-10007 PMid:26723125.
    » http://dx.doi.org/10.3168/jds.2015-10007
  • Lee, S. H. I., Mangolin, B. L. C., Gonçalves, J. L., Neeff, D. V., Silva, M. P., Cruz, A. G., & Oliveira, C. A. F. (2014). Biofilm-producing ability of Staphylococcus aureus isolates from Brazilian dairy farms. Journal of Dairy Science, 97(3), 1812-1816. http://dx.doi.org/10.3168/jds.2013-7387 PMid:24440248.
    » http://dx.doi.org/10.3168/jds.2013-7387
  • Lem, P., Spiegelman, J., Toye, B., & Ramotar, K. (2001). Direct detection of mecA, nuc and 16S rRNA genes in BacT/Alert blood culture bottles. Diagnostic Microbiology and Infectious Disease, 41(3), 165-168. http://dx.doi.org/10.1016/S0732-8893(01)00301-7 PMid:11750172.
    » http://dx.doi.org/10.1016/S0732-8893(01)00301-7
  • Levy, S. B. (1992). The Antibiotic Paradox: How miracle drugs are destroying the miracle New York: Plenum Publishing.
  • Lozano, C., Gharsa, H., Ben Slama, K., Zarazaga, M., & Torres, K. (2016). Staphylococcus aureus in animals and food: Methicillin-resistance, prevalence and population structure: A review in the African continent. Microorganisms, 4(12), 1-19. http://dx.doi.org/10.3390/microorganisms4010012 PMid:27681906.
    » http://dx.doi.org/10.3390/microorganisms4010012
  • Mehmeti, I., Bytyqi, H., Muji, S., Nes, I. F., & Diep, D. B. (2017). The prevalence of Listeria monocytogenes and Staphylococcus aureus and their virulence genes in bulk tank milk in Kosovo. Journal of Infection in Developing Countries, 11(3), 247-254. http://dx.doi.org/10.3855/jidc.8256 PMid:28368859.
    » http://dx.doi.org/10.3855/jidc.8256
  • Mehrotra, M., Wang, G., & Johnson, W. M. (2000). Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1 and methicillin resistance. Journal of Clinical Microbiology, 38(3), 1032-1035. PMid:10698991.
  • Moon, J. S., Lee, A. R., Kang, H. M., Lee, E. S., Kim, M. N., Paik, Y. H., Park, Y. H., Joo, Y. S., & Koo, H. C. (2007). Phenotypic and genetic antibiogram of methicillin-resistant staphylococci isolated from bovine mastitis in Korea. Journal of Dairy Science, 90(3), 1176-1185. http://dx.doi.org/10.3168/jds.S0022-0302(07)71604-1 PMid:17297092.
    » http://dx.doi.org/10.3168/jds.S0022-0302(07)71604-1
  • Muehlherr, J. E., Zweifel, C., Corti, S., Blanco, J. E., & Stephan, R. (2003). Microbiological quality of raw goat’s and ewe’s bulk-tank milk in Switzerland. Journal of Dairy Science, 86(12), 3849-3856. http://dx.doi.org/10.3168/jds.S0022-0302(03)73992-7 PMid:14740819.
    » http://dx.doi.org/10.3168/jds.S0022-0302(03)73992-7
  • Nam, H. M., Lee, A. L., Jung, S. C., Kim, M. N., Jang, G. C., Wee, S. H., & Lim, S. K. (2011). Antimicrobial susceptibility of Staphylococcus aureus and characterization of methicillin-resistant Staphylococcus aureus isolated from bovine mastitis in Korea. Foodborne Pathogens and Disease, 8(2), 231-238. http://dx.doi.org/10.1089/fpd.2010.0661 PMid:21034263.
    » http://dx.doi.org/10.1089/fpd.2010.0661
  • Nemati, M., Hermans, K., Lipinska, U., Denis, O., Deplano, A., Struelens, M., Devriese, L. A., Pasmans, F., & Haesebrouck, F. (2008). Antimicrobial resistance of old and recent Staphylococcus aureus isolates from poultry: First detection of livestock-associated methicillin-resistant strain ST398. Antimicrobial Agents and Chemotherapy, 52(10), 3817-3819. http://dx.doi.org/10.1128/AAC.00613-08 PMid:18663024.
