Acessibilidade / Reportar erro

Adjustment of mathematical models in the drying of cagaita pulp in foam-layer

Abstract

The cagaita is a native fruit from Brazilian Cerrado region. Among conservation techniques and to increase shelf life of the fruit, foam bed drying becomes ideal. This study adjusted mathematic models of foam drying of the cagaita pulp at different temperatures to determine the net diffusion coefficient and the activation energy of this process. As the foam layer drying has a shorter drying time due to the greater exposure of the surface area to the air, it allows the application of lower dehydration temperatures, so it used 40, 50, 60 and 70 °C, the data observed were better fitted to the Midilli model. The net diffusion coefficient increased with temperature and the activation energy was 25.368 kJ mol-1.

Keywords:
Eugenia dysenterica; activation energy; liquid diffusion

1 Introduction

The Brazilian Cerrado covers almost two million square kilometers of Brazil, and includes the states of Goias, Tocantins, Mato Grosso do Sul, Minas Gerais, Bahia, Mato Grosso, Maranhão, and Piauí. It contains a rich variety in fruits, some of which have medicinal properties, high nutritional potential, and unique flavors not found in other fruits (Klink & Machado, 2005Klink, C. A., & Machado, R. B. (2005). Conservation of the Brazilian Cerrado. Conservation Biology, 42(3), 707-713. http://dx.doi.org/10.1111/j.1523-1739.2005.00702.x.
http://dx.doi.org/10.1111/j.1523-1739.20...
).

The cagaita is an indigenous of the Brazilian Cerrado fruit, which can be consumed fresh or processed (as jellies, ice creams, liqueurs, and juices). Because it is very perishable, it needs to be preserved by various techniques to increase its shelf life (Costa et al., 2017Costa, L. T., Rodrigues, D. B., Melo, C. F., Souza, A. G., Garcia, E. M., Taroco, H. A., & Melo, J. O. F. (2017). Discovering the secrets of Cagaiteira (Eugenia dysenterica), an awakening of Cerrado (Vol. 10, pp. 45-49). Rondonópolis: Scientific Electronic Archives. Retrieved from http://www.seasinop.com.br/revista/index.php?journal=SEA&page=article&op=view&path%5B%5D=463&path%5B%5D=pdf
http://www.seasinop.com.br/revista/index...
).

One technique that preserves food products is foam-layer drying. Liquid or semi-liquid foods are transformed into powder by agitation and incorporation of a foaming agent, followed by dehydration (Ng & Sulaiman, 2018Ng, M. L., & Sulaiman, R. (2018). Development of beetroot (Beta vulgaris) powder using foam mat drying. LWT, 88, 80-86. http://dx.doi.org/10.1016/j.lwt.2017.08.032.
http://dx.doi.org/10.1016/j.lwt.2017.08....
).

This drying process is recommended for products that are sensitive to heat or contain sugars, mainly because they require a shorter exposure time and lower temperatures than used in other techniques (Fernandes et al., 2014Fernandes, R. V. B., Queiroz, F., Botrel, D. A., Rocha, V. V., Souza, V. R., & Lima, C. F. (2014). Estudo da adição de albumina e da temperatura de secagem nas características de polpa de tomate em pó. Ciências Agrárias, 35(3), 1267-1278. http://dx.doi.org/10.5433/1679-0359.2014v35n3p1267.
http://dx.doi.org/10.5433/1679-0359.2014...
).

To simulate and obtain data on product behavior during water removal, different mathematical models are used, which are based on external variables such as temperature and relative humidity of the air during the drying process (Resende et al., 2008Resende, O., Corrêa, P. C., Goneli, A. L. D., Botelho, F. M., & Rodrigues, S. (2008). Modelagem matemática do processo de secagem de duas variedades de feijão (Phaseolus vulgaris L.). Revista Brasileira de Produtos Agroindustriais, Campina Grande, 10(1), 17-26. http://dx.doi.org/10.15871/1517-8595/rbpa.v10n1p17-26.
http://dx.doi.org/10.15871/1517-8595/rbp...
).

A mathematical modeling in the drying process is able to predict moisture removal behavior, estimate drying time, energy expenditure and equipment sizing (Keneni et al., 2019Keneni, Y. G., Hvoslef-eide, A. K. T., & Marchetti, J. M. (2019). Mathematical modelling of the drying kinetics of Jatropha curcas L. seeds. Industrial Crops and Products, 132, 12-20. http://dx.doi.org/10.1016/j.indcrop.2019.02.012.
http://dx.doi.org/10.1016/j.indcrop.2019...
).