    » http://dx.doi.org/10.1128/AAC.00613-08
  • Normanno, G., Corrente, M., La Salandra, G., Dambrosio, A., Quaglia, N. C., Parisi, A., Greco, G., Bellacicco, A. L., Virgilio, S., & Celano, G. V. (2007). Methicillin-resistant Staphylococcus aureus (MRSA) in foods of animal origin product Italy. International Journal of Food Microbiology, 117(2), 219-222. http://dx.doi.org/10.1016/j.ijfoodmicro.2007.04.006 PMid:17533002.
    » http://dx.doi.org/10.1016/j.ijfoodmicro.2007.04.006
  • Obaidat, M. M., Salman, A. E. B., & Roess, A. A. (2018). High prevalence and antimicrobial resistance of mecA Staphylococcus aureus in dairy cattle, sheep, and goat bulk tank milk in Jordan. Tropical Animal Health and Production, 50(2), 405-412. http://dx.doi.org/10.1007/s11250-017-1449-7 PMid:29063353.
    » http://dx.doi.org/10.1007/s11250-017-1449-7
  • Olde Riekerink, R. G. M., Barkema, H. W., Veenstra, S., Poole, D. E., Dingwell, R. T., & Keefe, G. P. (2006). Prevalence of contagious mastitis pathogens in bulk tank milk in Prince Edward Island. The Canadian Veterinary Journal. La Revue Veterinaire Canadienne, 47(6), 567-572. PMid:16808229.
  • Oniciuc, E. A., Nicolau, A. L., Hernández, M., & Rodríguez-Lázaro, D. (2017). Presence of methicillin-resistant Staphylococcus aureus in the food chain. Trends in Food Science & Technology, 61, 49-59. http://dx.doi.org/10.1016/j.tifs.2016.12.002
    » http://dx.doi.org/10.1016/j.tifs.2016.12.002
  • Painter, J. A., Hoekstra, R. M., Ayers, T., Tauxe, R. V., Braden, C. R., Angulo, F. J., & Griffin, P. M. (2013). Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998-2008. Emerging Infectious Diseases Journal, 19(3), 407-415. http://dx.doi.org/10.3201/eid1903.111866 PMid:23622497.
    » http://dx.doi.org/10.3201/eid1903.111866
  • Parisi, A., Caruso, M., Normanno, G., Latorre, R., Sottili, A., Miccolupo, R., Fraccalvieri, G., & Santagada, G. (2016). Prevalence, antimicrobial susceptibility and molecular typing of methicillin-resistant Staphylococcus aureus (MRSA) in bulk tank milk from southern Italy. Food Microbiology, 58, 36-42. http://dx.doi.org/10.1016/j.fm.2016.03.004 PMid:27217357.
    » http://dx.doi.org/10.1016/j.fm.2016.03.004
  • Paterson, G. K., Harrison, E. M., & Holmes, M. A. (2014). The emergence of mecC methicillin resistant Staphylococcus aureus. Trends in Microbiology, 22(1), 42-47. http://dx.doi.org/10.1016/j.tim.2013.11.003 PMid:24331435.
    » http://dx.doi.org/10.1016/j.tim.2013.11.003
  • Paterson, G. K., Larsen, J., Harrison, E. M., Larsen, A. R., Morgan, F. J., Peacock, S. J., Parkhill, J., Zadoks, R. N., & Holmes, M. A. (2012). First detection of livestock-associated meticillin-resistant Staphylococcus aureus CC398 in bulk tank milk in the United Kingdom, January to July 2012. European Communicable Disease Bulletin, 17(50), 20337. PMid:23241232.
  • Peles, F. M., Wagner, L., Varga, I., Hein, P., Rieck, K., Gutser, P., Kereszturi, G., Kardos, I., Turcsányi, I., Béri, B., & Szabó, A. (2007). Characterization of Staphylococcus aureus strains isolated from bovine milk in Hungary. International Journal of Food Microbiology, 118(2), 186-193. http://dx.doi.org/10.1016/j.ijfoodmicro.2007.07.010 PMid:17727995.