Diffusion of water during drying is a complex process that involves different mechanisms, such as molecular diffusion, capillary diffusion, surface diffusion, hydrodynamic flow, vapor diffusion, and diffusion activation energy (Goneli et al., 2009Goneli, A. L. D., Corrêa, P. C., Afonso, P. C. Jr., & Oliveira, G. H. H. (2009). Cinética de secagem dos grãos de café descascados em camada delgada. Revista Brasileira de Armazenamento, 11, 64-73. Retrieved from https://www.researchgate.net/publication/258242741
https://www.researchgate.net/publication...
).

The objective of this work was to propose and adjust mathematical models of the foam-layer drying process of cagaita at different temperatures, and to determine the effective diffusion coefficient and activation energy for this process.

2 Material

Cagaita fruits were collected in the region of Montes Claros, Goiás, Brazil (16°06'20 “S and 51º17'11” W), packed in 30 × 40 cm polyethylene bags, placed in thermal boxes and transported to the Laboratory of Phytochemistry of IF Goiano–Campus Rio Verde. The albumina was purchased in powder by the Naturovos trademark (Salvador do Sul, RS, Brazil) at a store specializing in raw materials for the Food Industry in Rio Verde Goiás, Brazil.

3 Methods

The Cagaita were then selected for size, absence of mechanical injury, and maturation stage and the chosen fruits were then sanitized in chlorinated water for 15 min and dried on paper towels.

The fruits were homogenized in a Toturgan® electric pulper, and the pulp was packed in 25 × 35 cm polyethylene bags and stored in a freezer at -18 °C until analysis. For foaming, commercial, unflavored albumin (8% w/w) was added to the pulp, and the mixture was then shaken with a domestic shaker brand Arno, model SX 15 for 15 min.

Approximately 100 g of the formed foam was added onto unperforated aluminum trays and dried in an oven, using forced air circulation at 40, 50, 60, and 70 °C, to determine drying kinetics.

To determine drying curves and to adjust the models, the pulp was dried to a constant mass. The water contents of the product were determined in a greenhouse at 105 ± 3 °C, in three replicates, until constant mass was reached.

The experimental data obtained from the drying of the cagaita pulp with an emulsifier were used to adjust the mathematical models frequently used to describe drying processes of vegetable products, as presented in Table 1.

Table 1
Mathematical models (Equation 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) applied to drying kinetics data.

For the adjustment of the mathematical models, non-linear regression analysis (Equation 13) was performed by the Gauss Newton method.

RX= X * -X e * X i * -X e * (13)

Where:

RX – moisture ratio, non-dimensional;

X* – moisture content, dry basis;

X*e – moisture content equilibrium, dry basis;

X*i – initial moisture content, dry basis.

The models were selected based on the magnitude of the coefficient of determination (R2), the chi-squared test (χ2), the mean relative error (P), and the estimated standard deviation (SE). Additionally, an average relative error below 5% was considered one of the criteria for the selection of models, as per (Mohapatra & Srinivasa Rao, 2005Mohapatra, D., & Srinivasa Rao, P. (2005). A thin layer drying model of parboiled wheat. Journal of Food Engineering, 66(4), 513-518. http://dx.doi.org/10.1016/j.jfoodeng.2004.04.023.
http://dx.doi.org/10.1016/j.jfoodeng.200...
).

To evaluate net diffusion, we used the model of the flat plate geometry with an approximation of eight terms (Equation 14), which was adjusted to the experimental data of foam-layer drying of the cagaita pulp, and we considered the surface area and volume.

RX= X * -X e * X i * -X e * = 8 π 2 n t =0 1 (2 nt +1) 2 exp -(2 nt +1) 2 2 *D*T 4 S V 2 (14)

Where:

RX – moisture ratio, non-dimensional;

X* – moisture content, dry basis;

X*e – moisture content equilibrium, dry basis;

X*i – initial moisture content, dry basis;

nt – number of terms;

S – surface area, m2;

V – volume, m3.

The dimensions of length, width, and thickness were measured with a digital caliper.

The relationship between the diffusion coefficient and the drying air temperature is described by Equation 15.

D=D 0 .exp -E a R .T abs (15)

Where:

D0 – Pre-exponential factor;

Ea – Activation energy, kJ mol -1;

R – Universal Gas Constant, 8.134 kJ kmol-1 K -1;

Tabs – Absolute temperature, K.