    » http://dx.doi.org/10.1016/j.ijfoodmicro.2007.07.010
  • Pereira, V., Lopes, C., Castro, A., Silva, J., Gibbs, P., & Teixeira, P. (2009). Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus isolates from various foods in Portugal. Food Microbiology, 26(3), 278-282. http://dx.doi.org/10.1016/j.fm.2008.12.008 PMid:19269569.
    » http://dx.doi.org/10.1016/j.fm.2008.12.008
  • Petersen, A., Stegger, M., Heltberg, O., Christensen, J., Zeuthen, A., Knudsen, L. K., Urth, T., Sorum, M., Schouls, L., Larsen, J., Skov, R., & Larsen, A. R. (2013). Epidemiology of methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clinical Microbiology and Infection, 19(1), 16-22. http://dx.doi.org/10.1111/1469-0691.12036 PMid:23078039.
    » http://dx.doi.org/10.1111/1469-0691.12036
  • Porcellato, D., Aspholm, M., Skeie, S. B., Monshaugen, M., Brendehaug, J., & Mellegard, H. (2018). Microbial diversity of consumption milk during processing and storage. International Journal of Food Microbiology, 266, 21-30. http://dx.doi.org/10.1016/j.ijfoodmicro.2017.11.004 PMid:29161642.
    » http://dx.doi.org/10.1016/j.ijfoodmicro.2017.11.004
  • Rall, V. L. M., Vieira, F. P., Rall, R., Vieitis, R. L., Fernandes, A. Jr, Candeias, J. M. G., Cardoso, K. F. G., & Araújo, J. P. Jr (2008). PCR detection of staphylococcal enterotoxin genes in Staphylococcus aureus strains isolated from raw and pasteurized milk. Veterinary Microbiology, 132(3-4), 408-413. http://dx.doi.org/10.1016/j.vetmic.2008.05.011 PMid:18572331.
    » http://dx.doi.org/10.1016/j.vetmic.2008.05.011
  • Roberson, J. R., Fox, L. K., Hancock, D. D., Gay, J. M., & Besser, T. E. (1998). Sources of intramammary infections from Staphylococcus aureus in dairy heifers at first parturition. Journal of Dairy Science, 81(3), 687-693. http://dx.doi.org/10.3168/jds.S0022-0302(98)75624-3 PMid:9565871.
    » http://dx.doi.org/10.3168/jds.S0022-0302(98)75624-3
  • Sawant, A. A., Sordillo, L. M., & Jayarao, B. M. (2005). A survey on antibiotic usage in dairy herds in Pennsylvania. Journal of Dairy Science, 88(8), 2991-2999. http://dx.doi.org/10.3168/jds.S0022-0302(05)72979-9 PMid:16027213.
    » http://dx.doi.org/10.3168/jds.S0022-0302(05)72979-9
  • Sayin, Z., Sakmanoglu, A., Ucan, U. S., Pinarkara, Y., Uslu, A., Aras, Z., & Erganis, O. (2016). Detection of methicilline resistant Staphylococcus aureus carrying mecC gene in mastitic milk samples of cattle in Turkey. Eurasian Journal of Veterinary Sciences, 32(3), 182-187. http://dx.doi.org/10.15312/EurasianJVetSci.2016318398
    » http://dx.doi.org/10.15312/EurasianJVetSci.2016318398
  • Shore, A. C., Deasy, E. C., Slickers, P., Brennan, G., O’Connell, B., Monecke, S., Ehricht, R., & Coleman, D. C. (2011). Detection of staphylococcal cassette chromosome mec type XI encoding highly divergent mecA, mecI, mecR1, blaZ and ccr genes in human clinical clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 55(8), 3765-3763. http://dx.doi.org/10.1128/AAC.00187-11 PMid:21636525.
    » http://dx.doi.org/10.1128/AAC.00187-11
  • Siiriken, B., Yildirim, T., Güney, A. K., Erol, I., & Durupinar, B. (2016). Prevalence and molecular characterization of methicillin-resistant Staphylococcus aureus in foods of animal origin, Turkey. Journal of Food Protection, 79(11), 1990-1994. http://dx.doi.org/10.4315/0362-028X.JFP-16-161 PMid:28221920.
    » http://dx.doi.org/10.4315/0362-028X.JFP-16-161
  • Silva, R., Cruz, A. G., Faria, J. A., Moura, M. M., Carvalho, L. M., Water, E. H., & Sant’Ana, A. S. (2010). Pasteurized milk: efficiency of pasteurization and its microbiological conditions in Brazil. Foodborne Pathogens and Disease, 7(2), 217-219. http://dx.doi.org/10.1089/fpd.2009.0332 PMid:19785537.
    » http://dx.doi.org/10.1089/fpd.2009.0332
  • Spohr, M., Rau, J., Friedrich, A., Klittich, G., Fetsch, A., Guerra, B., Hammerl, J. A., & Tenhagen, B. A. (2010). Methicillin-resistant Staphylococcus aureus (MRSA) in three dairy herds in Southwest Germany. Zoonoses and Public Health, 58(4), 252-261. http://dx.doi.org/10.1111/j.1863-2378.2010.01344.x PMid:20630047.
    » http://dx.doi.org/10.1111/j.1863-2378.2010.01344.x
  • Stegger, M., Andersen, P. S., Kearns, A., Pichon, B., Holmes, M. A., Edwards, G., Laurent, F., Teale, C., Skov, R., & Larsen, A. R. (2012). Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecA(LGA251). Clinical Microbiology and Infection, 18(4), 395-400. http://dx.doi.org/10.1111/j.1469-0691.2011.03715.x PMid:22429460.
    » http://dx.doi.org/10.1111/j.1469-0691.2011.03715.x
  • Tenhagen, B. A., Alt, K., Pfefferkorn, B., Wiehle, L., Käsbohrer, A., & Fetsch, A. (2018). Short communication: Methicillin-resistant Staphylococcus aureus in conventional and organic dairy herds in Germany. Journal of Dairy Science, 101(4), 3380-3386. http://dx.doi.org/10.3168/jds.2017-12939 PMid:29395146.
    » http://dx.doi.org/10.3168/jds.2017-12939
  • Vincze, S., Stamm, I., Kopp, P. A., Hermes, J., Adlhoch, C., Semmler, T., Wieler, L. H., Lübke-Becker, A., & Walther, B. (2014). Alarming proportions of methicillin-resistant Staphylococcus aureus (MRSA) in wound samples from companion animals, Germany 2010–2012. PLoS One, 9(1), e85656. http://dx.doi.org/10.1371/journal.pone.0085656 PMid:24465637.
    » http://dx.doi.org/10.1371/journal.pone.0085656
  • Wang, D., Wang, Z., Yan, Z., Wu, J., Ali, T., Li, J., Lv, Y., & Han, B. (2015). Bovine mastitis Staphylococcus aureus: antibiotic susceptibility profile, resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in China. Infection, Genetics and Evolution, 31, 9-16. http://dx.doi.org/10.1016/j.meegid.2014.12.039 PMid:25582604.
    » http://dx.doi.org/10.1016/j.meegid.2014.12.039
  • Wang, G., Li, G., Xia, X., Yang, B., Xi, M., & Meng, J. (2014). Antimicrobial susceptibility and molecular typing of methicillin-resistant Staphylococcus aureus in retail foods in Shaanxi, China. Foodborne Pathogens and Disease, 11(4), 281-286. http://dx.doi.org/10.1089/fpd.2013.1643 PMid:24404781.
    » http://dx.doi.org/10.1089/fpd.2013.1643
  • Wendlandt, S., Schwarz, S., & Silley, P. (2013). Methicillin-resistant Staphylococcus aureus: A food-borne pathogen? Annual Review of Food Science and Technology, 4(1), 117-139. http://dx.doi.org/10.1146/annurev-food-030212-182653 PMid:23190141.
    » http://dx.doi.org/10.1146/annurev-food-030212-182653
  • Zouharova, M., & Rysanek, D. (2008). Multiplex PCR and RPLA identification of Staphylococcus aureus enterotoxigenic strains from bulk tank milk. Zoonoses and Public Health, 55(6), 313-319. http://dx.doi.org/10.1111/j.1863-2378.2008.01134.x PMid:18489539.
    » http://dx.doi.org/10.1111/j.1863-2378.2008.01134.x

Publication Dates

  • Publication in this collection
    24 Jan 2020
  • Date of issue
    Jan-Mar 2020

History

  • Received
    09 Nov 2018
  • Accepted
    24 Apr 2019
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br