The Arrhenius expression coefficients were log-linearized according to Equation 16.

lnD = lnD o - E a R . 1 T abs (16)

In addition to the previous parameters, the Akaike information criterion (AIC) and the Bayesian Schwarz information criterion (BIC) were used. The AIC allows us to use the principle of parsimony in choosing the best model, that is, according to this criterion, the most parameterized model is not always the best (Burnham & Anderson, 2004Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research, 33(2), 261-304. http://dx.doi.org/10.1177/0049124104268644.
http://dx.doi.org/10.1177/00491241042686...
).

AIC is used to compare non-nested models or to compare three or more models. Lower AIC values reflect a better fit (Akaike, 1973Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Proceedings of the 2nd International Symposium on Information Theory (pp. 267-281). Budapest: Akademiai Kiado. Retrieved from https://link.springer.com/chapter/10.1007/978-1-4612-1694-0_15
https://link.springer.com/chapter/10.100...
). BIC also considers the degree of parameterization of the model, and therefore, the smaller the BIC value is Schwarz (1978)Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461-464. http://dx.doi.org/10.1214/aos/1176344136.
http://dx.doi.org/10.1214/aos/1176344136...
, the better the model adjustment is.

3 Results and discussion

Drying curves of cagaita foam at 40, 50, 60, and 70 °C. The values were estimated from Midilli model are shown in Figure 1.

Figure 1
Foam-layer drying curves of cagaita pulp (Eugenia dysenterica DC) at different temperatures.

It was observed that the drying time decreases with the increase in the temperature. Ferreira et al. (2012)Ferreira, L. F. D., Pirozi, M. R., Ramos, A. M., & Pereira, J. A. M. (2012). Modelagem matemática da secagem em camada delgada de bagaço de uva fermentado. Pesquisa Agropecuária Brasileira, 47(6), 855-862. http://dx.doi.org/10.1590/S0100-204X2012000600017.
http://dx.doi.org/10.1590/S0100-204X2012...
previously explained that due to the increase in the drying rate, the heat transfer potential between the air and the layer of the product is increased, resulting in greater water reduction in a shorter period compared with lower drying rates.

The curves have a steeper slope due to the increase in the amount of heat transferred from the air to the dried material. Similar behaviors were reported by Baptestini et al. (2015)Baptestini, F. M., Corrêa, P. C., Junqueira, M. S., Ramos, A. M., Vanegas, J. D., & Costa, C. F. (2015). Modelagem matemática da secagem de espuma de graviola. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(12), 1203-1208. http://dx.doi.org/10.1590/1807-1929/agriambi.v19n12p1203-1208.
http://dx.doi.org/10.1590/1807-1929/agri...
in a study of foam drying of graviola.

As seen in Table 2, the Page model fitted better at 50, 60, and 70 °C than the other models; the Two-term Exponential fitted better at 50 °C and 70 °C than the others ; and the Two-term fitted better at 70 °C than the others. In order to adjust the mathematical models, P must be less than 10% (Mohapatra & Srinivasa Rao, 2005Mohapatra, D., & Srinivasa Rao, P. (2005). A thin layer drying model of parboiled wheat. Journal of Food Engineering, 66(4), 513-518. http://dx.doi.org/10.1016/j.jfoodeng.2004.04.023.
http://dx.doi.org/10.1016/j.jfoodeng.200...
), R2 must be next to the unit, and SE must be close to zero (Resende et al., 2006Resende O, Corrêa PC, Goneli ALD, Ribeiro DM. (2006). Isotermas e calor isostérico de sorção do feijão. Ciência e Tecnologia dos Alimentos, 26(3), 626-631. http://dx.doi.org/10.1590/S0101-20612006000300022.
http://dx.doi.org/10.1590/S0101-20612006...
).

Table 2
Coefficient of determination (R2), mean relative error (P), and estimated standard deviation (SE) of models analyzed during the foam-layer drying of cagaita pulp.

The Diffusion Approximation model and the Henderson and Pabis Modified model were adapted to the experimental data obtained at drying at 70 °C. The Midilli model, followed by the Wang and Sing model, was the best model to represent the drying kinetics of powdered cagaita pulp at all temperatures.

The models for the same mathematical models in foam-layer drying were found by Silva et al. (2008)Silva, A. S., Gurjão, K. C. O., Almeida, F. A. C., Bruno, R. L. A., & Pereira, W. E. (2008). Desidratação de polpa de tamarindo pelo método de camada de espuma. Ciência e Agrotecnologia, 32(6), 1899-1905. http://dx.doi.org/10.1590/S1413-70542008000600032.
http://dx.doi.org/10.1590/S1413-70542008...
in the dehydration of the tamarind pulp, with temperatures between 50 and 80 ° C, where the best models that represent the behavior of the dehydration curves were of Midilli and Kucuk. Alves & Rodovalho (2016)Alves, J. J. L., & Rodovalho, R. S. (2016). Cinética de secagem em camada de espuma da polpa de abacate cv ‘quintal’ (Persea Americana Mill). Revista Agrotecnologia, 6(1), 86-99. http://dx.doi.org/10.12971/2179-5959/agrotecnologia.v7n1p86-98.
http://dx.doi.org/10.12971/2179-5959/agr...
with avocado pulp, with temperatures of 50 to 80 ° C, and the best model of Wang and Sing. In Table 3, the AIC and BIC confirmed that the fit of the Wang and Sing model was better at 40 and 50 ºC, whereas the Midilli model was better adjusted at 60 and 70 °C.

Table 3
Akaike information criterion (AIC) and Bayesian Schwarz information criterion (BIC) selection criteria of the models with best adjustments of the cagaita pulp drying kinetics at different temperatures.

When analyzing the drying kinetics of the crushed jambu mass, evaluating the AIC and BIC parameters, it found the best Midilli model for temperatures of 60 and 70 ° C (Gomes et al., 2018Gomes PF, Resende O, Sousa EP, Oliveira DEC, Araújo FR No. (2018). Cinética de secagem da massa esmagada de 'jambu': difusividade efetiva e energia de ativação. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(7), 499-505. https://dx.doi.org/10.1590/1807-1929/agriambi.v22n7p499-505.
https://dx.doi.org/10.1590/1807-1929/agr...
). The Midilli model is probably associated with the rapid loss of water at the beginning of the process steps, generating a drying curve that best characterizes mathematically by this model (Goneli et al., 2009Goneli, A. L. D., Corrêa, P. C., Afonso, P. C. Jr., & Oliveira, G. H. H. (2009). Cinética de secagem dos grãos de café descascados em camada delgada. Revista Brasileira de Armazenamento, 11, 64-73. Retrieved from https://www.researchgate.net/publication/258242741
https://www.researchgate.net/publication...
).

The values of the net diffusion obtained for the different drying temperatures are shown in Figure 2. The curve shows a linear, increasing behavior in which the values of the diffusion coefficient increased with the increase in the temperature.

Figure 2
Diffusion Coefficient vs. temperature obtained by foam-layer drying of cagaita pulp (Eugenia dysenterica DC).

According to Baptestini et al. (2015)Baptestini, F. M., Corrêa, P. C., Junqueira, M. S., Ramos, A. M., Vanegas, J. D., & Costa, C. F. (2015). Modelagem matemática da secagem de espuma de graviola. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(12), 1203-1208. http://dx.doi.org/10.1590/1807-1929/agriambi.v19n12p1203-1208.
http://dx.doi.org/10.1590/1807-1929/agri...
, this behavior is predictable, because the temperature is inversely correlated to the viscosity, which facilitates the diffusion of water molecules in the capillaries of the product. The same behavior was observed by Alves & Rodovalho (2016)Alves, J. J. L., & Rodovalho, R. S. (2016). Cinética de secagem em camada de espuma da polpa de abacate cv ‘quintal’ (Persea Americana Mill). Revista Agrotecnologia, 6(1), 86-99. http://dx.doi.org/10.12971/2179-5959/agrotecnologia.v7n1p86-98.
http://dx.doi.org/10.12971/2179-5959/agr...
, in their study of foam-layer drying kinetics of avocado pulp. The variation in the effective diffusion coefficient as a function of drying temperature is described by the ratio of Arrhenius (Figure 3).

Figure 3
Arrhenius plot of cagaita foam drying at a temperature range of 40, 50, 60 and 70 °C, including regression equation and its coefficient of determination.

The activation energy for drying the foam of the powdered cassava pulp was 25.368 kJ mol-1 at a temperature range of 40 to 70 °C. Similar values were found for bananas dried by the same method (Thuwapanichayanan et al., 2008Thuwapanichayanan, R., Prachayawarakorn, S., & Soponronnarit, S. (2008). Drying characteristics and quality of banana foam mat. Journal of Food Engineering, 86(4), 573-583. http://dx.doi.org/10.1016/j.jfoodeng.2007.11.008.
http://dx.doi.org/10.1016/j.jfoodeng.200...
), which had an activation energy of 25.19 kJ mol-1 at a temperature range of 60, 70 and 80 °C.

The lower the activation energy is, the greater the water diffusivity in the product is. Our reported values are within the energy activation range reported by Zogzas et al. (1996)Zogzas, N. P., Maroulis, Z. B., & Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14(10), 2225-2253. http://dx.doi.org/10.1080/07373939608917205.
http://dx.doi.org/10.1080/07373939608917...
, i.e., between 12 and 110 kJ mol-1.

4 Conclusion

The Wang and Sing models at 40 and 50 °C and the Midilli model at 60 and 70 °C were the ones that best fit the experimental data of the drying curves of the foam-layer drying of cagaita using AIC and BIC parameters. With increasing air temperature, a reduction in the drying time of the cagaita pulp foam occurred. The net effective diffusion coefficient increases with increasing drying temperature. The value of the activation energy is within the established parameters.

Acknowledgements

This work was supported by FAPEG and IF Goiano-Campus Rio Verde. To Bheatriz S.M. de Freitas for supplying cagaita fruits.

  • Practical Application: The cagaita is an indigenous of the Brazilian Cerrado fruit, which can be consumed fresh or processed (as jellies, ice creams, liqueurs, and juices). Because it is very perishable, it needs to be preserved by various techniques to increase its shelf life. One technique that preserves food products is foam-layer drying. Liquid or semi-liquid foods are transformed into powder by agitation and incorporation of a foaming agent, followed by dehydration. In addition, a mathematical modeling in the drying process is able to predict moisture removal behavior, estimate drying time, energy expenditure and equipment sizing.

References

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Proceedings of the 2nd International Symposium on Information Theory (pp. 267-281). Budapest: Akademiai Kiado. Retrieved from https://link.springer.com/chapter/10.1007/978-1-4612-1694-0_15
    » https://link.springer.com/chapter/10.1007/978-1-4612-1694-0_15
  • Alves, J. J. L., & Rodovalho, R. S. (2016). Cinética de secagem em camada de espuma da polpa de abacate cv ‘quintal’ (Persea Americana Mill). Revista Agrotecnologia, 6(1), 86-99. http://dx.doi.org/10.12971/2179-5959/agrotecnologia.v7n1p86-98
    » http://dx.doi.org/10.12971/2179-5959/agrotecnologia.v7n1p86-98
  • Baptestini, F. M., Corrêa, P. C., Junqueira, M. S., Ramos, A. M., Vanegas, J. D., & Costa, C. F. (2015). Modelagem matemática da secagem de espuma de graviola. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(12), 1203-1208. http://dx.doi.org/10.1590/1807-1929/agriambi.v19n12p1203-1208
    » http://dx.doi.org/10.1590/1807-1929/agriambi.v19n12p1203-1208
  • Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research, 33(2), 261-304. http://dx.doi.org/10.1177/0049124104268644
    » http://dx.doi.org/10.1177/0049124104268644
  • Costa, L. T., Rodrigues, D. B., Melo, C. F., Souza, A. G., Garcia, E. M., Taroco, H. A., & Melo, J. O. F. (2017). Discovering the secrets of Cagaiteira (Eugenia dysenterica), an awakening of Cerrado (Vol. 10, pp. 45-49). Rondonópolis: Scientific Electronic Archives. Retrieved from http://www.seasinop.com.br/revista/index.php?journal=SEA&page=article&op=view&path%5B%5D=463&path%5B%5D=pdf
    » http://www.seasinop.com.br/revista/index.php?journal=SEA&page=article&op=view&path%5B%5D=463&path%5B%5D=pdf
  • Fernandes, R. V. B., Queiroz, F., Botrel, D. A., Rocha, V. V., Souza, V. R., & Lima, C. F. (2014). Estudo da adição de albumina e da temperatura de secagem nas características de polpa de tomate em pó. Ciências Agrárias, 35(3), 1267-1278. http://dx.doi.org/10.5433/1679-0359.2014v35n3p1267
    » http://dx.doi.org/10.5433/1679-0359.2014v35n3p1267
  • Ferreira, L. F. D., Pirozi, M. R., Ramos, A. M., & Pereira, J. A. M. (2012). Modelagem matemática da secagem em camada delgada de bagaço de uva fermentado. Pesquisa Agropecuária Brasileira, 47(6), 855-862. http://dx.doi.org/10.1590/S0100-204X2012000600017
    » http://dx.doi.org/10.1590/S0100-204X2012000600017
  • Gomes PF, Resende O, Sousa EP, Oliveira DEC, Araújo FR No. (2018). Cinética de secagem da massa esmagada de 'jambu': difusividade efetiva e energia de ativação. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(7), 499-505. https://dx.doi.org/10.1590/1807-1929/agriambi.v22n7p499-505
    » https://dx.doi.org/10.1590/1807-1929/agriambi.v22n7p499-505
  • Goneli, A. L. D., Corrêa, P. C., Afonso, P. C. Jr., & Oliveira, G. H. H. (2009). Cinética de secagem dos grãos de café descascados em camada delgada. Revista Brasileira de Armazenamento, 11, 64-73. Retrieved from https://www.researchgate.net/publication/258242741
    » https://www.researchgate.net/publication/258242741
  • Keneni, Y. G., Hvoslef-eide, A. K. T., & Marchetti, J. M. (2019). Mathematical modelling of the drying kinetics of Jatropha curcas L. seeds. Industrial Crops and Products, 132, 12-20. http://dx.doi.org/10.1016/j.indcrop.2019.02.012
    » http://dx.doi.org/10.1016/j.indcrop.2019.02.012
  • Klink, C. A., & Machado, R. B. (2005). Conservation of the Brazilian Cerrado. Conservation Biology, 42(3), 707-713. http://dx.doi.org/10.1111/j.1523-1739.2005.00702.x
    » http://dx.doi.org/10.1111/j.1523-1739.2005.00702.x
  • Mohapatra, D., & Srinivasa Rao, P. (2005). A thin layer drying model of parboiled wheat. Journal of Food Engineering, 66(4), 513-518. http://dx.doi.org/10.1016/j.jfoodeng.2004.04.023
    » http://dx.doi.org/10.1016/j.jfoodeng.2004.04.023
  • Ng, M. L., & Sulaiman, R. (2018). Development of beetroot (Beta vulgaris) powder using foam mat drying. LWT, 88, 80-86. http://dx.doi.org/10.1016/j.lwt.2017.08.032
    » http://dx.doi.org/10.1016/j.lwt.2017.08.032
  • Resende O, Corrêa PC, Goneli ALD, Ribeiro DM. (2006). Isotermas e calor isostérico de sorção do feijão. Ciência e Tecnologia dos Alimentos, 26(3), 626-631. http://dx.doi.org/10.1590/S0101-20612006000300022
    » http://dx.doi.org/10.1590/S0101-20612006000300022
  • Resende, O., Corrêa, P. C., Goneli, A. L. D., Botelho, F. M., & Rodrigues, S. (2008). Modelagem matemática do processo de secagem de duas variedades de feijão (Phaseolus vulgaris L.). Revista Brasileira de Produtos Agroindustriais, Campina Grande, 10(1), 17-26. http://dx.doi.org/10.15871/1517-8595/rbpa.v10n1p17-26
    » http://dx.doi.org/10.15871/1517-8595/rbpa.v10n1p17-26
  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461-464. http://dx.doi.org/10.1214/aos/1176344136
    » http://dx.doi.org/10.1214/aos/1176344136
  • Silva, A. S., Gurjão, K. C. O., Almeida, F. A. C., Bruno, R. L. A., & Pereira, W. E. (2008). Desidratação de polpa de tamarindo pelo método de camada de espuma. Ciência e Agrotecnologia, 32(6), 1899-1905. http://dx.doi.org/10.1590/S1413-70542008000600032
    » http://dx.doi.org/10.1590/S1413-70542008000600032
  • Thuwapanichayanan, R., Prachayawarakorn, S., & Soponronnarit, S. (2008). Drying characteristics and quality of banana foam mat. Journal of Food Engineering, 86(4), 573-583. http://dx.doi.org/10.1016/j.jfoodeng.2007.11.008
    » http://dx.doi.org/10.1016/j.jfoodeng.2007.11.008
  • Zogzas, N. P., Maroulis, Z. B., & Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14(10), 2225-2253. http://dx.doi.org/10.1080/07373939608917205
    » http://dx.doi.org/10.1080/07373939608917205

Publication Dates

  • Publication in this collection
    16 Oct 2020
  • Date of issue
    2021

History

  • Received
    07 July 2020
  • Accepted
    27 Aug 2020
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br